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SUB-JORDAN OPERATORS: BISHOP’'S THEOREM,
SPECTRAL INCLUSION, AND SPECTRAL SETS

JIM AGLER

0. INTRODUCTION

In this paper we are interested in the following condition on an operator
J e Z(H), the algebra of bounded linear transformations on a complex Hilbert
space .

©.1) There exist N, Qe L(#) such J=N+ @, N is normal, QN = NQ,
and Q" = 0.

An operator Je Z(H#) is a Jordan operator if it satisfies (0.1) for some positive
integer n. We say J € Z(oF) is an n-c Jordan operator if J satisfies (0.1) with
| @li<c. The collection of n-¢ Jordan operators on a space # will be denoted,
Fr(). S e L(H#) is sub n-c Jordan if there is a Hilbert space A~ and Je F2(A)
such that 2 is invariant for J and S = J | 3#. The collection of sub n-c Jordan
operators on a space s will be denoted by sub £7(#).

By a Jordan block we mean any operator which is unitarily equivalent to an
operator of the form

3]
.=
o

0.2) B _ ,

0 c N

on @ 4 where .4 is a Hilbert space (of arbitrary dimension), N e .L(#) is
k=1

normal, and 0<ce R. If J is a Jordan block of the form (2), then the order of J
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374 JiM AGLER

is r and the constant of Jis ¢. We set #B%(3#) equal to the set of Jordan blocks
in Z(#) with order n and constant ¢. Finally, sub #%(s#) is the set of S € £(#)
such that there exists a Hilbert space ¢ and a J e #%(X’) such that # is invariant
for Jand § = J | o#.

We can now state the principal result of this paper. Recall that the strong
topology of £(#) (which we will denote in the sequel with the letter s) is that

topology defined by the family of seminorms, {p,|x e#}, where p(T)=|Tx|
for T e £(#).

THEOREM A.
(FUH)) ™ = sub FHH) = subBHH) = (BUH)) "

Setting 7 = 1 or ¢ = 0 reduces Theorem A to Bishop’s Theorem for subnormal
operators: the strong closure of the normal operators on a Hilbert space is the sub-
normals on that space (see [4]). The sub #7(#) = sub%(#) part of Theorem A
represents a generalization of the equivalence of conditions (2) and (3) in
Theorem 5.26 of [1].

As a byproduct of the proof of Theorem A we obtain the appropriate exten-
sion to the class of sub-Jordan operators of the spectral inclusion relations between
a subnormal and its minimal normal extension.

THEOREM B. If S e sub £7(H) then S has an extension to J € FNA') where
o(J) = S. In this event 6(S)\ao(J) is a union of components of C\a(N).

Setting # == 1 or ¢ = 0 in Theorem B yield a weakened version of theorems
due to Halmos and Bram ([9] and [5]; or see [10], problems 157 and 158) in which J
explicitly appears as the minimal normal extension of S. Theorem B should alsc
be contrasted with Lemma 6.7 in [3] which states that if S e () sub £(#’) and

>0

Je U F/(H) is a minimal Jordan extension for S then o(J) < o(S). While the
>0

notion of a “minimal Jordan extension” can easily be defined, that the resulting
structure of the spatial relationships between a sub-Jordan and its minimal exten-
sions is quite complicated is not to be denied (see [3], in particular, the interesting
Theorem 1.4).

Once Theorem B is established it becomes possible to develop an analog of
von Neumann’s theory of spectral sets. Thus, in a properly interpreted sense, the
matricial spectrum of a sub-Jordan operator, S, is a matricial spectral set for S.
This is a generalization of the fact that subnormal operators are von Neumann
operators. Natural proofs of the following two theorems result.

THEOREM C. If S € sub £2(#) and S is compact then S € FH(H).
THEOREM D. If T € £(H) satisfies the equation,

0.2) T#3 — 37T 4 3T*T* — I3 =0,
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and o(T) (which by consequence of the above equation is contained in the real num-
bers) has empty interior (in the real numbers) then T € FIH) for c appropriately
chosen.

Theorem C, of course, corresponds to the well known fact that a compact
subnormal (indeed, hyponormal) is normal. Theorem D constitues a generali-
zation of Theorem II (page 221) of [3] which stated that Theorem D holds with
dims# is finite.

The study of sub-Jordan operators was initiated by J. W. Helton in [11]
(Helton actually studied (0.2) but subsequently it has been learned that T satis-
fies (0.2) if and only if for some ¢, T has an extension to a 2-¢ Jordan operator
with real spectrum (see [1])) and has continued in [12], [13], {3], and [1]. The many
points of contact between the theory of sub-Jordan operators and other areas of
operator theory and of analysis in general isolated in these papers belie the notion
that the theory of sub-Jordan operators is an idle generalization of the immensely
successful theory of subnormal operators.

The author wishes to thank John Conway, Tom Kriete and Joyce Stevens
for valuable assistance in the preparation of this paper.

1. THE c¢p CONDITION

In this section we adapt techniques from Chapter II of [1] (which involve the
Stinespring Representation Theorem and the Arveson Extension Theorem) to
replace the geometrical problem of constructing Jordan extensions with an equi-
valent problem more amenable to analysis. In addition to deriving a number of
useful lemmas for application in succeeding sections we obtain an interesting cha-
racterization of subnormality and the result that the classes of sub-Jordan and
sub-Jordan block operators are identical.

