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In this paper the classes .., and .., which were introduced in [1], [2],
play a fundamental role. Recall that a complex valued function 4 on (—2a, 2a) is

called Hermitian if h(—t) = h(t) (—2a <t < 2a), and that P, (6,,,), 0 < a < co,
is the set of all continuous functions f (g) on (--2a, 2a) which are Hermitian and
for which the kernel

Fy(t,s) :=f(t — ) (Gy(t,s) := g(t — ) — g(t) — &(s) + g(0), resp.)

{0 < s, < 2a) has x negative squares. We put P, := Pr.oo, B, 1= 6, .
It turns out that an arbitrary function f e ., has a continuation in B, (see
{11, [3]), that is there exists a continuous Hermitian function f on the real axis such
that ftt) = f(t) (—2a < t < 2a) and that the kernels F,and F; have the same number

» of negative squares. This continuation can be uniquely determined or not, and the
question arises to give criteria for either case. If f € P,,, has a unique continuation

fe P, we shail say that the continuation problem for f is determined, otherwise it
is called indetermined. In the second case the following problem naturally arises:

How to describe the totality of all the continuations f'e P, of f? The descriptions
given in this paper will always be of the following form: There exist four entire func-
tions wy, j, k == 1,2, such that the equality

w1 (2)T(2) -+ wye(2)
W (2)T(2) + Was(2)

—i S e~ 2 f()dt = (Imz < —7y)
(1}

for some y > 0 establishes a bijective correspondence between all continuations
feP,of fandaliT e ND. Here 1\70 denotes the “Nevanlinna class” N, consisting
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of all functions T which are holomorphic in the open upper half plane C., , map this

half plane into itself, and are extended to the lower half plane C_by T (z)=T_(Z—),
augmented by oco. The matrix function W = (wy); giving such a description
will be called a resolvent matrix of the function feP,... If it is normalized by
W(0) = I, and satisfies some further conditions the resolvent matrix of f€PBua
will be uniquely determined.

Similar questions and results arise for functions g e ®..., and we shall use
a corresponding terminology. If x = 0, for f€ Py, and g € Go,, these questions
were completely answered by M. G. Krein (4], [5], [6]). In their full generality for
% >z 0they will be considered in Part V of this series, see [7]. In the -present Part IV
we consider functions /€ .., and g € 6., of a special form, namely we suppose
that they have an accelerant. Recall that the Hermitian function g on (—2a, 2a),
0 < a < o0, is said to have an accelerant H if it admits a representation

t
0.1) g(t) = g(0) — ajt] — S(t — $)H(s)ds (—2a <t < 2a)

o
with some % > 0 and a function H € LY(~—2a, 2a) if a < oo and H € L} (—oc0, o)
if @ = co. Evidently, g" = — H exists on (—2a, 0) U (0, 2a) and we have g'(0-}) —
— g'(0—) = —2x < 0. It turns out that an arbitrary Hermitian function g with
accelerant belongs to classes ®..,, and P,-,,. In this special case the solutions to the
problems formulated above can be given in much more explicit form than for gene-
ral functions of P,., or G, . ‘

The basic tool in this paper.is the theory of n-selfadjoint and n-Hermitian ope-
rators, and in particular the theory of entire operators in n,-spaces (Pontrjagin
spaces of index x), see [8], [9]. The n-scalar product arises e.g. as follows:
©.2) [, ¥] = S PV dt + S S H(t — )p(W(Dds dr

—-a —a —a

for ¢,y € L*—a, a). In the construction of the resolvent matrix for a given func-
tion g € G,,, of the form (0.1) there appear in a natural way entire functions which
can be considered as continuous analogues of orthogonal polynomials of first and
second kind on the unit circle with respect to an indefinite weight function. We
call these functions the orthogonal functions of first and second kind associated with
the accelerant H. Their study, in its turn, led us to statements about the zeros of
some classes of entire functions which can be considered as continuous analogues of
the theorems of Hermite and Schur-Cohn.

Now we describe the contents of the paper. In § 1 we study the integral

equation
2a

(0.3) o(t) + S H(t — s) p(s)ds = u(t) (0 <t < 2a)

[}
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for a given function H € LY —2a, 2a). If u = 0 the solutions of (0.3) form a D-chain,
see Theorem 1.1. This fact can be considered to be known. However, we prove
some statements about the zeros of the Fourier transform of the generating ele-
ment of this D-chain which are, apparently, new. Further, the resolvent kernel of
the inhomogeneous equation (0.2) is studied.

In § 2 some basic facts for Hermitian functions with an accelerant are proved.
In particular we show that these functions belong to classes ®.,, and .., and
give criteria for the corresponding continuation problems to be determined or inde-
termined. The theory of entire operators in m,-spaces, in particular the resolvent
matrix of an entire operator is used in § 3 in order to describe all the continuations
of f € P, With accelerant in the indetermined case. In §4, after recalling some gene-
ral results of De Branges, we show that the resolvent matrix of a function f'e ..,
with accelerant satisfies a canonical differential system with a Hamiltonian which
has a constant determinant.

In § 5 it is shown that the functions /e P, with f(0) > 0 and g € 6, are
connected by a simple transformation (comp. [2]). If f has an accelerant Hy, then
also the corresponding function g has an accelerant H, and these accelerants satisfy
an integral equation. This fact and the results of § 3 give the possibility to find a
resolvent matrix of g € ®,,, with an accelerant in the indetermined case.

The orthogonal functions D(z) and E(z) of first and second kind, respectively,
associated with the accelerant H, are introduced in § 6. We prove the fundamental
identity

D(2)E*(z) + D*(2)E(z) = 2,

and .give characteristic properties of the orthogonal functions. With a given ac-
celerant H we construct a dual accelerant H; such that the orthogonal functions of
first and second kind exchange their roles if we replace A by H, . In case x = 0 ortho-
gonal functions of first and second kind were first introduced in [10]; for 2 > 0
orthogonal polynomials on. the unit circle with respect to an indefinite weight were
introduced in [11].

In § 7 a continuous analogue of the theorem of Schur-Cohn is proved. We
mention that in [12], [13] a similar result was proved for functions which are, ap-
parently, more general than functions corresponding to an accelerant. However, they
are less general than the functions in Theorem 7.1, where it is shown that Hermite’s
theorem generalizes to entire functions of arbitrary order if only their Weierstrass

expansion has certain properties.

. 1 d .
In § 8 we express the J,-resolvent matrix of the operator A, :—'T in
i de

the n,-space, corresponding to the n-scalar product (0.2), by the orthogonal functions
of first and second kind and give in § 9 a description of all the continuations g € 6,
of the function g € G,,, from (0.1), if this continuation problem is indetermined.
If % = 0 this description can be considered as the continuous analogue of the formu-
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lae of Artjomenko and Geronimus (see [14], [15], [16]), describing the solutions of
the problem of Carathéodory. Thus, in §5 and §9 we find two resolvent matrices
for a given function g € G,,, with accelerant in the indetermined case. It follows
from a general result of [9] that these resolvent matrices (after a suitable normali-
zation) must coincide. It would be interesting to prove this in a straightforward way.

In § 10 we show that the results of §§ 5, 9 can be used in order to find resolvent
matrices for a function f € ..., with accelerant in the indetermined case. These resol-
vent matrices are expressed in terms of the orthogonal functions of H, or H, where [
and g are related by the transformation of § 5. Thus, for a function fe P, with
accelerant, f(0) > 0 and infinitely many continuations in 4B, , in §3 and §10 we
give three forms of the resolvent matrix.

In § 11 we derive canonical systems which are satisfied by the resolvent matrix
of g € ®,., with accelerant, and show that in case x = 0 the spectral measures of g
coincide with the spectral measures of these canonical systems. Finally, in § 12 we
consider the particular case of a real function g € ®,,, with accelerant H. We give
a description of all its real continuations in &, and show that in dependence of the
smoothness properties of H the canonical system can be transformed into an equation
of a vibrating string or a Sturm-Liouville equation. Thus, in fact, we give a-solution
of the inverse spectral problem for Sturm-Liouville equations. There, apparently,
the descriptions of all the spectral measures 7 such that suppt n (—oo, 0) consists
of a given number x of points is new.

If % = 0, the considerations in this paper lead us close to the solution of inverse
spectral problems for a canonical differential operator. These questions, however,
will not be considered here.

Some results of this paper were announced in [17]. There also the solution of
the continuation problem for general functions of .., and &, was formulated,
which will be proved in Part V. In Part V we shall also give a complete solution of
the continuation problem for helical arcs in Bélyai-Lobadevskil spaces. These pro-
blems were considered in [18], [19].

Finally we mention that, apparently, most of the results of this paper gene-
ralize to the case of matrix functions (for x = 0 comp. [20], [21]).
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§ 1. INTEGRAL OPERATORS WITH DISPLACEMENT KERNELS

I.1. Let 0 < a < oo and H € LY—2a, 2q). With the function H we associate
the operator H in L*0, 2a) or in C(0, 2a), given by

&)

a

Hop)(1) :=\ Hit — s)p(s)ds (0 <t < 2a)

[SLE

where ¢ € L¥0, 2a) or ¢ € C(0,2a). Then H is a bounded operator in C(0, 2a).
Indeed,

2a
max [(Hp)(| < max S|H(r—s>|ds||<o||c
0t <2a 0<rg2a
o
whence
2a 2a
[|H|c € max S[H(t—s)lds < S |H(s)|ds.
<£t<ka
) -2a

Approximating the function H on [—2a, 2a] by polynomials in the L'-norm it is
easy to see that H is even compact in C(0, 2a) (comp. [22, 111, § 10.1]).
Now suppose additionally that H is Hermitian:
H(t) = H(—t) (—2a<t<2a).%

Then H is selfadjoint in L*0, 2a), and from a general result of the first author
(see [23]) we conclude that H is compact in L0, 2a),

2a 2a
(1.1) IH|,. < max S |H(t — 5)|ds < S |H{(s)| ds,
0<2<2a
0 —2a

#) If the considered functions are only summable, equalities are always understood to hold
almost everywhere. Some of the results of this section (in particular the statements (1°) and (2"))
are true also for non-Hermitian H.
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the spectra of H in C(0, 2a) and L%*(0, 2a) and the corresponding eigenspaces to non-
zero eigenvalues coincide. Theorem 1.1 below describes the structure of these eigen-
spaces.

In order to formulate it, if A =4 # 0 by %, _,, we denote the number of
positive (negative) squares of the Hermitian, possibly degenerated scalar product
(H— Do, ¥),2, @, ¥ € L¥0, 2a), if 1 > 0 (4 <0, respectively). Evidently, x, .,
is the total multiplicity of eigenvalues > (<2, respectively) of H.

THEOREM 1.1.% If H € LY(—2a, 2a) is Hermitian and ). € 6(H), / # 0, then the

corresponding eigenspace is spanned by absolutely continuous functions @y, @1, ..., @,
with the properties

— do(t
02 =)=, o= (0< 1<)

(1.2)
00 =02a)=0 (k=0,1,...,n—1), ¢,2a) #0.
The real entire function ®,:

2a

(1.3) Py(2) := el S po(Ne~iztdt  (ze C)

0
has only a finite number of nonreal and nonsimple real zeros. If z,, ...,z, are its

zeros in C,. ™ and z,.,, ..., z, its nonsimple real zeros, their multiplicities x(z;),
+ I+1 s “m ’ i
J=1,..,m, satisfy the estimation

(1.4) ZI‘, (z;) + "E' [ %(z;) } T

j=1 JiT+ 2

The sequence of functions ¢,, @;, ..., ¢, in Theorem 1.1 is called a D-chain
of eigenvectors of H corresponding to the eigenvalue 4.

