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INTERPOLATION SPACES
BETWEEN A VON NEUMANN ALGEBRA
AND ITS PREDUAL

MARIANNE TERP

INTRODUCTION

The theory of non-commutative L? spaces — the analogs of ordinary Lebesgue
spaces LP(X, p) with a non-commutative von Neumann algebra playing the role
of L®(X, u) -— was first developed for semifinite von Neumann algebras by J. Dix-
mier [7], I. E. Segal [20], and R. A. Kunze [18]. Much later, U. Haagerup presented
[12] (cf. also [23]) a theory of L? spaces associated with not necessarily semifinite
von Neumann algebras. Using [5], M. Hilsum [14] has given a spatial realization of
these spaces as spaces of (in general unbounded) operators on a Hilbert space H
on which the von Neumann algebra M acts. This realization depends on the choice
of a n.f.s. weight ¥ on the commutant M’ of M.

Recently, H. Kosaki [17] has shown that one may take still another point
of view. Suppose that ¢ is a normal faithful functional on M. Then one may inject
M into M, via x — x-¢. Now the theory of complex interpolation spaces [3] ap-
plies and provides interpolation spaces Co(M, M), 0 < 6 < 1. Kosaki shows,
directly by interpolation theory, that these spaces have all the properties that one
usually requires for L? spaces and that they are isomorphic to Haagerup’s L? spaces.

In the present paper, we shall investigate this point of view in the case where ¢
is only supposed to be a weight (normal, faithful and semifinite). The first difficulty
arising from the more general situation that we consider is this: we have to find a
suitable space in which M and M, are both continuously embedded. We shall find
it convenient to start with the definition of the “intersection” L of M and M. The
subspace m, plays a key role in this construction and we have m, = L. We next
inject M and M, continuously into the dual L* of L (L being a Banach space when
equipped with the maximum of the norms inherited from M and M,). The Banach
spaces M and M, are now compatible in the sense of [2, Section 2.3], so that we can
define complex interpolation spaces as in [3] or [2, Chapter 4]. For later use, we give
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a characterization of the elements of M -{- M, in L* and show that the sum norm
coincides with the dual norm inherited from L%

In the second part of the paper we show in an explicit way that the interpola-
tion spaces thus constructed are isomorphic to Hilsum’s (and hence also to Haage-
rup’s) L? spaces of operators. To do so, we embed the latter into M + M,..

This paper is a revised and shortened version of an earlier manuscript with
the same title.

1. INTERPOLATION SPACES BETWEEN M AND M,

Let M be a von Neumann algebra with a distinguished normal faithful semi-
finite weight ¢.

We shall use the standard notation for the usual objects associated with ¢
in the Tomita-Takesaki theory such as

n, = {xe M| p(x*x) < oo},
IHQ, = span{ymx | X, Y& "(P} =: span{xe ]‘/[+ ! (P(X) < OO},

A, (or A) the canonical injection of n,, into its Hilbert space completion H,, , m, (or
) the canonical representation of M on H,,, 4, (or 4) the modular operator in H,
arising from the left Hilbert algebra n, nn} , J, (or J) the associated isometric
involution in H,, (6¢),er the modular automorphism group of M associated with ¢.

DerFINITION |. We denote by L the set of xe M for which there exists a
¢, € M, such that
) Vimzen,: < @,, %> = (Ja(x)*JA(Y) | A2)).
For xe L, we put
(%)) Nl == max{llx|l , l@.l}-

Here, (-,-} denotes the duality between M, and M, and (-|-) is the scalar
product in H,.

Given x € M, there is at most one ¢, e M, satistfying (1) (@, is determined by
its values on the o-weakly dense subspace m,). Hence || - ||, is well-defined. Directly
from Definition 1, one easily shows

PROPOSITION 2. L is a Banach space with the norm || - |, . The mappings
x=>x:L->M and x> @, L > M,
are linear norm-decreasing injections.

For certain x € M, we can reformulate the expression occurring at the right
hand side of (1):
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LEMMA 3. Let x,y,z,v,wen,. Then

4) (In(x)*JA(Y) | A(2)) = (A (z%y) | JA(x)),
and
(5) (Jr(w*v)*JA(Y) | A(z)) = (Jr(z*y)*JA(v) | A(W)).

Proof. Since x e n,, the element JA(x) is right bounded with =n'(JA(x)) ==
== Jr(x)J. Using this, we get (4):

(Jr(x)*JAY) | A2) = (A(y) | #'(JA(X)) A(2)) = (A(y) | M2)A(x)) =

=(A(z*y) | JA(x)).
(5) follows easily from (4).

n
ProposITION 4. Let xem,. Then xe L. If x=Y; w¥v;, v, w;en,, then
i1

©) 0o = Y, U()*IA@) | AW

Proof. Obviously, this expression does define an element ¢, e M, . By (5),
this element satisfies (1). %

COROLLARY 5. 1) L is o-weakly dense in M.
2) L is weakly dense and hence norm dense in M, .
By Proposition 4, we can restate (5) as

ProOPOSITION 6. For all x,y e m,, we have

[

Q) Py, ¥y =<y, x).

We can also characterize the elements of L in such terms (the right hand side
of (1) in Definition 1 may now be written {@,s,, x)):

PrOPOSITION 7. Let xe M and ye M,. Then xeL with @, == if and
only if
®) Vyem,:{p,,x) ==, ).

NotE. 1) Let x e m,, . Then ¢ e M,, as defined here is related to the function-
al B(x) e n(M), considered by Haagerup in [9, Lemma 1.1] by the formula
@ (») == B(x) (Jn(y)*J), ye M. The mapping x +— ¢,:m, - M, has also been
considered by M. Walter in [25, Section 3].

2) If @ is a trace, Proposition 7 implies that L == m,. In the general case,
we may have m, ¢ L.
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3) If ¢ is a functional, we have
Vx,ye M:{p,,y) = (&, | JyE,) = s(x, y*)
where ¢, is the vector associated with ¢ by the G.N.S.-construction and s is the
self-polar form associated with ¢ by [4, Théoréme 1.3]. (Note that we work with

the “‘symmetric” injection x > ¢, instead of the “left’ injection x > x -¢ considered
by Kosaki [17].)

THEOREM 8. Let x € L. Then there exists a net (x;),e; in m, such that
)] flelll)”xi”L < 0o,
. (il) x; - x a-weakly,
(iii) @, — .l = 0.

The proof of Theorem 8 requires some lemmas. The ‘““‘converse™ — even in
the following weak form — is much easier: suppose that x € M is such that for
some net (x;);c; in L we have x; - x ¢-weakly and (¢x,)ier Cauchy in M, . Then

x € L. Indeed, put ¢ =limg,; then {¢,,x) =lim (g, x;) == lim (o, , y) =
ier ier ierl '

== (i, y) for all y e m, by Proposition 7; again by Proposition 7, we conclude
that xe L.

LEMMA 9. Let 6 € R, . There exists a net (e;);e, of analytic elements of M
such that

(i) veeC vjeJ:o%e)en, nny,

(i) vaeC vjelJ:jol(e)ll < edtima?,
and

(iii) e; — 1 strongly.

Proof. Take by Kaplansky’s density theorem anet (f);e, in n, N n} such that
all if;ll < 1 and f; — 1 strongly. For each j e J, put

e; =|é/n S e="g?(f)dt.

