3 0‘;‘%{‘9%;)0‘1‘9:‘:?4‘30“‘( © Copyright by INCREST, 1982

LIE GROUPS OVER THE FIELD OF RATIONAL
FUNCTIONS, SIGNED SPECTRAL FACTORIZATION,
SIGNED INTERPOLATION, AND AMPLIFIER DESIGN

JOSEPH A. BALL and J. WILLIAM HELTON

INTRODUCTION

This paper concerns a Lie group of 2n x 2n matrices over the field # of
functions on the unit circle with rational continuations to the complex plane. The
group we will study consists of all such matrices which satisfy

o el )

and is denoted by ZU(n, n). We also investigate a particular semigroup U+ (n, n)
consisting of members of 2U(n, n) which satisfy certain analyticity properties. The
study of Z2U*(n, n) is closely bound up with classical Nevanlinna-Pick interpolation
theory extended to Grassmannian valued functions.

Although the paper is entirely mathematical the motivation for it is physical.
The desire was to build the mathematical machinery appropriate for a systematic
theory of amplifier design. So the last two sections of the paper concern an optimi-
zation problem which physically amounts to the design of a (linearized) transistor
amplifier with maximum gain over all frequencies. While we were not able to fully
solve the problem we do make a significant reduction, and it is reasonable to believe
that some of the main theorems herein will be a part of a unified theory if one ever
exists.

Now we state our main mathematical results. The group #U(n,n) acts via
the linear fractional map

G (m) = (am + B)(em 4+ y)~*
on #M,, the n X n matrices with entries from #; here g = (a ﬁ) e RU(n, n)
xy

and m ¢ #M,. The first undertaking in this article is to determine some basics about
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the orbits of this transformation group. In particular we determine the orbits of the
constant elements in #M,, and find that they are just what one would hope.

To describe these orbits define ZM(j, k, [) to be the matrix functions in #M ., . ;
whose values at each point on the circle are matrices with j singular values less than
1, k singular values equal to 1, and / singular values bigger than one, that is, matrices

in a set we denote by M(j, k, !). Recall the singular values of a matrix m are the
1

eigenvalues of 'm| ~— (mm?*) ® . We shall prove (§ 3)

THEOREM L.1. The group ZU(n,n) acting as transformations on #M, has
(1) @+2)
2
AM(,j, k) where i+ j-+k=n.

That ZM(n, 0, 0) is an orbit of #U(n, n) is already known since it is the main
content of an embedding theorem due to engineers Darlington, Belevitch, Ono-
-Yasuro, and to Potapov; for greater generality see [3], [12]. The analogue of Theo-
rem 1.1 for matrices with complex entries (a trivial consequence of Witt's Theorem,
cf. [24]) is a nice example of a general classification of orbits which is worked out
in J. Wolf’s article [43]. Theorem 1.1 is decidedly nontrivial primarily because the
field is not algebraically closed and this forces us to extend existing Wiener-Hopf
factorization theory. In operator theoretic terms Theorem I.1 amounts to a study
of when a given rational matrix function can be embedded as the upper diagonal

orbits which intersect the constants. They are precisely the sets

. . . L ({10 .
entry of a 2 x 2 block rational matrix function with (0 J)-umtary values for some

signature matrix J (i.e., J is self-adjoint and unitary).

The next part of the paper, §4, introduces and develops properties of a certain
class of matrix-valued functions. The most typical such class is a generalization of
H*(M,), which one might call symplectic H*(M,), defined as follows.

Let [,] be a Hermitian bilinear form on C” and call Min M, a[,]-bounded
matrix provided there is an » > 0 such that

[My, Mx] < rlx,)]

for all x, y in C". The [,] analogue of H*(M,) is just the class of analytic and uni-
formly [, ]-bounded functions on the disk. There is an inner-outer factorization,
a Wiener-Hopf factorization, a maximum principle, and a Nevanlinna-Pick type inter-
polation theorem for this class. The classical theory where [, ] is positive definite applies
to passive circuits or strictly amplifying devices [18], but for a mixed active-passive
device (such as a transistor) one requires a signed bilinear form.

The interpolation theory for [, ]-H* functions is best described in a Grassman-
nian setting. Instead of studying [, ]-contractive matrices in M, one studies #-dimen-
sional subspaces in C* (by considering the graphs of matrices in M,) which are
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positive in a certain bilinear form ¢, ) on C* built from [, ]. One identifies [,] — H®
with these subspace-valued functions on the unit disk and considers such functions
F for which the subspaces F(z;) contain given subspaces S;, that is F which “inter-
polate” S; at z;. The Nevanlinna-Pick Theorem in this context says

THEOREM L1.2. Suppose n = 1. An F which is analytic on the disk with {, )-posi-
tive values and which interpolates the one dimensional spaces S; at z; forj =1, ...,N
exists if and only if the matrix

A= { <SJ‘3ASEZ,}
V—zizp fj ke, N

is positive definite. Here s; # 0 is any basis vector for S;.

This is a “coordinate independent” statement of the Nevanlinna-Pick Theo-
rem and we shall prove a generalization of it in § 4b. The coordinate-free setting turns
out to be very important in our study, since the [, ]-H®(M,) functions themselves
appear to be badly singular (unless the form [,] is positive definite) only because of
the “‘coordinates” implicit in their definition.

The ultimate concern of this paper is the optimization of certain classes of
functions on the orbits of #U(n, n) and on particular subsets of these orbits. The
functions to be optimized all arise from the cross ratio of two matrices. Define the
cross ratio (S, K) of two matrices S, K to be

1 1

(S, K) (1 -- §5%) (S — K) (S — K9 "U(S* — K¥)(S* — K)=}(1 — §5%)°.

This is a slight modification [16] of C. L. Siegel’s definition. From & one can
construct infinitely many metrics on M(n, 0, 0) which are invariant under the action
of U(n, n), for example arctanh||£(S, K)|| is an analogue of the classical Poincaré
metric on the unit disk called the Carathéodory metric. The main goal of this article
and of [18] is

ProsLEM L.3. Given S in #M(j,0,1) with j - [ =n, find H in ZBH>(M,)
so that the &t singular value of §(S, H) (/) is a prescribed function of 0.

Here 2B H><(M,) denotes the collection of those functions in ZM,, strictly
bounded in norm by 1 on the closed unit disk {|z} < 1}. While the problem is
stated in terms of achieving a prescribed function it turns out to be equivalent to an
optimization problem.

The article [16] concentrated on the case where § is in #M(n, 0, 0) and among
other things explicitly on

min_||6(S, H) e

M,)’
HERBH™® "
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that is, the “Poincaré distancé” of S to #HH*®(M ). This article attacks the general
problem for Sin #M(j, 0, 1) rather than S in ZM(n, 0, 0).

To put these results in perspective, one can think of [16] as consisting of two
parts. The first part converts Problem 1.3 for /:= 0 into an interpolation problem-
The second applies the theory of interpolation developed over 60 years to solve the
problem. This paper successfully generalizes part one of [16] to the full / # 0 problem.
It develops a flexible machine which can be used to reduce many problems of type
I.3 to interpolation problems. Furthermore, just as in the classical case, we are
able to give a general matrix positive-definiteness test as to when certain problems
of this type have a solution. This is a fairly conclusive step in a long campaign to
perform such a reduction on a broad class of problems. We now have a collection
of matrix interpolation problems; the casiest can be solved but many are still open.
Thus the focus of efforts can shift to them and to making the matrix tests truly
practical.

Application of our results to design of an amplifier which consists only of a
transistor and energy conserving components is described in §7. Also, in §6 we
explore the mathematical consequences of some important physical constraints,
namely, that the amplifier be stable over all frequencies, and that real-valued inputs
give rise to real (as opposed to complex)-valued outputs. Section 8 treats an ampli-
fier consisting of a transistor and passive components.

OUTLINE

§ 1. Gives only results over the field C rather than over . It sets the stage
for Theorem 1.1 and then goes on to solve one central optimization problem over C
in a manner which illustrates the strategy for the general case.

§ 2. Describes signed Wiener-Hopf factorization.

§ 3. Proves Theorem 1.1.

§ 4. Treats symplectic H®™.

§ 5. Treats the basic optimization problem.

§ 6. Adds physical constraints to §5.

§ 7. Applies all of the above to amplifiers.

§ 8. Extends some results of §§1--7 to a certain subsemigroup of #GL(n).

1, RESULTS OVER THE FIELD C

In this section we derive some basic properties about U(n, 1) and its orbits
in M, over the field C rather than .#. Recall that U(n, n) is the group of 2n X 2n

matrices g which satisfy
g::: I O g — I 0 .
0 -1 0 —1)
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x f

any such g: :
® Y

)e M,, acts on an r X r matrix m (me M,) according to the

formula
Go(m) = (am + ) Gem -+ )1,

with G oY, =Y 5, A more general class of matrices which will be useful

consists of those g which satisfy

g*<J2 0 o= Jy 0)
0 _-/2) (0 =N

where each J, is a signature matrix, i.e. J} = I, and J* = J,. Henceforth the letter
Jor J, will denote a signature matrix and U(J,, J,) will denote the class of g’s above.
We will say g e U(J;, J,) is nondegenerate if in addition y is invertible. Note U(Jy, J5)
is a group if and only if J, = J,; also U(n, n) == U(I, I). The fact that U(n, n) maps
the set of strict contraction matrices M(n, 0, 0) into itself generalizes simply. Define
a (J;, Jy)-contraction to be an operator T:C" — C” which satisfies

T*J,T < J,.

Call T a (Jy, J)-strict contraction or unitary whenever the inequality is strict or
an equality. It is known that if T is (J;, J,)-contractive (or (Jy, Jy)-unitary), then
T# is (J,, J1)-contractive (respectively (J,, J;)-unitary) (see [38]).

ProrosITION 1.1. A nondegenerate linear fractional map 9, with coefficient

g

, 4 . . .
matrix g =: ( ﬁ) in U(Jy, Jo) maps a dense set of (Jy, Jy)-contractions (strict con-
x v

tractions) (unitaries) onto a dense set of (Js, Jy)-contractions (strict contractions)
(unitaries). If g satisfies only '

Jo 0 J, 0
1.1 g= - < (7t
-h (0 —Je) o (o ~Jl)

then we still have that 4, takes a dense set of (J,, Jy)-contractions (strict contractions)
into (Jy, Jo)-contractions (strict contractions).

The proof will be postponed to the end of §1 after we introduce an equivalent
alternative form of writing ¢,. In view of Proposition 1.1, itis natural to refer to
maps %, with g in U(J;, J5) as (J,, J;)-cascade maps. If the reader is only interested
in Theorem I.1 he can skip to the proof of Proposition 1.1.