An analogue of the first statement of the theorem for the half axis was proved
in [24). For a finite interval this statement (even for non-Hermitian H) was proved in
[25] and under an additional assumption of H in [26]. For the convenience of the
reader we shall give a complete proof of Theorem 1.1 in the next section.

1.2. With the function A € L)(—2a, 2a) an operator H can also be defined on
other spaces. Let L be one of the spaces LY(0, 2a) or C'(0, 2a), where C'(0, 2a) is

*) Recently a generalization of Theorem 1.1 to the case of a generalized function H was
announced by L. A. Sahnovi€ in his article: On the eigenspaces of an operator with difference
kernel (Russian), fzv. VysS. Uéebn. Zaved. Matematika, 12(1983), 75—1717.

*#) C,(C_) denotes the open upper (lower) half plane.
*#%) Here, e.g., the first sum is zero if D, has only real zeros.
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the Banach space of all absolutely continuous functions ¢ on [0, 2a4] with the norm

loll := max |+ \ jo’(r)dr.
0<t<2a

Ko
S ™) o

Then the following statement is known (comp. [22]):

(1°) If H € LM—2a, 2a), the operator H maps L into itself. Its restriction HIL
is compact in L, we have 6(B|L) = ¢(B) and the eigenspaces of H|L and H, cor-
responding to nonzero eigenvalues, coincide.

(2°) If H e LY(—2a, 2a), + € o(H), A #0, the corresponding eigenspace is spanned
by absolutely continuous functions ¢q, @1, ..., @, with the properties

(1.5) oul) = <P (0 < 1 < 20),
!

00) = ¢ 2a) =0 (k=0,1,...,n—1),
(1.6)
[@,(0)| + l@,(2a)] # 0.

Proof. Without loss of generality we suppose 2 = —1; the corresponding
eigenspace of H (H*) will be denoted by S (S* respectively). According to (1°) the
elements of S and S* are absolutely continuous functions. It is easy to check that
the mapping ¢ — ¢*: @*(t) := ¢@(2a — t) establishes a bijective correspondence
between S and S*.

Let p be a nonnegative integer such that

2a
L.7) ‘ S(p(t)t"dt =0 forall pe S, k=0,1,...,p—1,
) }

2a
S(p(t)t"dt # 0 for some ¢ € S. Then, by the correspondence between S and S*,
0

p is also the smallest integer such that \ @(1):?d¢ # 0 for some ¢ € S*. There exists

©
S ¥

a nonzero function ¢ € S, such that

2a
1.8) S(p(t)t"dtzo, k=0,1,...,n+p—1.
1]
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Indeed, if x4, ¥y, - - -, % IS @ basis of S, we put @(r) = co)o(t) -+ ... + c,xa(t). Then
the first p equations in (1.8) are satisfied by (1.7), the last # equations in (1.8) can be
satisfied by a suitable choice of ¢, ¢;, ..., ¢,.

We consider the function

t

(t — synte-t
o) =\ ——— — ds.
20 S e Ol
Then Yo(0) = ... = Y7 9(0) = yQa) = ... = Yy"*P~P(2a) = 0, and, denoting

2a
bolt) + S HUE — $)o(s)ds = f0),
(]
by differentiation it follows that

va(t) + S H( — s)i(s)ds = 1(2),

L]

L ]

L]
2a

Ve + | He— im0 ds = 1000

0

and f"*9(t) = 0 as PP = p € S. Therefore

SO =+ nt+ ..o+ Vup-t™P with 3, ¥, ..., Yeep-1 € C

As the functions f, f7, ..., f("*P~1 belong to the range of 7 4 H they are ortho-
gonal to S* Observing that p is the greatest integer such that r*j S% for all
k=0,1,...,p—1, it follows 7, =9,41=...=Vy4p,-1 =0 and fP ==
... =f®* — 0, Thus the elements

Po = YP, ..., @, 1= YD

have the properties (1.5) and (1.6). They are linearly independent. Indeed, the

relation
APo + ... + a0, =0

for some oy, ...,a, € C, Y loj| # 0, implies that the initial problem

tgPo + ... + 0,08 =0, @0) = ... = M0) =0
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has a nontrivial solution, which is impossible. Assuming ¢,(0) = ¢,(2a) = 0, it
would follow that ¢,,, := ¢, € S. Then, in the same way as before, the elements
@, -+.» @41 Would be linearly independent, which is impossible as dim S =
=n + 1. The statement (2°) is proved.

Proof of Theorem 1.1. The first part of the theorem follows from (1°) and (2°).
We have only to observe that for an Hermitian function H the eigenspace S, of H,
corresponding to 1€ o(H), 2 # 0, has the property that ¢ € S implies ¢* € S,
@*(t) := @(2a —t) (0 <t < 2a). Therefore, if for a moment the function ¢,
in (2°) is denoted by ®,, we can put

@o(t) = 3?0(0 + @022 — 1),
or, if this vanishes identically,
Po(t) = io(1).
In order to prove the statement about the zeros of ®@,(z) in (1.3), we introduce
the (degenerated) scalar product

(1.9) [0, ¥] := (H — Do, )2 (9, ¥ € L0, 22))

on L0, 2a). The eigenspace S; of H corresponding to the eigenvalue 1 € o(H) is the
isotropic subspace with respect to the scalar product (1.9), and the factor space
L*0,2a)/S, =: L*(H — AI) equipped with this scalar product is a n,-space with
% = %y, _,, positive squares if 2 > 0 and » = % _, negative squares if 1 < 0.

Let A, be the following operator in L*0, 2a): D(A,) is the set of all absolute-
ly continuous functions ¢ € L*0, 2a) such that ¢’ € L*0, 2a) and ¢(0) = ¢(2a) =0,

1
Ao 1= = @' (9 € D(4,)).
It is easy to check that

[Aop, V1 = [0, AY] (9, ¥ € D(4,)),

hence A, induces a closed n-Hermitian operator in L2*(H — AI), which will also-
be denoted by Ay. As A € o(H) this operator is n-selfadjoint. Indeed, for arbitrary
u € L¥0, 2a) the equation (4, — zI)¢ = u, considered in L¥(H — AI), has a solution.
@ € D(4o):

o(t) = iei* ((S e~ i=u(s)ds — i;_———g;; ;Zz) OS e‘izsqoo(s) ds) ,

2a
(97 (u;2) := S e~ i29(s) ds) if and only if F(¢,; z)#0. The function ¢_: ¢.(t) :=

0

t
= Se"("‘)q)o(s) ds (0 < t < 2a) does not belong to S,. Indeed, otherwise we:
0
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would have
(1.10) 3.0 = ¥, 408(0).
i=0

As ¢.(0) = @4(0) = ... = @{"~V(0) = 0, ¢i{"(0) # 0, it follows that a, = 0. Thus,
if n == 0, the statement is proved. Otherwise (1 > 0), the relation (1.10) implies

n-1
(L.11) U= Y, V().

j=0

As @i(1) = @o(t) + izp,(t), we have ¢.(0) = 0 and (1.11) yields «,_, = 0, etc.

The singularities of the resolvent (4, — zI)~* in L*(H — AI) are poles; they
coincide with the zeros of #(¢,; z) or of @y(z), including the orders. Moreover, if
zo € 0(A,) its geometric eigenspace is of dimension one, spanned by ¢. . Therefore
the algebraic multiplicity of the eigenvalue z, € 6(4,) is equal to the order of the
pole of the resolvent of 4, at z, and hence equal to the order of the zero z, of @,.
Now the estimation (1.4) follows from the fact that it holds for the multiplicities
of the nonreal or nonsimple real eigenvalues z; of the n-selfadjoint operator 4,,
see [8]. The theorem is proved.

RemARK . If z, € 6(4,) is of algebraic multiplicity m > 1, the elements
@, .,
o

t
1.12) §, 0 ::ii(j!)-lg(z—s)fe"o"-”%(s)ds, j=0,1,...,m—1,
.
0

(@, o= ¢_) form a Jordan chain of A, corresponding to z,. It can be seen as
0’ “o0
above that no linear combination of these elements belongs to S, .

REMARK 2. A 7-selfadjoint operator with discrete spectrum has a complete
system of eigen and associated vectors. Thus, under the conditions of Theorem 1.1,
all the functions ¢, . in (1.12) with z, running through o(4,) = {z : % (g,; z) = 0}
form a complete sysotem in L}(H — AI) and, after adjoining a basis of S, , we get a
complete system in L2(0, 2a).

REMARK 3. If, in particular, ».= 0, the function #(¢,; -) in Theorem 1.1 has
only real and simple zeros. This was formulated in [6] (however, there it was not
indicated that for ¢, the first element of a D-chain must be chosen).

1.3. Let again H € L(—2a, 2a) be Hermitian. Besides the operator H, with
H we define the operators H,, 0 < r < a:
2r

H,0)(t) = SH(I —Nels)ds (0 <t <2

[}
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in L¥0, 2r) or C(0, 2r). The point r € (0, 4] is called a singular point of H of order »(r)
if —1 is an eigenvalue of the operator H, of muitiplicity x(r), that is, if the equation
o(t) + S H(lt —s)p(s)ds=0 (0 <1<2r)
[1}
has x(r) linearly independent solutions ¢ (in C(0, 2r) or in L2(0, 2r)). In other words,
r is a singular point of H if and only if the scalar product

[0, 9], := S POV dr + S S H(t — 5)p(s)i(0) dsdt

on L*Q0, 2r) degenerates. By (1.1), this scalar product is positive definite if r is
2r

sufficiently small: S [H(s)|ds < 1.
—2r
(3°) The number %y, of negative squares of the scalar product [-,-], coincides
with the total order of the singular points < a of H. In particular, the number of sin-
gular points of H is finite.
Proof. (a) If 0 < r < a the operators H, in L0, 2a):
2r
LX) = 0000 S Hi— 90()ds 0 <t < 2),
0
depend continuously on r (with respect to the operator norm). Indeed, we have for
O<r'<r<a:

2r 2r

S S H(t — s)o(s) ds — X[0,2r’](t) S H(t — s)p(s)ds ‘2 dr <

0

2r 2r 2r
sS SH(I-——S)(p(S)dS ‘dt—l— S l SH(t—s)(p(s)ds 2dr <
0 2r 2r
2r 2r 2r 2r 2r
<S S !H(t—S)IdSS |G — ) lg(s) dsdr + S S |H(t — ) ds-
[VTad 2r’ 2¢" 0

- S H(t — )l [p(s)2dsdr <

0
2a 2a 2r

<2 S lo(s)i2ds S |H(t)| dt- max S |H(t — s)| ds,
0ge<2r

[ —2a er’



310 MARK G. KREIN, HEINZ LANGER

and the statement follows as the last factor becomes arbitrarily small if ' is suf-
ficiently close to r.

