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HYPERCONTRACTIONS AND SUBNORMALITY

JIM AGLER

0. INTRODUCTION

In this paper s will always refer to a separable Hilbert space over the complex
numbers. Z(#°) will denote the bounded linear transformations of #. The following
theorem is well known ([4], [9]).

THEOREM A. Let S denote the unilateral unweighted shift of multiplicity one
and let S denote the direct sum of a countably infinite number of copies of S*.
Let T € L (). T has an extension to S* if and only if ||T|| <1 and T™ — 0 strongly
as m — oo.

In [2] the following analog of Theorem A with S replaced by B, the Bergman
shift, was proved.

THEOREM B. Let T € (). T has an extension to B* if and only if ||T|| <1,
1 —2T%T 4 T#2T?% 2 0, and T™ — 0 strongly as m — co.

A comparison of Theorem A and Theorem B above seems to suggest that
they are but the first two theorems in an infinite sequence of theorems. This sequence
of theorems is described in Section 1 of this paper. Loosely speaking, for each
positive integer n > 1 we introduce a class of operators T, which is defined in a simple
way using a system of polynomial inequalities in 7" and T* (and which we call the
n-hypercontractions); for each n there is also a weighted shift S,. Our theorem
(Theorem 1.12) then states that T € .#(#) has extension to S¥© if and only if T
is an n-hypercontraction. When n = 1 the theorem is Theorem A above and when
n = 2 it reduces to Theorem B above.

Our initial proof of Theorem 1.12 which appears in Section 1 is based on the
techniques in [2]. In Section 2 we give a different proof based on the Rovnyak-
-de Branges construction ([7] and [4]). While considerably less amenable to generaliza-
tion than the proof in Section 1, the proof in Section 2 has the advantage of being
vastly more elementary.

In Section 3 we answer the question: What are the operators that are n-hy-
percontractive for every n? The answer (Theorem 3.1) is surprising not only because
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it is so simple (7 is an n-hypercontraction for every # if and only if T is a contractive
subnormal) but also because it makes us realize how little we understand the ge-
stalt behind many of the intrinsic conditions for subnormality. Section 3 concludes
with an attempt to deal with this unpleasantness by translating Theorem 3.1 into
an approximation theorem on the bidisc.

1. n-CONTRACTIVE MODELS

In this section for n a positive integer, .#, will denote the Hilbert space of func-

tions f(z) = Yy f(k)z"', defined and analytic on the open unit disc D, and satisfying
k=0

IF1E =¥ (4,0 1S < o0. Here w, is defined by

k=0
(1.1) =)= wex*, |xl<1.
k=0

Equivalently, .#Z, can be defined as the Hilbert space with reproducing kernel k,(z) ==
= k(w, z) = (1 — wz)~" (see [3]). Define an operator S, on.#, by

S{f)@) =z2f(z) fe,.

Notice that S; is the unilateral shift and S, is the Bergman shift and that, in general,
S, is a weighted shift. The following proposition gives yet another description of
the space .#,, now as an H2(u) space. As a consequence it is clear that .S, is sub-
normal. Other relevant information about S, is also summarized in the propo-
sition.

Define a sequence of nonnegative measures v, on [0,1] inductively as follows.
Let v, be the unit point mass concentrated at 1. Define v,.; in terms of v, by
requiring

(1.2) sptv, = {0,1] and v, (E)= g2nr v ([r, 1D dr
E

for all Borel sets £ < [0, 1]. Define a measure g, on D~ by du,(re®) = —(210— dv,(r).
T

Let H?(u,) denote the completion of the analytic polynomials in L2(y,) and let M,
denote the operator multiplication by z on H2(u,).
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1.3. PROPOSITION. The map I, which sends p(z) € 4, to p(z) e H¥y,) is a
densely defined (on polynomials) Hilbert space isomorphism. S, is unitarily equivalent
to M,.o(S,) =D, ¢S, = 0D (equivalently, ). — S, is Fredholm for every
Ae€D), and S, is essentially unitary.