Let 2 denote the set of polynomials in two noncommuting variables x and y
of the form

(1.1) =% Y cay'x*, cyeC.

k=01=0

If a is any element in a C*-algebra and p € 2 is as in (1.1) define p(a) by

m m

pla) = Y Y cua*la*.

k=0 =0

If pe & is as in (1.1), define D,p, D;p e # by

m m

Dip=%Y%Y ¥ keyy'x* =1,
K

=1 [=0
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and
m m

D,p =Y, ¥ leay' x5

k=0 I=1

Finally, if p € 2 is as in (1.1), define p* € 2 by
Py =Y ), X'
k=0 =0
Evidently, if p € 2 and aq is any element in a C*-algebra, then p*(a) = p(a)*.
LEMMA 1.2. Ifpe P andJ, N, and Q satisfy (0.1), then

(3 pU) =Y, - 0HDIDip) (N

ij=0J:-

?
Proof. Let p(x, y) = y'x¥. By the Binomial Theorem,

Jk —_ Ek: (k) Nm—iQi

i=0 \ 1
and
S i I)Q el
ol mipn “J'
j§0 (./
Thus,
P = T =
=5 3 09(1)(¥) e -
j=0 i=0 I i
SNSUN B DR i
=L 30V, (DD Ne =
Jj=0 i-=0 ° :

n—1 1 T ;
=Y, - 0¥(DDip) (N)Q.

i,j=0 7] '
Thus (1.3) holds for p(x, 3) = »'x*. The proof of Lemma 1.2 is then completed by
taking linear combinations.

For K a compact set in the plane let € (K) = C(K, .#,), the C*-algebra of

nXn matrix valued continuous functions defined on K. Let {¢;: 0<i<n — 1}
be the standard basis for C” and define v, €.#, by,

o <i<n—2
(v,,ej,ei)——-{l ifi=j+1 and 0K j<n

0  otherwise.
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Define ¥, .. € C.(K) by,
Xn,c,K(Z) =z Vi ze K
Let By(n, ¢, K) = {p(fn,c x): P € P} < G,(K) and set B(n, ¢, K) = the closure of
By, ¢, K) in €, (K).
ProposiTioN 1.4. Je BUH) if and only if there exists a representation
n: € (6(N) = L) with (1) = 1 and 7(3, c.00n) = J.
Proof. See Lemma 4.1 of [16].

DermiITION 1.5. Se Z(#) is cp(n, ¢, K) if for every positive integer m,
[pij0tn e, )12 0 in &, @ By(n, ¢, K) implies [p;;($)] > 0 in 4, @ZL(H).

The significance of Definition 1.5 in the study of sub-Jordan operators rests in
the following theorem and in the fact that the cp(n, ¢, K) condition is analyzable
in many situations where geometric intuition is absent.

THEOREM 1.6. If K = C is compact, ¢ = 0, and 3# is a Hilbert space then the
following are equivalent:

(a) There is a Hilbert space X 2H and a J € BH(H ) such that J# =#,6(J)= K
and S = J | H#.

(b) Se L) is cpn, ¢, K).

Proof. (cf. Theorem 2.7 of [1]; Remark 4.3 of [6]). Suppose (a). Then there
exists 2 2 o and a Jordan block Je £(A") with constant ¢ and order » such that
S=J|#. Ifwelet V: # — A be the canonical inclusion then we have

pS) = VpHV

for all p € 2. By Proposition 1.4 there is a representation n: €, (6(J)) = L(A) with
n(l) = 1 and n{y, ; ;y) = J. Thus if pe 2,

(1.7) p(S) = Vip)V = VZrn(p(tn,ces)V-
Define p: €,(K) — €,(6(J)) by
plx) =x}o()), xe%K).
Since 6(J) = K, p is a representation. If we set 7, = zp and y =y, . x (1.7} becomes,

p(S) = V*my(p() ¥,

for all p(x) € By(n, ¢, X).
Consequently, if m is a positive integer and 0 < [p;;(0)] € #,®By(n, ¢, K)
then

[7:ii(S)] = (1L, ®V)*(id,@71) ([p;;(0)) (1,@V) > 0
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in . #,®@%(#). Thus (b) holds. Conversely, assume that (b) holds. Then in
particular (set m =1 in Definition 1.5), we can unambiguously define a map
®: By(n, ¢, K) > L(H) by

D(p(0) = p(S), pe?.

In the formula above we have abreviated y, . x by simply, %, as we often will do in
the sequel when no danger of confusion exists. The condition of Definition 1.5
with m = 1 says that & is positive. Since By(n, ¢, K) is self-adjoint it follows that ¢
is continuous and that & has a continuous extension, @,, to B(n, ¢, K). That S is
cp(n, ¢, K) translates into the fact that @, is completely positive. By Theorem 1.2.3
in [2] @, has a completely positive extension, @,, to €,(K). By Stinespring’s theorem
(Theorem 1.1.1 in [2]), there is a Hilbert space &, a representation x, and an iso-
metry, V. — A", such that,

Dy(x) = Via(x) V
for all x € ¢,(K). Thus in particular if p € 2,

p(S) = @(p(n)) = P(p(x)) =
1.8)
= V*a(p()) V = VZp@()) V.

