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NEST-SUBALGEBRAS OF VON NEUMANN ALGEBRAS:
COMMUTANTS MODULO COMPACTS AND DISTANCE
ESTIMATES

FRANK GILFEATHER and DAVID R. LARSON

INTRODUCTION

In recent years several papers have appeared which focus on the structure
of the commutant modulo compacts, or “‘essential commutant”, of certain algebras
of operators on Hilbert space. Perhaps the most important of these is the work of
B. Johnson and S. Parrott [19] in which it was shown that the essential commutant
of a von Neumann algebra which does not contain certain intractable type II, fac-
tors as direct summands decomposes as the sum of the algebraic commutant of the
von Neumann algebra and the compact operators. Subsequently, answering a.
question of R. Douglas, K. Davidson [11] characterized the essential commutant.
of the analytic Toeplitz operators as the sum of the compact operators and those
Toeplitz operators with symbol in H* + C. More recently, E. Christensen and
C. Peligrad [10] have shown that the essential commutant of an arbitrary nest
algebra decomposes as scalar multiples of the identity plus the compact operators.
Since the algebraic commutant of a nest algebra is trivial, this result is of the same
basic type as [19].

In this paper we present a characterization of the essential commutant of a
class of operator algebras which generalizes certain aspects of the work of [19] as
well as that of [10]. In addition we obtain results concerning the Arveson distance
estimate for an operator to certain operator algebras.

To a fixed von Neumann algebra 4 and a complete nest A4~ of projections
contained therein one associates the algebra & of all operators in # which leave
invariant every projection in.#". So & = & N & .+ where &, denotes the nest algebra
of /" in #(H). &/ is then a reflexive operator algebra with invariant subspace (pro-
jection) lattice equal to the reflexive lattice generated by 4" together with the pro-
jections in the commutant of & in £ (H). The algebra &/ is called the nest subalgebra
of the von Neumann algebra 2 relative to the nest A"
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An investigation of the structure of nest subalgebras of von Neumann algebras
was initiated by the present authors in [15] in which present terminology and basic
elements of the theory were established. In the present paper we show that if &7 is a
separably acting nest subalgebra of a von Neumann algebra # then the essential
commutant of o/ admits the algebraic commutant plus compacts decomposition
whenever the essential commutant of # admits a like decomposition. Also, the alge-
braic commutants of &/ and £ are always equal. Moreover, even in cases where
the decomposition for esscomm# may fail it remains true that esscomm. :=
=: esscomm. The parallel results in [10] and [19] concerning derivations and auto-
morphisms are not considered in this paper. The results in this paper were obtained
independently and at about the same time as [10]. Our original proofs for the simple
nest algebra case (# = #(H)) proceeded essentially the same as the results in [10].

We remark that there is some contact between the present work and the theory
of algebras of analytic operators in von Neumann algebras associated with certain
groups of =-automorphisms. This theory has its roots in the paper by W. Arveson
[2] and was investigated and developed by R. Loebl and P. Muhly in [23]. In parti-
cular, nest subalgebras of von Neumann algebras are precisely those algebras of
analytic operators which arise from ultraweakly continuous representations of R
as groups of inner x-automorphisms on separably acting von Neumann algebras
([23], Theorem 4.2.3). Also, nest-subalgebras of finite von Neumann algebras are
maximal subdiagonal algebras in the sense of Arveson [1]. In addition, nest
subalgebras of factors with relative maximal abelian core are the most tractable
special cases of the triangular subalgebras of factors defined and investigated by
R. Kadison and I. M. Singer in [20].

In the process of our investigation we obtain some results of the type studied
by Davidson [12] relating to Arveson’s distance formula for nest algebras [4]. In
particular we show that if o/ is a nest subalgebra of an arbitrary approximately
finite dimensional von Neumann algebra there is a positive constant C such that

dist(T, &) < C sup{||PTP| : Pe Latef}

for every T € £ (H). Thus, via a result of Christensen such a distance estimate holds
for an arbitrary von Neumann algebra & if and only if every derivation from its
commutant #’ into £ (H) is inner (i.e., iff HY{A', ¥ (H)) = 0). This answers a
question posed in [12] for the case in which &£ is a purely atomic m.a.s.a. . We were
unable to show whether the corresponding result for nest subalgebras extends
from the approximately finite dimensional case to the general setting.

After submission of this manuscript we received the thesis of Niels Anderson
which contained, in particular, an alternate (and independent) proof that an abe-
lian von Neumann algebra satisfies an Arveson distance formula with constant and
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an extension of this result to von Neumann algebras with property P. Moreover
Eric Christensen has communicated to us that he has been aware for some time of
the above mentioned results for von Neumann algebras and the connection be-
tween the Arveson distance estimate and the derivation problem for von Neumann
algebras given in Remark 4.6 of this paper.

Finally, we remark that due to the “discrete” nature of compact operators
our proofs do not require usage of the components of direct integral theory as was
needed in our earlier paper [15]. Also, since certain of our key proofs depend on
separability of the underlying Hilbert space we make the blanket assumption that
all Hilbert spaces considered in this paper will be separable. However, certain of
our results, especially those of §2 and § 3, extend easily to the nonseparable case.

1. PRELIMINARIES

Throughout this paper all operators will be bounded, all subspaces closed,
and all projections will be self-adjoint. We write #(H) for the collection of all
bounded operators on a Hilbert space H, and we write #€(H) for the ideal of
compact operators in Z(H).

If Ae #(H) the notation [AH] will denote the closed range of 4. Also,
if T, R are operators and & a set of operators then TR will denote the set
{TSR:S € &}. We use the notation &’ for the algebraic commutant of &, and
esscomm’ will denote the set of all operators in £(H) that commute with every
member of & modulo #¥(H).

Let Z be a collection of subspaces containing {0} and H which form a lattice
under the operations v and A, where M v N is the subspace generated by M
and N while M A N is the intersection M N N. % is commutative if the projections
on the subspaces commute pairwise, and is complete if the meet and join of every
subset of & are also in Z. & is a nest (usually denoted by 4") if the lattice is linearly
ordered by inclusion.

For convenience we shall disregard the distinction between a subspace of H
and the orthogonal projection onto it. Thus a lattice will consist of either subspaces
or projections depending on the context in which it is used.