We next introduce, for any signature matrix J, a “metric” &, on M,, the
values of which will be similarity equivalence classes of M, such that the class of

n?

maps {#,|g e U(Jy, J2)} is precisely the set of isometries from &5, to &, that is

(5’;2(9”36), G,(h) = é*’;l(s, hy for geU(y, Jy), s,he M,
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where ““2~* means “is similar to". For the case where all J's equal 7, the “cross
ratio” of two matrices introduced by C. L. Sicgel {40] accomplishes this. More gene-
rally, recall that there is a “‘cross-ratio” of four matrices

C(21s T90 25 24) = (21~ 2021 — Z3) Wzg — 23) (24 = 25) 7T

(whencver the necessary inverses exist) which is invariant up to similarity under any
linear fractional map [16]. One can use this to generaie finer invariants for maps
%, with g from U(/;, J,) as follows. For J/ a signaturc and s a matix, define the

J-Schwarz reflection by
s~ = JsEelg

whenever it exists. It is a genelalization of Lemma 2.2 in [16] that

LEMMA 1.2, If g in M,, is invertible, then

(5)~":.2@ 287 1)

a
‘e

A 0 o 0 , e
“ )g""l( ! ) In particular if g is in Uy, J,), thea
0 —J e —J

8o =g, and G, intertwines ~J; with ~J,.

where go == (

Proof. Set h = %, (s). Then s« 6’!’36-1(/{) wlicre

1 (J1 0 ) (J2 0 Jiatdy - Jptdy
gO = 7 g ) Lo B
9 -d 0 Ly SR vl
f we solve the equation s = g36<1(i7) for /i, we cbtain

h = (sJi %Sy + Jya*Jy) sy s o Jixt) s

= Jy(Jys/ i - 2%) M (S5 Iy - 1)

Hence
B0 (2 BISRL) ( 5 p st = (s

as claimed.

Now use the symmetry ~ to “‘reduce” the cross ratio, namely define
& (s, h) == G(h, 5, 8~7, B~
and observe (in the spirit of [20]) that for g in U(Jy, J5)

E1(G4(5), G (M) = C(G (1), G o(9), (™9, 9,0~
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is similar to
G(h, 5,57, K1) = &4 (s, ).
We have obtained
ProrosiTioN 1.3. If g is in U(Jy, Jy), then é",z(’ﬁg(s), G () is similar to

fS”Jl(s, h) whenever all relevant inverses exist.
The invariant & ; bears a specid ati s ely,
Tl tés, b a | relation to 0, namel
& 4(s,0) = sJs¥J = 55+

where s* == Js*J is the adjoint of the matrix s with respect to the bilinear form
(Jx, ). We rcfer to the cigenvalues of the matrix ss+, in analogy with the case where
J - : 1, as the squares of the J-singular values for s. The analogy is especially good
when s is a J-contraction (sce [38] and § 6).

Recall (from the Introduction) that M(j, k, /) denotes the class of all n X n
matrices {(n == j -k {-1) m with j singular values <1, k singular values = 1, and
! singular values >1. In the classical case where we let U(Z, I) act on M(n, 0, 0),
for many problems it is convenient to be able to map a given m e M(n, 0, 0) to the
O-matrix via an isometry %, (g € U(/, I)). The fact that this is always possible is
essentially Darlington’s Theorem for the frequency independent case. In working
with the more general class M(j, 0, n — j), this is still possible, as long as we are
willing to take g in U(Z, J). The result might be termed a “J-Darlington Theorem™

for the frequency independent case.

0

I,
LemMmaA 1.4. Let s be a matrix in M(j,0,n — j) and set J = ( J ) Then

n—j
there is @ g in U(J, 1) (respectively h in U(l,J)) so that %,(0) = s (respectively
Fifs) = 0).

Proof. Since s € M(j,0,1) there is an invertible matrix ¢ such that 7 — s%s =
= g*Jq. (Indeed, choose g = |I — s*slu where u is a unitary which diagonalizes
I - s%s and [T — s¥s| is the nonnegative square root of (I — s%s)*.) Similarly there
is an invertiblz matrix # such that 7 — ss* = r*Jr. Set

r=iJ sq-1J
(12) g=, 0.
s*r-W g~
Then it is easily verified that g, is in U(J, 1), and clearly % (0)=sq*~1J(g* ~1J) ~1=s.

To build 4, observe that %,(s) = 0 is the same as ;7 1(0) = ,-1(0) = 5. Hence

it suffices to take

-1 —p—Lk
(1.3) e - (J O)gs* I O) N (r | r s).
0o —J 0 —1I g-l¥s* g1

The lemma follows.
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Given a matrix s in M(j,0,[), we let g, denote any matrix in U(/, I) with
G, (0) = 5, and g* any matrix in U(J, J) with %s(s) = 0.

The main problem to be addressed in this paper is stated in the introduction
as Problem I.2. It is an optimization problem involving U(n, ) over #. Naturally
there is a corresponding (much easier) problem over C which we shall now solve.
The solution is highly instructive, since it gives the thread of the more general argu-
ment. Physically it corresponds to designing a certain type of transistor amplifier
to have large gain at one fixed frequency and the result we obtain is surely no sur-
prise to many engineers; our (systematic) approach is certainly new.

The problem is: Given 4 e M(1,0, 1) find

d:= max e.vy[S(B, 4)]

BEM(2,0,0)

where e.vy is the Jargest eigenvalue of the matrix. Find all B which give the maximum
value. The answer is

THEOREM 1.5. The maximum is §=o00. The set of all matrices B achieving
this maximum is

. ¢ 0 . .
lim 97”4 u v} : where 0<c< 1 and u, v are J-unitary matrices
rtoo ‘ 0 r

1 0
where oo is formally permitted as an entry. Here J = ( 0 1) .
Proof. First convert the problem to a simpler form by performing a sequence
of manipulations on &,(B, 4). By Lemma 1.4 the matrix g#in U(/, J) induces a
map %,4 with % _4(4) = 0. By Proposition 1.3 &;(B, 4) and & (% 4(B),0) ==
= 4 ,4(B)[%,4(B)]* have the same eigenvalues. By Proposition 1.1

% a2 M(2,0,0) — {all strict J-contractions}.
Thus the basic problem is converted to finding

max ev,(MMH).

M a strict J-contraction

. 0 . .
This is casy to compute because after all X,:= ( 0 0) is a J-contraction when-

v
ever r > 1. Its J-singular values, namely the square roots of the eigenvalues of KK},
arc {0, r}; thus the maximum is co. Furthermore, an arbitrary J-contraction with

. c 0 .
a J-singular value equal to » > 1 has the form u[ ]v where u, v are arbitrary
r

J-unitary matrices and 0 < ¢ < 1 (see [38]). Thus the set of all matrices B € M(2, 0, 0)
for which the optimum co is achieved is given by the formula in the theorem.



SIGNED INTERPOLATION 27

Having stated the main results of the section we turn next to the proof of
Proposition 1.1. We begin by introducing another way of writing linear fractional

S . . . a
maps which is commonplace in engineering. If u = (
¢

by . . .
Is a matrix with matrix

entries @, b, ¢, d in M, define a map F, on M, by
(1.4) Fs) == a + bs(l — ds)c.

It ¢ is invertible one can write F,(s) == ¥ (s) where

(L.5) ¢ = (b —ac™d ac?
. —cid e )’
Conversely, any map %, with g = (a ﬁ) with y invertible can be written as
x Y
F, with
w6 o= (I e
y=1 ——7‘1%

Thus F, is nondegenerate if and only if ¢ is invertible. For example, the matrix g,
of Lemma 1.4 transforms via (1.6) to

.
(1.7) A= (s ’ ) :
Jg — Jgstr=1J

Thus FAS(O) == 5. Likewise g° transforms to a matrix we shall denote V,, i.e.

Fvs(s) := 0. One can show that if g is in U(Jy, J,) (resp. g satisfies (1.1)) and y is

invertible then the corresponding u is ((J2 0 ), (J2 0 ))-unitary (resp. con-
0 J; 0 5

tractive) with invertible ¢. Also the converse holds.

In the rest of this paper most proofs (including the one immediately following)
will be given in terms of F, rather than %, since the F, conventions behave well
over ¢ when analyticity properties are an issue.

Proof of Proposition 1.1. The proof is an adaptation of that of [19] for the
casc where all signatures are the identity. We do it more generally than is required
for the proposition. Suppose u is ((Jz _0 ) , (Jz"‘ 0 ))-contractive and s isa

Jis: 0 U
(J1, J14)-contraction for which 1 — ds is invertible. (In Proposition 1.1 Jiz = J;
and J,y = J,.) By an easy perturbation argument such s’s are dense in the set of
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all (J,, Jyy)-contractions. Let x, be any vector in C* and set 3, = F,(s)x;. Motivated
by the physical meaning of F,(s) as a cascade loading of ¥ on s, we rewritc the
equation

o= Fs)x,
" as the system of equations

¥ = axy - bxy

Yo = cxy 1 dx,

(1.8)
Xo == ¥ = §X
Yo = X
Hence
(Jaxy, X1) — (Joubys 1y) = (Joxy, 1)) -+ {(Jm;»\'zv Xy) -~ Sy, J)} -
- (J‘.Z:;:yle )+ {(Jr\'s X) == (e J"z)} ==
(1.9)

== [(JoXy, X1) - (JygXa, Xy) - (Jﬂti:ylsyl) (1) ¥2)] -

+ [(Jo%, X) = (Jid, W] 2 0

with equality if both u is ((J2 0 ), ('l“’ 0 ))-unitary and s is (Jy, Jig)-
0 A

-unitary. Furthermore, using (1.8) to express (1.9) only in terms of u, s and the
arbitrary x,, we obtain the gencral relation

J‘L - Iqqu(s):;:‘]?té:};;u(s) =

4o (1 - s*dH) T - s¥ s (1 - ds) e,

From this equation it follows immediately that if ¢ is invertible and s is a strict
(/;, J14)-contraction, then F,(s) is a strict (J,, Jo;)-contraction, and conversely, if
F.(s) is a strict contraction, then necessarily ¢ is invertible.

It remains only to show that when u is unitary and ¢ is invertible, then the
image of a dense set of strict contractions is a dense set of strict contractions, and

similarly for unitaries. For this we switch to the ( B

)-convention, where compo-
x 7

sition of maps corresponds to multiplication of matrices. In particular, if ( B )
x



SIGNED INTERPOLATION 29

-1
is( S 0 ), (Jz* 0 ))-unitary with y invertible, then (a B) =
0 -4 0 —J w oy

- (J“-‘ 0 )(ats %) (JQ* O) is ((J“‘ 0 ), (Jl* 0 ))-unitary with
0o -7 \px y)\lo —i, 0 ~2) \o —1,

its lower diagonal coefficient invertible, and hence (F,) ~! maps a dense set of strict
(2, Jug)-contractions into strict (Jy, Joy)-contractions, and a dense set of (J,, Jou)-
unitaries into (J;, Ji4)-unitaries. The proposition foliows.

We conclude the section by sketching a proof of
THEOREM 1.6. The orbits of U(n, n) acting on M, are the sets M(j, k,1) with
Jtk41l=n

This is well known [43], but our proof is different from the usual one based
on Witt’s theorem and, more importantly, serves as an outline for our proof of
Theorem I.1. In particular it shows the role of the (7, J)-cascade maps in our approach.

a

Proof. In the( b) notation we are concerned with the orbits of (4, I,,)-

¢

. ab . . . . . .

-unitaries u == ( ) with ¢ invertible acting according to the formula (1.4). It is
c d

clear from formula (1.10) (with all J’s equal 7) that the classes M(j, k,1) are left
invariant by all such F,, since any given s belongs to M(j, k, 1) if and only if 1 — s*s
has j positive eigenvalues, k eigenvalues equal to 0, and / negative eigenvalues.