Evidently, H, and H, have the same eigenvalues and their eigenfunctions are
ina bijective correspondence. Denoting the negative eigenvalues of these operators
by 4,1 <2< ..., we have

A, ;= min max (H, x, X),2,
’ dlmL =J xeL

where L; is an arbitrary (j-dimensional) subspace of L*0, 2a). However, it is suf-
ficient to form the minimum with respect to all those j-dimensional subspaces of
L*0, 2a), whose elements vanish outside [0, 2r]. Therefore, if r increases the set of these
subspaces becomes larger, hence 4, ; is a non-increasing function of r. By the conti-
nuity of ﬁ, with respect to r and well-known results of perturbation theory each
of the eigenvalues 2, ;, j=1,2, ..., is a continuous function of r. Therefore the
number of negative squares of the scalar product [-,-],, that is the total number
%,y Of eigenvalues <—1 of H, is not greater than the total order % of the singular
points <a of H. ’

(b) Letr,0 <r <a,bea smgular point of H and ®rg> -+ +» Pra be @2 D-chain
of solutions of the equation ¢ + H,p = 0. We extend @, ; to [0, 2a] as follows:

- L) 0t <2,
(pr,j(l) = ¢ J(
0 2r<t<2a.
Then the elements (}r_j ,J=20,1, ..., n, are linearly independent. They form a neu-

tral subspace of L3I 4 H): [<7>”., ?,,0=0,j,k=0,1,...,n and no element of
this subspace is isotropic in L2(J 4~ H). Otherwise, for some ¢ = Y @@, j, ¢ #0,

we would have (I -- H)p = 0, which is impossible as ¢ vanishes itientical]y in a
neighbourhood of 2a.

If ¥, 0 < ¥ < @, is another singular pomt of H with corresp0nd1ng elements
@pjos J=0,...,0", we have also [@, ;, @, ;1 =0, j=0,...,n; j’=0,....n"
Moreover, the elements @, , ..., @, ,, are linearly independent from the elements
@ros-->P, - This follows from the fact that if, e.g., r’ < r, the elements (p ., do
not vanish 1dent1ca]ly in a neighbourhood of 0 (see Theorem 1.1). Thus the total
order x of the singular points <a of H gives rise to a neutral subspace of L¥I + H)
of dimension »x. Therefore % < %, ., and the statement (3°) is proved.

1.4. Now we suppose that g is not a singular point of the Hermitian function
H € LY(—2a, 2a), that is —1 ¢ o (H). Then for arbitrary fe L%0, 2a) or C(0, 2a)
the integral equation

(1.13) o(t) + \ Hit — s)op(s)ds = f(t) (0 <t < 2a)

S §
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has a unique solution ¢ € L0, 2a) or € C(0, 2a), which can be written as

2a

o) =f(1) — S L (t,5)f(s)ds (0 <7< 2a).

[}

Here I', is the resolvent kernel of (1.13), that is the (unique) solution of the equation

% ... -
(1.14) r,,s) + S H@lt — wI(u,s)du=H(It —s) (0<s,t < 20a),
0

[ I
or, equivalently,

(1.15) I8+ Sr(z WH@ — s)du = H(t —s) (0 <s,t < 2a).

If in (1.14) s € [0, 24} s fixed the function H(- — s) on the right hand side belongs
to L*(0, 2a). Moreover, s - H(-.—s) is a. continuous mapping from [0, 24] into
LY0, 2a). Hence also the solution I',(- ,5) of (1.14) belongs to LY0, 2a) for fixed
s €[0,2a], and s — I',(-, s) is a continuous mapping from [0, 24] into L}0, 2a). It
follows that if one argument in I', is fixed it represents an.elgment of L'(0, 2a)

with respect to the other argument, . depending continuously on the previously
fixed argument.

PROPOSITION 1.1, The kérnel I, has'the following properties (0 < s,t < 2a):
(D) s->TI,(, s) is @ continuous mapping from [0, 2a] into LX0, 2a)
(2) F AL, 8) = a(s 1), I, s) Ir,Q2a—s, 2a —1t);

3 C,fj ) 4 T ;)(’ ) _ (1, 2a)T2a, 5) — Tt, L0, 5).

In (3) the derivatives are to be understood as generalized functions, that is,
for arbitrary ¢, ¥ € C*(0, 2a) with compact support in (0, 2a) we have

2a 2a

- S S Lt )@ OO + oW @) dsdt =

(1.16)
= S (¢, 2a)y(t)dt S Fa(Za, S)p(s)ds — S Iz, O)(r)de S I (0, s)p(s)ds.

For real smooth kernels the relation (3) has first been obtained by Sobolev [27]
(see also [28)).
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Proof. (1) has been shown above. The first relation in (2) holds because H is
Hermitian. Furthermore, from (1.14) we have

2a
'(2a —s,2a — 1)+ S HQa — s — W)l (u, 2a — t)ydu = H(t — s),
0
which can be written as
2a
I2a—s,2a—1)+ S H(v — s)[,Q2a — v, 2a — t)dv = H(t — s).
0
Comparing this relation with (1.14) the second equality in (2) follows from the
uniqueness of I, .
In order to prove (3) we first suppose that H is absolutely continuous on

[—2a, 24a]. Then, by (1.14) and (i.15), 0F,:;t, ) and 0Lt 5) exist a.e. and
t s
we have
2a
_iil_",,a(t,_n + SH’(I — ) (u, s)du = H'(t — 5),
t

0

2a
ara(t, ) + S H'(t — u) M duy = —-H'(I —3).
Os ds
0

Integrating by parts, the first of these relation becomes

2q

OL,(t,9)

P — H(t — 2a)l",(2a, s) -+ H@)I' (0, s) + S H(t — u) QE%M du = H'(t —s),
¢ u
[
hence A(t,s) := 61‘,:9(1, $) + 61’,:9(t, 5) satisfies the equation
t 5

2a
.17 A, s) + S H(t — wA(u, s)du = H(t — 2a)T (2a, 5) — H()I' 0, s).

0
On the other hand, putting in (1.14) s = 2a (s = 0) and multiplying it with I',(2a, s)
(r,0, s), resp.) we get

I (t, 2a)(2a, s) + S H(t — I (u, 2a)T (2a, s)du = H(t — 2a)T (24, s),
(1.18) .
It 0r, 0,s) + S H(t — w)[,(u, 0),(0, s)du = H(t)[,(0, s).

[}
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If we form the difference of these relations and compare it with (1.17) it follows that
A(t, 5) == T(t, 2a) ,2a, 5) — T,(t, )T (0, 5).

Now let H be an arbitrary Hermitian function of L}(—2a, 2a). We choose a se-
quence (H™) of absolutely continuous Hermitian functions which converges to H
in the norm of L(—2a, 2a). Then the corresponding operators H™ converge to
H in the operator norm of C(0, 2a) and, consequently, we have also (I + H®)-!
—([ + H)"* (n — oo) with respect to the operator norm of C(0, 2a). Denoting the
resolvent kernel of K™ by I'" |, it follows for arbitrary @, ¥ € C(0, 24)

2a 2a 2a 2a

(1.19) S S ', )p(sy()dsde — S S I, olsW()dsdr  (n — o0).

As we have shown above, the relation (1.16) holds if I', is replaced by I'("-. Letting
n - oo and observing (1.19) the statement follows. The Proposition 1.1 is proved.
The differential equation (3) in Proposition 1.1 gives the possibility to express
I (¢, s) by means of its “boundary values” I',(t, 0) (and I',(0, t) = I' (¢, 0)). Indeed,
denoting the right hand side in (3) by g(z, 5):
g(t, s) := T, (0,2a — t),(2a — s5,0) — I, (t, ), (0, s) =
(1.20)

= I',(2a — 5,0),(2a — 1,0) — I',(t, O)T,(s, 0)
we have

min(s, #)
I (¢, 8) =h(t — 5) + S glt—r,s—rdr (0 <s,t < 2a),

0

with an arbitrary (summable) function 2 on [—2a, 24], which can be determined
from the boundary condition. Thus we have proved the

COROLLARY l.1. The kernel ' (t, s) is given by

min(s, 1)

(1.21) It $)=I(t—s,0) + I',(s —¢0)+ gt—r,s—r)dr (0<s,t<2a),

with g from (1.20) and T',(u,0) =0 if u < 0.

Thus the resolvent kernel I',(¢, s) and also the function H are determined by
the function I',(z,0) (0 <7< 2a). In §3 we shall give necessary and sufficient con-
ditions (by means of the zeros of the orthogonal functions) for a given function
I'(t) (0 <t < 2a) to coincide with I',(z, 0) for some H e L}(—2a, 2a).

8 — 2650
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The representation (1.21) of the resolvent kernel I' (¢, s) was proved (even for
non-Hermitian functions H but in a more complicated way) in [29]; the discrete
analogue had been considered in [30].

If we restrict the function H to [—2r, 2r], 0 € r < a, it generates an integral
operator in L¥0, 2r) or in C(0, 2r). Its resolvent kernel will be denoted by I', .

In the following proposition by py we denote the set of all r € (0, a] which are
not singular points of H.

_ PROPOSITION 1.2. For arbitrary ¢,y € C(0, 2a) and r € py the following rela-
tion holds:

f— S S I, sy dsds = —2 S I, 2600(1) dr S I,2r, )p(s)ds +
;
00 0 0

(1.22)

+ S I (2r, s)p(s)dsy(2r) 4 S T t, 2r)(t)de o(2r).

If, additionally, the accelerant H is continuous on [—2a,2a], then I'(t,s) depends
continuously on the three arguments r,s,t (r € pg, 0 < s5,¢ < 2r) and
ort,s)

(1.23) = —AT (1,2 (2r,5) (0 < t,5 < 2r).
r

We mention that the relation (1.23) for a continuous accelerant H is well
known (see [49]). It also holds if we start not with a displacement kernel but with
an arbitrary continuous kernel H(t,s) (0 < ¢, 5 < 2a).

Proof. If H e C(—2a,2a) we consider the Fredholm determinant 2,(—1)
for the interval (0, 2¢) (0 < r € a) and its minor A,(¢, s; —1). Then r € py if and only
if 2,(—1) # 0, which is equivalent to the existence of the resolvent I',(¢, 5), and we
have

r(s) = Ag(s—;;l) .

The Fredholm formulae for &, and A, imply that these functions as well as I',(¢, 5)
have a continuous derivative with respect to r € pg .
If in (1.14) we replace a by r € py and differentiate with respect to r then we

obtain
2y

_a_rgt_’s) + S H(t — u) 31’,514, s) du = —2H(t — 21 ,Q2r,5) (0 <t,5 < 20).
r r

0

Comparing this equality with (1.14) (with a replaced by r) the relation (1.23) follows.
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In the general case H € LY—2a, 2a) for a given > 0 we choose a Hermitian
function H? e C(—2a, 2a) such that

S [H(t) — H%(t)|dt < 6.

-2a

Then for the corresponding operators H and H? in C(0, 2a) we have |[H — H’||. <.
Therefore, if r € py there exists a neighbourhood ! of r belonging to PP for
sufficiently small 8. As H? is continuous, the relation (1.23) and so the relation (1.22)

with I' replaced by the resolvent kernel I'° of H° hold. If we integrate this relation
from ry to r (ry < r;ro € ") we find

2r 2r 2!0 2r0
S Sr;’(t, o)W dsdr — S S 7 (t, s)p(s(r)dsds =
(1.24) =2 ( {S T, 2u)(r)de S I’Qu, s)p(s)ds +
r. 0 0

0

+ S I22u, s)p(s)ds Y(2u) + S ri, 2u)w<t)dnp(2u)} du.