As usual, we write Lat.% for the lattice of all projections left invariant under
every operator in a subset & of #(H), and dually Alg# denotes the algebra of all
operators leaving each member of a set % of projections invariant. The term subspace
lattice will denote a lattice of projections that is closed in the strong operator topology.
An algebra o is reflexive if of = AlgLate/, and dually a lattice & is reflexive if
&£ = LatAlg®. Subspace lattices need not be reflexive; however, commutative
subspace lattices are reflexive [3, 12]. In particular, nests are reflexive.
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If & is a nest of projections (subspaces) we use the notation 27, to denote
the nest algebra AlgA”. The core €, is the von Neumann algebra generated by the
projections in A". The diagonal of a nest algebra &/ is the von Neumann algebra
Dy =Ay N A% We have D, = €, and ¥ is the center of D .. An A -interval
is a projection E= M — N with M, NeA# and M > N. The projections M, N
are called the upper and lower endpoints of E, respectively. The endpoints of a
nonzero A -interval are well-defined in the sense that if M — N=M, — N, # ¢
with M, N, M,, N, e #" then necessarily M = M, and N = N,. We say that the
A -intervals E and F are strictly ordered, and write E < F, if the upper endpoint
of E is contained in the lower endpoint of F. A von Neumann algebra is called
nonatomic if it contains no minimal projections. A nest A" of projections is said
to be nonatomic if its core is nonatomic, or equivalently, if there exist no minimal
A -intervals. (This differs from standard lattice-theoretic terminology.)

Let 4 be a von Neumann algebra, let /7 be a complete nest of projections
contained in &, and let & = # n &/, denote the nest subalgebra of % relative
to . Then & is reflexive since it is the intersection of two reflexive algebras. If
we let ./ denote the lattice of projections in %', then & = Alg(.# v./"), where
A4 v denotes the subspace lattice generated by .# and #". The authors have
shown that .# v.A" is reflexive (unpublished). We will for convenience adopt the
notation n.s.v.a. to denote a nest subalgebra of a von Neumann algebra.

We present a few basic properties from {15} which are useful in the sequel.
The notation is that of the previous paragraph.

LemMma 1.1. of will contain a m.a.s.a. iff & contains a m.a.s.a.

LemMMA 1.2. PBPY € &/ for every Be % and Pe A .

LemMA 1.3, of 4 &% is ultraweakly dense in 4.

Proof. This is a result of ([23], Theorem 3.15). See also ({1], p. 589).

Lemma 1.4, The center of & coincides with the center of .

LeMMA 1.5, & will equal B iff <7 is selfadjoint iff & lies in the center
of 4.

LeMMA 1.6. If E is a central projection then «f 5= sZ EH is the nest sub-

algebra of #By = B\FH relative to the nest ¥ p = A |EH.

Remark. Lemma 1.3 shows that a n.s.v.a. is always large in that it generates
the von Neumann algebra it is defined in terms of. So a n.s.v.a. is associated with
a uniquely determined von Neumann algebra. Different nests may give rise to the
same n.s.v.a., however. Lemma 1.4 shows that there is no ambiguity in speaking
of a ““central projection” without specifying whether for & or for 4.
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2. ALGEBRAIC COMMUTANTS AND LATTICES WITH
COMPARABLE ELEMENTS

We must first show that the algebraic commutant of a n.s.v.a. coincides with
that of its associated von Neumann algebra. The following lemma is useful.

LeMMA 2.1. Let @ be an operator algebra containing a projection P with

the properties \] [PBP*H]=PH and \/ (P B*PH]= P'H. Then the com-
BER BEH
mutant of B equals the commutant of the subset {P, PBPL].

Proof. Suppose T commutes with P and with P#P+. For B,, B arbitrary
in # we have [(PB,P) T — T(PB,P)] PBP+ = 0 since 4 is an algebra containing P
and T commutes with P#PL. Also, since T commutes with P the commutator

(PB,P)T — T(PB,P) has support in P. Hence, since V [PBPLH]= PH this
Bex

commutator must be 0. Sec 7 commutes with PZP. Similarly, we compute
PBPL[(PLB,P*) T — T(P+B,PL)] = 0 from which it follows that 7 commutes
with PLZP+. Finally, we compute using the above results that PBPL{(P+B,P) T—
— T(PLB,P)] = 0 which implies T commutes with PL#P, and by hypothesis T
commutes with P#ZPL, hence T € #'. %

Recall [16] that an element L in a lattice & is comparable for Z if for every
L' e & either L' < L or L < L’. Thus a lattice is a nest iff each of its elements
is comparable.

LemMA 2.2, Let & be a subspace lattice containing a comparable element P.
Then Pe Alg? and P¥(H) P+ < Alg¥?.

Proof. P e Alg% since it commutes with every member of .#. Now fix L e %
and suppose A = PAP* is an arbitrary member of PZ(H)P+. If L < P then
ALH = {0} < LH. If L > P then ALH < PH < LH. So ALH < LH for every
Le%. That is, Ae AlgZ?. %

COROLLARY 2.3. If % is a subspace lattice containing a nontrivial comparable
element then the algebraic commutant of Alg¥ is trivial.

Proof. If P is comparable for & with P # 0, I, just apply (2.1) with
A = ZL(H) noting that P satisfies the properties of the lemma and that the
set {P, PBP+} is contained in Alg® by (2.2). 7

The above corollary has an obvious extension. We do not assume .2 is entirely
contained in 4.

COROLLARY 2.4. If % is a subspace lattice containing a nontrivial comparable
element P and if B is a von Neumann algebra containing P such that the central
support of both P and P+ in B is I then the algebraic commutant of the intersection
(AlgL) N B equals the algebraic commutant of 4.
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Proof. By 2.2 we have {P, PAP'} = (Alg¥)n #A. Now note that a pro-
jection P in a von Neumann algebra 4 satisfies the hypotheses of Lemma 2.1 if
and only if both P and P! have central support I. Z

THEOREM 2.5. The algebraic commutant of an arbitrary n.sv.a. equals the
algebraic commutant of its von Neumann algebra.

Proof. Let &/ be a nest subalgebra of a von Neumann algebra # relative
to a nest /" < #. So o = Fn(AlgH). If 4 = {0,I} then & = B so we are
done. If for some P e & both P and P! have central support I then Corollary 2.4
yields the desired result. If 4 is not a factor it can happen that no projection in
a nontrivial nest A/ < 4 satisfies this property. We first reduce to the case in which &7
is completely nonselfadjoint and show that for such an n.s.v.a. there exists a pro-
jection P in the subspace lattice generated by 4" together with the central project-
ions .# in Z such that the central support of both P and P+ is I and PAPL < .

Let E be the join of all central projections P with &P selfadjoint. Then
o/ p = 2|EH is selfadjoint and </, is completely nonselfadjoint in the sense that
it contains no central projection for which the compression algebra is selfadjoint.
By Lemmas 1.5 and 1.6 /5= and & . is the n.s.v.a. of &, relative to A",
The problem thus reduces to showing equality of the commutants of 1 and By
and thus without loss of generality we can assume that our original algebra =/
is completely nonselfadjoint.