Conversely, suppose s is in M(j, k,1). We will produce a unitary u = (a b)

c d
0, 0
F(s) = ( V2r, )

0 Ik/

with ¢ invertible such that

as follows. First, we can choose u; of the form ((:/ g) (with U and ¥V unitary) so

s O
Fo(s)=1|™"
©=(5 4)

where s, € M(j,0, 7). Thus if we can produce a 2(j + /) X 2(j 4+ [) unitary v, such
o ) , and set

that Ful(&) = ( 7
vy 0
Up = (0 0 Ik)) s
I, 0

0
0 Y2,
then F — F,,aoF.,1 has the desired properties.

that
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J 0 . .
Let Vsl be the (0 I)-umtary matrix given by Lemma 1.3, so F‘,Sl(sl):»—(),
and F, maps strict contractions into strict J-contractions. If we then let
1

0; 0 . . (I O . X
t=A4,0. o y, then F,(0)={ — and, since 7 is -unitary, £, maps
( i ) 0 Y2, 0 J
o Y,
strict J-contractions into strict contractions. Thus the composition F,oF, ~ maps
°1

strict contractions into strict contractions, and if we choose v, so that F,,1 =2F ¢ FVY .
1
v, has all the properties required.

2. SIGNED SPECTRAL FACTORIZATIONS

Since the field 2 of rational functions is not algebraically closed (in particular
the square root of a rational function is not rational), the proofs of the previous
section do not extend immediately to the case where the underlying field C is replaced
by #. An adequate substitute is the notion of spectral factorization (both signed and
unsigned) for a self-adjoint valued rational function.

Let L*(M,) be the Banach space of M,-valued functions on the circle {z! - < 1}
which are uniformly bounded in norm and H®(M,) the closed subspace of those
functions arising as the a.e.-existing radial limits of functions analytic on the disk
{'z] < 1}. The letter # which stands for rational functions will be used frequently
as a prefix, e.g. ZL* means rational functions uniformly bounded on the circle.
A function H in L®(M,) is said to be uniformly invertible if its inverse H~' is in
L®(M ). For a self-adjoint valued function H in L*(M,), we say that H has a spectral
factorization if H(e") == A(e'%)*A(e'®) and an (analytic) signed spectral factorization
if H(e"%) = A(e'®)"JA(e®) where A is in H®(M,) and J is a (constant) signature
matrix. It is convenient to note here that the existence of a rational signed spectral
factorization

H(c'?) = A(e)*JA(e"?), AeRL™(M,)
is equivalent to the existence of an analytic signed spectral factorization, as one can
always cancel any poles of A4 inside the disk by multiplying by a scalar inner function
(an H® function with values of modulus 1 on the unit circle) without affecting the
values of 4%JA on the unit circle. Thus Theorem 2.1, below, establishes not only
the existence of a rational signed spectral factorization but also of an analytic one.

THEOREM 2.1. Let H in AL®(M,) be uniformly invertible and self-adjoint.
Then the signature (1,0, n — 1) of the matrix H (%) is independent of 0 and there exists
an A in ZH®(M,) such that

Here J = (I’ 0 ) .
0 —4n—1

H(e'?) = A(ei®)*JA(e").
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Theorem 2.1 is due to Nikolaichuk and Spitkovskii [33—34] (see also [11]).
For another proof see [8]. The authors are very grateful to the referee and to K.
Clancey for pointing out [33—34], since we had overlooked it and rederived their
results.

We refer to the factorization H = A*JA4 as called outer whenever A4 is outer.
Tt can be shown that the set of H as in Theorem 2.1 with outer signed spectral facto-
rizations is L® norm dense. As is well known (see [15]), any invertible function
H e AM, has a so called canonical factorization

H(e'%) = B(e!%)*D(e'") A(e)
where A4 and B are outer (i.e. A-H?*(C") and B+ H*(C") are dense in H%C")) and D
is a diagonal matrix of the form

D(e'%) = diag{e'kla, Ce elk"a}
for some integers ky > k; > ... > k,. The integers {k,, ..., k,} are uniquely
determined by H and are called the (right) partial factorization indices of H. If H is
also self-adjoint valued on the unit circle, then H has an outer signed spectral factori-
zation as above if and only if all partial indices are zero. If the values of H are
positive-definite, then all partial indices of H are zero, and hence H has an outer
factorization as above with J = I; this is classical spectral factorization.

Finally, to give perspective we remark that the set of partial factorization
indices for a self-adjoint uniformly invertible matrix function H(e*®) is not stable
under small (self-adjoint) perturbations of H, except for the case where all partial
indices are 0; in fact, the case where all partial indices are zero is the “generic”
case. Analogous results were given by Gohberg-Krein [15], who worked with general
invertible matrix functions, and thus did not restrict themselves to self-adjoint per-

turbations; for the self-adjoint case see [33—34] also. A precise statement of what
one can readily prove is

THEOREM 2.2. (i) If H(e') e AM, is self-adjoint and uniformly invertible with
all partial indices equal to O, then there is an € > 0 such that, for any self-adjoint
and invertible K(e'*) with |H — K| o, < &, K(e') also has all its partial indices equal
to 0.

(ii) Given any self-adjoint, invertible H(e') € AM, and ¢ > 0, there exists a
self-adjoint invertible K(e'®) € #M, with |H — K|, < & such that all partial indices
for K are 0.

3. ORBITS OF #U(n, n)
The main accomplishment of this section is to prove Theorem I.1 which

characterizes the orbits of the constants in ZM, under ZU(n, n). The proof is easy,
For an alternative proof see [8]. Besides the formulation of the theorem in terms of g
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in U(n, n) one could state it in terms of the “cascade” maps F, given by (1.4). This
second formulation is in the spirit of what has been done for the well-understood
case of ZM(n, 0, 0).

So we begin with the second formulation of the & = 0 case of Theorem I.1.

THEOREM 3.1. Let S(z)e #M(j, 0. 1). Then there exist Bz), C(z),
D(z) € AL=(M,), with C(z) invertible for z.:- 1, such that

S(z) B(z)
A4(z) =
) (C(z) D(z))
is (:) 3)'“’”"‘"')’ Jor z} =1, where J = (g’ —-011) .

Proof. By Theorem 2.1, there exist Q and R in ZL°(M") such that

I — §%(2)S(z) = 0%(2)JQ(z)
and

I — S(2)8*(z) == R*(2)JR(z).
Then
S(2) R#(z) )

4s(2) = ( 10(z)  —IQER)SHDR(E) Y

is (I O)ullnitary for |z} == 1, as desired.
0 J

COROLLARY 3.2, For S(z) in #M(j, 0, 1), there exist A(z), B(z), C(z) ¢ #L(M")
(n == j + 1) with C(2) invertible for |z! ~ 1, such that

A(z) B(2) )

@)= (C<z) 5°(2)

. (4 0 . \
is (0) I)-umtary Jor |z} = 1.

Asin § 1 for the constant case, we have FAS(()) = Sand F,,S(S) = ().
We shall need the following.

LEMMA 3.3. If H in RL®(M,) is self-adjoint valued and rankH(e') — k
is a constant, then there is an inner function U in ZH®(M,) such that
NE®) 0

n—k

H(eio) — U(eiﬂ)::: ( ) U(ew)

with N in ZL>(M,) self-adjoint and uniformly invertible.
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Proof. Tt is well known (cf. [15], [32], [39]) that an outer rational spectral
factorization always exists for a positive-definite rational matrix function; thus
there is a rational outer function ¢ (with range in C*) so that H? = ¢*¢. Then (pgo
is umformly invertible and positive definite, and hence has an outer factorization

=ty where Y e #H™(M,). Then it is easily checked that v, = @@ ~le

<%’H°°(M,, ) 1 inner, with range equal to the range of H. By a similar construction
starting with /— v;¢f instead of H?, we can construct an inner v, € ZH®(M,,  (,_1))

. v, 0Y . .
with range equal to the kernel of H. Then U = (g ) is an (n X n)-inner
Uy
function which satisfies all the requirements of the lemma.

Proof of Theorem [.1. Theorem 1.1 amounts to the statement that if S is
in AM(j, k, 1) then there is a g in ZU(n, n) so that 4,(S) is a constant matrix..

The first step is to prove that there exist rational phase functions U and ¥V
so that

. Si(z) O
N V(z)S z) =
(3.1) (2)S(2) U(2) ( 0 Ik)

where S, is in ZM(j,0,!). From Lemma 3.3 we know that U, ¥ exist so that

Ul — $*S)U = (Nl 0 ) and V(I — SSHV*= (N2 0 )
0 o, 0 o

where N, and N, are uniformly invertible. Set M = VSU. Then

M*M’:(I——N1 0) and MM*—~—-(1_N2 0)
A A

which implies that M has the form (3.1). This via a direct sum argument reduces the
problem to that of mapping S, to a constant witha gin ZU( + I, j + 1).

To accomplish this observe that Vs, obtained in Corollary 3.2 is (J 3)-uni-

; 0
tary and F, s, (S$) =0. (Here J=((I)’ )) By Proposition 1.1 FVs maps con-
1

_“Il

tractions to J-contractions. Let 1 = 4,4, ¢ ; then F,(0)= (Oj 9 and
( J ) 0 Vi,

o Ve,
. . (I 0 . . .
since T is o J -unitary F, maps J-contractions to contractions. So F, - F, . maps
1
contractions to contractions and has the form F, for w a unitary operator.

3 - 2159
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. . . . a ..
Furthermore, the coefficient ¢ in the matrix representation w = ( ) is inver-
¢
tible since the map F,, is the composition of maps whose matrices of coefficients

enjoy this property.

REMARK. Proposition 3.1 is really only a partial generalization of the classical
Darlington theorem since a key conclusion of it is that when Se 2M(®n,0,0) n H*
one can find a unitary 45 in H%. In our Theorem 1.1 no H*® condition plays a role;
however, the full classical Darlington theorem follows trivially from Theorem I.1
by using inner functions to cancel unwanted poles inside the disk.

4. SYMPLECTIC #L® AND #H®

' Classical L°°(M,,) consists of all uniformly bounded matrix valued functions
on the circle. A natural class of matrices on C which arise surprisingly often are the
J bounded ones, namely, M ¢ M, satisfying

4.n (UMx, Mx) < r(Jx, x)

for all x € C" for some r = 0. An equivalent more geometric notion is that of a
plus-operator (with respect to the (— J)-inner product rather than the J-inner product),
for which an extensive theory has been developed (see [27-- 28] and [10]). In this
section we shail study functions whose values are J-bounded, in particular, we shall
concentrate on a space H$° of functions analytic on the disk with uniformly J-bound-
ed values. Our goal is to give the basic properties of these and related sets of ““sym-
plectic bounded™ functions which generalize standard L* and H® theory. This
machinery is needed in the study of amplifiers; it certainly plays a major role in ours.
The reason that A arises is that physical circuits correspond not to arbitrary ratio-
nal functions but to ones which satisfy some analyticity properties. Amplifiers can
have some modes which are energy dissipating and some which amplify (e.g. a tran-
sistor has one passive and one active mode); this forces one to use a signed bilinear
form rather than a definite one. We saw in Section 1 when operators with J-bound
equal to one (J-contractions) were introduced to solve the gain optimization problem
(at fixed frequency). THus it should be no surprise that variable frequency problems
force us to study such spaces over the rational functions.

We begin by discussing the basics of J-bounded matrices and defining pre-
cisely several classes of functions. Any r satisfying (4.1) will be called a J-bound
for M. In the familiar case J = I, the set of all J-bounds for M is the semibounded
interval {||M| < r}. For the general case, we have the following.

PRrOPOSITION 4.1. For a given n X n matrix M, the set of J-bounds for M is a
(possibly empty) interval. When nonempty we denote its left endpoint as M|y (the
lower J bound for M) and its right endpoint as |M|} (the upper J bound for M).
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Proof. Without loss of generality, we may suppose that 1 is a J-bound for M,
. . . I 0 P, . .
(so that M is a J-contraction), and J = (O ]) . Then, if M is a strict J-contrac-

tion, by the theory of Potapov [38], M has a J-singular value decomposition

M- u(D-- 0 )V
0 D,

where U and V are J-unitary, D_ is diagonal with eigenvalues between 0 and 1,
and D, is diagonal with eigenvalues larger than 1. It is then easy to check' that if
we choose |M |y to be the largest cigenvalue of D_ and |M|} to be the smallest eigen-
value of D, then the set of J-bounds for M is the interval |M|;7 < r < [M|}. Since
any J-contraction M can be approximated by one of the form above, the general
result follows.