Proof. We first show that 7, is isometric. The other facts will then follow
immediately. We proceed by induction. That [, is isometric is of course quite well
known. Assume I, is isometric. Since the monomials are orthogonal in both H2(u,)
and .#, it is enough to show that

k”2

{7 Zk)”2 = ||2"[[34+1
Hpt+a

for every k = 0. The critical fact that we shall use is that (k + Dw, o =AW, 1,
which is obtained by differentiating (1.1). We have

e = — e = L
Warte K+ 1w
n n .
Ty o
k41 k+1 "

1 r

n

1
= l;,—ij_]_ Sr”‘”dv,,(r) = S (Ss2k+1 ds) 2ndv,(r) =
H

0 0

1 1
~ Ssﬂc 2nsv,(Ts, 1)ds = Ssz"d hoa®) = L@
atl

0 0

and consequently, [, is isometric for every n. Trivially, I, has dense range. Hence 7,
implements an equivalence between S, and M, on H?(u,). It is-easy to verify that
i, is mutually boundedly absolutely continuous with respect to area measure on
compact subsets of D when # > 1. Since we also have spt(u,) < D~ for every n it
follows that 6(S,) == D~ and that ¢,(S,) = 0D. Finally, since S, is a cyclic sub-
normal the Berger-Shaw Theorem implies that S, is essentially normal. Since
0.(S,) = 0D it must be the case that S, is essentially unitary. In the case of this
simple weighted shift this can also be shown by direct computation. This concludes
the proof of Proposition 1.3.

We now are ready to describe the operators which can be modeled as parts
of operators of the form n(S*¥) where 7 is a representation on #(.#,) with n(1) = 1.
The remainder of this section relies heavily on the techniques of [2]. In particular
recall that an hereditary polynomial is a polynomial p(x, ¥) in two noncommuting
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variables x and y, of the form,
(1.4) p(x,y) = Yeyyixt.

If p is the hereditary polynomial of (1.4) and b € B where B is any C*-algebra with
identity then p(b) is defined by

p(b) == Zcijb*jbi .

Thus, for example, if n = 0 is an integer and T is an operator,
(== 35 0¥ ”)T*krk.
k=0 k

We let 2 denote the set of hereditary polynomials. If B is a C*-algebra with iden-
tity and b € B we let H(b), the hereditary manifold of b, be defined by H(b) =
={p®) |p e 7}.

For the convenience of the reader we state the results from [2] that we will
require. The first of these is based on Theorem 1.5 in [2].

1.5. THEOREM. Let B be a C*-algebra with identity and let b € B. A bounded
operator T has the form n(b) I./V where w is a representation of B (n(1) =: 1) and
N is invariant for 7(b) if and only if the map ¢ defined on H(b) by the formula o(p(b))=
= p(T) is in fact well defined and completely positive.

Proposition 1.3 guarantees that .#, is a regular analytic model atom (this
is language from [2]). Thus the following theorem follows from Theorem 2.3
in [2].

1.6. THEOREM. Let T € L () with o(T) < D. T has an extension to S;'™
if and only if (1 — yx)" (T) = 0.

The following result may be deduced directly from Proposition 1.3 or obtain-
ed as a corollary to Theorem 2.8 in [2].

1.7. THEOREM. If w: L (M,) - L(A) is a representation with n(l) =1
then n(S,) has the form S{™ @ U (either summand may be absent) where m is a
possibly countable infinite positive integer and U is unitary.

Our next result follows from Lemma 2.4 in [2].

1.8. PROPOSITION. Let p € 2. p(S¥) = 0 if and only if p(z, w) (1 — Zw)~" is
positive definite on DXD.

The final result we shall need has nothing to do with [2].
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1.9. LEMMA. Let T e £(#) satisfy (1 —yX)T) = 0 for all k < n. Then
(1 — yx)*@zT) > 0 for all k < n whenever |z| < 1.

Proof. Let k < n. Then
(I — p)eT) = (1 — |z2lPy)"(T) = (1 — yx + (I — [z2Byx)4T) =

= ( ) ('f)(i—lzi?)?—fy’f-fa )k )(T>=
Zo\j

~% (k')(l_‘z‘z)k_jT’:"“j(l—yx)"(T)T"-f :
j=o\j

But by assumption this last sum is a linear combination with positive coefficients
of positive operators and hence is positive. We conclude that (I — yx)“(z7) >0
and this establishes the lemma.

1.10. THEOREM. Let T € L(H) with H separable. T has an extension to an
operator of the form S¥© @ U where U is unitary if and only if (1 — yx)y(T) > 0
Sor all k < n.

Proof. We first verify the easy half of the theorem. Let T = (S} @ U) |«
where U is unitary and .# is invariant for S} @ U. If P denotes projection onto
A/ then,

(1 = yx)XT) = P((1 — yx)(SF) ® (1 — yx)"(U)) | .