For each N e A" let E, and Fy be the central supports of N and NL respecti-
vely, and let Gy = Ey A Fy. If Gy =0 then N is central, so Gy # 0 for some N.
Gy is the central support of both NGy and N+Gy. Let G = 1\\\7/ Gy. If G#1 then

A" ;1 consists of central projections of B.1, SO dcl = A1 by 1.5 and 1.6

contradicting the hypothesis that &7 is completely nonselfadjoint. Thus V Gy==L
N

A simple Zorn’s lemma argument now yields a family {P,;} of mutually ortho-
gonal central projections with ¥, P, = I such that each P, is a subprojection of

some Gy. For each A choose N, .4 such that P, < Gy, and set P = ¥, N,P,.
P

Since the central support of both N;P, and N}+P; is P, the central support of
both P and P* is necessarily 1.

We have Pe A v.#/ where .# is the lattice of central projections in #.
Since each P, is central we have

N;P,A(P, — N,P,y = N,#4N}P, = o

and hence PAP! < o/. Now apply Lemma 2.1 noting that P satisfies the khypotheses
of the lemma and {P, PAP'} c & < . %
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REMARK. The above proof is in fact valid for arbitrary Hilbert space. An
alternate proof valid only in the separable case would utilize the fact that ({15],
Theorem 4.4) &7 is equivalent to a direct integral of nest subalgebras of factor von
Neumann algebras. Then the result would follow from Corollary 2.4 and the fact
that the commutant of the direct integral of a measurable field of strongly closed
algebras equals the direct integral of the commutants of the integrand algebras
([5], Lemma 4.6).

REMARK. Proposition 2.5 shows in particular that the commutant of an
n.s.v.a. is selfadjoint. No more elementary proof of this fact is known to us. Indeed,
if a simple proof that the commutant of an n.s.v.a. is selfadjoint were obtained
then this together with Lemma 1.3 would immediately yield an alternate proof
of Proposition 2.5.

3. ESSENTIAL COMMUTANTS OF CERTAIN OPERATOR ALGEBRAS

We begin with an “essential”” version of Lemma 2.1. While the scope of its
direct application is somewhat limited the ideas in its proof are suggestive of the
approach taken in the sequel.

LeMMA 3.1. Let # be an operator algebra containing a projection P with
the properties:

() If Ae L(H) with PAP not compact there exists Be & with PAPBP* not
compact,

(i) If A e L(H) with P+APL not compact there exists Be B with PBPLAPL
not compact. :

Then esscomméB = esscomm{P, PBP'}.

Proof. Suppose T € £(H) and T commutes modulo compacts with P and
with all operators PBPL, Be%. For B, Be#B the operator [(PBP)T —
— T(PByP)IPBPL is compact since & is an algebra containing P and T essentially
commutes with PZP*. So since TP — PT is compact the operator (P(B,T —
— TBy)PBP* must also be compact. Since Be & is arbitrary we conclude that
P(B,T — T'By)P is compact and hence (PB,P)I — T'(PB,P) is compact. So T
essentially commutes with PZP. Similarly we compute that the operator
PBPL[(PB,PL)T —T(P+B,P1)] is compact from which it follows that T essentially
commutes with PLZPL. Finally we compute using the above results that
PBPL[(PLB,P)T — T(P*B,P)} is compact. From this it follows that PBP+(B,T —
— TBy)P is compact. Let S = P+(B,T — TBy)P. Then SS* = PLSS*PL, and
PBPLSS*PLis compact for all B € %, so by hypothesis SS* and hence S is compact.
It follows that (PL1B,P)T — T(PLB,P) is compact. So T essentially commutes
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with PLZP. By hypothesis we already bave that T essentially commutes with
PAPL, so we conclude T e esscomm. )

COROLLARY 3.2. Let B be an operator algebra containing an infinite rank
and infinite corank projection P. If 9 contains a partial isometry S such that
8S% — P and $*S — P' are compact then esscommZ == esscomm{P, PAP*}.

COROLLARY 3.3. If & is a subspace lattice with an infinite rank and infinite
corank comparable element then esscommAlgY == CI + compacts.

Recall that a finite partition of a projection P relative to a von Neumann
algebra 7 is a finite set of mutually _ projections in Z whose sum is P.

COROLLARY 3.4. Let s/ be a nest subaigebra of a von Neumann algebra 3
relative to a nest A < B. If & contains a projection P with the property that P
has a finite partition each of whose meinbers is equivalent in # to a subprojection
of PL and that PL has a finite partition cach of whose members is equivalent to

a subprojection of P, then esscomm./ = esscommZ.

REMARKS. Corollary 3.4 shows immediately that esscomm./ = esscomm#%
whenever # is a type I finite, type II finite or type III factor. Unfortunately,
this is not enough to enable one to proceed directly from the factor case to cases
in which the factor appears as a direct summand in the decomposition of a more
general n.s.v.a. . Certain additional estimates are required relating norms of compact
operators to norms of their corresponding derivations restricted to the summand
n.s.v.a.s. . This is done in the proof of the general case. Also, Corollary 3.4 does not
apply directly to the type I or type II infinite factor cases. The proofs for these
cases are necessarily more technical.

The following example reveals limitations in the direct application of Lemma 3.1.

ExAMPLE 3.5. A projection with finite complement in a type I, factor
will fail to have the property in 3.1 relative to # even though £ contains no com-
pacts. Indeed, suppose PL is a minimal projection in # and let {E,} be a sequence
of mutually | projections in # with Y E, = P. For each i let T; be a norm
one compact operator in Z(H) with T; = E,TE;, and let T = YT, Then T is
not compact but PTPBPL is compact for every Be #. Indeed, if we fix Be %
with PBPL # 0 and let Q = [PBPLH] then Q is a minimal projection in # and
consequently the sum Y} E;Q = PQ converges in norm. So PTPBP*= PTPQBP* =
== ¥ PTE,QBPL is compact since each summand is compact and the series is norm
convergent. Clearly this argument extends to the case in which P* is a finite sum
of minimal projections.
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4. DERIVATION NORMS AND DISTANCE ESTIMATES

If T is an operator in #(H) we denote by J, the derivation 4 -—» AT — T4
from Z(H) into itself. If o < L(H) is an algebra then ||67]|, will denote the
norm of the restriction of dy to 7.

An expectation from #(H) onto a von Neumann subalgebra £ is a norm 1
idempotent positive linear map @ from Z(H) onto # with &(I) = I and with
P(ATB) = AP(T)B, A, Be B, T € #(H). There is a standard way of constructing
an expectation from £(H) onto an approximately finite dimensional (AF) von
Neumann algebra £ via an invariant mean on an amenable group G of unitaries
in the commutant of # which generates #’ as a W%-algebra. A. Connes has
shown that the only separably acting von Neumann algebras which admit expectations
(i.e., have property P) are the AF ones. We will require the formal machinery of
the expectation construction in the case where 4’ is abelian.

Let G be a discrete abelian group. An invariant mean on G is a linear func-

tional M(-) on the Banach space of all bounded complex-valued functions on G
such that

(1) For real f, inf{f(x) : x € G} < M(f) < sup{fi(x) : xe G}.