Then the e; are analytic with

ol(e) = V(S—/ﬁSe"f“““)’Ia?’(j})dt, aeC,

and

I'a:(el)ll s VS—/—T-ZS Ie_é('_a)’ Idt _ ea(lmu)’ .
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By [21, p. 272, Corollary] applied to the achieved left Hilbert algebra A(n, 0 n}),
we have a¢(e;) e n, nny for all e Cand je J.
Let £ e H. Then

(€;E18) =<w; ¢, V@;Sc'"””df(ﬁ)dt) =
- (]/ES/?ESe-‘”"(w¢ eoa)dr, f;d—

- <1/677£Se-""<w;,¢o af)dt, 1) = ||E|
Using also that all |e|] < 1, we find that
limsup||e;& — &|* = limsup(|| ;¢ | — (g;¢[¢) — (Zle;€) + 1E]®) < 0.
jelJ j€eJ

This proves (iii).

LeMMA 10. Let € My and let (¢));c,; be a net in M such that all |e;) < 1
and e; — | strongly. For each j € J, define y; € M,, by

Y (y) = y(efye), yeM.

Then
lv; — ¢l = 0.
Proof. Since Y e M, , there exist &, ne H, such that ¥ = (n(-)¢(n). Then
¥; = (n(-)n(e)¢|n(e;)n), and the result follows. %

LemMmA 11, Let (x));e; be a || - || -bounded net in L, and let x e L. Suppose
that ., — @\l = 0. Then x; —» x o-weakly.

Proof. For all yem,, we have
<(pya xi>=<(pxi 9y> i <(px7y> = <(py9~x>-

Since the ¢,, y e m,, are dense in M, and (x,);,; is bounded, we conclude that
¥ x ) = {, x) for all Yy eM,, ie. x; - x o-weakly.

Proof of Theorem 8. Let d € R, . Take (¢;);e,asin Lemma 9. For each je J,
put

&) x; = 0fa(e;)xafule;)* .

Then x; € m,, since ofx(e))* € n,. By Lemma 9, (i), we have

(10) Vied lxl < efxf.
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Now, let y € M. Then, using that A(c{.(e;)*) = JA(e;), we find that
(0s;7) = €0y x0T (e)") ==
= (Ja(y)*JA(xof,(e;)") | A(of(e)¥)) =
= (Jn(y)*Jn(x)JA(e;) | JA(e))) ==

= (Jn(x)*In(y)Ale;) | Aey)) = (@, &*ye;),

ie.
an @5, (1) == uefyey),  ye M.
By Lemma 10 we then conclude that
9x, — @l 0.
It also follows that
(12) vied foxll < lo:lllgh? < fiogl.

In all, we have shown (i) and (iii) of Theorem 8. Finally (ii) follows by Lemma 1. 4

ReMARK. Note that by (10) we have actually proved the following sharpened
version of Theorem 8: Let x € L and £ e R, . Then there exists a net (x;);¢, in m,
satisfying (i)—(iii)) and such that all jjx;!| < (1 =- g)jlx].

An important application of Theorem 8 is this:
CoROLLARY 12. For all x,ye L, we have
<(Dx » y> = <(py , X>.

Proof. Take (x;);c; as in Theorem 8. Now by Proposition 7 we have

<(px,- y y> == <(py > xi>
for all je I. The result follows by passing to the limit. 7

We now pass to a discussion of certain subspaces of the dual L* of the Banach
space (L, [ ll.).

By transposition of the norm-decreasing injections L < M and L — M, consi-
dered in Proposition 2, we obtain norm-decreasing injections M — L* and
M, — L*¥ given by

(13) (x, J’>L°, L= <(Py s x>Afc,M , Yel,
for all xe M and
(i4) <‘//, y>L‘,L == <¢, }’)M‘,,Al ., Yel,

for all v € M, . (The injectivity follows from Corollary 5.)
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Note that the diagram

/ ™~
N

commutes since for all x e L, we have

WyeL :{x, e =L@y, X)pm, m

13

= <(Dx s J’>M.. M= <‘Px > .V>L~, L

Also note that L is precisely the intersection of M and M, when these spaces
are considered as subspaces of L*: if xe M and y € M, are identical as elements
of L* we have

vyelL :{gp,, x>M.,M = (X, y>L',L =:

= <'»‘I” y>L‘,L == <¢s y>M.,M,
whence x e L by Proposition 7.

We have now turned (M, M) into a compatible pair of Banach spaces in the
sense of [2, Section 2.3]. Before we go on to define interpolation spaces in this
situation, we shall give a useful characterization of M -+ M, (Theorem 14 below).

As a Banach space, L is isomorphic to the closed subspace {(x, ¢,) | x€ L}
of the Banach space (M X My, | - [l..0) Where [I(x, Y1l = max{||x]l, |¢]l}. On
M x M, we may also consider the product of the o-weak topology on M with the
norm topology on M,. The topology on L induced by this will be called the
o-w/|| - [-topology. A net (x,);e, in L converges to x € L, o-w/|| - ||, precisely if x; = x
o-weakly and @x; — @, in the norm of M, .

Note that, with this terminology, L is the 6-w/|| - [l-closure of m,, (by Theorem 8
and the remarks following it).

DEeFINITION 13. Denote by V the linear space of linear functionals on L
that are ¢-w/|| - ||-continuous on || -|[,-bounded subsets of L.

We equip V with the norm || - ||, inberited from L* (that actually ¥V < L*
follows from the fact that any | -||,-convergent sequence in L is automatically
|| - ll.-bounded and o-w/|| - |l-convergent). Note that V' is a Banach space (this
can be proved directly; it also follows from the following characterization of V
as the sum of M and M, cf. [2, 2.3.1 Lemma]).

THEOREM 14. Let x € L*. Then the following assertions are equivalent:
(i) xreM+ M,,

(ii) x is o-w/|| - ll-continuous,

(ii)) y e V.
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If yeV, we have
(16) xlly = inf{lixii -+ Yl | x=x+ ¥, xe M, Y e M}

The proof will be based on the following lemmas.

LEMMA 15. Let ye V and ec n,. Define y : M — C by

Y(y) = x(e*ye), yeM.
Then ye M, . '

Proof. First note that e*ye € n, so that the definition of ¥ as a linear functional
on M makes sense.

To prove that € M, , it suffices by [8, I, § 3, Théoréme 1] to show that ¥ is
o-strongly continuous on the unit ball of M. So let ye M with [y} < 1, let (,):e;
be a net in M with all ||y;]| € 1, and suppose that y; - y o-strongly. We claim
that then

(an e*ye —» etye a-w/l-|l.
To see this, first note that

{Pesy,es X) = (Ju(x)*JA(yie) | Ale)) =

= (Jn(x)*Jn(y)A(e) | Ae)), xeM,
and similarly

(Peryes> X) = (Jn(x)*In(y)A(e) | Ale)), xe M.
Since n(y;) — 7(y) strongly, it follows that
1@erse — Penyel = 0.

Since all fe*yell < llel? and all {go, .| < §A()], we have

(18} supjle“yeli, < co.
iel

By Lemma 11 it follows that
e“ye - e*ye  g-weakly.
In all, we have proved (17).
Since y eV, (17) and (18) imply
x(e*ye) - x(e*ye),
ie.

Y(Or) — ¥vO). ¥
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By M* we denote the dual Banach space of M. The next lemma shows that
a sufficient condition for an element y € ¥ to be in M, is that it agrees with some
Y e M*,

LEMMA 16. Let y € V. Suppose that for some y € M* we have

vyem,: (g y) =¥, y).

Then there exists a € M, with I < IV such that

vyelL:{(pyy=0b, y).