We now use a trick in [6] (Remark 4.3) to show that range V is invariant for n(X).
Thus was done in [1] (Lemma 2.9) by a more laborious means using a well known
Lemma of Sarason. If we let p(x, v) = yx notice that (1.8) becomes

SES = V*r(yy*n(y) V.
Also from (1.8) (p(x, 3) = x) we see that
S = Vin(y) V.
Thus,
VVErG) V — =) VYF (VY V — n(p) V) =

= Ven(0*n() V — Via(*V V() V = 6,

and range V is invariant for n(x). (1.8) now implies that S = a{y) | V3. Since
(Proposition 1.4) n(y) € %X )and o(n(y)) = K we see that (a) holds. This concludes
the proof of Theorem 1.6.

The following corollary to Theorem 1.6 will not be used in the sequel.

COROLLARY 1.9. The following arc equivalent.
(a) Se L) is subnormal.
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(b) There exists a compact K < C such that p(S) = O whenever pe P and
p(z,2)=0 for all ze K.

(c) There exists a compact K = C and a positive linear map ®: C(K) —» L(#)
such that ®(z) = S and P(|x|?) = S*S.

That (b) implies (a) in Corollary 1.9 follows by noticing that the map,
C(K) 2 p(z, 2) - p(S),
which is positive by assumption, is, in fact, completely positive (see [14]). (a) implies
(b) is obtained by compressing the speciral representation of the minimal normal
extension of S to #. The equivalence of (a) and (¢) (which was pointed out to the
author by J. B. Conway) follows similarly.

LEMMA 1.10. Let ze C and Qe X(#) with Q"=0. Then z-+ Q s
cp(n, | Q1l, {z})-

Proof. By Theorem 1.6, the conclusion of the lemma is equivalent z - Q
having an extension to a Je & ,(A) where 6(J) = {z}. Clearly without loss of
generality we may assume z = 0 and ||Q}] = 1. Thus by Theorem II, Section 2 of
[8), Q = S*|.# where S is a unilateral shift of infinite multiplicity and .# is
invariant for S*. Since Q" =0, 4 < KerS*. But S*|KerS* ¢ B}(KerS*")
and o(S* | KerS*") = {0}. Since Q = (S* | KerS*") | .# this concludes the proof
of (1.10).

We record the following simple exercises without proof.

LEMMA 1.11. Let m > | and let K < C be compact. Then [p;i(y.x)] = 0
in /Zul®80(ns ¢ K) lf am/ Ol’lly [/‘[pij(Xn,c,{:))] > 0 ill '//m®B0(n3 ¢, {Z}) _fOl' every
ze K If ®;;€ 6,(K) fori,j < m then[®;;]> 0in M, ®%,(K) if and only if [®;,(z)]>0
in M, @M, for every z € K.

We now are ready to show that Jordan operators have Jordan block exten-
sions.

THeoREM 1.12. Let J, N, and Q satisfy (0.1). Then J has an extension to
He #\o(A) where o(H) < o(J).

Proof. Set K = o(J) and ¢ = || Q||. By Theorem 1.6 it is enough to show that J
1s ¢p(n, ¢, K). Let

(1.13) N = @(M® on L (u)®)
k=1

where y,, 1 <k<oo, is a sequence of pairwise singular, positive, finite, compactly
supported Borel measures in the plane. Since NQ = ON,

oo

QZ('BQA-

k=1
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where for each k, 1<k < o0, O, = Q,(z) is a y, a.e. defined k> k matrix valued
function. Since Q" = 0 and || Q|| = ¢, for each k,

042)'=0 and |Q@<c
for p ae. z.

We now show that J is cp(n, ¢, KX). Notice that [U sptuk]—:: c(N) == o(N -

k=1
+ 0)=0(J)=K. Let [p;(x)] 2 0 in .&,®Byn, ¢, K). Then for every ze K,
(Pij00) 2 0 in A, ®By(n, ¢, {z}). Hence by Lemma 1.10, [p;;(z + Oi(z))] = 0 in
My ® L (LX) ®) for every k>1 and p, a.e. z. From the representation (1.13) we
conclude that [p;(N + Q)1>0in.#,®%L(+#). Thus Jis cp (n, ¢, K) and the proof
of Theorem 1.12 is complete.

We close this section with a technical lemma (cf. Lemma 2.26 of [1]).

LeMMA 1.13. Let K be a compact subset of C and suppose that S € L(H) is
cpln, ¢, G7) for every bounded open subset of C such that K= G. Then S is cp(n, ¢, K).

Proof. Let G, = {ze C: dist(z, K) < ;} Fix [p;;]20in %, ,® Byn, ¢, K).