(2) For each ge G, if f,(x) = f(gx), then M(f,) = M(f).

Every discrete abelian group has an invariant mean ([17], p. 231, Theorem
17.5) although means are not in general unique unless the group is finite.

Now let & be an abelian von Neumann algebra in £(H), let  be a group
of unitary operators in & which generates ¢ as a von Neumann algebra, and
let M be an invariant mean on %. Let £, denote the ideal of trace class operators
in Z(H), and identify Z(H) with (Z.)* by writing (T, f) = Tr(Tf), T € L(H),
feZ. f Ae $(H), fe &, denote the mean of the bounded complex valued
function U — (U*AU, f) by M(U*AU, [), and define y(4) € L(H) by (Y(A), f) =
= My(U*AU, [), f € &£,. Translation invariance of M implies that U*(A)U = y(A4)
for every Ue%, so Y(A) e U'=¢&". Also, if 4 €&’ then A commutes with every U
s0 Y(Ad) = A. It is easily verified that  : L(H) — & is a positive linear map (in
fact a projection) of norm 1. It can be verified that Y is completely positive. In
addition, if Be Z(H) and A € &' then Y(4AB) = AY(B) and Y (BA) = Y(B)A, so
is an expectation of .#(H) onto &".

We will refer to an expectation of Z(H) onto the commutant of an abelian
von Neumann algebra constructed in the above fashion as a diagonal projection.
If the abelian von Neumann algebra & is not purely atomic the diagonal projec-
tion ¥ will be neither faithful nor normal on £ (H) and will not be ultraweakly
continuous. However, by a standard separation theorem for each T e #(H) the
image Y(7) is in the ultraweakly closed convex hull of the operators U*TU, Ue%,
and this is essentially the feature most frequently used.

7 -~ 1789
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LeEMMA 4.1. Let & be an abelian von Neumann algebra in L(H) and let
T e £(H) be arbitrary. If U is any unitary group which generates &, and if M is
any invarignt mean on U, then

L orlle < disuT, 6) < IT —y(D)] <

< sup{|| UT — TU| : Ue ¥} < |i6rle,

where  is the diagonal projection onto &' associated with % and M.

Proof. For each trace class operator f we have

My(UHUT — TU),f) = My(T — UTU,f) =T — y@), 1),
and
IMy(U*(UT — TU), )} < sup T —TUf I,

where || < || denotes the trace class norm. So for j|fi, = 1 we have

(T — (D), /)l <sup{||lUT —TU|: Ue}
and hence
1T — (@] < sup T —TU|.

The remaining inequalities are obvious. Z

COROLLARY 4.2. Let & and T be as in 41. If T is in the kernel of any
diagonal projection onto &' then

NTH < {16r]e < 20T

REMARK 4.3. In ([19], Theorem 2.i) Johnson and Parrott proved in fact
{although more was shown) that if & is an abelian von Neumann algebra with % the
full group of unitaries in &, and if T is an operator in Z(H) such that 4T—TA4 is
compact for everv 4 € §, then T — (T") is compact for every diagonal projection ¥
associated with an invariant mean on %. An inspection of their proof shows that
for the proof of this particular item % can be replaced by any unitary group gene-
rating &. This can prove useful.

The above remark together with Lemma 4.1 yields the following result used
in later sections.

PROPOSITION 4.4. Let & be an abelian von Neumann algebra, and let
T e L(H) be arbitrary. ThenT = T + K where Tye " and || K|| < ||67lls < 2| K]l
If in addition 81 derives & into the compact operators then K can be taken to be
compact.
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Proof. Let % be a unitary group generating &, M an invariant mean on %,
and ¥ the corresponding diagonal projection. Let Ty = Y(T), K= T — y(T), and
apply 4.1 and 4.3 noting that d; = d; on &. %

If & is a subspace lattice acting on H and if T e Z(H) let dist(T, Alg®)
denote the distance from T to Alg#. As Arveson noted in [4], it is always true that

dist(T, Alg#) = sup{| P*TP| : Pe ¥}

sincc for 4 € Alg¥ we have PL(T — A)P = PLTP. In [4] Arveson showed that
equality holds provided & is a nest thus obtaining an important distance formula
for nest algebras. (In [21] C. Lance obtained an independent proof of the Arveson
result.) Although equality fails for many lattices, Davidson studied in [12] the question
of whether the distance estimate holds with a constant for commutative subspace
lattices. That is, given & is there a constant a > 0 such that dist(7T, Alg®) <
< asup{||PLTP|: Pe ¥} for every T e #£(H)? Classes were given for which
such constants exist. The general question is unsettled and appears to be one of
th e more interesting in the study of reflexive operator algebras.

The balance of this section shows that the Arveson distance estimate with
onstant holds for arbitrary nest subalgebras of A.F. von Neumann algebras.
The question of whether either the triangle inequality or the distance estimate holds
for more general n.s.v.a. has not been resolved.-

Our original proof of the next result used an invariant mean technique, however
we use a simpler proof provided by the referee. As we noted in the introduction
both (4.5) and (4.6) were known to Christensen for some time though unpublished
by him.

PROPOSITION 4.5. Let B be an arbitrary von Neumann algebra and let P denote
the lattice of projections in B. For every T € L(H) we have

6rlla < 4 sup {|P*TP| : Pe P} < 4| 5r|a

Proof. Let T e #(H) and ||PLTP| < o for all Pe 2. Let S be a symmetry
in #; thus S = P — P+ for some Pe 2. Then

|ST — TS| = 2| PT — TP| = 2||PTPL — PTP|| < 2u.

A consequence of the spectral theorem is that the weakly closed convex hull of
the symmetries is the set of self adjoint contractions. Thus ||AT — TA| < 2«
if A is a self adjoint contraction in % and thus || AT — T A} < 4a for every contrac-
tion in 4. ’

REMARK 4.6. The following are equivalent properties for a von Neumann
algebra & acting on a separable Hilbert space H.
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(i) There exists a constant K > O such that

dist(T, ) < Ksup{!|P*TP| : Pe Lat®}
for every T € Z(H),
(ii) There exists a constant K > 0 such that
dist(T, #) < K|o; !,

for every T € Z(H),
(iii) For every derivation é of £’ into £ (H) there exists T € £(H) such that
d = 67|%'.

Proof. The equivalence of (ii) and (iii) is due to Christensen [8, 9]. The equi-
valence of (i) and (ii) is immediate from Proposition 4.5 since Lat & is the pro-
jection lattice of &'. %

LEMMA 4.7. Let B be an approximately finite dimensional von Neumann
algebra and let ® be an expectation of ¥L(H) onto AB. Then dist(T, B) >

> % |T — ®)| for all T e L(H).