Proof. Let (e;)ie; be an approximate identity for n, contained in (m,),
{21, 3.21 Proposition).
For each e I, define ¢; by

Yiy) = Y(eye), yeM.

Since ¥ and y agree on m,, we have y(y) = x(e;ye;) for all ye M, and hence
Y,e M, by Lemma 15. Obviously, ||, < |¥].
Now let p be a representation of the C*-algebra m_ (where ~ means norm
closure) on a Hilbert space H, such that
V() = (D) &Imu,, yem,,

for some &, ne H,. Then

Viy) = (pleyeds I My, = (p() ple)llp(edn)n,, yem,.

Since (¢;);, is an approximate identity for the C*-algebra m,, we have p(e;) — 1
strongly in H,. Tt follows that

Yilm, — Yim,

with respect to the norm in the dual space of ni,. Now for functionals in M, , this
norm agrees with || - [ls, . Thus (,);e, is 2 Cauchy net in M, , and hence converges
to some l7/ eM, .

For all ye m,, we have

<l;9 y> == lllen}<'llu)’> = <‘/’1 y>'

{2

Hence

101 = sup{I{i, DI | yem,, Iyl < 1} <[l
and

V,V_qu» :<X’Y>=<l/7’y>'
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Finally, let y € L. Take (y));e, in m, such that (3));e, is || -||,-bounded, y; = »
o-weakly and i}(pyj -~ @,ll = 0 (Theorem 8). Then

This completes the proof.

Lemma 16 in particular applies to y's of the form xe M (for such y,
Lemma 15 could be proved easier: obviously y => Y(») == {x, €3ye) := (Peoye, XD =
= (In(x)*Jn(y)Ae) | A(e)) is in M,). Using this, we get the following characte-
rization of the elements of L:

COROLLARY 17. Let xe M. Then xe L if and only if there exists a constant
C = 0 such that

(19) v yem,:Ke,,x) < Clyl.

Proof. Tf x € L, then [(o,, x)| = I{o,, ¥)| < i@ iyl for all yem,. Con-
versely, suppose that (19) holds. Then by the Hahn-Banach theorem there exists a
tounded functional ¥ on M extending y — {¢,,x) :m, = C, ie. a ¥ € M* such
that

vyem, :{g,,x) =P, y).

Applying Lemma 16 to xe M = V and ¥ € M*, we get an element !,!7& M, such
that

VyE nl(p : <q’y’ x> = <|l’~sy>
Hence x € L by Proposition 7. i

Proof of Theorem 14. (i) = (ii): Suppose that y ==x 4+, xe M, Yy e M,
and let (¥,);e; be a net in L converging to y € L with respect to o-w/)]-{. Then
<¢pyi, xy = {@,,xy and (Y, x;) - (Y, xy, whence {x, ¥;>r..r = (X%, »). Hence x
is g-wf|| - [-continuous. Also note that for all y e L, we have

106 7)1 < K@y, X)L 1Kl ) < I ltellxell -+ Wl iyl
so that [|xll, < llxi+ Iyl

(il) = (iii): Trivial.

(iii) = (i): Suppose that y e V. Then in particular x is a bounded linear
functional on (L, {j - {|,). We identify L with the closed subspace {(x, ¢,) xe L}
of (M x M, -1 ). Then by the Hahn-Banach theorem, y extends to a bounded
linear functional @ on (M X M., || -} ) with the same norm: | &1 == [, .

Now the dual of (M x M, |-l ..,) is naturally identified with (M* X M,
1o dam) Where (¥, X) llem = i + IIxf| for all (¥, x)e M* x M. Thus there
exist ¥ € M* and x € M such that

?=(y,x) and [P = fl¥ll + |x]l
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In particular, we have for all ye L
L) =KD, (1, 0,)) = LY, x), (0, 9,)) = Y, ¥) -+ @, x).
Viewing x € M as an element of ¥ we can now apply Lemma 16 to y — x e ¥V and
¥ € M*. We obtain a § e M, with ||| < ||yl such that
VyeL: {5y —{p,,x) =, y).
Thus;{rzx—’;—tﬁeM—{~ M, and
el =+ W< Xl + el == 1l == il -

In all, we have proved the equivalence of (i), (ii), and (iii), and at the same

time we have shown that
xlly = min{lx + (¥l x = x -+, xe M, e My}

for all yeV. Y%

Finally, we shall introduce the complex interpolation spaces between M
and M, following [3] and {2, Chapter 4]. First we introduce some notation. We
write || - [l and || -|l; for the norms in M and M,, respectively, and put S =
={a e C|0 < Rex < 1}. We denote by F(M; M) the set of functions f: S >V
such that

() f is bounded,
(i)  fis analytic in S® and continuous on S,
(il)y vteR: f(it)e M and
t > f(it) : R —» M is continuous and bounded,
(iti), vzeR: f(1+it)eM,and
t— f(1 4 it) : R > M, is continuous and bounded.
For fe #(M; M), put
(20) M= max{?ggllf(it)l'oo,flé%llf(l +if)lh}-

Then (F(M; M), ||| - 1) is a Banach space. Note that

@n vae S:[if@ly < lifll

We denote by Z(M; M,) the closed subspaces of F(M; M,) consisting of
those f for which also

(i) [If(it) e — O as |t] — oo,
(i), |l +iD)lly = 0 as [t| - oo,
(this is the space considered in [2, Section 4.1]).
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DerINITION 18. For each p € ]1, oo[, we denote by ¥, the complex interpolation
space corresponding to I/pe]0, [, i.e.

Vo= {f(l[p)| fe Fo(M; M,)}

with the norm
Ml =inf{lif 1 fIp)==2, e FoM; M)}, xeV,.

2. L” SPACES ASSOCIATED WITH M AS INTERPOLATION SPACES

We still consider a von Neumann algebra M with a distinguished normal
faithful semifinite weight ¢. From now on, we further assume that A is represented
on a Hilbert space H and that we have given a normal faithful semifinite weight ¥
on the commutant M’ of M. We put

d = de—‘

dy
i.e. « is the spatial derivative of ¢ with respect to ¥ [5] (or [23]).

2.1. THE Spaces L?(y). We denote by D(H, ) the set of y-bounded vectors,
i.e. the set of £ € H for which there exists a bounded operator R¥(¢) : H, - H
satisfying vyen, : RAEA(y) = y¢. For & ne D(H,y), we write 0; ,-
= RUERY()* € M.

By L°(y), 1 < p € oo, we denote the spatial L? space with respect to Y, i.c.
Lo(y) is the space of closed densely defined operators @ on H that are (-- 1/p)-

~-homogeneous with respect to ¥ and such thatSfa:”dl/J < 00, equipped with the

norm || - |, = S[ -1Pdy (if p =: oo, L®(Y) == M with the usual operator norm). For

the properties of the Banach spaces L?(i), we refer to [14].
The definition of homogeneity with respect to ¥ given in [5] is equivalent
to the following:

DerFINITION 19. A closed densely defined operator e is y-homogeneous,
where 7y e R, if and only if

(22) ya < asi(y)
for all y e M’ analytic with respect to oV.