We now define symplectic analogues of such classical function spaces as L*,
H*® and H{®. Namely, we define L$P(M,) to be the set of measurable uniformly
J-bounded matrix functions, and #HP(M,) to be all M in #LF(M,), the rational
Ly(M,) functions, for which M(z) is uniformly J-bounded on the unit disk {iz{ <1}.

For J # I, none of these sets is linear or normable in the usual sense; by
definition they are closed under scalar multiplication. We shall refer to them only
as symplectic function sets rather than as function spaces. As in the definite case,
we let ZLF(M,) be the set of all LP(M,)-functions with uniform J-bound of 1,
and similarly for ZBH(M,). As distinct from the definite case, these “balls” are
not convex.

This section is divided into three parts. In Part (a) we shall show among other

things that there is a Wiener-Hopf factorization, an inner-outer factorization; and
a symplectic Hf°. In Part (b) we give an effective theory of interpolation extending

that of Nevanlinna-Pick and others. In Part (c) we give a further extension of Ne-
vanlinna-Pick theory.

(a) FACTORIZATION

We begin with some definitions. A function ¢ is said to be J-inner if ¢ is in
RBHP and has J-unitary values on the boundary of the disk. A function Fin #L%
is said to be J-outer if F is in ZHP and is analytic and invertible on the unit disk
{lz| < 1}. The following has been proved by Potapov [38], although not quite in
this language.

THEOREM 4.2. Any A in RHS can be factored as A = o F where ¢ is J-inner
and F is J-outer. If A = @, F, is another such factorization, then there is a constant
J-unitary u such that ¢, = ou, F, = u F. Here ut = Ju*J.
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Proof. Potapov’s factorization result is stated for J-contractions. Since any A
in ZHY is a scalar multiple of a J-contraction, Theorem 4.2 easily follows from Pota-
pov’s result.

Also there is an outer spectral factorization result for ZL%.

THEOREM 4.3. A rational matrix function H in RLS is J-self-adjoint valued
with positive eigenvalues on the unit circle if and only if H := AYA for some uniformly
invertible (on the unit circle) J-outer function A (A* = JA*J).

Proof. By the results of § 2, the self-adjoint valued function JH has a factori-
zation JH = B*JB for some rational B. Now by Theorem 4.7 to come, there is a
J-inner ¢ so that C = @B e #H$. Then by the result of Potapov (Theorem 4.2
above), C in turn has a factorization C = ¢ A where y is J-inner and A is J-outer.
Then clearly 4 = YtpB satisfies AT4 = H.

Conversely, if = A'4 for a uniformly invertible J-outer A, then clearly
He ALY and is J-self-adjoint valued. The fact that all the eigenvalues of H(e')
are. positive follows from the discussion in Part (c) below.

The set ZH{(M,) consists of those functions in #L*(M,) which have at most
I poles in the disk. The symplectic generalization of this is essential to our paper.
Actually we study only the unit ball #2H3(M,) and just define ZH§(M,) to
consist of scalar multiples of ZBHT(M,).

Let E be any J-expansive matrix (E*JE —~ J is strictly positive definite). For
each integer j > 0, complex number z in D and matrix function K'in ZM, which is
analytic at z,, define an integer

Ny g ;(z¢) = dim {x e C™: 5*4{(1((2) - E)x} = for 0 < a<g i} .

If K has a pole at z,, apply the above definition to the restriction of K to the largest
subspace on which X is analytic. In any case, we define the order of contact between
K and E at z, by

N(K, E)(zo) = Z NK,E,j(ZU)‘
i
We now define 28H$ by

RBHS, = (K e RBLY: %DN(K, E)(@) <)

As the notation suggests it will turn out that the definition is independent of the

particular J-expansive matrix E. In particular, if we formally take E= (c:)o g)
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(where J = ((I) (;)) , the assertion is roughly that K has at most a total of

[ poles on a positive subspace or zeroes on a negative subspace inside the disk (the
two worst ways to violate being a J-contraction). Thus if we refer to a pole on a
positive subspace or a zero on a negative subspace as a “J-pole”, we can phrase the
definition as saying that K is constrained to have at most 1 J-poles. This then is a
canonical J-analogue of the space #BH{°(M,). The fundamental fact concerning
ABH, is the following.

THEOREM 4.4. (i) The definition of RBHS is independent of the J-expansive
matrix E.

(ii) For f any nondegenerate (I,J)-cascade map with constant coefficients,
the set f(RBHF(M))) is independent of f, and is equal to RBHF,.

(i) ABHE, = RBHS, that is, RBHT, can alternatively be characterized
as the set of functions K in AM,, such that K(z) is a J-contraction for |z| < 1.

To prove Theorem 4.4, it will be convenient to use a special assumption which
also came up in [16]. We say that a function K in ZL®(M,) satisfies (N) if

for z, any pole of K inside the disk, K(z)~* is a uniformly bounded

N N . .
(N) analytic function of z for z in a neighborhood of z,.

We shall need an easy consequence of (N).

LemMa 4.5, Assume K e RLP(M,) satisfies assumption (N). Then, for a point
zq inside the disk, the following are equivalent:

(i) z, is a pole for K,

(ii) z, is a pole for detK,

(ili) zy is a zero for detK-1,

(iv) K= has analytic continuation to a neighborhood of z, and z, is a zero
for K-1,

Proof. Let z; be a pole for K. Since K satisfies (N), K~(z) has an analytic
continuation to z,. If the analytic continuation were invertible at z,, then K(z) =
= [K=1(z)]~* would be analytic at z,, a contradiction. Thus (i) = (iv). If K-! is
analytic at zy and K~(z,) is not invertible, then necessarily detK~1(z) has a zero at
zq and (iv) = (iil). Clearly (iii) => (ii) = (i) and the lemma follows.

Proof of Theorem 4.4. A dense subset of #BL°(M,) is the subset
D = {H e RBL>(M,) : H satisfies (N) and all poles of H inside the disk are simple}.

Then, by Lemma 4.5, it follows that for H e @, dimkerH-(z) < 1, and such an H
is in #BHP(M,) if dimkerH-(z;) = 1 for at most / points {z;}; for each j we
choose a basis vector y; for the one-dimensional space kerH-1(z;):

H-(z)y; = 0.
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Now let f be a constant coefficient (7, J)-cascade map of the form f=- F, where

a by . J 0 . . .
b = , isa 0 I -unitary matrix; it is convenient to assume that ¢ and d
c ¢

are invertible. Also let K(z) = f(H(2)) == a + bH(z) (I — dH(z))~tc¢ where H is in
@ NARBHP(M,) as above. Compute that

HYzj)y; = 0 e —dy; = (H"Yz) — d)y; =
< (H-Yz;) —d)\dy; = —y; =
= H(l — dH) " !dyjizce, = —);
b~ N(K(z;) — ajcldy; = —y; e
= K(zj)e'dy; = (—b + ac™'d)y; «
« K(z))x; = (a — bd~'0)x; = Ex;,

where X; == c~y; and E = (a — bd~'¢). The only assumption used in the above
calculation not already explicitly stated is that H~%(z;) — d be invertible. However,
one can approximate H with a function which does satisfy this and then the final
conclusion still follows by taking a limit. Since f maps a dense subset of #AHP(M,)
onto a dense subset of f(ABH(M,)), it remains only to show that E==a — bd~c
is a general J-expansive matrix. Thus we need the following.

LemMa 4.6. A matrix v is J-expansive i and only if it can be written in
the form
r==q -~ bd tc

a b) . fJ 0) .
where is -unitary.
¢ d (0 I

Proof. Suppose i = a — bd~1c. Since (a b) is (g (;)-unitary, we have

¢ d
a?Ja - e == J @t b+ ctd =0

b*Ja -\ d*c =0 b*Jb + d*d == I,
sO
rlr = a*Ja ~ c*d=1b*Ja — a*Jbd1c -+ ¢¥db*Jbd e =

= (/= Fe) + e - cFe + AT — dFd)d e =
== J 4 c*d¥d e > J,

and hence r is J-expansive.
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Converscly, if r is J-expansive, r is (—J)-contractive, and by the results of § 1

. —J 0 .
there is an (£, —J)-cascade map F,, which sends O to r. Hence w is a ( 0 1) -uni-

X r\. I 0
tary matrix of the form w == r Y) Then w (0 1) = (\ ') is (( ) R
y z 1 0 z y A0 —J

) (M‘J (;) )'uﬂitary- By the results of § 1 this forces r to have the form r==a—fiy 7t%

0
where (oz B

) is 7 0)-unitary. This concludes the lemma.
% Y 0 I .

To conclude the proof of (ii), we now need only show that F(ZZH>(M,))
is independent of the choice of v. If v; and v, are two such matrices then F, = F,,_ll °

o F, is a (constant coefficient) (/, I)-cascade map. By the argument above, the image

of AXH(M,) under F, is the closure of the set

{HecRBL=(M,): ¥, Ny (2) <}
FE=X:4

where L is any matrix with [|[L~1 < |. In particular, if we formally take L equal
to diag{oo, ..., oo}, it is clear that the above set is identical to #ZH*(M,), and
thus F, (ZBH(M,)) = F, (ABH°(M,)) as desired.

Finally consider the case / = 0. By (ii), #8H$(M,) is equal to f(RHAH*(M,))
where f is any nondegenerate (I, J)-cascade map. Since any F in ZBHS(M,) is
a contraction on the closed unit disk {|z} < 1}, and f maps contractions into J-con-
tractions, it follows that any K = f(F) in @B H(M,) has J-contractive values for
iz} <1, that is, Ke Z4HP(M,). One can reverse the argument by applying /!
instead of f. Thus (iii) follows as well.

The following result says that the relationships between ZL$ and ZH$
and ZH3 are much like that between their counterparts with J = I.

THREOREM 4.7. (i) The maximum principle: If 4 € #HF(M,) and if r is a J-bound
for all matrices A(e%), then r is a J-bound for all A(z) with |z| < 1.

2]

(i) LY =\ RHF,, that is, any A in RLY is in RHF, for some .

(iii) If A isin RLY  then ¢ A is in RHS for some J-inner ..

Proof. (i) is clear from the argument before.
Assume A is in #BLY, and let E be any J-expansive matrix. Then, since A is
rational,

= Z NA,E(Z) < 0O,
z€ED

Then by Theorem 4.4, 4 is in ZHH$,. This proves (ii).
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To prove (iii), the idea is to muitiply 4 on the left by a J-inner Blaschke factor
to cancel off the J-poles of 4 one at a time. This is simply the reverse of the technique
which Potapov [38] used to produce a symplectic inner-outer factorization. We omit
the details.

Finally, we mention that one could define symplectic function sets L?;,JG(M,,')
(M,-valued functions F on the unit circle such that {(J,F(e")x, F(e')x) < r{/yx, x)
for some r > 0 for all x in C,) and similarly H}xl’,Jo(M,,) and H;:"I‘,;[(M"). Since it

is simply a matter of bookkeeping to adapt the theorems of this section to this more
general situation, and since we do not have specific need for these sets here, we do
not pursue this level of generality.