Proof. Let S = T — &(T), so &(S) = 0 and dist(S, ) = dist(T, #). Suppose
there exists Sye 8 with ||S — S| < —;—“SH. Then

;- ISH > 1S — Soll 3 16(S) — B(Sy)!i = [| S|l
But S=(S—Sy)+ S, so

. . , 1. [
ST < iS — Soll + 1Sl < 5*!'SI: ¢"2~H5!'=H5H,
a contradiction.

LeMMA 4.8. Let 4 be an approximately finite dimensional von Neumann
algebra and let & be a lattice of projections contained in B. Then for each T ¢ 3
we have

dist(T, 2 n Alg.?) == dist(T, Alg.®).

Proof. Let @ be an expectation from Z(H) onto #. Suppose A e Alg?.
Then PLAP =0, Pe %, so since Pe B we have PLO(A)P = P(PLAP) = 0. So
d(4) e # n Alg#. (We have in fact shown that & is an expectation of Alg? onto
A n Alg®.) We have thus that

1T — Al = [&T — A = T — o(4)];. Z
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LEMMA 49. Let # be an approximately ﬁm‘ge dimensional von Neumann
algebra and let & be a projection lattice contained in B. Let ® be an expectation
of L(H)onto B. For every Te X(H) we have dist(®(T), Alg¥) < dist(T, Alg?).

Proof. If A € Alg # then so is §(A) from the proof of 4.10, and so
No(T) — S| = | T — D] < ||IT — 4. 7

ProprosiTiON 4.10. (Triangle inequality). Let # be an approximately finite
dimensional von Neumann algebra and let & be a lattice of projections contained
in B. For every T ¢ L(H) we have

dist(T, Z n Alg#) < 2 dist(T, &) + dist(T, Alg?).

Proof. Let @ be an expectation of #(H) onto &. Then if T € L(H) let T, =
=¢(T), S=T — §T). Then

dist(T, B n Alg®) < dist(T,, B N Alg®) + dist(S, B n Alg®).

By Lemma 4.8 we have

dist(Ty, 2 0 Alg%) = dist(T,, Alg.®)

and by Lemma 4.9 we have

dist(T,, Alg#) < dist(T, Alg.2).

Also, by Lemma 4.7 we have

dist(S, Z n Alg?) < || S| < 2 dist(S, &) = 2 dist(T, ).
Hence
dist(T, # n Alg¥) < 2 dist(T, 8) + dist(T, Alg &£). %

REMARK 4.11. Proposition 4.10 yields as an immediate consequence the
Arveson distance estimate for nest subalgebras of approximately finite dimensional
von Neumann algebras. Also, if 4.10 {were known independently then 4.8 would be
an immediate consequence. Moreover, 4.10 show that for T e Alg#¥ we have
dist(T, Z n Alg®?) < 2dist(T, #) for # an AF algebra. Since these inequalities
can be stated independently of the existence of an expectation it becomes a natural
question as to whether any or all of these hold for arbitrary von Neumann algebras.
More generally one might define operator algebras &7,, &, to be in triangular position
if there exist finite constants K, K, such that for arbitrary T e #(H) one has

dist(T, o n 7, < K, dist(T, «#,) + K, dist(T, &7,).



292 FRANK GILFEATHER and DAVID R. LARSON

Proposition 4.10 shows that a reflexive operator algebra is in triangular position
with any approximately finite dimensional von Neumann algebra which contains
its invariant subspace lattice. Triangle-type inequalities are likely to hold only for
very special cases, but these may well turn out to be cases of interest. Some limitations
are revealed by the easily shown fact that a nest algebra <7 - and its adjoint algebra &7 §:
are never in triangular position if the nest is infinite.

The following theorem can be stated in terms of éither algebras or subspace
lattices. We prefer the latter here since it suggests further structure questions for
lattices.

THEOREM 4.12. If % is a subspace lattice for which a constant K, >0
exists such that

dist(T, Alg?) < K,sup{||PLTP|: Pe &£}

Jor every Te P(H), and if 4/ is an orthogonally complemented subspace lattice
which generates an approximately finite dimensional von Neumann algebra and which
commutes pairwise with £, then there exists K, > 0 such that

dist(T, Alg(&L v.#)) < K, sup{|PLTP| : P L v}

for ali Te ¥(H).

Proof. Let & = /', then 4 is also an approximately finite dimensional von
Neumann algebra. We have .# = Lat#, & < &, and Alg(¥L v4) =B nAlg¥.
Now apply Proposition 4.10 and 4.6 noting that every approximately finite dimen-
sional von Neumann algebra satisfies (ii) and (iii) of that theorem.

REMARK 4.13. It is presently an open question whether the join of a reflexive
lattice . with an orthogonally complemented lattice .# (the projection lattice of
a von Neumann algebra) in its commutant is necessarily reflexive. The answer is
unknown even in the case where .# is commutative.

COROLLARY 4.14. If </ is a nest subalgebra of an approximately finite dimen-
sional von Neumann algebra then there exists K > O such that for every T € L (H)

we have
dist(T, &) < Ksup{| PLTP| : Pe Late/}.

5. NEST SUBALGEBRAS OF FACTORS

We require a decomposition result for the essential commutant of a n.s.v.a.
of a factor together with a simultaneous norm estimate for the decomposition for
all except the type II, case. In the I, I, and II{ (i.e. infinite) cases we show that
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the nest under consideration can be enlarged if necessary so that there exists an
infinite sequence {P,} in ., either strictly increasing or strictly decreasing, with
the property that the # -intervals P, ., — P, (or P, — P, if the sequence is decreas-
ing) are all mutually equivalent in 4. This property is then used to deduce the
required result for the infinite factor case. We prefer to consider this case first reserv-
ing the technically much simpler finite type I case until later.

Our main aim of this section is to prove the following theorem.

THEOREM 5.1. Let o/ be a nest subalgebra of an infinite factor . If

T eesscommsf then T=1T + K where T ¢ B and K is compact with ||K|| <
< Cltd7|l, where C is a positive finite constant simultaneoulsy valid for all infinite
factors and all nests contained therein.

REemARK. The constant C can perhaps be taken to be 1, although we have
not shown this.

Before proceeding with the proof we require some preliminary results.

REMARK 5.2. First note thatif &/ isa n.s.v.a. of a von Neumann algebra #
relative to a nest /” < & then increasing the nest will decrease the n.s.v.a. relative
to # so that esscomms/ may increase and || dy||,, may decrease. In this case the
proof of 5.1 for the new n.s.v.a. will imply the corresponding result for the original
n.s.v.a.. A simple Zorn’s lemma argument shows that an arbitrary nest in & is
contained in some maximal nest in # (4 is maximal in & if it is not properly
contained in a larger nest in %), so we may assume without loss of generality
than A" is maximal in 4. It is clear that a nest 4 in a von Neumann algebra
is maximal in & if and only if for each Ne/” the immediate predecessor
N_=v{Le# :L < N} and the immediate successor N, =A{LeA :L > N}
differ from N by at most a minimal projection in 4. In particular, if £ is type II
or III a nest in & is maximal iff its core is nonatomic. In general, a nest with
nonatomic core is maximal in #(H) so also in every von Neumann algebra contain-
ing it.