. 1 . . .
Let g;;€ 2 be defined by q;; == - - (p;; = p¥). Since S is cp(n, ¢, G;),
J J 2 J J

102i(S)] — lg; (SN < [(pi; — 4:) (z,,,wk_)]l!-

By the continuity of the polynomials p;; and g,;, Lemma 1.11, and our assumption
that [ p;;]>0 in .#, ® By(n, ¢, K) we obtain, by letting k — oo in this last inequality,
that

(1.14) [pij(S)] = [qij(S)]'

Now fix £ > 0. For k sufficiently large [g,;] + £2>0 in .#,® By, ¢, Gi). Hence,
since S'is cp(n, ¢, Gi), [9,;(S)] + £=0. Since ¢ is arbitrary, [g;;(S)]=0. By (1.14),
[Pi{(S)] = 0 which establishes Lemma 1.13.

2. THE STRONG LIMIT OF A NET OF JORDAN BLOCKS

This section will be devoted to proving the following theorem.

THEOREM 2.1. If S e (BUH)) " then S has an extension to a Je BYHK) with
o(J) = a(S).

Accordingly, we shall consider fixed throughout this section a net, {J,lyeI'} =
S #(H), and a Se L(H) with J, —» S in the strong topology on Z(5). By
Proposition 1.4, for each y there is a representation, n,: ¥,(a(/,)) —» L(#), with
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T (Kne,00s,)) = Jy and m(1) = 1. We assume for each y such a representation is
picked and fixed once and for all in this section. Recall that y, . 4. )(z) =274 CV,
Set N, = m,(2) and Q, = m,(cv,). Thus J,, N,, O, satisfy (0.1).

Let N, = Ssz? be the spectral resolution of N,. For each yeTl, x,yesf

and i, j in the range 0<i, j<n—1 define a Borel measure y’/}/ by:

2.2) 1(4) = LQ™*E(A)Q'x, ¥,

for all Borel subsets, 4, of the plane. If we set D = max{c""1, ¢~®~ 1} then clearly
et < D )jx || |||l for all 4, j, y, x, and p. Recall that M(C), the space of finite Borel
measures on C, is the dual of Cy(C), the space of continuous functions on C with
compact support. Let

E={05x»|0<i,j<n—1; x,yes}.
If ¢e X define
M= {ue MC): n|<Dx|i iy}

The w* topology on M(C) relativized to M, makes M, into a compact space. Hence,
N | PP
ceE

is compact. For y e I' let 1, € Il be defined by,
T’y((i’j, x’ y)) = #;.j:)’ly9 (l.’.]; x’ y) e S'

Let e IT be a cluster point of {r,: yeI'} and let p&/, = 1((i, j, x, y)).

From the construction in the preceeding paragraph the following lemma is
immediate.

LEMMA 2.3. For every finite set, {(ix, ji>» X1 Vi): 1<k <p} S B, every finite
set {¢,: 1<I<g} < Cy(C), every ¢ > 0, and every y €T, there exists a Be T such
that B > vy and

'Srp,duik'jk—gfp dule et < g
Ty T xen |

Jor all k<p and all I1<q.

COROLLARY 2.4. If 0<i, j<n — 1 and x, y € H# then y, = ui.
Proof. Notice that if y e I' and 4 < C is a Borel set then

W5 (4) = (QHE(A)Qix, y) =
(2.5)

= (QVE(4) 0, x> = W7 (4).
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Fix ¢ € Ci(C). Let ¢ > 0. By Lemma 2.3 there exists a 8 € I'" such that

; \ £
{ d ll,] — d i _
and

ot — \panse < 2
: 1

But (2.5) implies S(pd;l’ SF = S@ dufiiP.

Thus,

|
& Sq) dufd, — S o dujk

S odul, = S @dulk.

Since ¢ is arbitrary,

Since ¢ is arbitrary, i, = ;]}f;—;fand Corollary 2.4 is proven.

The following corollary is proven in much the same way that Lemma 2.3
was just used to derive Corollary 2.4,

COROLLARY 2.6. Fix i, j, and a Borelset A = C. Then[-,-] defined on # X by,

[x, 3] = pid(4),

is a bounded sesquilinear form.

We now use Corollary 2.6 and Riesz’s Theorem on the representation of
bounded sesquilinear forms to define a matricial functional calculus. It will soon
become apparent that after a ““change of variable” this calculus does for S what
the representation of Proposition 1.4 does for a Jordan block.

DeriniTioN 2.7. For [@;;] an nXn matrix (0<i, j<n — 1) with entries
(p,,eBc(C), the space of compactly supported Borel functions on C, define
{0t € L(HF) by,

n=1 L.
(a) Hpisyx, y> = Y S‘Pijdll.'v’,fn

i,j=0
for all x, y e #. Similatly, for y e I' define {¢;;}, by,
n—1

(b) @it > = Yy S(p” duidy .

i’j=0
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For {¢;;] as above let [¢;;] denote the n X n matrix with entries in B,(C) defined by
(cf. (2.19)),

Pi2) =20+ ¢ijy 0<i<n—1,1<j<n—1
©

Pi(2)=2p, 0<i<n—1.
Several computational facts involving the notations introduced in Definition
2.7 are summarized in the following lemma.

Lemma 2.8. Let [¢;;] be as in Definition 2.6. Then
(@) {(pij}* = {20_;:},

n—l . N
(b) for every yeT, {(Pij}y = Z Q;U(pij(Ny) Q'y,

i,j=0
(©) for every ye I, J}{o,}, = (@i}
Proof. To prove (a) we apply Corollary 2.3. Fix x and y in #. Then.