(b) SYMPLECTIC INTERPOLATION PROBLEMS: SIMPLEST TYPE
We next consider extensions of the Nevanlinna-Pick theory of interpolation
to the classes ZH5" and #HS,. Forz == (z, .. ., zy) an N-tuple of complex numbers
in the disk, and N-tuples p= (p,, ..., py) and X = (x,, ..., xy) of operators pj:Cki -
- C"and x;: Ci - C'for1 < k; < N, we define the interpolating sets of functions

(multiplicity one case, i.e. no constraints arc prescribed on derivatives)

F(2,p,X) = {He AM,: H(z;)p; == x; for j==1,..., N}
p " i P j I

and

I = Iz, p, X) = {He IM,: pfH(z)) = xj for j=:1,...,N}.

Then #(z, p, x) consists of functions satisfying right interpolation conditions, and
F%(z, p, X) corresponds to left interpolation. Such sets arise in the description of
the range of a rational cascade map acting on #H*(M,). As a natural generalization
of Nevanlinna-Pick-Takagi interpolation, we consider the problem

(4.2a) Given a scalar r, determine if there is an interpolating function F in
F(z, p, x) which is also in rZBHFT(M,).

In particular one has the problem

(4.2b)  What is the minimum r for which such an F exists?

and for the case J # I it makes equal mathematical sense to ask

(4.2b")  What is the maximum ¢ for which such an F exists?

When £* replaces £ in the above, we refer to these problems as (4.2 a*), (4.2b%)
and (4.2 b'*) respectively.
To formulate the solution of (4.2a), (4.2b) and (4.2b’), we definc the Pick

matrices

4.3) Ay(r) = [

roEIpe — X, ]
1 — Z;zy jk=1,..,N

.....
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and

0¥ p. — x¥Jx
Ap(/‘):["’f Pr 2% *k] :
Jjhk=1 N

1 — ijk

-----

Then, “‘generically”,

Problem (4.2 a) has a solution if and only if A4(1) has at most | negative eigen-
values; furthermore, when this is the case, there exists a solution F which is J-unitary
on the unit circle. The solution to (4.2 b) is equal to

min{r: A4(r) has at most | negative eigenvalues}
and the solution to (4.2 b") is equal to
max{r: A4(r) has at most | negative eigenvalues}.

To obtain solutions to (4.2a%), (4.2b*) and (4.2b'%), simply replace A,(r) with
A g+(r) in the above.

For the scalar case with / = 0, the above is classical Nevanlinna-Pick inter-
polation [31], and for / > 0 is of the type considered by Takagi [41] and Adamjan,
Arov and Krein [1]. For the matrix case with J == I, with [ = 0 the result is equi-
valent to Nehari’s theorem for block Hankel matrices ([30], [1]) and is also closely
related to the commutant lifting theorem of Sz-Nagy and Foias [32] (see [18]). With
! > 0 the general result has been worked out by Nudelman [36] and one of the au-
thors [4]. Also [21], [22], [23] and [35] treal the J # [ case when [ = 0. Papers of
1. V. Kovalishyn and V. P. Potapov [26] and of I. L. Fedchin [13], }14] describe the
connection between matrix functions in the class ZU*(n, n) and the Nevanlinna-Pick-
-Schur problem in the indefinite case. A difficulty for the symplectic case not present
in the definite case (/ = /) is that the set of J-contractions is not compact and we
need to be able to deal with matrix functions which have a pole at the interpolating
point, or which equal oo identically on a subspace. To give this a sound mathematical
underpinning, we embed the rational matrix-valued functions into a natural com-
pactification, a ‘“rational Grassmannian manifold”, and solve an interpolation
problem in that setting.

Let M2 be the set of all n-dimensional subspaces of C?; it is called a Grassman-
nian manifold. Each n X n matrix m can be identified with a subspace G(m) by
the following procedure. Write C¥" as C* @ C”, then define a subspace G(m) of C*,
the graph of m by

Gm) = {x @mx:xeC"}.

While to each m we get a subspace the reverse is not true since some subspaces
correspond to an m which formally maps some vectors to oo. The matrix m is called
the “‘angle operator” for G(m) with respect to the “basis” C* @ 0 and 0 @ C".
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We next define ZM2" to be n-dimensional (over the field .#) subspaces of the
rational vector space #£C™ (2n-tuples of rational functions). Thus any element F
in AM:" can be written as the linear span (with scalar rational coefficients) of n
basis vectors ry, ..., r, in AC*. As above, corresponding to any rational matrix
function Fe #M, is an element of #M2", namely, its graph

G(F)={r ® Fr:rc #C"} < 2C>.

We next introduce the operation of “point cvaluation at z;” for any complex number
7. @ well-defined map of #M?2" into M. For this we use the fact that any F e .23
has a basis {ry, ..., r,} such that no r; has a pole at the prescribed point z, and
{ry(z,), ..., r,(29)} is linearly independent as a set of vectors in C*". We then define

F(Zo). =V {r1(20)9 N l’n('zo)} c C¥

We leave it to the reader to check that F(z,) is independent of the particular basis
{ry, ..., r,} chosen for F. One can also think of #ZM?" as being the set of all a-di-
mensional subspace valued functions (of ") defined on C (or the Riemannian
sphere) which are rational in a simple sense. Note that if Fis in 2M, and is analytic

at zy, then
G(F)(zg) = G(F(zy)).

We are now ready to introduce our more general interpolation problem.
To do this define a bilinear form ¢, ), on C?" by

<~\~, y>? = r(‘]xh yl) - (J'\’27 .Vz)

where x == x; @ x, and y = y, @ y, are in C¥ = C" @ C". Now we shall set defi-
nitions and prove an interpolation theorem about Grassmannian valued functions
which respect an arbitrary nondegenerate bilinear form {, ) on C?"in a certain way.
Let {, > be such a form. For convenience we shall assume that {, > has signature
(n,n) (i.e. {x,y) = (Hx,y) where H has n positive eigenvalues and n negative
eigenvalues).
A subspace .# in M?" is said to be positive if

(x,x)y =0
and negative if
{x,x) <0

for all x in . The space .# is called swrictly positive or strictly negative if strict
inequality holds for x # 0. Notc that the graph G(m) of an m in M, is a {, ),~positive
subspace of C*" if an only if r is a J-bound for m. For a given {, ) define

APMY = {Fc ZMY: F(e") is {,) positive for 0 < 0 < 2n}
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and
RPMir = {F ¢ AM?": F(z) is {,) positive for |z| < 1}.

For {,), one can think of #£2M?%" as the Grassmannian analogue of rZ#L7(M,)
because of the angle operator-graph corrcspondence. Naturally, in this case

G(rABLP(M,)) = APMZ

and one actually has equality if J ==/ since the graph of any n-dimensional

([ (j) positive space is the graph of some K in #M, . For J # [ the inequa-
0 -
lity is strict. Also for this case, the set Z#2+M?2" contains

GURBHE(M,).

To describe the genzralized analogue £22; M2 of rRBH(M),), let E be any
fixed strictly {, ) negative subspace of C2". Roughly speaking #2;f M2" is

{Feamy Y dim(F(z) nE) < [}
zeD

but this set is a little too big because F at some z; could have “higher order contact™
with £, and this should be counted?. The content of Theorem 4.4 in this slightly
more general context is that the definition of 2%} M2" is independent of the parti-
cular choice of strictly negative subspace E < C*. Naturally, when (,) =<, ),

GURBHTAM,)) = RP| M2

as before and the remarks (concerning when equality holds) apply.

1) The order of contact N(F, G) (zy) between Fand G in 32’1\/1;3,” at z, is defined to be
N@F, G)(zp) = ¥, N(F, G, j)(z
i»0
where

N(¥, G, )} (zy) = dim{x € F(zy) n G(z,)|there are rational C¥-valued functions f € F

da
and ge G with x = f(z))= g(zy) and — (f(z) — £(2)) [,,zzo =0 for 0 < a<j}.
dz®

Wec thea define the order of contact between a function F and a subspace E as just the order o
contact betwecen F and the constant function E whose only values is E. The precise definition of
@} Mf," is
{Fe 2oM2: Y NF.E)(2) < I}.
z&D
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We are now ready to pose our more general interpolation problem. Let
z = {z;, ..., zy} be an N-tuple of complex numbers in the unit disk, and let S -
= {S), ..., Sy} be an N-tuple of subspaces of C". We define interpolating classes
of rational subspace-valued functions by

F(2,8)={FeAM? :F(z) o S; forall j=1,...,N}
and
Iz, S) = (Fe M F(z;) = S; for all j=1,..., N}

One can check that the elements of #(z, S) which are graphs are the graphs of the

interpolating class of rational functions #(z, p, X), where S; - Ran[pj], and that

Y

the graph elements of #*(z, S) are precisely the graphs of functions in #%(z, p, X)

.. —-x; ]+ . .

where this time S; — Ran[ ’] (where __ is the orthogonal complement in
p;

C?). Thus these classes are the natural Grassmannian analogues of the interpolating

function sets considered previously. The interpolation problem we wish to solve

is the following:
(4.4) Determine if there is an'¥ in #(z, S) which is also in ZP}F M2,

For example, when / = 0 we wish to find a positive subspace valued function F
on zi < 1 such that F(z;) > S for each j. When #¥(z, S) replaces F(z, S) in (4.4),
we refer to the problem as (4.4%).

If we identify functions in ZH$(M,) with their graphs in #M?, we see that
the constraints in problem (4.4) with (, ), are the same as those in (4.2); the only
difference is that in (4.4) the set of possible solutions is enlarged to include rational
subspaces in #M?" which are not the graphs of rational functions. By the remarks
above, when J==1, and {,) = {, ), every subspace in ZZ;" M2" is a graph, and thus
problems (4.2(a)) and (4.4) are equivalent for this special case.

Now we state the solution to problem (4.3(a)) and thercby give a test to de-
termine if r lies between the maximum and minimum possible in problems (4.2(b))
and (4.2(c)). The referee informed us that similar results were obtained by T. S.
Ivanchenko [21], [22], [23] when [ == 0, and by A. A. Nudelman when / — 0 in {35]
and also when / > 0 but J = Iin [36].

To define an appropriate Pick matrix for these problems let sf denote any
basis for the space S; and for fixed j, k let (s}, s§) denote the dimS;x dimS, matrix
of {,) inner products. Define a Pick matrix to be the matrix-entried matrix

sty Sk
Ay 9= "<J*"*—~ .
1 — Z;z, Jjp=12,.N
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Also define

— {14 1p
Agrz, 8= [—< / ">—]
i djk=1,2,..N

— Z;z,

where the ¢/ are any basis for the (, ) orthogonal complement of S;. Note that when

— iR
Gy=<{)rand §; = (Ran[ xj]) , then the {,)-orthogonal complement of

pj

S, = Ran [xj], and, with appropiate choice of basis,
P;.

Asr@ o0 =A5a@s) -

It is also easy to see that

A0 =A4as) -

THEOREM 4.8. Problem (4.3) has a solution if and only if the matrix A g, s) has
at most | negative eigenvalues. Furthermore when this is the case there exists a solution
F such that ¥(z) is a {, ) null space for any z on the unit circle.

To obtain the solution to problem (4.3%), replace A4, 5y by Ag+, s in the
above.