Hence (1 — yx)(T) > 0 follows from (1 — yx)*(§*) > 0 and (1 — yx)*(U) > 0.
But (1 — yx)*(U) =0 forany k > 1 and by Proposition 1.8, (1 — yx)*(S*¥©) > 0
if k<an.
Now assume that (I — yx)* (T) = 0 for k < n. It follows from Lemma 1.9
that
(I —yx)*eT) =0

whenever & < n and |z| < 1. Since T is a contraction it is also the case that a(zT) =
< D whenever |z} < 1. It follows from Theorem 1.6 that z7 has an extension to an
operator of the form S¥© whenever |z{ < 1. Consequently by Theorem 1.5 the
map,

p(SYF) = p(zT),

defined on the hereditary manifold of S} is well defined and completely positive for
every |z| < 1. It follows that the map

p(S¥) = p(T)

is well defined and completely positive. Thus, by Theorem 1.5, T has an extension
to an operator of the form =(S}¥), where = is a representation on Z(4#,), and n(l)=
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=1. By Theorem 1.7, n(SF) has the form S*® @ U where U is unitary. Since S;®’
has an extension to S this concludes the proof of Theorem 1.10.

Theorem 1.10 suggests the following definition.

1.11. DEFINITION. T € Z(H#) is a hypercontraction of order n if (1 — yx)*(T) >0
whenever 1 < k < n. The collection of hypercontractions of order # on a space #
will be denoted €, (). If T € €, (H#) we say T is strong if T" — 0 strongly as

m— 0.,

We remark that it is a consequence of Lemma 2.11 in the next section that
T e #(s) is a strong hypercontraction of order » if and only if T — 0 strongly
and (1 — yx)"(T) > 0. The significance of strong hypercontractions is revealed in
the following theorem whose proof is obtained in a simple way from Theorem 1.10
(using the fact that S¥™" — 0 strongly).

1.12. THEOREM. Let T € L(H#) with H# separable. T has an extension to S¥*
if and only if T is a strong hypercontraction of order n.

2. THE EXTENSION THEOREM VIA THE
ROVNYAK-de BRANGES CONSTRUCTION

In this section we show how Theorem 1.12 in Section 1 can be obtained by
the Rovnyak-de Branges construction ([7], p. 34; [4]). While from the point of view
of the general coanalytic model this construction is severely restricted, in the case
of hypercontractions it has the advantage of displaying the extension concretely and
in a geometrical form, without reference to complete positivity. The natural level
of generality of the Rovnyak-de Branges construction will be discussed in a future
paper.

To begin let us first recall how Rovnyak and de Branges proved the follow-
ing theorem.

2.1. THEOREM, Let T € L(#). T has an extension to S§F™ iff T < 1 and
Tk 3 0.

Set A = # ' = set of square summable sequences of vectors from .
If {fi}20 € A define

o]

2.2) ARl = Y HIAIE.

k=

Let W: 3¢ — A be defined by

23) W(f) = {( — T*T)°T*f )i,
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and let S_: A — A be defined by
(2.4) ‘ S_({f2e) = U)o

It is not immediately apparent that (2.3) defines a map into #". That W is in fact
well defined and indeed is an isometry follows by noticing that

m

i I =TT TEflr =%, (IT* SR — T+ 11D = NP =17+ R

Since [[T™*1f]| -0 as m - 00, W is well defined and isometric. The proof of
Theorem 2.1 is now complete since

2.5) S_ = SFe
and
(2.6) S_W=WT

together imply that T has an extension to an operator of the form S7 .

In order to use the argument just carried out to prove Theorem 1.12 only
cosmetic changes are required. Accordingly fix T'e £(#) with (1 — yx)"(T) = 0
and T*25, 0. Define o, to be the Hilbert space of sequences {fx}20 of vectors
from # with

@.7) ARl = ¥ wallfilit < oo.

k=0

Evidently, if n = 1 then (2.7) reduces to (2.‘2). Define S_ € Z(o#) as in (2.4). It is
left as an exercise to verify that the analog of (2.5) is now