0

As the operators H and H? are arbitrarily close if § | 0 the functions I',(-, 2u) and
I'Y(-, 2u) are arbitrarily close in the norm of L*0, 2a), and the same holds for
I(2u, -) and I'’(2u, -). Moreover, it is easy to see that for fixed r € U

lim S S (e, e ()dsde = S S L1, s)e(s)(t)dsdzr.
dl10

Therefore we can pass in (1.24) to the limit & | 0, i.e. we can replace in (1.24)
re, F’ﬁo , by r,, I, , I,, respectively, and obtain a relation equivalent to (1.22).
The Proposition 1.2 is proved.

1.5. Let again He LY(—2a,2a) be a Hermitian function. In the space
L*0, 2a) we introduce again the (possibly indefinite or degenerated) scalar product

(1.25) o, ¥] := S o) dt + S S H(t — $)p()p@) dsd.
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If —1 ¢ o(H) then L*(0, 2a), equipped with this scalar product, is a z,-space, x = x, +H
if —1 e o(H), this holds for the factor space L(0, 2a)/ker (I + H). In both cases this
n,-space will be denoted by L*I 4 H). By A4, we denote the following operator in

L¥(I + H) (comp. the proof of Theorem 1.1):

D(A4,) is the set of all absolutely continuous functions ¢ e L0, 2a) such that
¢’ € L*0, 2a) and ¢(0) = ¢(2a) =0, and

1
Ay = n @' (¢ € D(4y)).

Then A, induces a closed n-Hermitian operator in L%l 4+ H), which will also be
denoted by 4, .

4°) If —1 € a(H) then the operator A, is n-selfadjoint. If —1 ¢ o(H) then A,
is closed, n-Hermitian with deficiency index (1;1) and simple.

Proof. The first statement was proved already in the course of the proof of
Theorem 1.1. We only recall that for z € p(4,) the resolvent (4, — zI)~ is given
by the formula

t
Seiz(t—s)(po(s)ds (0 <1< 2a),

0

F(u; z)

(4o — 2D~ w)(t) = iSe“(‘ “Du(s)ds —i
3 F (905 2)

where u € LI -+ H) and ¢, is the first element of a D-chain of H corresponding
tod = —1.
Now suppose that —1 ¢ o(H). By e;; we denote the function e;,(z) := ei#!
(0 < t < 2a). Then the function
g := (I — Lei:

is m-orthogonal on the range of 4, — zZI:
(4o — 2D)9, g.] = (4o — 2D, €i) =0 (¢ € D(4,))-

Therefore A, has deficiency index (1; 1). As the elements ¢, (z # Z) form a total subset
of L¥(I + H) the n-Hermitian operator A, is simple.

1.6. Sometimes it is more convenient to use the space L*(—a, a) instead of
L%(0, 2a), and to equip it with the (possibly indefinite or degenerated) scalar product

126 o, 9] = Sgo(z)ip‘(?)dwr S SH(z—s)qo(s)stdt.

—-a

The mapping ¢(s) - ¢(s + a) (—a < s < a) establishes an isomorphism between
L*(—a, a) and L*0, 2a), which is also isometric with respect to the scalar products
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(1.26) and (1.25) on L*(—a,a) and L¥0, 2a), respectively. In particular, with the
operator H in L*—a, a):

He)(@) = S H(t — s)p(s)ds (—a <t <a)

we have o(H) = a(H), and the scalar product (1.26) has the same signature as that
of (1.25). Thus its number of negative squares equals the total multiplicity of eigen-
values <—1 of K and it degenerates on the subspace ker(/ + H) which is nontrivial
if and only if —1 € 6(B). If —1 ¢ o(H), the resolvent kernel of H in L¥—a, a)
will be denoted by fa(t, s); it is connected with the resolvent kernel I',(r,s) of H
in L*0,2a) by the relation

I(,s)=Tt+as+a) (—a<st<a)

The properties (2) and (3) in Proposition 1.1 look for f,, as follows (—a < s5,t < a):

It,s)=Ty(s, 1), I(ts)=T(—s, —1),
(1.27)

—araa(?' S) + 8Faa(:‘, S) = ‘ﬂ(t’ a)f‘a(a! S) - I:'a(ta - a)fa(_a3 S).

The factor space L*(— a, a)/ker(I + H) equipped with the scalar product (1.26) will be
denoted by L2(I + H). It is a =,-space with

X=X a=%,H-
In L?*(—a, a) we consider the operator AO: D(4,) is the set of all absolutely conti-
nuous functions ¢ € L%(—a, @) such that ¢’ € L¥—a, a) and ¢(—a) = ¢(a) =0,
. 1, .
Ay = i (¢ € D(4y)).

It has the property
(400, Y] = [0, A1 (@, ¥ € D(A4,)),

hence it induces a closed n-Hermitian operator in L7 - H), which will again be
denoted by A, .

The statement (4°) remains true if 4, and H are replaced by A"O and H. If
—1 ¢ o(H) the defect elements g; of A, are now given by the relation

(1.28) g. = (I — T,

€(t) =% (—a <t < a)).
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§ 2. HERMITIAN FUNCTIONS WITH AN ACCELERANT

2.1. The Hermitian function g, defined on (—2a, 2a), 0 < a < oo, is said to
have an accelerant H if it admits a representation

2.nH g(t)y = g(0) — alt} — S(r — H(s)ds (—2a <t < 2a)

with some o > 0 and a function H € L(~—2a, 2a) if a < oo and H € L},.(—o0, 00)
if @ = oo. That is, g has an absolutely continuous first derivative on (—2a, 0) and
on (0, 2a):

t
g'(t) == —asgnt — SH(s)ds (—2a <t <2a t#0)
0

g'(0+) = —a < 0, such that H: H(t) := —g"'(t) (t #0) is summable on (—2a, 24)
if @ < oo and locally summable on the real axis if a = co. The function g in
(2.1) 1s Hermitian if and only if H is Hermitian and g(0) is real. Without loss of
generality we suppose in the following « = 1/2, that is g is given by

t
(2.2) g(t) = g(0)— —;« lt] — S (t — s)H(s)ds (—2a < t < 2a).

0

Recall (see [2, §5), [1]) that for a nonnegative integer » by G0 (PBooa) we
denote the set of all continuous Hermitian functions g (f) on [—2a, 24] such that
the kernel

Gylt, s) :=g(t — 5) — g(t) — g(s) + g(0) (F{t,5):= f(t — 5), resp.)

(0 < t,5 < 2a) has x negative squares, and we write G,.c =: 6, , Prio ==: Po .
It was shown in [2] that for arbitrary g € &, U B, there exists a y > 0 (depending
on g) such that g(r) = O(e”) if t — oo.

Let H be as above. If a < oo and —1 € o(H), by ¢, we denote the first element
of a D-chain of H corresponding to the eigenvalue 4 = -1, and we put

2a

Volt) = é ot) +2S H(t — $)pos)ds 0 < s < 2a).

t

THEOREM 2.1. Let g on (—2a, 2a), 0 < a < oo, be a Hermitian function with
accelerant H € L'(—2a, 2a), that is, g admits a representation (2.2). Then the follow-
ing statements hold true:

(1) g € Ousa with 2 :=5y .

(2) g has at least one continuation g € G, .
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(3) The continuation g € ®, in (2) is uniquely determined if and only if
—1 € o(H). In this case g is given by the relation

2.3) z? S e-itzg(t)dt + izg(0) = — FWo: ) (Imz <—y)
F (905 2)

v
Jor some y < 0.
@) If —1 ¢ o(H) there are infinitely many continuations g € &, of g which
have an accelerant.

Proof. Forming the kernel G,(t,s) 1= g(t —s5) — g() — g(s) + g(0), inte-
gration by parts shows that the following relation holds true for arbitrary ¢ e C(0, 2a):

2a 2u 2a 2a2a
2.4 S S G,(t, 5)op(s)e(t) dsdr = S |D(s)2ds + S S H(t — 8)o(s)o(t)dsdt
00 0 00

2a

with &(t) 1= S p(s)ds (0 <t € 2a). As the set of these functions & is dense in
t
L*(0, 2a) this relation implies g € 6., with 3 = %y, and (1) is proved.

The statement (2), which holds for an arbitrary function g € ©,., (see [17]),
follows from the remark after Behauptung 4.4 in {31] and the fact that each =-
-Hermitian operator has at least one index-preserving extension, see [31, Satz 1.2]. It
also follows from the fact that there is a bijective correspondence between all con-
tinuations g € G, of a function g € ®,., and all continuations g’ € ‘B,‘f;oo of the second
derivative g’’ e ‘Bff;a (for the definition of ‘.]3,‘10 see [32]), and [32, Proposition 1]. More-

over, the continuation gtﬁ € ‘B;’;w is uniquely determined if and only if the operator
1

A = ———;1— is m-selfadjoint in II,(—g"’) (this is not hard to see, comp. [32], [7].
i dr

On the other hand, II,(—g’") coincides with the space L3I + ﬂ), and A is the oper-
ator Ao introduced in §1.5. Thus the first statement in (3) follows from §1.5, (4°).
The second part of (3) will be proved in § 9.4, and a more explicite form of g is
given in Theorem 9.4. Finally, (4) follows from Theorem 9.2.

CoroOLLARY 2.1. If r, 0 < r < a, is sufficiently small, the restriction g, :=
=g g of g in (2.2) belongs to the class Gy, . In particular, this holds if
2r

2a

max S [H(t — s)lds <1 or if S [H(s)|ds < 1.

o<t <s2r
-2a
PROPOSITION 2.1. Let the Hermitian function g on (—2a, 2a) be given by (2.2).
If dimker (I + H)>2 and the functions @, ..., ¢, form'a D-chain of eigenvectors
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of H corresponding to A = —1, then the linear span of ¢, ..., @, is neutral with
respect to the scalar product

2a
@.5) [0, ¥)' = Sg(: — () dsdr.

St ¥

Proof. If @, ¥ € C(0, 2a), (1) := S o(s)ds, ¥(t) 1=

t

Y(s)ds, then

~ - 1

2a 2a

S Sg(z—syp(s)ip_(ﬁds dr=g(0)¢<0)v7(o‘>+¢<0)Sg'(r)% dz+v7<ojg¢(s>g'<s)ds+

(2.6) o

+ \ \ H — 5)®(s)¥()dsdr + S (s)¥(r)ds dr.

OL,W'E‘.'
S

Nowput @ = ¢; , ¥ = ¢, j,k =1, ...,n. Then &(0) = &(2a) = ¥(0) = ¥(22) =0,
2a 2a 24

o(r) + S H(t — 5)®(s)ds = 0 (0<s5<2a) and we find S gt — s)(pj(s)m dsdt=0,
[} 00
which completes the proof.

ReMARK. Evidently, Proposition 2.1 can also be formulated for the D-chain
of the operator H. In this case in (2.5) the interval [0, 24] has to be replaced by
[—a, a]. If the function g is real, the linear span of the elements ¢,, ..., ¢, of a
D-chain ¢, , ¢, , ..., ¢, of H corresponding to = —1 js also neutral with respect
to the scalar product

a

[, ] = S S gt + o ds d.

—-a

2.2. Let f € P... - With f we associate the following =, -space I1,(f). Consider
the linear set % of all functions ¢ € C(0, 2a), which vanish in some neigh-
bourhoods of 0 and of 2a, and define on ¥ the scalar product *

2a 2a

[0, Y] = S Sf(t — e(Ddsdr (g, ¥ € 2.