Proof. We consider only problem (4.3); (4.3%) is similar. The idea of the proof
is to reduce the problem to the classical Nevanlinna-Pick interpolation theorem.
The reduction goes like this. We have a non-degenerate Hermitean bilinear form
{, ) of signature (n, n) on C*". Let .# be an n-dimensional strictly positive subspace
of C*. Let ./’ beits {, )-orthogonal complement, so ./ is a strictly negative subspace.
With an n-dimensional positive subspace 4" one associates an angle operator K : .4/ —
— ' satisfying #” = {x + Kx : x e #} with the property — (Kx, Kx) < {x, x)
for all x e 4. Let us identify ./ with C" in such a way that {, ) restricted to .# be-
comes the usual inner product on C". Do the same with .#" and —(, ). Then with
A" we associate a conventional contraction K on C". Thus Z2; M?" corresponds
exactly to ABHP(M,) and similarly the interpolation problem #(z, S) becomes

£(z, p, X) for any pairs p, x with the property that S'j = [pj] identifies with S.

Xj

The strongest existing theorem on classical interpolation {4] tells us that an inter-

polating function M e ZBH*(M,) exists if and only if the Pick matrix A::AE}ZZ, %)
defined in (4.3) has at most / negative eigenvalues where the J which appears in A
equals 1. To convert A to the Pick matrix in the theorem note that {,) on C?" has

been identified with (#x, y) on C* where ¢ = (g (;) and (,) is the wsual

inner product on C?7, and note that the business part of A is

PEP; — XEX;
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which is just [pf, x,’j‘]f[p"] . Now if §} is a basis for S'j this matrix equals
Xj

Ok (I 5k, 3DQ;
for some invertible dimS, X dimS; matrix Q.. Thus A 4, 5, x can be re-expressed as

[ Qs s3)0Q; ] _
J.k=1, N

1l — z,2;

O

. GQ

This is Q%A 5z, )0 where Q = and so has the same signature as

Oy

=

the matrix in the theorem.

The reader may be wondering why we have spent this time bothering to restate
the old fashion interpolation theorem in Grassmannian setting. The reason is that
the Grassmannian version is in a sense coordinate independent. We had only an
M?¥-valued function and a bilinear form {,). The proof depended on selecting
good coordinates for representing ¢, ). However, in our application the bilinear
form {, ) will be presented in badly behaved coordinates and the corresponding angle
operators will frequently be singular. For example, {, ), was defined that way. The
Grassmannian Theorem 4.8 seems to be the ecasiest vehicle for changing coordinates.

Problem (4.3) suggests another natural question. Suppose we work not with
positive subspace valued functions 22 +M2" but with the functions #2%_, M,
each of whose values at a point z in the disk is a subspace on which (, ) has a fixed
signature (k, n — k). A natural question is (4.4') : Determine if there is anF in #(z, S)
which is also in #2%_, M?". We shall not go through the construction here but the

answer is essentially yes.

THEOREM 4.9. If dimS; < the index k of negativity for all j, then one can
find an interpolating F in #(z, 8) which is also in Z2P% _, M.

(c) SYMPLECTIC INTERPOLATION PROBLEMS INVOLVING J-SINGULAR VALUFS.

In [16] the second author considered the interpolation problem, more general
than the matrix Nevanlinna-Pick problem discussed above, of finding a matrix
function F in 2B H{(M,) whose singular values on the unit circle are prescribed
functions of 0 (0 < 6 < 2n). (Recall that the singular values of a matrix m are the
square roots of the eigenvalues of m*m.) In this subsection we formulate and give a
partial solution of a symplectic analogue of this problem. The symplectic interpola-
tion problems discussed so far are still not general enough to handle our application
to an optimization problem for transistor amplifiers to be discussed in § 7; the gene-
ralized symplectic interpolation problem we now discuss is.
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We first need to develop the symplectic generalization of singular values.

Let J be the signature matrix (g’ 0 ) acting on C". A result of [38] is that

—1I,_;

any strict J-contraction 7"« M, has a J-singular decomposition

I'=U b0 ) 4
0 D,
where U and ¥V are J-unitary matrices, D_ and D, are positive diagonal matrices,
and the diagonal entries of D_ are less than 1 (listed in order of decreasing magni-
tude) while those of D are greater than 1 (listed in order of increasing magnitude).
Also, if Tt denotes the adjoint JT*J of T in the J-inner product, then
2

2
+

-adjoint J-contractive square root

m,=V*(D‘ 0 )V,
0 D,

) V is a J-self-adjoint J-contraction, and has a unique J-self-

called the J-modulus of T, with eigenvalues coinciding with those of D_ and D..
Then T has an essentially unique J-polar decomposition

T = WI|T|,

where W = UV is J-unitary, and |7, is J-self-adjoint with nonnegative eigenvalues
(coinciding with the diagonal entries of D, and D_ above). In analogy with the
positive definite case, we refer to the eigenvalues of |T|; as the J-singular values of T
and denote them as

4.5) SFaes(T) 2 o 2 ST(T) > 1> sp(T) > ... = siy(D).

Thus D, = diag{sf(T), ..., sf,-;(T)} and D_ = diag{sjz(T), ..., s5(T)}.

A minimax characterization of the eigenvalues of a nonsingular J-positive
matrix H has been obtained by Langer [29] and Phillips [37]. Since I — T*T is
invertible and J-positive if T is a strict J-contraction and the eigenvalues of I — T*T

are related to the J-singular values of T via the simple transformation x — /1 — x,
one can adapt Phillips’ techniques (which simplify considerably in the finite dimen-
sional case) to obtain the following characterization of the J-singular values of a
J-contraction. When there is no ambiguity, we refer to a J-positive subspace of
C" as a positive subspace. A positive subspace # < C" is said to be maximal positive
if & is not properly contained in any other positive subspace. We similarly define
maximal negative subspaces.
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THEOREM 4.10. Let T be a strict J-contraction with J-singular values given
by (4.5) above. Then

[s7:(T))? = sup inf sup UTx, Tx)
P Vo XEV (JX, .Y)

where P runs through all maximal positive subspaces of K and V < 2 has codimension
I — 1 as a subspace of ?. Similarly
. JTx, Tx
[s#/(T))? = inf sup inf YT 1Y)
4 vey xer  (Jx, x)

where A" runs through all maximal negative subspaces of K, and V< A" has codimension
I -1 as a subspace of N

. . D_ 0
For T a strict J-contraction represented as 7 — U[ I ] V as above,
+

let diag, |T|, denote the diagonal matrix D, and diag_|T], denote the diagonal
matrix D_ associated with 7 in this way. For T a not necessarily strict J-contraction
we still associate matrices diag,|7|, and diag_'T|, by approximating T by strict
contractions. Then the eigenvalues of diag, T, and diag_|T!, are still the square
roots of the eigenvalues of 717, but the eigenvalue 1 may be associated with a Jordan
chain on an isotropic subspace (see [38]). The more general problem we consider
here is that of estimating all the eigenvalues of diag, | T|, from above simultaneously,
or of estimating all of the eigenvalues of diag_|T|, from below simultaneously;
that is, for a diagonal matrix w, of length n — j (w, > I) with cigenvalues listed
in order of increasing magnitude, and a diagonal matrix w_ of lengthj (0 < w_ < I)
with eigenvalues listed in order of decreasing magnitude, we characterize when both
diag,!T|; > w, and diag_{T|, < w_. The proof is a direct application of the mini-
max principle above.

THEOREM 4.11. Let T be a J-contraction and w.,, w. diagonal matrices as

above. Let w be the J-contraction (“(;' 0 ) on C". Then

Wi
diag,!T|; > w, and diag_IT|; < w_

if and only if Tuw=1 is a J-contraction for some J-unitary u.
Proof. If diag,|T|; > w, and diag_.T|; < w_ and we choose u = V't where

T=U (1;' l()) ) V is the J-singular decomposition for 7, then
+
-1
Tuw-1= U D-w= 0 )
0 D ywi?

is a J-contraction.
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Conversely, suppose Tuw~! is a J-contraction for some u, so that

w =T Tuw~r < J
or
w*T*JTu < whlw.

If T and w are strict J-contractions, then by the minimax principle above (Theorem
4.9)

$;(T) == s5(Tu) < s52(w)
and similarly
sp(T) = sfu(w)
and hence

diag_|T|, < w_  and  diag,'T|, > w..

The theorem now follows by approximation.

We now return to the interpclation problem. Tt is convenient to view the
problems as being concerned with matrix functions in ##H$(M,) rather than with
rational subspace-valued functions in #2; M3". Then the theorems hold only gene-
rically, but we understand that they hold exactly if we adjoin ideal elements to
RHP(M,) corresponding to elements of #£; M*" which are not graphs. The pro-
blems discussed in § 4 (b) are concerned with performing an interpolation with a
function F in ZH$3(M") while controlling the J-bound of F on the circle. Since the
maximum J-bound for F is |F|} = sf(F) and the minimum J-bound for F is
|Fl; == s5,(F), this amounts to controlling the particular J-singular values sj,(F)
and s7;(F) in a nonindependent way. In this subsection, we consider the problem
of performing the interpolation while controlling all the J-singular values simul-
taneously and independently. This is a canonical generalization of work done pre-
viously by the second author {16] for the case J == I.

Let #(z, p, X) be the class of all rational matrix functions satisfying a set of

interpolating conditions as in § 4(b) and let w = (w._ 0 ) be an invertible dia-
Wy

gonal matrix function in £L5 with w, = diag.|w|, and w_ = diag_iw',. The
problem which we wish to consider is:

(4.6) Determine if there is an Fin #H$; which is also in #(z, p, X) such that

(4.6 2) {diag+§FIJ(e“’) . (e?)

diag_|F|,(e®) < w_(e').

For example, in the transistor amplifier prob]ém, we are interested in performing
the interpolation with an F in ##HF, with a prescribed lowest J-singular value

4 - 2159
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s7i(F) (') = n(e'®) < 1. We should then choose w, = and w_ == "0

in the above.
To analyze (4.6), we first note that by Theorem 4.10 applied pointwise, (4.6 a)

holds for some Fin #LP(M,) if and only if

F(e®)u(e®)w(e”)-1 is a J-contraction for all 0, for some
u ¢ #LFP(M,) with J-unitary values on the unit circle.

Let us say that any g of the form p = utw?u, where ue ZLF(M,) is J-unitary on
the unit circle, is J-equivalent to w®. By Theorem 4.3, any such u has a J-outer spectral
factorization

po=ofe,

where «, e #BHF(M,). Then o 'a} ™! = u=w-%t-1 and Fuw~! is a J-contraction
on the unit circle if and only if Fx; ' is. Thus our problem is to determine if

There exists an Fin ZH53(M,) N F(z, p, X) and p which is J-equivalent to w,
so that F(e'),(e')~* is a J-contraction for all 8.

Since a, is J-outer, K = Fa;! is in ZH$(M,) if and only if Fis. Then Fa;* is in
addition J-contractive on the circle if and only if K is in ZBH§(M,). We also note
that Fis in #(z, p, x) if and only if K is in #(z, 2,(z)p, X) where

(X“(Z)p == {au(zl)pla S au(zN)pN}'

Combining this analysis with Theorem 4.8 applied to {,) given by Gy = (F )

where S — (‘; 3) (in the generic form for rational matrix functions rather

than for rational subspace valued functions), we obtain

THEOREM 4.12. Problem (4.6) has a solution if and only if the N X N block
matrix

1 . .
A = (plo(z)* e, ) P — xFIx) L k=1,...,N
1-- ijk

has at most | negative eigenvalues for some yu which is J-equivalent to w. Furthermore,
whenever this is the case, one can choose a solution of (4.6) such that (4.6 a) holds
with equality on the unit circle.