(2.8) S. = S,

Since 1 — T#T = (1 — yx){(T) it is natural to replace (2.3) with

2.9 Wo(f) = {0 — yx)" (TN T*f Y20 € Ay

If we suspend concern for the moment over whether (2.9) actually defines an oper-
ator itis nevertheless clear that a least formally (2.6) holds and consequently in light
of (2.8), to establish Theorem 1.12, it is enough to verify that the map W, of (2.9)

is isometric. This we now do. The unpleasant part of the proof is in the following
two lemmas.
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2.10. LeMMA. Let w,, be defined as in (1.1). Let j = [lc —;—1] Then

Wotyk 2
Q) Mg F
Ji

W
b) lim -2E¥l —
koo w'"k

. W,
c) lim nk+1 — 1,-

k—oo w"k‘jk

d) Wok — Wygo1 = Wypo1g-

(=)
Proof. By differentiating (1 — x)~' = Y} x* n — 1 times one sees that w,,=
k=0

n 1
= L I1 (k -+ 1). The assertions of Lemma 2.10 follow immediately.

(}7 — l)' 1-1
2.11. LEMMA. Suppose T € L(#) satisfies (1 — yx)"(T) >0 and T* -0
strongly as k - oo, Then Te € (#) (ie. (1 — yx)" (T) = 0 whenever m < n).
Furthermore, w,, {T**+}(1 — yx)"=X(T)T**+'f,f> — 0 as k — oo for every m<n
and every fe .

Proof. For convenience set R, = (I — 3x)"(T). Since R,>0 is equivalent
to T*R,_,T < R,_, we see that T**R _, T < R,_, for every k. Since T -0
strongly it follows that 0 < R,_,. Thus we see by induction that 0<R,, for every
m < nand T e 6, (#). The second assertion of the lemma is also shown by induc-
tion. It is apparent that when m = 1, w  T**R, _ \ T*If, £ = [|[T*+1 f]2 - 0.
Assume that w,, (T**'R,,_, T***, > > 0 as k - oo for some m < n and some
fes. We want to show that w, ., (T*+T R T*+1f, 5 50 as k -»o00. For

) k41
each k let j, = [2—— . We have

Wns k<T*k+1 RmTk+1 f;f> <

2

(l) < _?’1‘“'n:k+1jk<T*k+l‘err T/(+1_f;f> =

2 LI :
= PT;’I— Wi k+1 Z <T“J\+1RmTk+l.f!f> <
: -1
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.. 2 i
(ll) < - - . T*k+1—l Tk+1_1 —
m Wimk+1 Z < R,,, f,f>

l==1

. 2 iy 4 1)
i) == W KT TR, T T £y (TR R, TRV ) =

= [ L G, (TR, T g ) —

Wi k—Jjp

_— lvm’i} (M]mk<T*k+1 Rm—l Tk+lj; f>)] -
Wik

(iv) -0 as k > o00.

In the estimate above (i) follows from Lemma 2.10 (a). To see (ii) note that since
m 4 1 <nand 7' is n-hypercontractive (by the first part of Lemma 2.11), 0< R, 1=
=R, — T*R,T. Thus T*R, T < R,, and by induction, T*k+1-IR Tk+1-1 ¢
< TH*k+1 R, T+ (iii) follows since R,, = R, — T*R,,.,T so that the preceding
series telescopes. Finally, (iv) follows from Lemma 2.10(b) and (c) and the
inductive assumption. This concludes the proof of Lemma 2.11.

We now verify that (2.9) defines an isometry and thereby establish Theorem
1.12. Accordingly fix T e #(#) with (1 — yx)*(T) 2 0 and T* — 0 strongly.
We proceed by induction on the following assertion:

The map which sends fin 5 to
P(m) ¢ {((1 — yx)" (T ETEf}20 in A,
is a well defined isometry.
Evidently, since Lemma 2.11 guarantees that 7 is a contraction, the original Rov-
nyak-de Branges argument yields P(1). Now suppose P(m — 1) holds where 1 <

< m < n. We show that P(m) holds. For convenience set R, = (1 — yx)¥(T).
Then

k k
Z wmrHR}lPTerZ = Z wmr<T*rRmTr.fsf> =
==0 r=0

re=

k
= Z w'l1r(<T*"'Rnr—1Trﬂf> i <T*r+1Rm—1Ty+1f’f>) =
r=0
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k
(l) == wm0<Rm—1fs f> + E (wmr - wmr—l)<T*rRm—1Trf’ f> -
k=1
— W TR, (TR, f =
k
(“) = Z Wm—1 r<T*rRm—1Trf;f> — ‘vmk<T$k+1Rm—1Tk+lf;f>*
r=0

where (i) is summation by parts and (ii) follows from Lemma 2.10 (d). Now notice
that

k
Z M)m*‘lr<]1:::"Rm--17"‘.];/‘) - “f“2
r=>0

as k — oo by the induction assumption. Also observe that

‘vmk<T*k+1Rm—1Tk+1.f7.f> - 0
by Lemma 2.11. Consequently,

Y Wl R DT f12 > £12

as k — oo and P(m) holds. This completes the proof of Theorem 1.12 via the Rov-
nyak-de Branges construction.