The advantage of this characterization, which is similar to [22, Definition
at the beginning of Section 2], is that one can easily handle sums, products, and
adjeints of homogeneous operators. To prove the equivalence of the two definitions,
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one can proceed as in the proof of [16, Lemma 2.1]; the main idea for the proof
is the use of Carlson’s theorem for analytic functions.
We shall need the following criterion for integrability:
PROPOSITION 20. Let a be a positive self-adjoint (— 1)-homogeneous operator.
Suppose that for some constant C = 0 we have
n | n» |
(23) 3 @) < C,!},-gl .5,

Jor all neN and &, ...,¢, € D(H, ) n D(a). Then a is integrable and

Sadtﬁ < C

d
Proof. Let y be the normal semifinite weight on M such that a = EX—

(see [5, Theorem 13]). We shall prove that

” I ”
(29) ,-gl 1O, < Cijzloff'ef

|

fot all ne N and all £, ..., ¢, € D(H, ) (by [5, Corollary 18], this implies the
desired result).

By the hypothesis, we know that (24) holds whenever &,, ..., &, € D(H, ) n
0 D(a). Now let &, ...,¢, e D(H, ). For each ke N, put

25) £ — S/zk(t) (@&, + (L — p) &)dr,

where (o) =: VnTn'— exp(— ko?), o€ C, and p, is the projection (e M) onto the sugport
of a. Then ¢ € D(H, ) n D(a) and &P — &; (cf. [14, Proposition 2]), and we con-

clude by the lower semicontinuity of ¢ +— (0, ;) [5, Lemma 6} that

7 n . . n
(26) 3 #0e,¢) < limint $ 10,4y )

On the other hand,

(27

for all k e N. Indeed, for each 7, s € R, put
X = Y RY@"E + (1 — p) &) R¥(@¥ &; + (1 — p,) &)*
j=1

10-2324 8
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and calculate

fo= 3, @ RG) A5 + (1 = p) RAE) (A5 RYE)? i+ RAE (L~ p)* =
j=1
= " RE) A5 R Ja
j=1

+at( 3 R AR J0 — ) +

j=1

+a —p,,)(z RY(E) 45 *RY(E)* ) a4

+(— p»( RU(E) R"(é‘,-)”‘)(l — P,

Now, using the inequality (28) below, we get

Pe ai'( $ RU(E) 455 RYE)? )a-“pa {

i=1

I n - oL
<Y RY(E) 457 RY(E)* 1 < ‘| Y, RY(E) R¥(G))* '!
4 B =

Jj=1 =1

and similarly for the other terms, so that in all

Ite] § R Reee - 1500
Finally, (27) follows:

|z 4 \ 72

|3 00, 0] = T, RUGD) RE ‘F

j=1

::; En-" SI’k(t) (Shk(S) R@'; + (1 — p)) R + (1 = p) &) ds) o 'ii'é

Je=1 i

< SS AOh(s) 1%, ,ll dsd <

“fponoj

Combining (26) with (27), we get (24) for all &, ..., &, € D(H, ) as wanted.
We have used the operator norm inequality

i n I
(28) “ Y x| <
i=1 i
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For n = 1, (28) is well-known: ||xyx*|| < |x/| Iy}l 1 x| = Ily ]l I xx*|. For higher n,
we have
Xy oo X\ (P O.. O\ /X X\ F
- o 1fo ... 0
Z xjyxf == 0 0 0 ol - <
i=1 . . : :
0 . 0/\0..0 y/\0 ... 0
y0..0 Xp oo X\ (X oo X\ ¥
: 0...0 || LN ]
] BEEEEEY | SRR | MR I 7 359
0..0 y/{j\0 ...0/\0 ... 0

2.2. AN 1SOMORPHISM 2 : H, — L*(¥)).

LemMa 21. Let xen,. Then

(29) D(H, V) = D(d/?x*).
Furthermore, d'2x* e LE(y) with
(30) | dM2x* |ly = || Ag(x) .

- d
Proof. Recall that for # € D(H, ¥) we have by the definition of ET; that

1/2
ne D( (—(‘;—:pe-) )if and only if ¢(6,, ,) < 0. Now let £ € D(H, ). Then x* e D(H, ¥)

an
POy, vog) = 9(x*0; :x) < [|0;, ¢ llp(x*x) < 00.

Thus x*¢ e D( (—3—%)”2 ) ie. e D(@V2x®).

Next, we note that

d(x -0 -x*
(3D S—Qx—fp—ﬂ dy = (x-9-x%) (1) == @(x"3) = | 4,IP-
Hence deo-xT) is integrable. Now
32) /x| = (m—d(x"i———' *’) )”2.
dy
Indeed, for all ¢ e D(H, ), we have
| |d22x|E |12 = l(_(_l_(e_)llzx*éz = @Oy ) =
&y X*E , X*E
. ; ) 12 2
= PO, 29 = (x-0-x)00, ) = (3(-“—(1‘-’;/—"1) HE

and d¥2x* js (—1/2)-homogeneous (dV/2, and hence also d¥/2x*, satisfies the hypothesis
of Definition 19), whence d¥/2x*, and thus also |d"/2x*|, is the closure of its restriction
to D(H, ) (cf. [14, Proposition 2]). By the definition of spatial derivatives we
then have (32).
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In alf, we have shown that d/2x* e L%(y) and

d(x-@-x%)
dy

Recall {5, Theorem 9, (1)] that o?(x) - d¥xd-¥ for all xe M and tcR.
Using this, one can prove the following

[ M2x |3 = S dif = [ A (x) [ 7

Lemma 22, Let x be an element of M, analytic with respect to . Then for
all e C with Rea = 0, we have

xd* @ d*c?(x).

Now we are ready to prove the main theorem of this section:
THEOREM 23. 1) Let x e, . Then xd*2 is preclosed, its closure [xdY*] is in
LX), and
i [xdYH ]l == A )

2) The mapping x — [xd*?) : n, — L)) extends to a linear isometry

P:H, - LYY)
of H, onto L)
3) For all (€ H,, we have
DU = PEY.

Proof. 1) follows immediately from Lemma 2! and the fact that (xdi'%)* .=
o dME T,

2) The mapping x = [vd'?] is linear. Indeed, for all x,yen, we have
[dh2x® 4 qu2ys] == dU2(x* 4- y¥) since these operators agree on D(H, ); and the
mapping @ — a*: L*f) - L) is conjugate linear.

Denote by 2:H,— L) the unique linear isometric extension of

X &> [xd3}: n, — L3). Let us show that 2 is surjective. Suppose that for some
a e L), we have

V xen,: S[x([uz].a*dlj, = 0.
Then for all ¢, # € D(H, ), we have 0, € n, and thus

(@ Eidexn) == Sa 0y - (dV2x¥)dy = Sa [0 pxdV2)dyy = 0.
Now the set

(33) {d2x*n | ne D(H, ), xeny}
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is dense in H (to see this take a net (x;);c; of analytic elements of M satisfying

af(x)en, nn} for all «ae C such that x¥ — 1 strongly; then by Lemma 22,
we have

720 o (x)n = dPafy () = xFdYon - dion;
hence (33) is dense in {d'/2n | n € D(H, ) n D(d*'?)}, which is dense in H because d*/?is

(—1/2)-homogeneous). We conclude that a* = [a*|py )] = 0, whence a = 0. We

have proved that 2(n,) is dense in L*(y). Since & is isometric, it follows that
P(H,) = L).

3) Since both sides of the equality to be proved are continuous as functions
of { e H,, we need only consider ¢ having the form ¢ = A,(x) with xen, nn}
and analytic. In this case, J,4,(x) = A,(6%;(x*)) so that by Lemma 22

P(JpAy(x)) = [02;(x")d' ) © dV?00(0%;2(x™)) =
= dM2x* = [xd 2 = P(A,(x))*. 2
Theorem 23 is a generalization of [22, Theorem 3.1).