00

*) This scalar product is different from the scalar product [.,.] in §1. We bhope
that it is always clear from the context which scalar product we have in mind.
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Then & can be canonically embedded into a =,-space which we shall denote
by IL(f).

D 1 d
In the space IT(f) we consider the operator A, which is the closure of iy
1 at

defined on all functions ¢ € C¥0,2a)n #. It is not hard to see that 4 is a
n-Hermitian operator with equal deficiency indices zero or one.

In the same way, starting with the linear set % of all functions of C(—a, a),
which vanish in some neighbourhoods of —a and a and defining a scalar product
on & by

a a

(o, ¥] := S Sf(t (@) dsdt (g, ¥ € 2),

—a —a

we introduce the space IT,(f). The operator A in by (f) is defined in an analogous way
as A in IT,(f). It is again a n-Hermitian operator with equal deficiency indices zero
or one. Evidently the spaces IT,(f) and IT,(f) as well as the operators 4 and A are
isomorphic.

In the sequel we shall use the following fact (see [31, Behauptung 4.3]):

(1°) The relation

[= =]

—i\ e~i=f()dt = (A — zI)"u,u] (Imz <—7)

13

with some y 2 0 and u := 20, (u := 6,) establishes a bijective correspondence be-
tween all continuations fe P, of 1 € B... and all u-resolvents of A (. A, respectively).

Recall that for an arbitrary n-selfadjoint extension A of A the function

z o [(A—zD " u]l  (z e p(d)

2a
is called a u-resolvent of A. 1f ¢ € C(0, 2a) (¢ € C(—a, a)) we define S @(t)d,(t)dt =
]

= (¢(0)/2) ( S @(t)0()dt = ¢(0), respectively). Sometimes it is more convenient

to use the space If,,(f) as the element u = §, € I'I,,(f) is real with respect to the
involution ¢(t) » ¢(—1).

Now let the function g be given by (2.2) and put x =, thatisge ®,,.
Then g also belongs to some class P, ;.. With x(g) = » or »(g) = x + 1. This is a
general fact for functions g € &, (see [2]); in the special case of a function g with
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accelerant considered here it is also an immediate consequence of the following
statement.

(2°) The space I1,,,(g) is isomorphic to the space LX(®) of all vectors (@, &)*
(® € L¥0,2a), ¢ € C) with scalar product given by the Gram operator
_— (I +H ¢

G : in 120, 22) ® C.
(-, &) g(O)) i 10 29)

Consequently, x(g) = % .

Here, of course, % denotes the total number of negative eigenvalues of ®.

Proof. The relation (2.6) implies

S Sg(f — )o(s)p(t)dsdr = S |B()[2dr + S S H(t — 5)®(s)®(r)dsdt +
00 . -0 . 0 0

+2Re(

Sl

o()8'(5) dsE(T») + ¢(0)|S(0)12

Therefore the mapping
¢« (9, 2(0)T

is an isometry between the continuous functions ¢ of II(g) and a dense
subset of L3(®). This isometry extends by continuity to all of IT,(g), and the
statement follows.

We mention that for an absolutevl'y continuous'function & on [0, 2a] we have

2.7) @ = —®' + 26,0(2a) — 254(P(0) — &) > (B, &)T .

(3°) The operator A is n-selfadjoint in I,,(g) if and only if 0 € o(®). ‘

Proof. If 0 € a(®) it is a normal eigenvalue of . Hence there exists a non-zero
element (&, &) € L2(0, 2a) @ C such that

U+H)P, — g =0.

As g’ is absolutely continuous on [0, 2a], the statement (1°) of § 1 implies that @¢
is absolutely continuous. According to (2.7), the nonzero function

(2.3) ‘APo = —Pg + 20,94(2a) — 25¢(4(0) — &o)
is equivalent to the zero element in IT,,(g). It follows that

Q9  F(pein) = — S Bi(1) e dr + e~ oz Dy(2a) — (Bo(0) — &),

[}
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If F(9o; 2) # 0, then for arbitrary u € L*0, 2a) the function ¢:

t t

(2.10) o(t) :=i¢el# (S e~ izsy(s)ds — Fwz) S e=175p(s) ds)
) F(00; 2) 3

solves the boundary problem
1, .
T o= + 200,  ¢(0) = ¢(2a) =0,

that is, the equation (4 — zl)¢ = u has a solution ¢. It follows that A is
n-selfadjoint in IT,(g).
Let now & be invertible. The relation

[(A4—z2Du,q,] =0 (ueDA)
in IT,.(g) with some g, € IT,,,(g) takes the following form in L¥(®):

2a

Ly —: S u(s)ds
, ® ( ) =0 (ueD4y));

—z S u(s)yds

P .

here ( ) is the vector in L%®) corresponding to ¢, in IT,(,(g). Now it is easy
£ . ,

to check that this relation is satisfied with

D, 1Z ez
(2.11) ( ):(&'j—l )
A é—z L,

As this is a non-zero vector in L*®), the operator 4 in IT,,(g) has defect one. The
proposition (3°) is proved.

THEOREM 2.2. Let g on (—2a,2a), 0 < a < oo, be a Hermitian function with
accelerant H € LY(—2a, 2a), that is, g admits a representation (2.2). Then the follow-
ing statements hold true:

(1) g € Pusa with x = xy,

(2) g has at least one continuation § € P, .

(3) The continuation ge P, in (2) is uniquely determined if and orily if
0 € o(®). In this case it is given by the formula

=) 2a 2a
B ~ ] % - A
2.12 e Zg()dt = —— 1)\ ezt-9¢p(s)dsdt Imz <—y
@12) S Godr= Sg()s Pols)dsdr ( %)
t

with some y > 0, where Qo was defined in (2.8).
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Proof. The statements (1), (2) and the first claim of (3) follow from (1°), (2°)
and (3°) above. In order to prove (2.12) it is sufficient to show that the right hand
side in (2.12) equals i~Y[(4 — zI)~'25,, 2d,], where the resolvent of A is given by
(2.10). This will be left to the reader.

2.3. Let g be a Hermitian function with an accelerant as above. If —1 ¢ o(H)
we put
(2.13) 4:=g(0)~ (I +H¢.g) (=50 — (-1, g)).
Then the inverse G is given by

h 1
I—H)*+—(,h ——h
( ) -f—A( ) y

6-1=
1 1
—_—(-,h —
4 S a4
with h ;= (I + H)"g.
4°) If —1 ¢ o(H), then we have
s if 420,

%
Mo, +1 i 4 <0,

and the inverse G~ exists if and only if A4 # 0.

This statement follows immediately from the relation
< b4 .
((6 ( ) ( )) — (I + H)Y® + &0+ B)'g), ¥ + 0+ H) ') +
n

¢
+ (g(0) — (U + H)~'g’, g"))¢n.
Combining the results of (4°) and Theorem 2.2, we get:

THEOREM 2.3. Let g on (—2a, 2a), 0 < a < oo, be a Hermitian function with
an accelerant H € L'(—2a, 2a), and suppose that —1 ¢ e(H). With x =2y ,
the following statements hold true:

(@) If 4 > 0 then g € P... and there exist infinitely many continuations g € P, .

(b) If 4 =0 then g € P, and it has a unique continuation g, € B, .

(c) If 4 <0 then g € Pus1.« and there exist infinitely many continuations
g€ Pusr-

ReMARK 1. Let g be as in Theorem 2.3 and —1 € ¢(H). Then we have the
following alternative (x := i, ): Either

(1) %y = ». In this case g € P..a N ..., and the interlacing property of the
eigenvalues of 7+ H and & implies that 0 € o(f + H) n 6(®). Hence g has a unique
continuation in &, and this is also its unique continuation in 8, ; it is given by (2.3),
or

(2) %5 =« + 1. In this case g € ®u;o N P41, It has a unique continuation
in G, and a unique or infinitely many continuations in P, ., .
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It remains to give examples for these two possibilities. Let H(s) := — g?in*
(—1 < 5 < 1). Then 0 is a simple eigenvalue of 7 + H (> 0) and 0 € p(6), xg = 1,
hence the corresponding function g has infinitely many continuations in B,,,. If
H(s) := —e?m — gtins (—]1 < 5 < 1), then 0 is an eigenvalue of multiplicity two
of I + H (> 0). From the interlacing property it follows that 0 € ¢(®) and, finally,
it is easy to see that xg = 1. Thus the continuation of the corresponding function g in
P..+1 is uniquely determined.

REMARK 2. Theorem 2.3 and Remark 2.1 imply that a Hermitian function g
on (—2a, 2a) with accelerant H e L'(—2a, 2a) belongs to P,., and has infinitely
many continuations in P, if and only if

I+-H>0 and 4 > 0.

In a more complicated way this result was proved by I. V. Mihailova and V. P.
Potapov [33].

2.4. Let g be as above. We suppose in this n° that 0 ¢ &((5). Then the operator

A in IT,,(g) is not n-selfadjoint. By g, we denote the defect vector of R(4), nor-
malized according to the equation

(2.14) Sg(t ~geds =1 (0<¢<2a).

(5°) If —1 ¢ o(H) we have with h := (I + H)-¢’:
go = (B — 265,h(2a) + 230(h(0) + 1))4-1;

if —1¢eo(H) we have with &, e ker(I + H), &, # 0

2a

o ' -1
do = ( —Sg'(s)d%(s) ds ) (@ — 25,,94(20) + 26,4 (0)).

It is easy to check that these functions g, satisfy the relation (2.14). The nor-
malizing numbers in the nominator are #0 as O ¢ ¢(®). In the second case (—1 ¢
€ o(H)) we also observe that for this reason 0 is a simple eigenvalue of I + H, hence
$(0) # 0 and Py(2a) # 0.

(6°) If A # O then A= = [g,, qo].
Proof. In the proof of (3°) it was shown that the image of ¢, in L¥®) is
0(5-_1(0 ) with some ce C, see (2.11). As the normalization (2.14) implies
. :
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[40, 1] = 2a and 1 € II,,,(g) corresponds to (2a — ¢, 2a)T € L¥®), it follows that

L[
= (o) () -+

If r € (0, g] is not a singular point of H, the ‘“determinant’’ 4, corresponding
to the restriction of H to (—2r, 2r), will be denoted by 4,. The following statement
gives some information about the function r — 4, (comp. [33]):

This gives finally

and (6°) is proved.