If # is a type I or type II factor let Tr(.) denote a trace function on 4.

LemMMA 5.3. Let A" be a maximal nest in a type II factor B and let /', =
= {PeW :Tr(P) < co}. Then Tr(N)) is a closed connected subset of reals.

Proof. Let P and Q be in A7, Then either P < Q or Q < P. Thus Tr(P) <
< Tr(Q) implies P < Q since otherwise P would be equivalent to a proper sub-
projection of itself. Similarly Tr(P) = Tr(Q) implies P = Q for P, Qe A/.

Assume Tr(Py) = b # 0 for P, in A, and let 0 < a < b. Let R = sup{Pe
eN; : Te(P) < a} and Q = inf {P e A, : Tr(P) > a}. Clearly R and Q are in A
with R < Q and Tr(R) < a < Tr(Q). If Tr(R) < Tr(Q), then R # Q and there is
a member S of A strictly between R and Q. This follows since 4 has no minimal
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projections and 4" was taken to be maximal in 4. Since S is also in A r this
would contradict the definition of R or Q. So Tr(4/) is connected. Let N, =
= sup{N : NeA#}. If N, is finite then Tr(A}) = [0, Tr(N,)] and if N, is infinite
then Tr(A47) = [0, o0). .

LEMMA 5.4. Let & be a nest in an infinite factor # and let E and F
be mutually orthogonal A -intervals with E infinite. Assume that an operator T € £ (H)
essentially commutes with the nest subalgebra of = B0 o 4 and with EBE, and
commutes with the core €. Then T essentially commutes with (E + F) Z(E + F).

Proof. Replacing A with AL ={I— N: Nest}, & with &% and T
with T* if necessary, we may assume that E < F so that EAF < o/. Let S be a
partial isometry in 4 with support F and range a subprojection E, of E (not neces-
sarily an interval). Since S is in &/ we have that ST — T'S is compact and hence
STS* — TE, is compact. So since T essentially commutes with E,ZE, and with F
it follows that T essentially commutes with FZF. Now a straightforward calculation
using the fact that S*7TS — TF is compact yields that T essentially commutes
with FZE. 2]

LemMa 5.5. In addition to the hypotheses in 5.4 suppose T-EH = T,+ K
where T € (EB|EH) and K is compact. Then T, extends to an operator Ty e ((E +
+ FYBWE 4+ F)HY and K to K, on (E+ F)H so that T(E+ F)H=T, + K,
K, is compact, K, F = FK,, and | K}l < |K| = |67

Proof. Let S be as in 5.4. Calculations similar to the above show that S*T,S
commutes with FA|F and that T, =T, @ S*T,S commutes with all of (F 4
+ F)B|((F + F)H). Let Ky =T, — T|(E + F)H. We have

| K\l = sup{| K|, || T,|FH — T|FH|]},
and

|\ T FH — T\FH)| = || S*T,S — TF|| € || S*T,S — S*TS| + ||S*TS — TF| <
< 18*(Ty — TS| + TS — ST < 1KY + | orlo-

Compactness of K; follows from compactness of both Kand $*TS — TF. %

LEMMA 5.6. Let & be an infinite factor, and let & be a maximal nest of
projections in B. Then N contains either (perhaps both) an infinite increasing sequence
P, < P, < ... with the N-intervals P,,, — P, mutually equivalent in & or an
infinite decreasing sequence Py > P, > ... with the A -intervals P, — P, ., mutually
equivalent in %.

Proof. If # is type I, then & is =-isomorphic to L(H) with dimH = oo
so the result is obvious since 4 is assumed maximal in 4. If & is type III the
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result follows trivially from the fact that all nonzero projections in & are equi-
valent. So we need only be concerned with type IT,.

Firstly, if 4" contains a nonzero #-finite projection and if the join of the
finite projections in A" is #-infinite then Tr(A4) = [0, co) by Lemma 5.3. So noting.
that N — Tr(N) is an increasing function on A/, there exists an increasing sequence
P, <P, < ... inAN with Tr(P,) =n for each n. The A -intervals P,., — P,,
n > 1, have trace 1 so are equivalent projections in 4%, as desired.

Secondly, if the dual nest #°+ = {I — P : P e} satisfies the properties in
the above paragraph we obtain by similar reasoning a sequence P; > Py > ... in A"
with the desired properties.

Next, if E is an arbitrary nonzero #-infinite .4 "-interval consider the nest
N'p == {P|EH : Pe '} contained in the type Il factor #, = {EB|EH : Be %}.
A is maximal since its core is obviously nonatomic, and the trace on % is the
restriction of that on . These statements together with the argument above show
that if v {PE: PeJ, PEfinite} or v {PLE : Pe./, PLE finite} is B-infinite then
there exists a sequence P, < P, < ... or P; > P, > ... in A between the lower
and upper endpoints of E having the desired properties.

The above paragraph shows that if there exists a %-infinite 4 -interval that
cannot be written as the sum of two %-infinite 4 -intervals then we are done. For
if E is such an interval then either PE or PLE is finite for all P e4" and one of
v{PLE :PeA, PLEfinite} or v{PE:Pe, PLE finite} must be infinite.

Finally, if every infinite 4 -interval can be written as the sum of two infinite
A -intervals then since I is infinite an obvious construction yields a sequence P; <
< P, < ... in & such that the projections P,., — P, are Z%-infinite and hence
mutually equivalent in 4. %

REMARK. In case 4 is type I, the statement of Lemma 5.6 can be amplified
so that either 0 = P, < P, < ... with V P, having finite complement or [/ = P, >

> P, > ... with A P, finite. This is not always possible in the type Il case.

n
A technically more complicated amplification can be given for the 11, case, although
we will not show it here as it does not lead to simplicity of our arguments.

We now return to the proof of Theorem 5.1. One may view this as paralleling
to a certain extent the proof of [10] for a nest algebra in Z(H), although it is
necessarily technically more complicated. We make explicit usage of the Johnson-
-Parrot result ([19], Theorem 2.1) for commutative von Neumann algebras, although
the corresponding noncommutative results in that paper are not used in this proof
and are in fact picked up along the way. Knowledge of the noncommutative results
would not simplify our proof to any extent.