REMARK. Denote by P, the usual self-dual cone in H, [10, Section 1]. Since
both (M, H,, J,, P,) and (M, L*({), *, L*()..) are standard forms of M (in the
sense of {10, Definition 2.1]) we know by [10, Theorem 2.3] that there is a unique
unitary u: H, —» L2(}) carrying (M, H,,J,, P,) onto (M, L), *, L*(Y),). This
unitary is exactly 2: H, — L*¥) since by Theorem 23, & has the properties that
characterize wu.

THEOREM 24. Let x € L and £, n € D(H, ) n D(dV?). Then
(34) 0(0¢,) = (xd*2¢ | d¥2y).

Proof. For all y,zen,, we have

(pz‘y(eg,n) = (J¢7r¢(0¢,1,)*-,¢/1¢(}’) l Aq)(z))ﬂ‘p =

= 104D oA, = Op- PU AL | P AD 2 =
= Oy [2d' 1 | D) 1o, = S[yd”?] -0, [zd 1 dY =

= (M2 | zd o) = (yd 2 | diiey).

Hence (34) holds for all x e m,. For a general x € L, take (x;);e; in m, such
that x; =+ x o-weakly and Py, = Px (this is possible by Theorem 8). Then

0x(8,) = lim @, (6, ) = lim (x,dV/2¢ | diitn) = (xd V2% | dVi2),
iel ie7
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The following proposition is similar to [22, Proposition 2.3]:

PROPOSITION 25. Let pe (2, ool and 1/p - 1/q == 1. Let a be a closed densely
defined (—1/p)-homogeneous operator. Suppose that D(H, ) < D(a) and that for
some constant C = 0, we have

l n "

(35) 'y (asxlb'l)] Cublq z, 0z, ﬂr

111

for all be L(Y), neN, &, ...,¢, e D(H, ¥), and 1y, ..., n,e D(H, Y) n D(bY).
Then ae LP(Y) and jial, < C.

Proof. We may suppose that a >
consider the right polar decomposition of a: a == [a*|v, and note that |a*| satisfies

(35) if a does, since

Suppose we know that a e L?(¥). Then a*/9 € L(y) with [|a®/?]),
that by (35)

0 (to reduce the general case to this case,

'f i b3 fj

I & -
i 2 v é,,'], x == i‘ v iZI oéi,vl,' g

i "’J

pplq $0
]lahp

Y @& 18) =Y (a]a”¢) <
i=1 i=1

<C uan"’q ’1 P2 0@,.5,

for all ne N and a’,’l, ..., &, € D(H, ) n D(aP). By Proposition 20, this implies that

larlh < Cllaly®, i
llall, = l|al&|all;?? < C.

In the general case, take a; € L?(Y), such that a? 7 a? and Sa"dn,lfzz suplalil.
ield

Then there exist x; € M, || x;|| < 1, such that a; < ax; (cf. the proof of {22, Propo-

sition 2.3]).
Now each g; satisfies (35) since

.glz(} n,l

i -
L=l

.Z exigi"’t H

W i=1

Xj Z 0& ;i

C. Hence Sal’dqj =
7

By the first part of the proof, it follows that |g;|l, <

== supl|@;||p < C? < co so that ae L?(}) and ja|, < C
i
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THEOREM 26. Let g e ]2, oof.
1) Let xen,. Then xd'? is preclosed, the closure [xd"?] is in L(Y), and

(36) | [xd"4)liy < max{l A, |x1}.

2) The set of operators {[xd"9] | x € n,} is dense in LU ().

Proof. 1) First note that D(H, ) < D(dV*x*) < D(d"x*).
We shall prove that

(37 Z (a1 ilarl)l < max{[| 4,(x)li, {|xIt} lall,

i n
Y 05;‘»"1 ”
IIER
for all &, ...,¢ eD(H,Y), aec L°(Yy) where 1/p41/g=1, and n,, ...,n,€
e D(H, y) n D(|al?). Take &, ..., &, a, #y, ..., N, as specified. We may assume
that ||a]l, == 1. Let @ = ula} be the polar decomposition of a. For each « ¢ C with
0 < Rea < 1/2, put
F(o) =Y, (d*x*E; | ujalrt=an,).

i=1

We shall estimate Z (dx*E; | an;)=F(1/q) by use of the 3 lines theorem [26, p. 93].

The mapping Fis bounded and continuous on S, ,={a € C| 0<Rea<1/2} and ana-
lytic in 89, since by [21, 9.15] this is true for each of the vector functions constitut-
ing F. Now, let us estimate the values of F on the boundaries of S;,. First recall

that since |a|? = g—% for some ye My}, we have [a|*d~i' = (Dy: Dg),e M for

all e R (cf. [S, Theorem 9, (2)]). Using also the — easily established — fact that
the mappings ¢ ~» d¥(.)d-* are isometries of L(y) and L), we find that

|F(@it)| =

i==1

¥, (dxee, | ulal”la!”"m)l =

~|y (e | "ulal"lal""n)\ -

L=l

= (-3 00t v <
i=1 !

< [l lulal”ll, =

n
Z o‘fi-"i
i ,

= || x|
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and

\' &
|F(1/2 4 i) = | Y (d"d"/2x3¢; | ulal®|alP'y,)

e

n ;
Y (@BxEE | d™ua PR aPty))
=1 |

|
|
i
i

iz

- igd”zx*. i Ocpu; -d="(ula|??)(|la|P*d~ ") dVdy | <
| frus i

i
Nulai?2ly =
U

<l |

; n j
055,11,' ;

1
i
],—:1 i

= A, () li Y, O,y 1 .
=1 d

By the 3 lines theorem, we finally conclude

IFUIg)] < max{lAy(x)is §1) | 3 O -
= i

Thus (37) is proved. ’

Since dY/2x* is (—1/g)-homogeneous (Definition 19), we conclude from (37)
by Proposition 25 that d"/x* € L) with [d9x*}i, < max{)|4,(x){, }xi}. Since
(xd*9)y* == dY9x*, this completes the proof of the first part of the theorem.

. 2) Suppose that for some a e L*(Y) (1/p + 1/g = 1) we have [xd¥].ady = 0

for all x € n,, . Then proceeding as in the proof of 2) in Theorem 23, we can show
that @ = 0. Hence {[xd*/] | x e n,} is dense in LI(}). %

2.3. INJECTIONS OF L INTO THE SPACES L?(if). We define
Moot L — L*(y) and p: L — LXY)
by
do,
o{X) == X, 4(x) = —""=>
Heo(X) (x) ay
for all x € L; by Proposition 2, i, and p, are linear norm-decreasing injections
( recall that M, ~ L'(}) via y > _dd{;) By Theorem 24, we have
(38) Y yen, : u(ysy) = dV3%* . [yd'/?]
{indeed, dV2y*.[ydYi?] == —:;- for some y € M}; hence by [14, Proposition 5] and
Theorem 24 we have

1(8,) == S"”zy* [yd 20,y == (pd % | pdn) = @,0,(8;,,)

for all &,y e D(H, ¥) n D(d*?); it follows that y = @y, 5 1.6 (38)).
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With each ae LP(Y), 1 < p < oo, we associate a sesquilinear form v, on
D(H, i), defined by

(39) vo(&, ) = (lalV2¢ | |al¥?u*n), &, ne D(H,Y),
where a -= ulal is the polar decomposition of a. Note that the mapping a +— v,
is linear and injective (cf. [14, Proposition 11]) and that

YaeLP(y) Y&, ne D(H,¥):
(40)
[0 (&, M| < [lallp | I g lMe ) R¥(©) [}2 1 R¥ (i) VP

where tp - l/g = L.
The rest of this section is devoted to a proof of the following theorem:

THEOREM 27, Let pe]l, oof.
1) Let x e L. There is a unique element p,(x) e LP({) such that

(41) V& ne DH, ) n D(@V2): v, (s n) = (xd"/20E | d*/2y).