2r

) dj’ —_2 , Sr,(zr, Hg'6)ds — gn|"
‘2
Indeed,
4,=g(0) — S g/ dr + S Sr,(z, D' (SFDdsdr,
0 ¢ 0

and, using (1.22), we get

2r
e — —2g@op +2 S I.2r, g () ds 0P +
[1]

2r
42 S I, 2r)g' (1) dt ) —
0

— 28 SF,(t, 2r)F,(2r, 5)g’(s)g’ (1) ds dt.

o0

REMARK. In the situation considered in Theorem 2.3 (—1 ¢ o(H)), the func-
tion g € G,., has infinitely many continuations in G, , see Theorem 2.1. In case (a)
(4 > 0) infinitely many of these continuations in &, belong to B, and infinitely many
belong to P, .y; their description will be given in [7]. In case (b) (4 = 0) all the
continuations g in G, with exception of g,(e%P,) belong to P,.,. Finally,
in case (¢) (4 < 0) all the continuations of g € ®,., belong to P,
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§3. SOLUTION OF THE CONTINUATION PROBLEM FOR fe$,.,
WITH ACCELERANT

3.1. Let fon [—2a, 24],0 < a < oo, be a Hermitian function with an accele-
rant , He LY(—2a, 2a):

3.1 J() =f(0) — *12— [t} — S(t —5H()ds (—2a <t <20

o

and suppose /'€ P..q- If £ has a unique continvation fe P, it is given by (2.12)
(with g replaced by f). In this n° we suppose that f has more than one continuation
fe P, and we give a description of all these continuations. To this end we find the
20y-resolvent matrix of the operator A4 in IT,(f) according to [9, (3.19)] and apply
the statement (1°) of §2. '

Let ® be as in § 2, (2°) with g replaced by f. Then its inverse G~ exists (see
Theorem 2.2, (3)) and the operator 4 in IT(f) has defect one. Its defect vectors
(P,, £)T in the canonical image L¥®) of I1,(f) are given by the relation

(@z) — G-! (ize,-z).
¢ 1

In order to find 2(z)x = ME_)—] (see [9, (3.3)]) where ¢(z) denotes the defect
[u, @(2)]

vector of 4 in II(f) and u = 2J,, we shall calculate these scalar products in the

space L¥®):
[, 9(@)] = ((5 (° ) &1 (iz s )) =1,
1 1 I2@C

2a \
S x(s) ds
o A 2a
x, p(2)] = | & , G- ( i ) - S e-inx(r) dt,
2a
S x(s) ds °
\ 0 L*aC

hence

P(2)x = S x(t) e-ist ds,
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For arbitrary f € L*(0, 24) this is an entire function, hence 4 is an entlre n-Hermitian

operator in II(f) (see [9, §6]).
In order to find Q(z) we have to choose a n-selfadjoint extension of A4 in IT,(f).
These extensions are given by a boundary condition x(2a) = fx(0) with some

B, 18] = 1. We choose the n-selfadjoint extension /; corresponding to f=1. Its
resolvent has the form

((/; — z[)=x)(t) = ——l——— {Sx(s) izt~ ds +
1 — e2mz
[

2a

-+ e2iasz(s) eiz(t~5) dS}. N

-

It follows that

(A = D1y =

( — 2D 1(x — (P@Xu)0) = — in(_S) eiz¢t- ds
and, according to [9, (3.3)] |

2a 2a

Qx =~ lgf(_s) S *(2) e-ist dt e ds =
= 18]’(7) S x(t)dtds — sz_(s_) S x(t) dt eiz6=0 dy ds.

It remains to find £(0)* and Q(0)%, given by [9, (3.5)] for z = 0. We have
P20)*e =ag, (x€ C),

here g, = @(0) is a defect vector of z=0, that is, the element of IT(f) correspondmg

to G- ((1) ) This element g, has been calculated already (see §2, (59).
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The element. g, € IT,(f) which defines Q(0)* according to
QO)y*a = ag, (x€C)

can be found from the relation

[x, Q(0)*a] = (QO)x)& =

2a

S S x(s) ds
—id S]—(-t) S x(s) dsdt = G | , a®-? (lof)
° Sx(s) ds
AN L*ecC

hence it corresponds to G—* (1({ )

In order to give ¢, and g; more explicitely we have to consider the two cases
—1 ¢ o(H) and —1 € o(H) separately.
1) If —1 ¢ o(H) then

go = A=Y — 26,,4(26) + 26,(h(0) + 1)) with
G.2) o
= +HY;

Go = —¢' + 265,0(2a) — 254(c(0) — B) with
G.3) e
{(I+ H)~ Y +—— (f ") } B = —id=X(f, h).

Here we observe that accordiﬁg to statement (1°) of § 1 the function / is absolutely

continuous.
2) If —1 € o(H) then

_(¢o » f) YDy — 26,,90(2a) - 250¢o(0))
with @, e ker(I + H), @, # 0;
o = —&' + 265,¢(2a) — 25,(¢ (0) — P)

(f; QO) ’
f", svo)f )

@ 1= il(@q, /)2 {(f; P O) + ([ +BGXS(f, Do) — £(f; Pa)), )}
B =i(f", @) (f; o).

with ¢ 1= a®, + i(I + H)y'! (f—

9 — 2650
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The expressions for g, follow immediately from § 2, (5°), and the expressions for §, from

the explicit form of G- ( U(; ) and (2.7).

Thus the resolvent matrix W = (wy); of [9, (3.16)], normalized according to
W(0) = I, (that is in [9, (3.16)] we put a = 0), is given by the relations

2a 2a

W@ = 1 — iz Sf(—t) S 4o(s) e~ =0 ds d,
0 5=t N
2a 2a
wip(z) = — iz Sf(t—) Go(s) e-i76-0 ds dr,
[ s=t

(3.4)

2a
Wy(z) = — ZS e~iztg.(t) dt,

0
2a
Woo(z) = 1 — zSe"'“éo(t) di,
(1]

where ¢, and g, are defined in 1) and 2) above.

Combining [9, Satz 3.9} and statement (1°) of § 2 we obtain the following
result.

THEOREM 3.1. If the function f € P.,q, 0 < a < 0o, has an accelerant H and
admits more than one continuation f € B, , then the relation

(3.5) —iSe-isz(t) dr = 2u@T@ +we@ o )
0

W (2)T(2) -+ wap(2)

for some y = 0 establishes a bijective correspondence between all such continuations
S € P, and all T € Ny. The matrix function W(z)=w;(2))} is given by (3.4), W(0)=1L,.

REMARK 1. In the description (3.5) the number y > 0 is fixed and independent
of the parameter 7. That is, for all the continuations f of f the singuiarities of their
Fourier transforms in C_ lie in a strip {z: — 7 < Imz < 0}. Thisis a consequence
of the fact that for a densely defined 7-Hermitian operator in a m,-space the spectra
of all its n-selfadjoint extensions lie in a strip around the real axis (see [34]).



ON SOME CONTINUATION PROBLEMS. IV 331

This remark about y concerns also the other descriptions of continuations

f € P, or g € G, below, Of course, the numbers 7y in different statements can be
different.

3.2. The resolvent matrix W of Theorem 3.1 is not real, that is it does not have
the property W(Z) = W(z). If, instead of IT,(f), we start with the space IT(f) (see
§2.2), then the operator 4 and the scale vector u = dg Will be real with respect to

the involution ¢(f) — ¢(—1), and we can apply [9, Satz 3.10] which gives us a real
resolvent matrix. We shall formulate the corresponding result in case —1 ¢ o(H).
The proof of it is similar to the proof of Theorem 3.1 and the details can be left to
the reader.

The Gram matrix in L3*(—a, a) @ C is now given by

05—(I+H fa

=(0 Jo) rw=ratn asica

The operator A is defined as in § 2. We suppose again, that the continuation pro-

>

blem for f € P.., in (3.1) is not determined, that is, &~ exists or, equivalently, the

deficiency indices of A are equal to one.
It is easy to see that

P(2)x = S x(1) e~izt dt.

Further, if we suppose that (/+H)~! exists, the elements g, qA o€ I1( ) which span
the ranges of 2(0)* and Q(0)*:

PO)*E = &Gy, QOE=¢g, (EeO),
are given by

do = ?1 U — 28,/a) + 25_(i(—a) + 1)]
Qo = &' — 26,6(@) + 20_,é (—a) — )
with
b= I+ H)~Y,

=il + )Y +ifh, p:= % Sf(t)dt + —;—(f, h).
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The resolvent matrix W = (w;) of [9, Satz 3.10] is now given as follows:

wp@@) =1—iz Sf(?) S qo(s) e~76=D ds dr,
s =t

-a
a

wwz—uym

—-a §

dols) e~ 6= dsdt,

H

[| ™

3.6)

wmn:~szW%mm,

Wpol2) = 1 — z S e-izt g (1) dt.

THEOREM 3.2. If the function f€ P,., 0 < a < oo, has an accelerant H,
—1 ¢ o(H), and f admits more than one continuation f € B,,, then the relation

G.7) i g e-irf(nydr — 2u@T@ £ @ )

Wy (2)T(2) + Wy(2)

Jor some y = O establishes a bijective correspondence between all such continuations
f ePB,and all T e ]Vo. The matrix function W(z) = (W;(2))3 is given by (3.6). Its en-
tries wj, are real entire functions of exponential type a and of Cartwright class, and
we have W(0) = I,, det W(z) = | (ze C).

REMARK 1. According to the general results of [9] the resolvent matrix W in
(3.7) has also the property that the kernel K,y :

Ky(z, ) := W(C)ZJK/(EZ)“J, J = (? "3),

has » negative squares. This remark concerns also other resolvent matrices in this
paper.

REMARK 2. According to [9] the resolvent matrices W(z) and W(z) are con-

nected by a relation W(z) = W(z)a(z) with some entire function afz). Comparing
the elements wy(z) and wy,(z) it follows easily that «(z) = eiez:

(3.8) W(z) = W(z) e,
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3.3. If =0, for an arbitrary function f € B,,, with more than one continuation

f € B, (even for an arbitrary resolvent matrix whose entries are entire functions)
the resolvent matrix is determined by its elements of one line or one row, see [35}. In
the general case » > 0 the functions w,;, and w,, in Theorem 3.1 can be obtained
from wy, and wy,, respectively, by means of the following functional Q, which is
associated with an arbitrary function f'e B,.,.

Let ¢ be a function of bounded variation on [—2a, 2a] and

39 B()) 1= S e do(t) (1€ C).

-2a
We define the functional , on the set of all these functions & by the relation

2a

0,(®) i Sf(r)ckp(z).

—2a .

Then the following equalities hold:

(3.10) Q}( Wyj(z) — wa;(4) ) = w2, j=1,2

z— 2

Here the 1 at Q indicates that the functional Q, acts with respect to /. vIn the rela-
tions (3.10) wy, can be replaced by w;, of Theorem 3.2.
In order to prove (3.10) we observe the equality

e—nzselz: ds + e——l;.t’

!
ze—ilz _ /‘{e—itl .
__—A.~ = —IZC"""S
Z —
(]

which gives e.g.
2a 2a

—z S e~ g (t)de + A S e~ g (1)dr
Qf'( Wai(2) — Wy (4) ) = 0 0 -

z—2 z— 2 -
2a , P
= Q} (S qo(t)(jze—itzse—i/lseizs ds — e-i}.t) dt) —
.0 0
2a 2a 1
=~ \fBawar | e-e-ra, (0 asar
0 00
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As Sj?)qo(t) dt =1 (see (2.14)), the right hand side of this relation coin-
) 0
cides with —wyi(2) from (3.4). The proof for wiy(z) is similar.’

If % =0 the function fe %Py, admits the representation

(3.11) f) = S e“"da(/l) (—2a <t <2a)

-—00
‘with at least one bounded nondecreasing function ¢ on the real axis R. Then the
functional 2, can be expressed as follows:

oo

Q,(®) = S &(2)do(2).

—co

This value does not depend on the special choice of the spectral measure ¢ in the
representation (3.11). A similar but more complicated representation of €, holds
if 3 > 0. This will be considered in [7].

§4. CANONICAL DIFFERENTIAL SYSTEMS ASSOCIATED WITH
THE RESOLVENT MATRIX OF fe%,,, WITH ACCELEANT

4.1. Let W = (w;,); be a 2x2-matrix function on C with the following pro-
perties: o

1) wj, are real entire functions, j, k =1, 2.