3. HYPERCONTRACTIONS AND SUBNORMALITY

In this section we examine the following remarkable fact implicitly contained
in the work of Mary Embry.

THEOREM 3.1. T is an n-hypercontraction for every n if and only if T <1
and T is subnormal.

The proof of Theorem 3.1 is a simple matter based on Embry’s Theorem and
Sz.-Nagy’s operator valued version of the Hausdorff moment theorem (also see [6]).
For the convenience of the reader we state these two theorems.

THEOREM. (Sz.-Nagy [8]). A sequence of operators M, satisfies

“— (7 , . ,
Y ( )(—l)"M M,_. 20 for every n if and only if there exists an operator measure

k=0 \K

1
A on [0, 1] such that M = S t"dA.
3
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THEOREM. (Embry [5]). An operator T is subnormal if and only if there exists

an operator measure A concentrated on an interval [0, a] (a may be taken to be |T||)
a

Such that T*'T" = Stz”dA for all n = 0.

V]

Proof of Tieorem 3.1. Since T is n-hypercontractive for all n, Sz.-Nagy's
1

Theorem implies there is a measure such that T*'T" = St”dA(t). A simple change

0
of variable and an application of Embry’s Theorem yield that 7" is a contractive

subnormal. Conversely, if T e #(o#) is a contractive subnormal with normal exten-
sion N e () (IN]|<1), then (1 — yxy(T)=Py(l — yx)"(N)|#. Since (1 —Zzz)" >0
for ze D~ the functional calculus implies that (1 — yx)*(N¥N) > 0. Hence
{I —yx)(T) = 0 and T is an n-hypercontraction for every n.

One of the motivating points of the remainder of this section is that the proof
we have just given of Theorem 3.1 is not easily generalized either to the case of sub-
~-Jordan operators (equivalently, sub-n-normal) or to the study of n-tuples of subnor-
mal operators. Nor, upon examination, is the proof natural from the point of view
of C*-algebra. The fundamental problem here is that the proof of Embry’s Theorem
relies heavily on the proof of the Halmos-Bram condition; the reason that the remark-
able trickery of the latter proof works is hard to fathom in simple intuitive terms.
To get a handle on the non C*-algebraic content of Theorem 3.1 let us recall the
following C*-algebraic triviality from [1].

THEOREM 3.2. T is subnormal with \|\T|| < 1 if and only if p(T)=0 whenever
peEPandp(z,z) =2 0forallze D-.

It is apparent that Theorem 3.1 and Theorem 3.2 combine to give the fol-
lowing theorem.

THEOREM 3.3. The following conditions on an operator T are equivalent :
(1) p(T) = O whenever pe 2 and p(z,z) = 0 on D,
(2) p(T) = O whenever p e P and p(x, y). = (1 — px)".

An examination of Theorem 3.3 seems to suggest that Theorem 3.1 is the
operator theoretic reflection of a two variable approximation theorem. We now
state this theorem and show how to pass between it and Theorem 3.1.

THEOREM 3.4, Let A? denote the set of continuous functions on D~ XD~
that are analytic on D XD with the topology of uniform convergence. Let M =
={/e€ A% f(z,2) >0 for all z € D} and let € be the convex hull of the set of f € A of
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the form f(z, w) = (1 — zw)”p(z)ﬁ(ﬁ) where n is a nonnegative integer and p is a poly-
nomial in one variable. Then €~ = .4.

We first show how Theorem 3.1 implies Theorem 3.4. Tt is clear that ¥ < .#.
Hence ¢~ < .#. To show the reverse inclusion we argue by contradiction. Let
hg € 4/]€ . Using one of the many variants of the Hahn-Banach Theorem, there
exists a linear functional A on 4% with

ReA(hy) <0 < ReA(f)
for all fe €. Extending A to C(D~ xD-) and representing the extension with a
measure yield a measure v with support in D~ XD~ and satisfying

(3.5) ReShodv <0< Regfdv for all fe @.