This element satisfies the following norm inequality:
42) (Ml < Pl x1Me
where 1/p -+ 1/q —= 1.
2) The mapping
By L — LP()
is linear, norm-decreasing, injective and has dense range.
LEMMA 28. The mappings
(43) (t, @) — d'ad~": RX LX) — LY(Y)

(resp. RXLE)) — L*(Y)) and
(44) (x,a) —>a-x: M, X LX) - L'(})

(resp. My XLYY) —» LX) are continuous with respect to the norm topology om
LX) (resp. on L¥Y)) and the o-strong™ topology on the unit ball M, of M.

Proof. It is well-known that (44) holds in case of L%*)) (we are considering
the usual right action of M on L), cf. [12, Theorem 1.21]). Tt follows that italso
holds for L'(¥): for all x, xo € M, and a, a, & L' (), we have

a-x — ay-xolly < lj(@ — ag)-xlly + {ag-(x — X} <
< [la — agily + {ibo'laiico- X — ¢ Xolha

where b, ¢ € LE (i) are chosen so that ag == by- ¢,
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The mapping (1, &) — 4i¢: RXH, - H, is continuous; since Z(4¢) :=
= d'P(E)d - for all £ € H, and t€R, the result on (43) in case of L) follows.

Finally, to prove (43) in case of L'(y) ~ M., use the fact that 4 :‘i d-1 ==

= yo0?, for all y € M, and 7€ R and recall that (¢, x) > x o 6?, is continuous with
respect to the norm topology on M,. (One easily shows that ¢ +> y 0 6%, is weakly
continuous for each y € M. To get norm continuity, apply [6, Proposition 1.23]
or |13, p. 306, Corollary], or the simpler argument in [15, pp. 23--26].) 2

We write S:={xeC|0 < Rex < 1}.
LEMMA 29. Let ae LP(Y), 1 < p < oo, with |ajl,=:1 and polar decom-
position a :-- ujal. Let y,zen, . For each a € S, put

(45) F(o) = S ula|P* . dA=DRz=  [pd A= DR)dY,

Then F is bounded and continuous on S and analytic in S°.

Proof. The notation in (45) is slightly abusive; (45) is to be interpreted as

(46) F(Ot) — S ulal"/‘ia!”“d‘i' . dil/Z(dfllzrz::: . [yd1/2r])d_it/2d¢

where o == i - it and —}— == ] — "i -. Note that wua|P*e L)) and d¥¥z%,

{yd"*) e L¥({) (Theorem 26) so that the integral (46) exists by Hélder’s inequality
[14, Proposition 8, (1), and Corollaire 12].
To prove the lemma, we first claim that the mapping g: S — L*(/) defined by

g(@) = [yd*~*"].ulalP”, ae S,
47 ) .
(_: [ydl/‘.:r] -d_ 11/2u|alp/2.vla|pu/2)
is bounded and continuous on S and analytic in S% Indeed,
ig@ e < @l lid= " (ulalP>)(lalPPd - B)d ||y, <
< max{|| 41, |y}
by Theorem 26 (and using ||u|a}?*}l,; = 1), and for all &, # € D(H, ¥), the mapping
o > (g()¢ln) = (ula|P*L | dO=DI2 yp)

is comtinuous on § and analytic in S° so that g is weakly continuous on S and
{weakly) analytic in S° Furthermore, by Lemma 28 the boundary mappings

£ > g(it) — [yd1/2] -d‘i’fg(ltlalpi"zd‘i’/z)d“/z
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and
{ > g(]‘ 4 it) — y-d‘“/z(u[a["/z[a(”“/zd"i’/?‘)d“"g

are continuous (indeed, t > d="2(u|a[P*2d-1*7?)d"** is o-strongly® continuous
by e.g. [11, Lemma 2.2]). We conclude that g has the desired properties (cf. the

remark following this proof).
Now, using [14, Proposition 7] and the easily established fact that

(48) Vbe L' (y) YieR: Sd"bd“’dw = de.//
we find that
(49) Fo)=([yd® =] -ula|"? | [zd0-902].|a|re2) o .

2

The result follows.

REMARK. We have use the following theorem: Let f: S — X be a function
on the strip S with values in a Banach space X. Suppose that (i) f is bounded,
(ii) f is w*-continuous on S and analytic in S9 and (iii) 7 — f(it): R > X and
t+— f(1 + it): R - X are continuous. Then f: § — X is continuous. This theorem
follows e.g. from the reasoning in [3, Section 29].

Proof of Theorem 27. First note that for a given x e L, there is at most
one p,(x) € LP({) satisfying (41). Indeed, if for some a € L?(i) we have v,(&, ) = 0
for all &, e D(H, ) n D(dV??), then actually v,(&, ) = 0 for all & ne D(H, )
(by (40) and the fact that every ¢ € D(H, ) may be approximated by £ e D(H, /) n
n D(d"/??), ne N, satisfying || R“(E™)|| < | R¥(&)(| (cf. [14, Proposition 2] or [22,
Lemma 2.5])), whence a = 0.

Now let us prove the existence. We first assume that x € m,. Then we can

n
write x = Y A;yi*y; for some neN, 4, ..., 4, €C,and yy, ..., p,€n,. Put
j=1

(50) 1) = 3 ydVeRy [y, die)
=1

then by Theorem 26 and [14, Corollaire 12] we have p,(x) € L* () -L¥(y) < L(})),
and u,(x) satisfies (41):

n
vup(x)(é, 77) == 2 }'jvdllzp Tv.dY2P (63 77) =
= [y ]

7

= ¥ LDy | [yydely) =
=t

= (( 2 lfyf*yj) daieeg } n) :

i=
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Let us show that (41) holds for all x e m,. We will do this by showing that

oY S” (A < [P

\ |

for all b € L%y) such that ||bij, == 1. Then (41) follows by [14, Proposition 8, (2)].
As above, we write x == V] 4;3*y;. Let b e L9(y) with polar decomposition b = - v|b]
j=1

and [jbjl, - 1. Now for each a2 € S, put
(52) F(a) == 2"3 ).jS 0lbje= . d0-i2p¥ . [y.dO-N2]dy.
j=1

Then by Lemma 29, F is bounded and continuous on S and analytic in S° and
for all e R we have, using (38),

| F(it)] = {Sv bigid it . gt ( g AV2y¥ [y V2 ]) d"/ﬂdw -

= i S olbj‘d 'di”%( Y Aj)y*}‘;)d""’zdll/ I <
i

< (X)) iy == e,

and

lF(l + lt)] —_— S |bx91b]q\td—-1l d",z(L }Jy] y_,)(l”"ﬂdl// <

i J i

< lolblihiixil < f1x .

Since F(1/g) ~:\b-p,(x)dy, (51) now follows from the 3 lines theorem.