) detW(z) =1 (zeC).

3) For arbitrary « € R we have

(wyy cOSa + Wy, sina)(Wy, COsSa + wyy sina) ™! € Ny.

4) W) =1,.

A Hermitian 2 x 2-matrix function 3 on some interval # with the property
H(r) = 0 (r € F) and which is summable on .# is called a Hamiltonian. If, additio-
nally, tr#(r) = 1 (det#(r) = 1) on ¥, the Hamiltonian s# is called trace-normed
(det-normed, respectively) on . De Branges {36] has proved the following remark-
able theorem. ‘

The 2 X 2-matrix function W has the properties 1) —4) if and only if it admits

a representation
~

L
4.1) W) =\e WMy g = (0 _1)
1 0
[1]

with a real trace-normed Hamiltonian #y, on [0, L]. The real trace-normed Hamil-
tonian in the representation (4.1) is uniquely derermined.
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That is, W(z) is the solution at r = L of the following canonical differential
system on [0, L]:

dW(r; z) 7
dr

42) = ZW(r; DA W), WO0;z)=1,.

In this case the elements of W are real entire functions of exponential type a given by
L
a= Sl/detyfw(r) dr,

0

see [37], [36].

If, in particular, on some interval [0, m] we have 5, (r) = (g (1)), 0<r<m,
then the representation (4.1) becomes ‘
T

- z,;g’w(r)J

W(z)=0,2) S e dr

n

with 0,,,(2):=( 1 0).

—mz 1
In this Part IV we shall not use the theorem of De Branges explicitely. How-
ever, it enlightens the considerations in this § 4 and in § 11. Namely, we shall show

by direct calculations, that the resolvent matrices B and W of Theorems 3.1 and
3.2 satisfy certain canonical differential equations and find the corresponding
Hamiltonians,

If a canonical system
{4.3) IX'(s) = z#()x(r) (O <r<L)

is given and the Hamiltonian s satisfies the condition dets#(r) > 0 on some inter-
val # < [0, L], then a new variable 7 = ¢(r) can be introduced such that the sys-
tem (4.3) becomes J%'(F) = z#($)%(7) and that # is det-normed on 4 = @(5).

Let 274 be a real det-normed Hamiltonian on some interval 4. We introduce
the complex Hamiltonian #_:

(4.4) Hy = Hy — iJ.
Then we have

@.5) dets# (r) =0 (resf)
46 (HJI)2=2iHJ.

In particular, rank# (r) =1 (r e £).
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Conversely, given a complex Hamiltonian s, = (h;); on &, #(r) # 0
(r € ) with the property (4.6) and Im Ay, (r) = 1 (r € .#). Then it is of the form (4.4)
with a real det-normed Hamiltonian J#,.

If #, and o, given on £ = [r,, ry], are connected by (4.4) between the solu-
tions W,(r; z) and W(r; z) of the canonical differential systems

dW(r; 2) 7

= zWy(r; 2)# 4(r),
dr

"—"—’%ﬁ—” = 2Wr; P,
-

Wylre; z) = W(ry; z), the following relation holds:
Wr;2)=e "W (s ) (o <r <),

Suppose we are givén a real det-normed Hamiltonian 4# on some interval #,
such that the derivative s exists and is continuous-on #. Then the canonical system

w
@.7 gd-—Jz :WH on S
r

can be transformed into a canonical system with a “potential”:

(4.8) %KJ:zV—}- VP on 4.
AY .

Here P, the potential, is a real continuous symmetric 2 X 2-matrix function on .¥.
In order to see this we first observe that det s#(r)=1 implies that 3£(r)J3#(r)=J
or #(r)J = J#(r)~?, which yields #(r)/2J = J#(r)~2. Then the function V:

V(r; z) := W(r; 2)#(r)?

satisfies the equation

2051/2
AV AW ey
dr dr ds

do? ,
= —IWHTHVT + W ] = zV 4 VP

dr

with P(r) := s#°(r)~ 22 J. Tt is easy to see that P(r) is real and symmetric

dap(ryr?
dr
and a continuous function of r.
Conversely, a canonical system of the form (4.8) with a real symmetric and
continuous potential P can easily be transformed into a canonical system (4.7) with
a real det-normed and continuously differentiable Hamiltonian s#. To this end we
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introduce the solution U, of the initial problem

d—dq‘lJ = UyP, Uy(ry) =1, for somer,e g,
§

that is
~

I

Uy(r) = S exp(—P(s)J)ds.

r
0

As P is real and continuous, the 2 x 2-matrix function U, has a continuous deriva-
tive and its values Uy(r) are real matrices. Moreover, U,(r) is J-unitary:

U(r)JUy(r)* =J  (r € F).

We write the solution V{(r; z) of (4.8) in the form V(r;z) = W(r; z)Uy(r). Then
the function W satisfies the canonical differential equation

ﬂ]szJf on £

ds

with #(r) 1= Uy(r)Uy(r)*. Evidently, o is real, det-normed and s’ is continuous.

4.2. Let now fe P,., be of the form(3.1). With f we consider its restrictions
Jri=fli=2n.2,0 < r € a, which belong to some class Puy)r, 0<u(r) <o, If
/. has more than one continuation in P.y, by 4., B,, /., ¢, we denote numbers or
functions, given by (2.13), (3.2) and (3.3) with a replaced by r, that is we define:

h () :=1"(t) —

o
Sl

Tt s)f'(s)ds (O <t <2r),

B A1) = () — S [, 9f)ds (0 <1< 2r),

'Ar =f(0) - (f;! hr)’
B, = —id7(f,, h,),
() == i{b (1) + 47 (f,, W ()} (0O <t < 2),

2r
JAt) :=e~iet — SF,. (1, 9)e"iesds (0 €t < 2.

0
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The resolvent matrix of f, which appears in Theorem 3.1 will be denoted by W(r ; z).

THEOREM 4.1. Let f € P, be a Hermitian function on [—2a, 2a) with an acce-
lerant H. Suppose that for some interval [ry, r,] < [0, a] we have

1) —1¢o(H,) (ro <r <ry);

2) the restriction f, 1= f|_s, 2n> [, € P,y has more than one continuation
fieB. (n<r< ri)-

Then the resolvent matrix W(r; z) of f,, given by Theorem 3.1, satisfies the cano-
nical differential equation

49 a2

p =zW(r; 2)H(r) (ro<r<r)
P

with the continuous Hamiltonian |

r

¢, (2r) —_
(4.10) ) =2 (h,(Zr) ) (c,(zr) %2—’1)
4 r

Proof. (1) In this part of the proof we establish some relations between the
functions 4,, ¢,, etc. We have for almost all ¢ € [0, 2r):

BE) = —H(t) — S

0

or,(t,s)

Tf ‘(5)ds =

— —H(i)— S (— 9%9 T, 200,0r, 5) — T'it, OO, s))f'cs) ds =
A)

0

= —H(t) + I, 5)f'(s)

0

2r
” -+ S I (¢, s)H(s)ds —
0

2r ar

_ I, S I,2r, 9f(s)ds + I'(t, 0) S I'(0, ) (s)ds =

= _I‘r(t’ 0) + I',(t, 2r)h,(2r) - Fr(t: 0)]1,.(0),
hence

(fL, h) = S L0, () dt + @b ,(2r) — F0)5,(0),

4, = b,(0) — h,(2r)b,2r) + 1,(0)5,(0).
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In the same way
b(t) = h,(t) + I'(t, 2r)b,(2r) — I'(t, 0)b,(0)

and we find
2r
(h, — izb,, eiE):: (/’l',,eiz-) +be | — (b;’ei}‘)z
0
= b,(2r)j,(2r) — b,(0);(0),
1+ iz(h,, e;) = h,(0),(0) — 1, 2r)j,2r) +Jj,(0).
Moreover,

(fr’hr)z(bnf;):br.fr _(br,’fr):

2r
0

= |b,(2r) — 16,0 — (A, 1))
Finally, we need the relation
“4.11) h,(2r) = —1 — h,(0).
In order to see that (4.11) holds we write it as

e S_(t—)dt—}—SI’;___r(ert,O)(—%*Srl(g)ds)dt=

0 [}

H(s) ds) de

0 | =

1 2r
—1-—- SI",(O,t)(—

and this relation can be verified easily.
(2) We need the following derivatives with respect to r:

Y, o (see §2, (1),
dr

S

4.12)

2r2r

d d [ . o T
s £ = 4 [(f,,f,) _ S S It ) (FD ds dt] -

0

»

(4.13) = 2f'CNf@r)— 2\ I,Q2r, $)fCr)f'(s)ds — 2 S T, 20 Crf(D)dt +
0 .

ot

+ 2

Sl P
S Y

Lt 20)T,2r, 5)f'(s)f(t) dsdt = 2h,(2r)b,(2r),
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&d— (hy. €2) = 20,20)].30),
-

ad—(c,, e.) = 2620013 — (hy, e A7 i),
-

iz

L e, £) = 2ile,2nP.
dr

(3) Integrating by parts, the functions w;, of (3.4) can be written as follows:

2r 2r s
war 2) = 1 + (ic /4,) S Fh()ds + GYd,) S S Fayeie-9dth (5)ds,
5s=0 §=0t=0
wiolr; z) = —iz S f(s)e,(s)ds — z2 S S f(t) et~ dt ¢ (s)ds,
5=0 §=01=0

(4.18)

warlrs 2) = —(z/4,) — (iz%/4,) S emisth (1) di,

2r
Was(r; 2) =1 — zf, + iz® S e~izte (1) dt.

[

Now it is easy to verify (observe that 4, is real) that the corresponding elements on
the second lines of (4.9) coincide, that is (* denotes derivative with respect to
r, %c(l") = (hjk(r))i):

was(r; z) = z(wyy (r; 2y (r) + woslr; 2)han(r)),
(4.15)
—Wa(r; 2) = zWar(r; 2)y(r) + Wol(r; 2)hay(r)).
This will be left to the reader.

In order to show that the first lines in (4.9) also coincide, we use the func-
tional Q. It is not hard to see that the relation

Q;( Waal(r; 2)/z — waslr; l)/i) __ wi(r; 2)
% =

z— A z
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holds. Thus (4.15) and (3.10) imply that

wis(r; 2)

¥4

= wyy(r; 2y (r) -+ wia(r; 2)hay(r).

Similarly the relation

_ wi(r; 2)

z

= wi(r; 2Dap(r) + wi(r; 2)ho(r)

follows and the theorem is proved.

REMARK 1. The expression for # (r) in (4.10) was originally found from the

relation
Ho(r) = Wi(r)J
Wi(r) := lim (W(r; z) — L)z~*, which is an immediate consequence of (4.2).
z-0

REMARK 2. The condition 1) in Theorem 3.4 can be dropped. Then in the cor-
responding singular points of the interval [r,, r,] the Hamiltonian can be found using
the expressions of § 3.1, 2).

4.3. If in addition to the conditions of Theorem 4.1 we suppose that x = 0
there is 2 more complete result.

THEOREM 4.2. Let the Hermitian function f € Po,, be given by (3.1) and suppose

that f has more than one continuation f € PBy. Then the resolvent matrix W(r;z) of
the restriction f, 1= fli_2r, 211, 0 < r < a, given by Theorem 3.1, is the solution of
the initial problem

w2

— 2W; D)H(r), W(O;z):( ! 0).
dr

—z[f(0) 1)

Here the complex Hamiltonian 3. is given by (4.10), it is continuous and satisfies
the relations (4.5), (4.6).