Proof (Theorem 5.1). By Remark 5.2 we may assume that, 4 is a maximal
nest in an infinite factor # and that &/ =% n .
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Let us first consider the case in which 4 contains an infinite sequence 0 = P, <
< P, < P, < ...with P, — I strongly such that the 4#™-intervals P,,, — P, are
equivalent in 4. Denote by E, the interval P, — P,_, and by V, a partial isometry
in # from E, onto E,. Since € 4 < &, where %, denotes the core of 4", we have
T e esscomm%,-. Hence by Proposition 4.4 T decomposes T = T, + K, where
Te¥% =9, and K, is compact with ;i K, | 167l . <|[6r!s. Then Ty € esscomms/
and T, is reduced by the projections {E;}.

Now let T; = VFET,E;V,. We first claim that {T;} forms a Cauchy sequence
in Z(E,H). If not, then there exists a sequence r; of indexes so that || T,,‘, — T,,,._lglz
=ze>0;1e,

Ve ToVa, — Vi _ToVa, li = e
Let S be the partial isometry in Z mapping each E, onto E,  defined by SE, =
= V,,i_lV:‘l_, i =12, .... We shall show that T',S — ST, is not compact, yet S as
constructed belongs to &/ since each summand does by Lemma 1.2.
Let B=T,S — ST,. Then

E,_BE, = E, T,SE, —E, ST.E, =
= E, T, _SE, —E, SE,T.E, =

=E, T,E, V, V*—E, V, V*TE,.
i-1 i-r Ti-1 M i-1 i

i By

Now taking the norm of E, | BE,,', after multiplying on the left by V,;*l,_1 and on
the right by V,,i we get
|E, BE, i = Vi ToV,  — Vil V. li>¢

Since this is true for each i it follows that B cannot be compact which con-
tradicts our hypothesis. Thus there is an operator T, on E\H so that T, — T,
in norm.

Next, for m, n > 1 we compute

Vi@V VE -V VETH, =T, —T,.

If n >m then V, V¥ e/ hence the left hand side is compact by hypothesis.

m-n

Thus 7,, — T, is compact for all m, n > 1. Also, for fixed n>1 we have T, — T, =
=lim(T, —T,) so T, — T is compact, n=>1.

"

Let 7 = YV, T, Vi on H. Since T and T, are reduced by the projections E,

n

we have

T() - T = ZEH(TO - T)En = E(VnTnV: - anTooV:) = Z_Vn(Tn - TOO)V:
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Since T, — T, — 0 in norm and is compact for each n we may conciude
that T, — T =K, is compact. We have

| K|l = sup|| T, — Tooll < supl| T,, — T -
From the preceding paragraph we have

Ty = T = VET WV VE =V VET)V,

m’ n

so we conclude that || & ||<|/ér |, Finally,

(107 |l < 1107l + 10k, Il < [107]ler + 20Kl < 37|l »
and thus
1K + Kl < Kl + 1Kl < 1071l + 3t0r]l= H 07|l -

Now we can write T = T + K where K is compact with IK]| < 4|6, and
T = Y V. TV¥. Notice that T essentially commutes with o/. We will show that
in fact Te &'

Since Y, E; = I, to show T e # it will suffice to show that 7 commutes
with each operator E;BE; with Be %, i,j > 1. From the computation

VHTEBE,—EBET)V;=V(VI Vi BE;—EBVT V)V;=TV}BV,—V}BV;To,

it follows that the assertion that 7 commutes with each E.BE; is equivalent to the
assertion that T, commutes with each operator VBV, Be %, i,j>1. We prove
the latter.

Assume there exists Bye# and n,m>1 such that

Buw = TooVEBYV, — VEBV, T, # O.

Since B,,: EyH — EH and is nonzero it follows that Y V. 1B, V¥ is not

=2

compact in Z(H). But

1

Z Vi—anmVi* = Z (Vi—1TooV;:szoVuVi* - V'—lVlﬁBOVnTOOI/i*) =
=2

= 2 VieaTooViea(Vi VBV V) —
i=2
- 2 (Vi—l(V::IBOI/nI/i*) ViTOOVi* =
i=2

~ == ] oo A .
=T(§”*m%””)—(§%ﬂmmmw)m
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However, 4 = Y, V,_,VZB,V,V* is in # and is also in the nest algebra determined
by /" so 4 e &. This contradicts our hypothesis. If follows that T, commutes with
Va9V, for all n and m, and the proof for the first case is complete.

Secondly, if the dual nest 4+ = {/ — P: P e} satisfies the properties of the
first case note that # N &/ ., = «/* and interchange T with T* noting that £ is self-
adjoint to obtain the desired result.

For the general case apply Lemma 5.6 yielding either P, < P, < ... or
P, > P, > ... with the A -intervals P,,, — P, (resp. P, — P,,,) mutually equi-
valent in . If increasing let P, = v P, and set £ = P_, — P,. If decreasing let
Py=AP,and set E= P, — P,. Let /'y = {P.EH : Pe A} and B = {EBIEH :
: Be B}, so B is an infinite factor and A" is a maximal nest in #;. Since E is an
~V-interval it follows “easily that Z;NAlgiA ) = {EA|/EH :Ae o} = .
Now note that 4" lies in either the first or second cases considered above relative
to the sequence {P,EH}. So first apply 4.4 obtaining T = T, + K, with T, e €',
and K, compact with || K,}|<||dril,, and then apply the results for the first and
second cases above to T, to obtain a decomposition T E = T, + K; where
T, -: ET\E, K, = EK\E, T, commutes with EZE, and K] is compact with

'K < 4'.'|5T0“Ed5 < 4”‘5T0Hy .
In particular this shows that T, essentially commutes with EZE. Now write
E:= M — N where M, N are the upper and lower endpoints of E in .4, and apply

Lemma 5.5 to Ty with F = N to conclude that T )M = T, + K, where T, = MT,M,
K, = MK,M, T, commutes with M#M, and K, is compact with

1K) < DK+ 167 !y < Sidr,

Again apply Lemma 5.5 to T, with F = M! to conclude that T,= T + K,
where T e #' and K, is compact with

1KY < 1K+ o7 [ly < 667 'y -
Since T, =T — K, we have
107yl S 10plly + 1ok Iy <107, + 21K < 3611y,

50 1 Ky||< 18|67}, Now set K — K, + K,. We thus have T — T + K where
T e#' and K is compact with

1K < 1Kl 4 [ Kall < 19]107 1,
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PROPOSITION 5.7 Let o/ be a nest subalgebra of a finite factor B of type L.

If T € esscommsf then T = T + K where T e #' and K is compact with || K|\ < C|| 61145
where C is a positive finite constant simultaneously valid for all finite type 1 factors and
all nests contained therein.