Now we shall prove the existence of 1t,(x) for a general x € L. Take (x,);e, inm,
as in Theorem 8. Then

lup(xi — X, < iy, — ‘ij‘.X”"QSUPH«\‘;N)I"’
iel
for all 4, j e I. Hence (1,(x;))ic; is @ Cauchy net in L?(y). Put

(53) #p(x) = Him g, (x).
ier

Then by (40)
Upp(xi)(€1 ") - vup(x)(é" 1”)
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for all &, n e D(H, ). On the other hand, since x; —» x o-weakly, we have
Dy (& 1) = (X, | d¥120) > (xc20¢ | ltoon)

for all &, ne D(H, ¥) n D(d*/??). We conclude that u,(x) satisfies (41).
To show (42), let ¢ e R, and take (x;);e,; as above and such that all {|x;|| <

< (1 4 &) x| (this is possible by the remark following the proof of Theorem 8).
Then

tp() I, == liieigilﬂ,,(xi)li,, <
< limsupflo, M7 x; iV <
iel f

S @ IVP(E A+ ) x e

since Px; = P This inequality holds for all ¢ € R,. Then (42) follows. This completes
the proof of the first part of the theorem.

2) We have ||, (x)ll, < max{|loll, }x|} - = |x{l, for all x € L. Theorem 26, 2),
implics that p,(m,) is dense in L2P(y) - L*(r) == LP(h). %

2.4, INJECTIONS OF THE SPACES LP({f) INTO V.

TueorEM 30. Let pe]l, oo[. Define qe]l, oo] by 1/p 4+ 1/g = 1.

V) Let ae L?(). Then there is a unique element v, (a)e V such that
(54 VxelL :{v(a),x)y = S a-p (x)di.

2) The mapping
vt LP(Y) =V

is linear, norm-decreasing, and injective.

Proof. Define v, : LP(fy) - L* to be the transpose of u,:L — L) (we
identify Lf(y) with the dual of Ly) [14, Théoréme 10, (2)]). Then v, satisfies 1)
and 2) with L* instead of V. That actually v, maps L?(f) into V follows from the
inequality

€ vyl xypetl = Sa ady | <

< Hapll ' g ()llg =
= [lal,llo. M) xVr,  xel,

showing that x ~> {v,(a), x) is 6-w/|| - |-continuous on bounded subsets of L. 7
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For each p e]l, cof, the diagram

_L2(y)

4 v
(55) L2, 1) —25. ¥

N’

is commutative. This follows from the fact that
(56) vx’ Y€ L: Sl‘p(x) '#q(y)dlll = <(px’ y>‘

(To show (56), note that we may assume that x, y € m,, and verify (using (38))
the formula

\roccted-momas = (aveag G m1endh = Co,q 580y
for all x;, Xp, 1, Y2 € 1,.)
The following lemmas serve as a preparation for the identification of the LF(y)
with complex interpolation spaces in the next section.

LEMMA 31. Let ae LP(), 1 < p < oo, with |lall, <1 and polar decom-
position a =-u'a.
1) For each a € S, there is a unique f(a) € V such that

(57) (f(oz), x> = S ulall’“.d(l—ﬂ)lzxd(l—a)&d./j

Jor all xe L.

2) The mapping
f:8S-V
thus defined satisfies
() vaeS:jifail <1,
(ii) for all xem,, the function

x> {f), XDy 1
is continuous on S and analytic in S°;
(it} Ve R:flit) e M with jjflit)|ieo < 1,
and the mapping t — f(it): R — M is a-weakly continuous;
(iii), vteR:f(1 +it)e M, with ||f(1 + i)l €1,
and the mapping t v f(1 -+1t): R — M, is || - |l-continuous.
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Proof. The right hand side of (57) is to be interpreted as

ev S ulalPlalPtd = ey (x)d- Py

where o = :. -+ it and —-i; =1 — —; By Hoélder’s inequality this integral exists and

Sulal"“-d“‘“)’zxd‘l’“”zdll/‘ < JulalP®|ls | (01l <

(59
< o M7 X1
If Reax # 1 (so that —:— # 0), this implies that the linear functional
(60) x> Su|a|m A= -1y

is indeed an element f(«) of V (by Definition 13). Since ||, M || x| < | x|l for
all x € L, we have also shown that ||f(®)l,, < 1, so that (i) holds for all « € S with
Rea # 1.

In case Reax =1, we simply put
(61) f@) = f(1 + it) = d~"P(ulal?|a|P*'d~")d"" € ['(Y) ~ M* < V.
Then ||f(1 + i) |y < ||ulal?]l; < 1 for all e R, and it follows from Lemma 28 that

the mapping ¢+ f(1 + 1£): R — L*¥) is || - |l,-continuous. This proves (iii),. Since
II-lly <Yl (@ holds also for Rex = 1. Note that

QA A0, xpy g == S+ 30, XD 1,0 100y =
= Sa’—itIZ(uJa’pJa;pitd—it)di”z 'xdl// —
== S U[a]"[a]Pi'd—i' ‘d"/“’xd"i”zd‘//

so that f(«) is characterized by the equation (57) also when Rewx == 1.
In all, we have now defined f : § — V as required in 1) and shown (i) and (iii),.
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As for (iii),, note that

<_/'(i1), .\'> - S“ial”i'd—“-d"”,ul(,\‘)d “’ﬁdt//

= Sd TRy aPd Y (x)d

for all xe L and e R. Hence
(62) Q) == d= VR @iPld )P e LOWY) =~ M

and f(it) » < 1 for all 1 e R. Furthermore, ¢ — f(it): R — M is (M, M )-conti-
nuous (by e.g., [ll, Lemma 2.2}).
To prove (ii), we may assume that x =: Y V¥V ¥1s ooy Yu€ n,. Then the
-1

i
desired result follows from (50) and Lemma 29. A

Lemma 32, Let {2 S = V be a function satisfying (i), (ii), (i) and (iii}y
in the conclusion of Lemma 31. Then for each ne N, we can define

[ SV
by
{63) Vxem, : {fa), x) = |n/n Se""’z(f(a — it), x)dt
for all xe S. We have
(64) foe F(M; My with [If.i <1
for all ne N, and
(65) o) — fly'yy >0 as n— oo

for each o e S°.

Proof. We put ha) = l,fn/rfe—“u for all me N and aeC.

Let n e N. For each o € S, there is at most one element f,(x) € V satisfying (63)
(since V is the dual of the o-w/; - i-closure of m,). We shall prove the existence.

First note that (i) and (ii) imply that f is actually norm-analytic in S (To
see this, apply [19, Appendix 5, Theorem 1]. This is possible since, using Theorem §,
we have fixly = sup{[(z, x)! xe L, jxfy < 1} = sup{|(z, x)| ' x €m,, {xf,, < 1)
for all y € V.) Hence fis also norm-continuous in S°. In particular, for each a« € S°®
the function

t—fla —it): R >V
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is || « ll,-continuous. Since it is also bounded, we may form the usual V-valued integral
(as in [1, Proposition 1.2])

) =\ hto st —inas
and this integral satisfies (63).

If Rex == 1, the function
t—flo—it): R - M,

is bounded and continuous by (iii),, and therefore f,(x) exists as an M, -valued inte-
gral; we have

{f0d, Xy = Sh,,(t)<f(<x i), xydr

for all x e M, hence in particular (63).
To deal with the case Rea == 0, note that by (iii),, the function

t—flu—it): R>M

is bounded and o(M, M)-continuous. Therefore by (a simple case of) [l, Propo-
sition 1.2], there is a unique element f,(«) € M satisfying

W fi(@) = Shn(f)w,f(oc —it)yde

for all y € M,; in particular, putting y==¢, where x € m,, it follows that (63) holds.