—— e n—1 —
o™y = {oyjy, x> =Y, Saijd“i’.j;c =
Pt
= % (o dutt = <t .

which proves (a). (b) is an immediate consequence of (2.2). Finally, to prove (c
we use (b).

n—1
JHo b, = (VY + 0F) Y Q:‘jq)ij(Ny)Q‘;f =

ij=0
-1 ]
=Y Qy*J(Z(pij + @i;-D)WV,) @y= (9i-1=10.)
ij=0
= {(7’51'}7 .

This concludes the proof of Lemma 2.8.

The key fact about the brace matricial functional calculus for S that we
shall need is expressed in Lemma 2.16. The purpose of the next four lemmas
(which follow the course of John Conway’s simplification to the context of sub-

--normal operators of Theorems 2.4 and 3.2 in [4]) is to obtain Lemma 2.16 by taking
a limit in y of the formula

P = {J.— 4(DJDip) C, z)}
Jl!

14

14-1789
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(here, 4, e B(C) is the characteristic function of ¢(J,)), which follows from Lemma
1.2 and Deﬁnltlon 2.8 (b). In the remainder of this section # will denote the n X n
matrix defined by the relations (ne;, e;) =1 if i =j =0, {(ne;, e;y = 0 otherwise
with respect to the standard basis, {e;: 0<i<n — 1}, of C". If ¢ € B(C) then ¢y
will denote the matrix [¢;;], with entries in B (C) defined by
{(p if i=j=0
@i = .
0 otherwise.

Finally, C(C) = C(C) n B,(C), the space of compactly supported continuous
functions on C.

LEMMA 29. If x and y are in A then p2%(C) = {x, y).
Proof. Note that (2.2) implies that p%%7(C) = (x, y). As our proof shows

X5y

the act of taking the limit of this expression (and thereby obtaining Lemma 2.9)
is subtle matter, the difficulty being that the constant function 1 is not of compact
support. It is perhaps while surmounting this difficulty that Bishop’s original argu-
ment is at its most surprising and beautiful point. Fix r,r > 1. Let w0, = C/rD.
Let ¢ e C(C) with ¢ = 0 off w,. For each i, 0<i<n, and each j, 0<j<n — 1 define
¢i5€ C(C) by,

0;=0 if i1

©o(z) =0 if 0Kjgn—1land |z| <r

@of(2) = (=1YZ"U Dy  if0<j<n—landzew,.
Using Definition 2.7 (¢} it is easy to see that

[(771'1'] = Q.
Hence by Lemma 2.8 (c),
<{€0’7}yxa J’> = <{¢ij}y X, y> = <{(pij}y X, Jy}’>-

We conclude that,
Sq) dug® = on}, x ¥y = oy}, x Jp) =

n-1 .
= Z (_])jSE—(i-rl)(p dugt-_/,y):v

i=o

Recalling that ¥ > 1 and that ¢ = 0 off w,, and then crashing through with abso-
lute values in this last expression yields the estimate,

| |
S<pdﬂ°°v aD ol i 1Tyl

Finally, since,

|
Oo’l(a),)_sup{{gqodu”‘”i @eC(C), ol <1, and ¢ = 0 off a),},
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we see that,

(2.10) S 7 (o,) < nD|| x| |1,y llr 2.

Now fix ¢ > 0. Choose r > max {L

,1} and Y € C(C) sothat 0<y <1,
€

Y =1 on rD and

% 3(C) — Slﬁduv,y

By (2.10) and the fact that J, — S strongly in #(#), there is a constant d and a
0 € I' such that,

857 () < dit < de,

for all y > y,. Using Lemma 2.3 pick y, > 7, so that,

l S'”d“?‘: "7 — Slﬁdu?c’.}’

Finally, notice that as animmediate consequence of (2.2) we have, u(;”o; "1(C) = {x, »).
Combining the last three inequalities,

KE3(O) — (x. 3| <
<ot ,Swdu}l’,‘} — y>|<’ |
<2+ lswduz”(:yl - <x,y>, —

<

= 2¢ —{-]S(l// — l)d,u(:c’(;’ﬁ

<2+ u) 2 (o) <
< 2¢ 4+ de.

Lemma 2.9 is now established by letting & pass to 0.

LEMMA 2.11. If [@;] is an n X n matrix with entries in C/(C) then
S*{(pij} = {‘7’:1} .
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Proof. Fix x,yes#. For yel define complex numbers 4,,B,,C,, and
D, in the following way:

A, = <{(pij} X, SJ’> - <{¢ij}y X, S}'>s
Br = <{(pij}yx’ Sy> - <{¢ij}yx’ J;,V> ’

Cy = <{(Pij}r X, J-,'y> - <{(‘p.ij})')‘" y> ’
and

D, = {{@i}yx, > — {di}x ») -
Evidently,
I<S*{@ikx, ) — (@i} p)l =
=14, + B, + C,+ D, <
< 14, + 1B) + G, + D,l.