REMARK 1. The solution is reasonably satisfactory from a computational
point of view except for the presence of the x,. Even in the definite case, there appears
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to be no useful characterization of the possible values of x,(z;) which one must put

in the above matrix. In the definite case, one can show that if one does not demand

control on the norm of the interpolating function L, and the interpolating conditions

are never of full rank, one can arrange that ||s.s.v.(L)|i, == 0 (that is, if the inter-
oo 0

polating conditions are never of full rank, and w == E o |’ the problem

0 0

always has a solution.) This is the case where the largest singular value (= the
norm) is as far as possible from the smallest singular value. This is essentially a
restatement of Theorem 4.9. On the other hand, if one demands that all singular
values be equal, the interpolating function (if it exists) is uniquely determined up
to a multiplicative unitary constant.

5. “POINCARE DISTANCE" PROBLEM

This section treats the basic Problem I.3 about finding functions with a specified
cross ratio which in the study of amplifiers corresponds to constructing an ampli-

fier with prescribed gain.
The first step is to convert problems involving the cross ratio to ones involving

the range of a fixed map & . This conversion is a part of what was called the duality
principle in [16] and we state it very formally as a lemma.

LemMa 5.1, If Se ZM(j,0,1) and F is any rational (I, J)-linear fractional
map with #(8) = O, then the family of matrix functions
{&(S, H) : He ABH>(M,)}
and the family of J-selfadjoint matrix functions

|F (RBH=(M")|} = {F(H)JF(H)*J | H e RBH=(M,)}

are identical up to pointwise similarity (on the circle).

Proof. Since F(S) =0 we have &(S,H) is similar to &,(0, F(H)) =
= F(H)JF(H)*J by Proposition 1.3 applied pointwise.

The central problem now is to describe the range of a given rational (7, J)-
-linear fractional map. A major result of [16] was to describe #(##IT(M,)) for any
rational (Z, I)-cascade map . If we consider only the (generic) multiplicity-one case,
the result is that there is a non-negative integer 1, and N-tuples z = (z,, .. ., zy) con-



52 JOSEPH A. BALL and J. WILLIAM HFLTON

tained in the disk, N-tuples p = (py, ...,py) and x = (xq, ..., xy) of operators

» X; 1 C — C" such that
Pj» X;

H(ABH®(M,)) = S(z. p, X) N BHHE(M,)

4

when #(z, p, X) is as in §4. Herc A = B means that A(e®)*A(e) and B(e')"B(e™)
are similar for each 8. For the general case, one must also insert interpoiation condi-
tions on derivatives. Using the machinery developed in § 4, we obtain

THEOREM 5.2. In the generic (multiplicity-one) case, if 4 is arational (I, J)-linear
ractional map, then there exists an integer | = 0 and N-tuples z, p, and x sich that
p P
“generically”,

GABH=(M,)) = H(z, p. X) 0 RBHTIM,).

Here A = B means A(e®)*A(ei) is similar to B(e)tB(e') for each 0, where Tt is
JT*J.

<

Proof. By adjusting the phase, we assume 2 holds with ~-. To obtain a
mathematically clean version of Theorem 5.2 (i.e.,, an exact description of
G(ARABH=(M,)) rather than a “generic” description), we again must go to the Gras-

smannian. Observe that if ¥; (where G == (“ p

)eﬂMgn) is the rational linear
%y

fractional map

Golf) = @f -+ B) Gf -+ )71

considered as acting on #M, (whenever the necessary inverses exist), then the induced
action U; on the Grassmannian #ZM2" (via the operator-graph correspondence) is

Ug : {r ® frire 2C"} —»
>{r®@f+ BG4+ 9 rire #C) =

={(f+1q @+ Pglge 2C} =

G 2]

where we have set g = (%f -+ y)~'r. Thus the action U; on subspace valued
functions in £M?2* is simply multiplication by the matrix function

o=rer 1-(3 1)
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We next observe that, for the special case where G = g e M,, is a constant
matrix, the maps U, act very simply on interpolating sets #(z, S) in ZM:

Uy(H(z, 8)) = Sz, 8'S)

where g'S = {g'S,, ..., g'Sy}. Furthermore, if {-,+), and {-,-), are two bilinear
forms on C* and RPHME and RPH M are the respective subsets of M asso-
ciated with these forms defined in §4b, and if g' is a ((, )y, {, )s)-isometry
({g'x, g'x)y = {x, x)y for all x in C*), then

U (RPHME) = RPFME.
Now note that any G € ZU(I, J) can be written as G = gK where g is a constant
matrix in U(J, I), and K:==g=1G is in ZU(I, I). By the result of [16] mentioned above,
for the generic multiplicity one case

UARPFI M) = RPEMT 0 S(z, S)

I

0
since g isin U(J, I), g’ == PgP is as well, and thus, from the above remarks,

0 .
for some n-tuples z and S, where (x, x), == (( I) X, x) for x in C*. Now
U (RP} M) 1 Iz, S) = RP,M> n F(z, gS)

where {x, x), = ((;

and Ug = U,Ug and thus

3) X, x) (xe C*). Since G = gK, we have 9; = %,%

Us(RPF MP) = BPLM 1 H(z, gS).

This is the exact Grassmannian version of the conclusion of Theorem 5.2.

We arc now ready to deal with the “Poincaré distance problem” (Problem 1.3
in the Introduction).

(13) Given Sin #M(j,0,K) (j 4 k = n) find Hin ZZH®(M,) such that
s.8.v. &(S, H)(e%) < n(c¥) > 0

where s.s.v.(m) == the smallest singular value of the matrix » and where 5 is a pres-
cribed rational function. Now by Lemma 5.1

E(S, H) ?gS(H)‘fr’gS(H)'
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where ’ﬁgs is any rational (I, J)-linear fractional map which maps § to 0
I 0 : .
(where J = (0’ I)) (Such exist by Corollary 3.2)) By Theorem 5.2,
i

((r’gs(ﬂ.’ﬂ}H“(M,)) generically is a set of the form AH(M,) n F(z, x, p), where [, z,
x and p in principle can be computed from S. Problem 1.3 becomes

(5.1) Find K in ZH$3(M,) 0 £(z, X, p) with s.-J-s.v. K(c") < n(c")

where s.-J-s.v.(m) == the smallest J-singular value of m. If we introduce weight
functions w, (c) = I, and w_(c") = diag{l, ..., 1, 5(e™} (j X j), (5.1) is the same
as Problem 4.6 above. Theorem 4.4 can therefore be used to solve the Poincaré
distance problem (I.3). We state the result as

THEOREM 5.3. (i) For a given S in AM(j,0, k), there exist an integer | = 0
and N-tuples z, p, x as above such that a solution of the Poincaré distance problein 1.3
exists if and only if the matrix

—_ ijk

! ; "
4= [ - == (pf o,z (z) P — Xj‘JXI.)]
1 Jokenlee N

has at most | negative eigenvalues for some p which is J-equivalent to w®:=
1

1
n®
. (ii) Whenever this is the case, a solution H exists with

s.5.v. H(c® = »e").

This is a dircct generalization of Theorem 5.2 {16], the main theorem of [16], to a
generic S'in #M(j, 0, k); the paper [16] treated the k == 0 case. Recall %, is the J-outer
spectral factorization afa, = p of p.

6. MATHEMATICAT. CONSEQUENCES OF SOME PHYSICAL CONSTRAINTS

In this section we wish to discuss the mathematical implications which so far
have been ignored of two types of constraints which are required for a realistic solu-
tion of the electric circuit problems to be discussed in the next section. The first
is that an input signal consisting of real-valued frequencies should give rise to an
output signal of real-valued frequencies (as opposed to complex-valued). The second
is that the amplifier be stable. We discuss each in turn.
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(R) REAL ON THE REAL LINE.

Mathematically, the first constraint means that the entries of any rational
matrix function which is the frequency response function for a physically realizable
circuit must be real on the real line. We can formalize this notion as follows. For
S in AM,, define S to be

S(2):= S(z)*T

(where MT is the transpose of a matrix M). Observe that (ST)" = ST. The condition
then that real frequencies go to real frequencies is that

S=2s.

Let us call any such S real. The point of the next chain of results is that all the analysis
done in the preceding sections can be done with real matrix functions. We have not
included these results until now because mathematically the extra “reality” constraint
tends to be only a nuisance.

It is a straight-forward matter of adapting the argument of Vekua ([42], pp.

45---49) and the arguments in §§ 2 and 3 to verify the following *‘real” Darlington
theorem.

THEOREM 3.1R. Let S in AM(},0,1) be real. Then there exist real A, B, C
in AL=(M,) with C(z) invertible for \z| = 1, such that

v, = (A B)
c S
is (J 0)-unitaryfor lz| = 1, where J = (I’ 0 )
0 I 0 —1,

In the equivalent symplectic formalism, this means that g* can be chosen to
be real. This ecnables us to get a real version of the duality principle. Let us say a
cascade map & = F; is real if U is real. It is again an easy check that the range
of a real (I, J)-cascade map, acting on real matrix functions in ZZH>(M,), is equi-
valent (in the generic multiplicity one case) to the set of all real functions in ZZHY,
which are also in a real interpolation set J#(z, p, X). The interpolation set £(z, p, X)
is said to be real if 12(2) = K(Z)*Tis in S (g, p, X) whenever K(z) is. This constraint
implies that the interpolation conditions K(z;)p; == x; (j =1, ..., N) occur symme-
trically, that is they can be arranged to satisfy

(6.1) For some k, between 0 and [g] and all j < Kk



56 JOSEPH A. BALL and J. WILLIAM HELTON

while for all j > 2k,

For the real version of the Poincaré distance problem discussed in § 5, we
assume that we are given a real matrix function Sin £M(j, 0, k) and wish to decide
when there is a real H in #BH>(M,) such that

s.c.v. 6(S, H) (") < n(e)

for some given real rational n(e'). Using the real Lemma 5.1 and a real version of
Lemma 4.3, we sec that this problem is equivalent to:

(5.IR) Find a rcal L in #H(M,)n F(z, p, X) with
s.J.-5.v. L(e¥) < n(e'®).

where in addition, £ (z, p, X) is a real interpolation set.

For the case /== 0, we can use a real constant coefficient (J, f)-cascade map to
transform our real 4 H$-interpolation problem to a real 4 H>-interpolation problem,
the set of all solutions of which form a convex set. Thus if F is any solution, then
1
2
AHP (instead of our original AHYY) interpolation problem. The above simple con-
vexity argument fails, but nevertheless it can be shown when 7 == 1 the optimal
solution / to a finite interpolation is unique. If the interpolation requirements are
real then f is also a solution: sof:ﬁ Thus a real solution can be found if any can
be found. When 1 > 1, the argument becomes more complicated and depends ona
representation for all solutions to the interpolating problem which can be derived
from [7]. All coefficients in the representation must be real on the real axis; this
guarantees that a real solution exists, if any exists. Thus Theorem 5.3 provides the
solution to Problem $5.3R.

(H -~ H) is a real solution. For the case of arbitrary /, we again can map to a real

(S) StABILITY.
A problem motivated from consideration of electric circuits (sce § 7 and[S])
is the following:
(6.2S) Given a real function S in 2M(j, 0, n — j) n H¥(M,) we wish to decide if
there is a real H in AAH*(M,) such that

s.e.v. §(S, H)(e®) < n(e®) > 0

for some given real rational function #, with the additional constraint that
H be stable. The constraint that H be stable is that (/ -~ SH)~1 have no
poles on the unit disk {!z{ < 1}.
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If we apply Lemma 5.1 and Theorem 5.2 to reduce this problem to an inter-
polation problem as was done in § 5, we sec that it is cquivalent to
Find an L of the form & _s(H) satisfying (5.1R) with ({ — SH)=1e H*(M,).