Proof. Assume 4 is a factor of type 1,, on H, ® H,. From Example 4.5 in
[15] we may assume that o = o/ ®I, where A, is a nest in £(H,). Enlarge 4~
to be maximal in £ if necessary thus possibly decreasing & and &/ noting that a
proof for this new nest will imply the required result for the original nest. A", will
then be maximal in .#(H,), and so since H, is finite dimensional the core of A7, will
be a m.a.s.a. in Z(H,). Apply Proposition 4.4 writingT = T, + K, with Tye €
and K compact with

1K < 162, < 1137l

The structure of T, will be of the form 7', @ ... @ T, where the T, are ope-
rators on H,, or equivalently, T, can be matricially written as diag(T,, ..., 7T,).
As in the proof of the first case in Theorem 5.1 we easily check that T, — T
is necessarily compact for | </, j<n since T, essentially commutes with /. Let

T= diag(T;, ..., T,)=1,8T,. Then T e #,and as in 5.1 we can easily construct
an operator in &/ to show that || T, — 7~“]!<H5T0 llw- We have that T, — T =K, is

.compact since each I'; — T, is compact. Finally, setting K = K, + K; we compute
as in 5.1 that || K| < 47|l - %

REMARK. The techniques in the proof of 5.1 and 5.7 do not apply for obvious
reasons in case & is a type II, factor. While we know that esscomms/ = esscommZ
for this case, the question as to whether the decomposition or indeed the norm esti-
mate of 5.1 holds for the general II, case remains open. A positive answer would of

course imply a positive resolution of the Johnson-Parrott question for type II;
factors.

6. THE ESSENTIAL COMMUTANT OF AN N.S.V.A,

The following simple observation and its immediate consequence was used by
the authors of [19] to reduce immediately to the direct sum of factors case.

LemMma 6.1. Let & be a nonatomic abelian von Neumann algebra. Then
N LE(H) = {0}.

Proof. If T were a nonzero compact operator in the commutant of & then &’
would contain nonzero finite rank spectral projections for T*T and hence &’ would
have minimal projections. But & = cent(¢’) and the central support of a minimal
projection for &’ would be minimal in &, a contradiction.



300 FRANK GILFEATHER and DAVID R. LARSON

LEMMA 6.2. Let &f be an arbitrary operator algebra. If the center of </ con-
tains a nonatomic von Neumann algebra containing I, then esscommsf = o' -
+ LPE(H).

Proof. Let & be a nonatomic von Neumann algebra in the center of &/, If
T € esscomms/ then T e esscommé so by [19], Theorem 2.1 T=Ty+ K where Ty € 6°
and Ke #G(H). We have o = &, so if for some A € &/ we have AT, — Ty4d # 0
then this commutator would be a nonzero compact operator in &', a contradiction.
Thus T, e &'. %

REeMARK. In the hypothesis of 6.2 we require the nonatomic subalgebra of
cente? to contain the identity for #(H). So in case cents/ is a von Neumann algebra
the requirement becomes in fact that cents/ is nonatomic, not simply that o/
contains a projection Q such that cents/ | QH is nonatomic. In practice we let P
be the sum of all minimal projections in cente/ and note that if T e esscomms/
then T | PH (resp. T | (I — P)H) is in esscomm« | PH (resp. & | ({ — P)H) en-
abling one to reduce the problem to that of a direct sum of algebras each summand
of which generates a factor as a von Neumann algebra. This is the procedure uti-
lized in [19], Theorem 3.4. We note that a direct sum of algebras each of which has
essential commutant equal to its algebraic commutant + compacts need not itself
have essential commutant which decomposes thus. Considerable pathology can occur
in general. Thus the problem of “lifting”” from the factor case to the general von
Neumann algebra situation is nontrivial, and at least in the type I, and Il cases
it is necessary to know the norm estimates of Theorem 5.1 for such *lifting”.
Alterpate methods are available for showing that esscomms/ =- esscomm%
whenever # does not contain summands of types I, or Il , and indeed we use
such a method to prove this latter result for Z a direct sum of type II, factors. This
could be adapted to direct sums of finite type I and type 1II factors, although no
significant degree of simplification would be obtained since the difficulty in proof
essentially lies in types I, and II,. Moreover, our proofs for all except type
I, absorb in a natural way the corresponding Johnson-Parrot results for von Neu-
mann algebras, and we feel that this is desirable.

THEOREM 6.3. Let &/ be a n.s.v.a. with nest &/ and von Neumann algebra #.
Assume & has no type 11, factor as a direct summand. If T is an operator in FL(H)

which commutes with of modulo the compact operators then T = T + K where

T e #' and K is compact.

Proof. Let & = centsf = centZ. By [19], Theorem 2.1 T'= T, + K, where
T,e & and Kye LE(H). Let {E;} be the set of minimal projections of & and let
E = v E,;. The argument in 6.2 shows that T, | (I — E)H is in the commutant of
&/ | (I — E)H, and by 2.5 this is the commutant of & | (/ — E) H. Each algebra
&/ | E;H is the nest subalgebra of the factor % | E;H relative to the nest A E, =
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=4 | E;H, and we have T,| E,H eesscomm(« | E;H). Let T, =T,| E;H and
&, = o | E;H. Since each factor 4 | E;H is of type I, I, or II, by Theorems
5.1 and 5.7 for each 4 we can write T; = 7",1 + K, where T,, K, e Y(E,H),
T,e(#| EHY,and K, is compact with HK',leCH(STA]]M/1 where C >0 is indepen-
dent of A. Let K be the direct sum of the operators K together with the zero operator

on E*H. Since &/ contains the direct sum of the &/, and since T o derives o
into #¥(H) it follows that for each ¢ > 0 we have ”55””,1<8 for all but a finite

number of A, and hence K is compact. Now let T = T, — K and K= K, + K.
The proof is complete.

Combining the above results we can prove the equality of the essential com-
mutants for & and £ in every case.

THEOREM 6.4. Let o/ be a nest subalgebra of an arbitrary von Neumann al-
gebra B. Then esscomme/ = esscommd.

Proof. We have & = o/, N % where 4 is a nest in #. Let & = centd =
= cent®. If # has no type II;, factor as a direct summand then Theorem 6.3
completes the proof. Otherwise let {E;} be the set of minimal projections, of & such
that # | E,H is type I, and let E = v E,. By 6.3 we have esscomm.s/ | (I — E)H =
= esscommd | { — E)H, so we must show esscomms/ | EH = esscommZ | EH.
Let o, = |E;H, #,=%|E,H, &/; =W |E,H, and let I, denote theiden-
tity in Z(E;H). For each 4 let Tr,(-) denote the trace on %, with Tr,([;) = 1.
Let Jf/,l be a maximal nest in 4, containing 4 ;. By Lemma 3.3 there exists
P, eJVA,I with Tr,(P,) = 1/2. Then P, is equivalent to P;"e %, , and also
P,B,P; < Alg(.A?,-.) < ;. Let P be the direct sum of the {P;}. Then
Pe o/ | EH, P(#| EH)P* « o« | EH, and P is equivalent to P* via a partial
isometry in £ | EH. Now Corollary 3.2 implies that esscomms/ | EH =
= esscommZ | EH. Z
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