Fix ¢ > 0. By Lemma 2.8(c), C, = 0. From Definition 2.7 (b) it is clear that
{ll{@i;},x|| : ye I'} is bounded. Thus since J, — S strongly, there exists a y,e I’

such that y > y, implies |B,| < ; Finally, by Definition 2.7 (b) and Lemma 2.3

there exists a y, > y, such that lAyll < ; and |Dyll < ; Thus,

I(S*{(pij}x’ J’> - <{€7’ij}-\’, Y>| <ég,
and since ¢ is arbitrary we have established Lemma 2.11.

The following corollary to Lemma 2.11 is proven by a routine approximation
argument.

COROLLARY 2.12. If [@;;] is an n X n matrix with entries in B(C) then
S*{(Dij} = {(bij} .
LemMA 2.13. If x,y e # then | 32 1(C\o(S5)) = 0.

Proof. Let K be a compact subset of C\ ¢o(S). We want to show that
u129(K) = 0. For 1€ C\K define {{/}}, an n X »n matrix with entries in B(C), by

vh=0 fl<i<sn—1,0<;<n~—1

(—1Diz—A"U*Y if0<j<n—1and zekK

<
l.z: X
V) { 0 ifO0<j<n—1and z¢ K
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Then using Definition 2.7 (c) (with the understanding that y;; is zero if j is negative)
we see that

3] — Alwh] =
= (z — D4 + -] = [4xn],

where 4 € B(C) is the characteristic function of K. Hence by Corollary 2.12,

(§* — Dy} = S* Yl — Ayl =

= (U8} — vk} = {4} -

Hence if A ¢ (K U o(S*)) we see that
(2.14) {Wli} = (§* — = {dkn} .
Now, fix x and y in & and define a function F: C — C by

Ky — { (S* = D= {den}x,y> i A¢ o(S¥)
({h}x, ») if 2¢K.

That Fis in fact defined on all of C foHows from the fact that K = C\ ¢(S). That
F is well defined follows from (2.14). Finally, it is clear that F is holomorphic
and vanishes at co. Hence F = 0. Then

((8* — D)~Ydm}x,y) =0, all 1¢0(S%).
Since x and y are arbitrary we conclude that {4xn} = 0. But then (Definition 2.7)
1 5(K) = {{4xn}x, ) = 0.

This concludes the proof.-of Lemma 2.13.

LEMMA 2.14. If 0 < i, j<n—1 and x,yes then |ui'(C\ o(S)) =0.

Proof. The lemma will be proved if we can show that,

S(Pdﬂx.y =0,

whenever ¢ ¢ C(C) and ¢ = 0 on o(S). Let ¢ > 0. Use Lemma 2.3 to find yeI'
such that

‘ S<pdui’,"y — S(Pdui:.fy” <e,

@.15) (gvpldux,x SI(pldu“ vr| <,
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and

<eée€.

\Slcoldug', Slwldu" Sk

Now notice that since N,Q, = Q,N, we also have E(4)Q, = Q,E (4) whenever
4 < C is a Borel set. Thus,

e (D] = KQFEL Q] x, )i <
< | GLE M| QE )yl <

< | EL)x| | E(d)y] <

< ii— (1 EA)x |2 + || E(d)y (D)=

i+J

= -62— &% 7(4) + p37(4)).

ot

Hence, setting d = , we have,

}S(pdu'},’}y Slrpl dipi 7 <

SI(p!du" A t/S ol dp5 3

Since Lemma 2.13 implies S|(p|d;1f’,;,‘_{r = 0 we conclude from (2.15) that

!
S(pdu’ s )’ < 2de.
' '.

Hence using (2.15) again we obtain,

ES‘/’d“iﬁjy e+ Sgodu.';',"y" < g+ 2de.

Since ¢ does not depend on ¢ and ¢ is arbitrary we conclude that S(pdu' do=0

which establishes Lemma 2.14.

The following lemma is the means we will use to link up with the results of
Section 1. In what follows let 4 = A(z) € B,(C) denote the characteristic function
of a(S).
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1 . -
LEMMA 2.16. If p € P then p(S) = {T A(D; D p)(z, z)}.
Jli!

Proof. By Lemma 2.9 and 2.13 we have, {{dn}x, y) = p%0(S)) = p%5(C) =
= {x,y). Thus,

(2.17) {dn} = 1.

The following statement follows by a simple mathematical induction which we omit.
1 . -
@.18) G+ wnGe v = [ (DD |
gl

for every ze C. Also, if [¢;;] is an n X n matrix with entries in B.(C) we have that
(2.19) [90:(2)] = [0z + v)*
for every z e C. Using (2.17), (2.19) and iterating Corollary 2.12, we obtain
Sk = LAn(z + v,)**} .
Thus, by Lemma 2.8 (a),
Sk = {(z + v,)¥dn} .
Using this last fact, (2.19), and iterating Corollary 2.12 we obtain

SHSE = {(z + v)dn(z + v)*}.
Thus by (2.18),

1 i =
Seisk {J'—, A(DJDLy'x4)(z, 7) } :

Taking linear combinations of this last statement completes the proof of Lemma 2.16.