Following [5], we say that

H and S-! never agree

if [ -~ S-1 takes invertible values in {|z| < 1}. It is straightforward to verify that
this is equivalent to our stability constraint. The argument in [5] shows (with extra
care to include the real constraint) that the map 4 - f&’gsu-l can be chosen so that

H and S-1 never agree <> L = G(H) and 0 = (S~ never agree.

Thus we have shown that Problem (6.2S) is equivalent (for the multiplicity free case)
to the following:
(6.3RS)  Determine if there is a real L satisfying (5.1R) such that L and 0 never
agree.
Here, of course, we assume that the interpolation constraint parameters z, p, X
satisfy (6.1).
Problem (6.3 RS} is wide open, even for the case J == I, [ == 0, for the matrix
case. A solution for the scalar case (with [ :== 0) was offered in [5] but with the “real
on the real line” constraint ignored. It is very straightforward to include this constraint

in the analysis given in [5].

7. AMPLIFIERS
A fairly general configuration for an amplifier is given in the figure.

source

lossless

—] s

e TERE —

T

lood

transister

The transistor typically is given and the problem is to find a lossless citcuit so that
the power which a signal traveling from source to load gains is large and independent
of frequency.

The transistor is specified by a 2 X 2 matrix

S T
S = (S Sw
Sa1  Sap
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called its scattering matrix, the coupling circuit by an inner function U -= ( ;i i)

with matrix entries 4, B, C, D in H®(M,), and the frequency response function for
the whole amplifier is # ;(S). Motivation for this can be found in the exposition
§ 1[17], or to a lesser extent in § 6 [16]. The gain of the amplifier at “*frequency™
is proportional to

LFu(S) ()2

where [M],, stands for the 12 entry of the 2 X 2 matrix A7. Typically a transistor
at frequencies in its operating range has a |S),; which is very large, S, is sinall
(at audio frequencies almost 0), and 1Sy,] and |8y, arc both smaller than 1. So §
has one singular value much bigger than 1 and one singular value less than one.
Various mathematical problems which arise directly are

I. NARROW BAND AMPLIFIER. Fix 0y, find

geo;_- max I[Fl.(S)(em")]m':2

U inner

and find a U which achieves this maximum.

11. BROAD BAND AMPLIFIER. Find

(7.1) gs == max inf|[Fy(S) ()],

U inner 6

and the maximizing U.

STABILITY RESTRICTION. Do the optimization above subject to the constraint
that the amplifier is stable. The stability constraint is that F,(S) and all small per-
turbations of Fy(S) obtained by small perturbations of U and S be in H®(M,).
Physically, this means that a finite energy input should have a finite energy output.
In other words the amplifier is not called on to do something so strenuous that it

A

will (in practice) burn out. If U-== (C g)) s0 Fy(S) = A 4 BS{ - DS)7IC,
then stability means that (I — DS)~'e H®(M,), or that D never agrees with S
at a z inside the unit disk (see [5] for more details).

RESULTS. The first step in studying these problems is to convert them to a more
canonical form.

ProrosiTION 7.1.
(i) gs = max inf b.ev. |Fy(S)(e)| =

U inner @

in H°°(Md)

= max infb.ev. §(H{E?), SE)*)
He®H®(M,) b
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and

gst= min |sev.8(H, S7H o, -
Heau®M,)

Here b.e.v. == “biggest cigenvalue” and s.e.v. = “smallest eigenvalue”.

(ii) The matrix function Fy(S)(e') which (approximately) achieves the maximum
gain g is (approximately) off-diagonal.

(ii) The stable circuits in Figure 1 correspond to H e BH™(M,) which never
agree with S=Y at a z in the unit disk.

Proof. We prove the first expression for g and the assertions concerning f
(statcment (ii)) only for the narrowband (constant frequency) case, since it is easy
and especially informative, and refer the reader to [16] for the broadband case.
Then the set of transformations {Fy, : U4 X 4 unitary}isa group, and, for ¥ and W
unitary 2 X 2 matrices, the transformation x — VxW is an element of this group.
Thus the maximum gain gg, with the superfluous ¢ suppressed, can be written as

gs= max |[VF(S)W,l*
U unitary 4x 4
V, W unitary 2x2

Fixing U for the moment and using the freedom from ¥V and W, we may suppose
that
0

Sa

Fo(S) = [f) J L s = [ES)] > s = [ Fo(S)-1-

is diagonal (by properties of the singular value decomposition of a matrix). It is

then casy to see that
2 12
EEMEIE I
0 s 12 , 53 0l

Letting U vary now, we deduce statement (ii) for constant matrices.
Now let us return to the broadband (variable frequency) case. Since

be.v. [Fy(S) = b.e.v. &(0, FylS)) ==
= b.e.v. £(FF'(0)*, S*) == b.e.v. §(H, S*)

where H = Fg'(0)* by the duality principle (Lemma 5.1 with J = I), the second
expression for gg follows from the first. By Lemma 1.2 (adapted for the cascade
formalism),

max
V, W 2x2 unitaries

gs! = mins.e.v. |Fy(S){% =
174
= min s.e.v. £(0, Fy(S)) = min s.e.v. §(H, S~1Y)
v H

which proves the last expression for gg.
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Finally, if H = F[“,’(O)*' where U — {2 ﬁ] , then / — D and thus stability

of the circuit means that A never agrees with §" ! at a z in the unit disk.

In the proposition ggt is given as exactly the type of minimum this pupor is
devoted to computing. Thus the results of this paper apply directly. (Note thut the
Sin § 6 S should be taken to be S in the notation of this section.)

The solution to the narrowband problem is easy and surely no surprise to
engineers. It is the content of Theorem 1.5. The answer is that an infinite gain is
possible.

It should be clear how our main results Theorem 5.3i and Theorem S.3R
(with the real constraints discussed in § 6R added) are statements about the broad-
band equalization problem. Statement (ii) in the theorems together with the adaptation
in § 6R amounts to the following physical principle for possibly unstable amplifiers.

PrixCiPLE. Suppose S in #M(1,0,1) is a “real” function. Then there is un
optimum amplifier of the type in Figure | (with maximum gain g,). The gain of this
amplifier does not depend on the frequency at which the amplifier is operated. This
amplifier has 0 front and back reflection. Also if it is possible to build an amplificr
whose gain is greater than g(e) for all 0, then there is an amplifier whose gain
exactly equals g(e') for all 0.

The Theorem 5.3i gives one something of @ method for determining when a
given gain is obtainable from an amplificr of the type in Figure 1. It says that for
a given S, there are points z, p, x which after the theory is refined might well be
computable, so that if one can find a certain type of 2z, making the matrix A positive
then the gain is realizable. The solution is unsatisfactory because of the freedom
present in the %,. On the other hand this is the exact generalization of what happens
in the gain specification problem for passive circuits. That theory is now refined to
the point of being potentially practical (see [L7]), so maybe additional work on
interpolation theory will someday handle the existing theory.

Other types of amplifiers are possible. It would be good to have a study of
amplifiers where the “equalizing circuit™ U is not required to be lossless but merely
to be passive. We treat this in the next section. Another type of amplifier is the re-
{flection type; much of [16], [17], [18] is devoted to a study of it. The mathematical
issue is that of finding the Poincaré distance from a rational function F to AH®,
that is, find inf b.e.v. 6 (H, F). This problem is solved (see [16]) but without

HeBH®(M )
the crucial stability constraint [5].

8. THE PASSIVE SEMIGROUP IN GL (2r)

The paper so far has concerned U(a, 1), AU(n, 1), ZU*(n, ) and an optimi-
zution problem on orbits. Now we look at a much bigger semigroup than £U* (i, 1)
and show that optimizing over it gives the same answer as we alrcady obtained.
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This shows that any gain obtainable in Figure 1 through adroit selection of a passive
(encrgy dissipating) circuit U can also be obtained with proper selection of a lossless
(energy conserving) U. In practice a passive circuit U may be easier to build.

We begin by defining the semigroup C(n,n) of GL(2n) to be all

Jias (g" 0) contraction operators. It contains U(n, n) and has the property
- n

that if ce C(n,n) then ¥.:%4M,—~ BM, by Lemma 1.1. Conversely if
G BM, > BM,, then ¢ is a scalar multiple of a matrix in C{n,n). A key fact
for our purposes is the main result of [6].

THEOREM [6]. Suppose ce C(n,n). If Se M(j,0,n-—j) and He M(n,0,0),
then
e.v, 8(S, H) 2 evi£(%.(S), 4 .(H))
for k zn-j.

We define £C(n, n) to be C(n, n) over the field of rational functions, and
AC*(n,n) to be those ¢ in #C(n,n) for which 9, : BH*(M,) > BH®(M).
Recall that a map %, can be written in the cascade formalism as a map Fy; the ¢
in #C*(n, n) correspond precisely to those U in #H®(M.,,).

Now we turn to the broadband gain optimization problem (7.1) but allow
one to use any U in Figure 1 which is passive; that is U is in ZH*(M,). The main
result of this section is

THEOREM 8.1. Suppose Se€ RH®M(1,0,1). The optimum gain

0y = max inf |[Fy(S)(€"*)]al?
vez o

over coupling circuits U in the class ¥

(@) is the same for L, —= RBH(M,) and for %y — {U : U inner}.

(b) is the same for L, — those “real” RABH>(M,) for which the Fig. 1 circuit
is stable and for ¥, = those “real” inner functions for which the Fig. 1 circuit is
stable.

Actually this is a very special case of the mosi general theorem which follows
immediately from our techniques. Namely, a similar theorem holds for an arbitrary
class of matrices M(j, 0, n ~- j) and the problem of whether or not any given function
in this class is a physically obtainable gain.

Proof. The proof amounts to generalizing parts of the argument behind Pro-
position 7.1. The first step, that

8y = max inf || Fy(S)|la,
u ]
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holds for all of our classes .#, is the same as before (see § 6 [16]). Next we note that

671 = qulr;) Is.e.v. 1Fu(S)i”L°°(c)

and hence, by Lemma 1.2 (adapted to cascade transformation),

__1 —_ M o
o7t = 221; |s.e.v. IFa(S)lllLoo(C).

By Corollary 1.4 in [6], if U is in any of our classes .2,
se.v. |[Fg(S)) = s.ev. 60, F5(8) > s.ev. &(H, §%)

where H = Fg(0)*, with equality if U = U-1 is inner (e.g. Uin &, or &,). Next
we must see which H’s arise from U’s in a given class .&.
Since Fy(H*) =0, a formal application of the version of Lemma 1.2 for

. . B X
cascade transforms gives F(H~1)~! = 0. Express U as (z D); then F(H" %) =

= A -+~ B(H — D)~'C. Thus we see formally that H == D. To make this argument
rigorous, we need only perturb slightly. Thus the class of H which arise from
L = RABH®(M,) is precisely ZBH®(M,), the same as for £, by Darlington’s
theorem (see § 3 and Proposition 7.1). For &3 the H’s are precisely those H in
ABH®(M,) which never agree with S—1, the same as for &, (see § 7).
Put this all together to obtain for part (a)
7. > min [sev.E(H, $) 7w = 0],
He@liw(l\lg)
and similarly for part (b)
5zt >  min  [sev. 8(H, S7Y e = 522
HeaH®(M,)

H never agrees
with H-1

On the other hand, %, > %, and thus 55 > dz, and (a) follows. Similarly
Y3 > &, and (b) follows as well.

Partially supported by the National Seience Foundation.
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