Let ¢: D~ XD~ — D~ X D~ be defined by ¢(z, w) = (w, z) and define a mea-
sure p by the formula u = (1/2)(v + v—;Tp). If 1 e 4, then in particular h(z, z) is
real valued. It follows that g = /i — s ¢ is holomorphic on DXD and vanishes

on {(z, z) ] ze D}. Hence g = 0 on DxD and we conclude 1 = ho g forall he . #.
Consequently, if & e.#, then

Re\ idv = »L( hdv +— Edif) = --1— hdv + - 1— hoo dvo o =\ hdpu.
2 2 2
Combining this last observation with (3.5) yields

(3.6) Shodu <0< Sfd,u for all fe &.

We now define a Hilbert space. Let P denote the polynomials in one complex
variable and let N < P denote those polynomials p with the property that

S p(2) p(wydp = 0. Cauchy’s inequality and (3.6) guarantee that N is a subspace.

Define an inner product on P/N by the formula
[P+ N,q+ N =Sp<z) G

That [-,-] actually is an inner product is guaranteed by (3.6). Let H?%(u) denote
the completion of P/N with respect to [-,-]. It is apparent that the polynomials are
dense in H?(u). Densely define an operator M on polynomials p(z) in H*(u) by
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the formula
M(p(2)) = zp(2).

Fix a polynomial p. Then

IpIF — IMpIP = [p, 0] — [Mp, Mp] = Sp(z»?@du —Szp(z)w‘ﬁ@)du -

~ S(l (@) 2 0,

by (3.6). It follows that M extends to a contraction on H%(u) which we will denote
by S, . In fact, S, is an n-hypercontraction for every n since

[(1 — »x)*(S,) p, Pl [( y (—1)’»( ) kSL‘)p,p] =

i —1)"( ) uD> Supl= Z (—l)k(';)gzkp(z}w"p(iv')du =

S ( Y (“1)k( )kak) P(Dp)dp = S(l — zw)'p(z) pw)du > 0

by (3.6), and the polynomials are dense in H2(yu).

It follows by Theorem 3.1 that S, is a contractive subnormal. Also, since the
polynomials are dense in H?(u) the vector 1 is cyclic for S,. By Bram’s Theorem
there exists a nonnegative measure ¢ with support in D~ such that

[P(S)1, g(SH1] = S pido

for all polynomials p and ¢. In particular, for » and m arbitrary nonnegative inte-

gers we have
S Z"whdu = S z"z"de.

Taking linear combinations of this last fact and noting that the polynomials in two:
variables are uniformly dense in 4% we conclude that

Sh(z, wydp = S h(z, z)do
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for all /1 € A% In particular since /iy(z, z) > 0 and ¢ > 0 we conclude that
S/zod,u = 0.

But this contradicts (3.6). Hence .#/ @ %~ and the proof of Theorem 3.4 is complete.

We now show how Theorem 3.1 can be made to follow from Theorem 3.4.
Fix Te £(#) with T n-hypercontractive for every n. Assume that 0 <r < 1.
By Lemma 1.9, rT is n-hypercontractive for every »n. In particular,

(1 —yx"(rT) > 0

for every n. Hence we also have,

(3.7) p(rTY(1 — yx)'"GTHpGT) = 0,

oo
for all » > 0 and every polynomial p. For f(z, w) = Y amz™w"e A and R

m, n=0

and S operators with 6(R), 6(S) < D define f(R, S) by the formula,
f(R9 S) = ZamnS"Rm .

It is apparent that if pe & and p € 42 is defined by p(z, w) = p(z, w) and R is as
above, then p(R) = p(R, R®). It also can be easily verified that if R and § are as
above and f, tends uniformly to fin 42, then £,(R, S) tends to f(R, S) in operator

norm.
The assertion (3.7) now translates into the assertion:

(3.8) fOT, rT%) > 0 forall fe @.

But Theorem 3.4 now allows us to conclude that in fact 3.8 holds for all fe.Z.

In particular, p(+T) > 0 for all p € & that satisfy p(z, z) 20 for all z e D. But p(T) =

== lim p(+T). Thus p(T) > 0 whenever p e Z and p(z, Z) = 0. By Theorem 3.2 we
Pl

conclude that T is subnormal. This concludes the proof of Theorem 3.1 using

Theorem 3.4.
Research partially supported by NSF grant 81-02518.
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