Finally, we are ready to prove Theorem 2.1. Thus, we wish to show that §
has an extension to a Jordan block J e #7%(5#) where ¢(J) = 6(S). By Theorem 1.6
this is equivalent to showing that S is cp(n, ¢, 6(S)). We do this by an application of
Lemma 1.13. Accordingly, let G = C be open with ¢(S) < G and G~ compact.
Let w € C(C) have the properties, w(z) =1 if zeo(S), w(z) =0 if z¢ G, and
0 < w(z) < 1 for all ze C. We now show that S is ¢cp(n, ¢, G-).

Let [pu(x)] = OinA#,, ® By(n, ¢, G-). By Lemma 1.11 this means that

[pkl (Xn,c,{z))] P 0 in ‘//lm ®B0(n’ ¢ {Z})

for every ze G~ . Since Lne i) (z) =z + v, for ze G~ we see by
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Lemma 1.2 that,
(2.20) [ Z —;— v¥I(DJDi pi)(z, é)vi,] >0 inA,Q4,

i, j= 0]1

for every ze G~. Now let

oh (@) = --*—w(Z)(D’ WPz, 2) .
The since w > 0 and w = 0 off G it is clear from (2.20) that

n—1
(2.21) [ y v,‘,“f(p,’{’}(z)vf,J >0 inA, @M,

i,j=0
for every ze C. Also, ¢¥/ eC (C).
n-—1
Fix k and /. Then by restriction if yeI', ¥, vi/ofi(2)vie €, (0(J,)). Since
i,j=0

n(z) = N, and n(v,) = Q, we have
x, (g st ) = 501 eN)0} = (ot
Thus, " '
@.22) id, ® ( [z v ik ]) — {11
i
Since by (2.21) and Lemma 1.11,
[z VEigkv, ]> 0 i, ® €N,

we conclude from (2.22) that
(2.23) {o¥},] = in %, ® L) for all yeT.

We now show that
(P(S)] =0 in .4, ® L(K).

Let x,,..., x,, € and fix ¢ > 0. By Lemmas 2.14 and 2.15 we have

Ul DY = % (PualS) X, 3 =

k,1=1

<{— A(DIDip)(z, 7) } X, »k>
k,I=1

S(DJD P D), =

(2.24)

k.l i,J IU!

=Y Sqm

k,11i,j
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Leta, = ([{¢¥},)(x) ,(x)) . Then by 2.7(b),

0=V Y Swf‘:j’duis,":zk.

kol i, j

Thus, by Lemma 2.3 and (2.24) there exists a y € I' such that

[ L P S)N(x,), (x1)> — | <e.

But ¢ is arbitrary and a«, > 0 by (2.23). Hence

SN, (1)) > 0.

This establishes that [p,,(S)] = 0 and concludes the proof of Theorem 2.1.

3. SOME THEOREMS

In this section we prove the theorems alluded to in the introduction.

LEMMA 3.1. If 3 is infinite dimensional and separable then sub #2(#) < (F2(H#))~*
and subBi(H) < (BUH))S.

Proof. Let Sesubfi(#) with S =J|# and Je #2(AX). Clearly we may
assume that ¢ is separable. Let ¥ denote the inclusion map of # into X ". Choose
a sequence of Hilbert space isomorphisms, ¥, :# — X', such that ¥; tends fo V'
and V7 tends to V* strongly as j — co. Then V*JV; —» S strongly as j — oo and
VIV, e #4(). We conclude that S e (F2(#))~°. Thus subZx(H) < (FUH)) 5.
An argument similar to the one just executed shows that sub®"(s#) < (B7(H))~*
and concludes the proof of Lemma 3.1.

THEOREM 3.2. Let # be infinite dimensional. Then
SubF(H) = (FUH)) ™ = (BAK) ™ = subBUH) .

Proof. A routine argument shows that we may assume # is separable. For
convenience we omit the symbol # from the four collections of operators referred
to in Theorem 3.2. Note first as an immediate consequence of their definitions that
#" < g, Thus,

3.3 sub%? < sub #1.
By Lemma 3.1,
(3.4) sub gl = (F)~°.

By Theorem 1.12,
(3.5) (F)7° < (subgr)~*.
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By Lemma 3.1, sub%” < (#7)~*, and thus,

(3.6) (subBn)=s < (B")~s.
Finally, by Theorem 2.1,
(3.7) (B~ < subB".

Combining (3.3), (3.4), (3.5), (3.6), and (3.7) establishes Theorem 3.2.

One might reasonably inquire what happens to Theorem 3.2 when the constant ¢
is omitted. That it fails dramatically can be seen using the result that the strong
closure of the order two nilpotents on an infinite dimensional s# is Z(#) ([10],
Problem 91).

THeEOREM 3.8. If S € sub#%(s#) then S has an extension to Je B(X) where
o(J) < o(S) and o(S)\.a(J) is a union of components of C\. o(J).

Proof. By Theorem 3.2, S e (#%(#))~*. Hence by Theorem 2.1, S has an
extension to J € #7(A) witho(J) < o(S). That o(S) \ ¢(J)is a union of components
of C . 6(J) follows as in the solution to Problem 158 in [10].

We now introduce a matricial function algebra which can be used to generalize
a theorem of von Neumann (see [16]).