We have now defined f,(a) € V for all values of « € S. Let us show (64). First,
we note that by the definition of f,, we have ||f,()}ly < 1 forallae S, ||f,()], < 1
for all & such that Rex = 1 and ||f,(«)[lc < 1 for all a such that Rea = 0. Hence f
is bounded and [||f,lll| < L.

Next, f, is continuous on S. Let a, @ye S. Then for all xem,, we have,
using (ii),

(), x) = Sh,.(t)<f(ao i+ i — ag)), x)dr =

= Shn(t — (e — ap)){ flog — if), x)dt
and thus
) = A0 ) =\ 0 — i ) — RO S — i), )t
Now
Slh,,(t —i(a — ap) — h()ldt = 0 as o — oy

it follows that ||f,(e) — fi(xp)lly = 0 as a — «,, i.c. f, is continuous.

11 - 2324
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By similar arguments, ¢+~ f(it): R > M and 7+ f(1 4-it): R > M are
[ + lloo -5 resp. || - ili-continuous.

That f, is analytic in S® follows from the fact that f has this property. Hence
fue F(M; M,,).

Finally, let a € S° For all e N and xem,, we have

o) — fia), x) == Sh.,(txf(a — i), Xyt — Sh.,(txf(a), xydt =

= Shn(t)(f(a —it) — fla), x)de.

Since f is bounded and (/,),en is an approximate identity, (65) follows. #

2.5. THE SPACES LP({) AS INTERPOLATION SPACES. In the preceding section,
we constructed injections v, of the spaces L?(y) into V. Now put

L7 = v,(L7())

v(@il, = liall,, aeLP@).

and

Then (L7, -|l,) is a Banach space continuously embedded in ¥ and isomorphic

to LP(Y).

PRroPOSITION 33. Let p e |, oo[. Then V, is contained in L? and
Ve Vytlxlly < lixlly,.

Proof. By definition of the interpolation spaces ¥, (Definition 18), we have
to prove that

(66) gl/ppel? and jig(l/p)l, < llgl!

for all ge Fo(M; M,).
Denote by Fy(L; L) the set of functions f: S — L satisfying

(i) f is bounded,
(ii) f is analytic in S? and continuous on S,
(iii) If(@) iy = 0 uniformly in Rea as [Ima| — 0.

By [2, Lemma 4.2.3], #(L; L) is dense in % (M; M,). Hence we need only prove
(66) for g € F(L; L). (Indeed, suppose that we have proved the lemma in case of
ge& Fo(L; L). Then the mapping g + g(1/p): Fo(L; L) — L? extends by continuity
to a mapping ®,: Fo(M; M) —» L7 satisfying vV g € Fo(M; My): [P, (), < llgill-
We claim that @,(g) = g(1/p) for all g € Fo(M; M,,). To see this, take g, € F(L; L)
such that jjlg, — glii = 0. Then by (21) also g,(1/p) = g(1/p) in V. On the other
hand, g,(1/p) = ®,(g,) = P,(g) in L? and hence in V. Thus &,(g) = g(1/p), so

that g(1/p) € L? and | g(1/p)Il, < lliglil.)
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Now let g e #,(L; L). Then g(1/p) € L. We shall prove that
(67) 1< va(8)s g(1/p)pv.ul < [lglitiiblly

for all b € L) (where 1/p + 1/g = 1). This will imply (66). (Indeed, by the duality
theorem, the validity of (67) for all b e L(y) implies the existence of an element
a e LP(yY) with |la]l, < |liglll such that

Vb e L) : Crgl6), (U p).r = Sb-adw.
In particular this holds for all ji,(x), x € L, so that
(8(Up), Xyp,1 = (01X, 8(1ID) )y, 1, =
= Suq(x) ady = Sx-v,,(a)dw.

It follows that g(1/p) = v,(a) € L? and ||g(1/p)lj, < lliglll.)

Now let us prove (67). We may assume that ||b]|, = 1. Define f: § — V corres-
ponding to b e L)) as in Lemma 31 (with b instead of a, g instead of p) and the
corresponding f, € F(M; M,), ne N, as in Lemma 32.

For each ne N, put

Fn(a) = <f;,(0(), g(l - a))V,L s ae S.

Then F, is bounded and continuous on S and analytic in S?. We estimate F, on
the boundaries of S: for all e R, we have, using |||/}l < 1,

[F (0] = [<f,(in), g(1 — i)}y 1l =
= K0, g(1 — i)drar,) < LD lollg(l — i)y <

< [lifl gl < el
IF,(1 + 0] = KA+ i0), g(— it))y,1l =

and

= KAl + i), g(— i)pm, ml < (1 + i) hfig(— i)l <
< A < gl
By the 3 lines theorem, we conclude that

K fa(1/a), g1 p)pw,il = I1F (1) < lligll-
“Since f,(1/g9) = f(1/g) = v,(b) in V it follows that

_ 7o), 80Pyl < Hlgll,
i.e. (67) is proved. %
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LEMMA 34. Let pe]l, oof. Let ye L? with ||y, < 1. Then there exists a
sequence (Xy)uen in V, such that all ||y, Il,,p < 1 and

s — xliv = 0.

Proof. We have ¥ = v,(a) where ae LP(Y) with |laj, < 1. Define {1 S—>V
corresponding to a as in Lemma 31 and f, e #(M; M,), neN, corresponding
to f as in Lemma 32. Then f,(1/p) = f(1/p) = v,(a) in V.

For each neN, define g,: S — V by

&n(@) = exp(@®/n)fy(e), «€S.
Then g, e Fo(M; M,) and || g.lll € exp(1/n) so that

&(1/p) € V, with llg,(1/p)liv, < exp(1/n).

Put
X» == exp(— 1/n)g,(1/p), neN.
Then
1€V, with |ixlly, <1
and

%s = exp(— 1/n)exp(1/(mp*))f,(1/p) — f(1/p) = v,(a)
in V. 7

PROPOSITION 35. The unit ball of V, is dense in the unit ball of L? (1 < p < 00),

Proof. Let xe L?, |Ixll, < 1. Take x,, ne N, as in Lemma 34. Then the y,
are in the unit ball of ¥, and hence by Proposition 33 also in the unit ball B of I°.
Since x, — xin ¥, we have in particular y, — x o(¥, V¥). Now since L? is conti-
nuously embedded into ¥, the (Hausdorff) topology on L” induced by o(V, V#)
is weaker than ¢(L?, L9). Since B is compact in o(L?, L?) (L? is reflexive), these topo-
logies coincide on B. We conclude that y, — ¢ o(L?, L9).

Since x was arbitrary, we have shown that the unit ball of ¥, is weakly dense
in .2, Since it is convex, it is also dense with respect to the norm topology on L.

Combining Proposition 33 and 35, we can now finally prove the main theorem:

THEOREM 36. For each p e]l, oof, we have
Vo==L? and . gfu'p ==,

Proof. Denote by j the continuous embedding of ¥V, into L?. Denoting B,,
resp. B/, the cl‘o_sggl ball with radius » and center at the origin in L7, resp. ¥,
we have B, < j(B;) and hence

B, =rB, < rj(B}) = j(B))
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for all re R, . By [24, p. 171, Lemma 17.2] we conclude that then
B; = j(Bi+0)

for all ee R,. In particular B,, and hence L?, is contained in V. If y € L? with
IX]l, = 1, then ”X”V,, <1+ ¢ forall ee R, , whence ”X”yp <l=xl,.
In all, we have proved that ¥, = L? with equal norms.
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