DeriNiTION 3.9. Let K'be a compact set in C, n a positive integer,and ¢ > 0.
R, (K) is the closure in €,(K) of the functions of the form,

g(2)=f(z+cv,) zekK,
where f is a rational function with poles off K.

Of course, if n = 1 then the above definition reduces to the usual definition
of R(K). Similarly the following definition generalizes von Neumann’s notion of
a spectral set.

DEFINITION 3.10. Let 7 e £(3#) and suppose K< C is compact with s(T) =K .
Then K is a (n, c)-spectral set for T if

| AT < max|| f(z + ¢v,)]]
z€K
for every rational function f with poles off XK.

We shall be interested in the situation where R, (K) is as large as it could
possibly be. Accordingly,

DerFiNiTION 3.11. C,, (K)is the set of all f in €,(K) of the form,
n-—-1 )
/D=7 ¢ zeK,
j=0

where p;e C(K) for 0 <j<n— 1.
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LemMA 3.12. The following are equivalent :
@ Roo(K) = Coo(K),
(b) R(K)= C(K) and z€ R, (K),
(c) For every @y, @1,---» Pu-1 € C(K) there exists a sequence {f;} of rational
functions with poles off K such that ilir:lollfg") — ¢;llk = 0.

Proof. (a) implies (b) and (c) implies (a) are clear from the definitions.
To see that (b) implies (c) simply notice that R, .(K) is an algebra.

Lemma 3.13. If K is an (n, ¢)-spectral set for T then the map, ¢, densely
defined on R, (K) by

o(f(z +cv) = f(T), [feR(K),
extends to a contractive algebra homomorphism.
Proof. Immediate from the definitions.

The following proposition is the generalization to the sub-Jordan context
of the familiar fact that sub-normal operators are von Neumann operators.

ProrosITION 3.14. If S € sub #2(#) then o(S) is an (n, c)-spectral set for S .

Proof. By Theorem 3.8 there is a J e #7%(A") with S = J|# and o(J) < 6(S).
By Proposition 1.4 there is a representation =, : %,(0(J)) = Z2(A) with

X, o, o0y = J- Let my 1 €, (0(S)) » €,(a(J)) denote the restriction representation
and set m = mw,. Then n(y,

ce.asy) =J. Thus, if f is a rational function with
poles off (S), then

L) = | F DA < L FO)] =
= 1, .. DI = 17 Gy o DI <

NS, o o)) = max | £z + v,
z€o(S)
and we see that the assertion of Proposition 3.14 is proved.

A well known theorem of von Neumann says that if K a spectral set for T
and R(K) = C(K) then T is normal.

ProposiTION 3.15. If K is an (n,c)-spectral set for TeL(H) and
R, (K) = C, (K) then T € F:H).

Proof. Let g : R, (K) — ZL() be the algebra homomorphism of Lemma 3.13,
Evidently,

T=10@G+cv,)=0@) + olcv,) .
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By von Neumann’s Theorem ¢(z) is normal. Since ¢ is a homomorphism ¢(v,)* = 0
and @(2) (cv,) = ¢(cv,) ¢(z). Finally, ||e(cv,)|l < ¢, since ¢ is a contraction.
Thus T e #£2(s#) which establishes Proposition 3.15.

LeMMA 3.16. If K is a totally disconnected compact subset of C then
Rn,c(K) = Cn,c(K)'

Proof. Notice first that if X is a totally disconnected compact Hausdorff
space then the Stone-Weierstrass Theorem implies that {f € C(X) : f(X) is finite}
is dense in C(X). Thus we see (using Lemma 3.12) that Lemma 3.16 will be proved
if we show for every ¢ >0 and ¢ e C(K) with ¢(K)finite there is a rational function f
with poles off K s.t.

maxje — f| < ¢
ZEK

3.17) and
max|fU <e 1<j<n—1.
zEK
Let o(K) = {z;]1 <i < N} and letK; = ¢~ ({z;}) for 1 < i < N. Clearly,
K; is both open and closed in K so that there exist disjoint compact sets E; with
N
K; = E9(E}is the interior of E;in C). Set E = |_J E; and define x € C(E) by

i=1
@)=z, 1<i<N,zek;.

By Bishop’s localization Theorem, y € R(E). Thus there is a sequence of rational
functions, {f,} with poles off E (and hence off K) with f, converging uniformly
to x on E (and hence on K). Since y is constant on each component of E°, if j > 1
then f{’ converges uniformly to 0 on each compact subset of E° (and hence on K).
Thus (3.17) holds for k sufficiently large and the proof of Lemma 3.16 is complete.

THEOREM 3.18. If Sesubgi(#) and o(S) is towally disconnected then
Se FuH).

Proof. By Proposition 3.14, ¢(S) is an (n, c)-spectral set for S and by Lemma
3.16, R, (a(S)) = C,, (o(S)). Thus by Proposition 3.15, S e £1(H#).

As a corollary to Theorem 3.18 one obtains Theorem C and Theorem D
of the introduction. Theorem C is immediate. To prove Theorem D observe that
by Theorem 5.26 of [1], T e sub #%(s#) (for an appropriate ¢). Hence by Theorem 3.18
and the assumption on o(T), T e £2(H#).
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