Proof. The relations (4.14) imply that

lim W(r; z) = ( ! O).
rio —z/f(0) 1

According to the remarks in n° 1 it is sufficient to show that Im/,,(r)=1 (0<r<a),
that is

1

(4.16) h,(2r)c,(2ry — h,Q2r)c,2r)) =1 (0 <r < a).

r
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In order to see this we prove the following:

LeMMA 4.1. Under the conditions of Theorem 4.2 for 0 < r < a the following
relation holds :

4.17) A, = +2r|h,(2r)|2 — h,(2r)b(2r)— N, (2r)b,(2r).

Proof. We first suppose that H is continuous. Then the following relations are
easy to check (observe (1.22), Proposition 1.1 (3) and (4.11)):

ﬂ§i=_mwmmmdmhm=mwmmm’
r
db;d(?—r)_ = 2h,(2r) — 2T (2r, 0)b,(0).
F
Further, we have
Sﬂpﬂﬁﬂmmuﬁm—ﬂm+gﬁyM®m_

2r

—s( £(s) — S £i(s — O, O)dt) © < s <20

0

Indeed, this relation holds for s = 0 and the derivatives of both sides coincide.
Choosing in particular s = 2r, it follows that

b(2r) = b(0) + 2rh(r).

With these relations it is easy to see that the derivative of the right hand side in
(4.17) equals —}h,(2r)|2, which, on the other hand, is also the derivative of 4, (see
§2, (7°). As 4, = f(0), 1{0) = —1/2 and ¢(0) = f(0), the relation (4.17) follows.

If H is not continuous, we approximate it in the L(—2a, 2a)-norm by a se-
quence of continuous functions H®, and the relation (4.17) remains true in the limit.
The lemma is proved.

The relation (4.17) yields also the following identities for 0 < » < a:

1) — (f1, h,) = 2r\h, 22 — h,(2r)b,(2r) — h,(2r)b(2r),
(4.18)

rmz—%w;m+mm»
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The first relation follows immediately from (4.17) and the definition of 4,. In order
to show (4.18), we observe (4.12) and (4.13). Then (4.17) implies

Ar: -t _"—ﬁ[(frshr) +(fr: r)]’

or

d 1 d., . s
'a:(rdr) - ——7 E;'[(fr) hr) -+ (fra hr)]3

which gives (4.18). .
Now it is easy to prove (4.16). Indeed, we have from (4.18) and (4.17)

.~Al~- [h,2r)e,3r) — hr)e,2r)] =
1

r

_ L . (fr’hr)
-- A,['(z')( 5.0 —i 922 ))

r

— i) (b,<2r) 4 Yeh) h,(zr))] -
r .

[2r1,(2r)2 — h,2r)b,(2r) — h,(2r)b,(2r)] = 1.

1
4,
Theorem 4.2 is broved.

REMARK. The function %, and the number ((/+ H,)~Y/,, f;) are independent
of f(0). Therefore, if we take the derivative of (4.18) with respect to f(0) it follows
that

2r
r=—Re S h,(t)dr.

[}

Finally, we consider the canonical system which corresponds to the resolvent
matrix W of Theorem 3.2. As W(r, z) and W(r, z) are connected by the relation (3.6):

W(r; z) = W(r; 2) e,

Theorem 4.2 and the considerations of #, and #, in n° 1 imply the following
result.
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THEOREM 4.3. Let f € Po., be given by (3.1) and suppose that f has more than

one continuation f € B, . Then the resolvent matrix W(r; z) of the restriction f,=f l{—2r2e>
0 <r < a, given by Theorem 3.2, is the solution of the initial problem

—2Z

Here # 4 is the continuous real det-normed Hamiltonian

2le 26 j @@RQr) + ¢,20En)
H () = ’
- ) + e QIR 2 "—%—)’—

REMARK. If the function f in Theorem 4.3 is real, then also /, is real and ¢,
is purely imaginary. It follows that in this case we have

22N 0
Halr) = o olhenR)
47

Real Hermitian functions with an accelerant will be studied furtherin § 12.

§ 5. SOLUTION OF THE CONTINUATION PROBLEM FOR ge @,
WITH ACCELERANT

5.1. By N, we denote the class of all complex functions @ which are locally
meromorphic on C, U C_, have the property Q(z) = Q(Z) (ze Dp), and for
which the kernel Np: Ny(z, 0) := (Q(z) — Q(O)z — D)™ (z, L € Dy, z # ) has
negative squares (see [2],[38]). Here Dg denotes the domain of holomorphy of Q. A
function @ which is defined and holomorphic on some open nonempty domain
D < C, and such that Ny has x negative squares on ‘D can always be extended to a
function Q € N, . It was shown in [39] that the total order of all the poles of Qe N,
in C,(C.)is < «.

We need the following characterization of the one-sided Fourier transforms
of functions from ®, , which completes {2, Satz 5.9].
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ProrosiTioN 5.1. The equality

co

5.1 0(z) = —iz? S e~i7g(t)dr  (Imz < —vy)

0

for some vy = O establishes a bijective correspondence between all functions ge ®,,
with g(0) = 0 and all functions Q € N, with the property

(5.2) lim - Q(iy) = 0.

yi- y

Proof. From [2, Satz 5.9] it follows that for a given function g € 6, , g(0)=0,
the function Q in (5.1) belongs to N,. Moreover, we have

' e
—ﬁ)—Q(iy) = =7\ B0 =g =0 (4~
0

Conversely, suppose we are given a function Q € N, with the property (5.2). Then

the function Q;: 0,(z) = —}q— Q(z) satisfies the conditions
. z"’
lim Qy(iy)=0, lim yImQ,(iy)=0.
yi—co yi—o0
Moreover, from the relations
() — O _ Q( )+ 10o0)—00 1

z—( L 21 22

it follows that Q; € N,» where x — 1 < %’ < x + 1. Hence, by [2, Satz 5.3} we have

— 00

0,(2) = Se—f"gla)dt (Imz< —7)
0
h

for some function g; € B,-, which implies g, € &, , %'’ < x. Further,

Y- Y-

£,(0) = lim (—y

Sl §

efygl(t)d:) — lim (—iy Qyiy)) =
. 1 )
— lim ( —,—Q(ly)) -
yi-o 1y

and from the first part of the proof (or [2, Satz 5.9]) it follows that %'’ = %

10 - 2650
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REMARK. If g € 6, and g(0) 5 O the function g := g — g(0) has the proper-
ties £ € ®,, £(0) = 0, and we have

—1'225 e~izg()dt = — iz? S e~i7g(1)dt 4 zg(0).
] ]

Now suppose that we are given a Hermitian function g on {—2a, 24] with an
accelerant H=H, € L(—2a, 2a). Without loss of generality we suppose that g(0)=0:

5.3) gt)= —alt] — S(t — S)Hy(s)ds (—2a<t < 20)

with some « > 0. According to Theorem 2.1 it belongs to some class G,.,, and it
admits at least one continuation g € ®,, to the whole real axis. We put

0@2) = —iz? S e~izg()dr.

Then we have Q € N, lim —1—— QO(iy) = 0 and, as g'(0) does not exist, it follows
yi—oo y

from [2, Lemma 5.10] that

lim |y Q(iy)} = oo.

yi—co

We consider the function R:
54 R(z) := Q@)1 — z Q@)

According to [2, Satz 4.1] we have R € N, and R admits a representation
©0
R(z) = —i Se‘“’f(z)dr (Imz < —9)
0

with some function f eP,, f(O) = 1. Denote the restriction f ,[—2a,2a] by £ In
[2, § 5] it was shown that f is uniquely determined by g and conversely. This cor-

respondence is given by the Volterra integral equation

t t t

(5.5) — S ¢ =9 f(s)ds + Sf (s) g(t — s)ds = S g(s)ds (0 <t < 2a).
[ 0 [1}

2
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We shall show that f & B,.,. Obviously, f'€ P, ,, withsomex’, 0 < %' < %. If
% = 0 we obtain (0 =)x = »'. If x > 0, the proof of this equality x" = x is more
complicated.

We consider a continuation f; € B, and its Fourier transform

Ri(z) = — iSe‘i"f:(t)dt (Imz < — y).

Then R, € N,- and
lim (— iy Ry(iy)) = £(0) = f(0) = 1.

¥y -0
Thus the function Q;: '
0:(2) : = Ry(2)(1 + zRy(z))*

has the property

(5.6) lim {yQ,(iy)| = co.

yi—oo
Observing that R,(z) = 0,(2)(1 — z0,(z))~%, we obtain from [2, Satz 4.1] that
Q, € N,-. Next we show that

.7 lim y~Q,(@y) = 0.

yi—oo
According to [2, Satz 1.4] the relation (5.7) is equivalent to
(5.8) RUI—Ug ) = I1(Q1)-

Here we use the notation of [2, § 1], the operator U o, Was defined at the beginning
of [2, §1.5]. Observing (5.6) we can apply [2, Satz 4.3], hence (5.8) is equivalent to
the fact that for the element u € IT (R,) of the representation

Ry(2) = [(Ar, — zD)7'u,u],  [u,u] =1
we have ' '

u¢D(dr) or [Aru,u] #0.

As Ag_ coincides with the n-selfadjoint operator 4 7 in IL(f;) (see [2, § 5.1]), u= &,

and f1(0) does not exist, the condition u ¢ D(4 Rl) is satisfied according to [2, Satz 5.5]
and (5.7) is proved.
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Thus, according to Proposition 5.1, the function Q, € N,. admits a repre-
sentation. -,

0i() = —izzge-fz'gza)dt (Imz < —7)

with some function &, € G,.. As fand § are related by an equation of the form (5.5)

and f; is an extension of £, the function g1 1s an extension of g. Hence %’ > x, and the
equality ' = x follows.

Thus, an essential part of the following theorem has been proved.

THEOREM 5.1. (1) Suppose the Hermitian function g on [— 2a, 24] is given by
(5.3) with an accelerant Hy € LX(— 2a, 2a) and let % := x, o , thatis g € ®,,,. Then
:4

the function f on [— 2a, 2a), which is defined by (5.5), belongs to the class P,.,, it has an
accelerant H, € LY(— 2a,2a) and admits a representation

(5.9) f)=1—yf —S(t — H(s)ds (—2a <t < 2a).
2.4

]

(2) Suppose the Hermitian function f on [— 2a, 2a] is given by (5.9) with « > 0
and an accelerant H; € L' (— 2a, 2a) and let f € P.,.. Then the solution g of (5.5)
admits a representation (5.3) with an accelerant H, € L*(— 2a,2a) and g € G .

(3) The accelerants H, and H; in (1) or (2) determine each other uniquely by
the relation

L + S H(s)ds + SHg(s)Hf(t — 5)ds — aH(t) — ng(t) =0 (0<1t<2a);
o o

H and H, have the same continuity or smoothness properties.
(4) If f and g are as in (1) or (2), the relation

¢ ¢ s
(5.10) - Sﬁ——z—s)z—f(s)ds + Sf(s)g(t — §)ds = Sg(s)ds (0<t<c)

establishes a bijective correspondence between all continuations ~ € &, of g and all
continuations f eP, of f.
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Proof. Differentiating (5.5) on (0, 2a) twice we get

1 t

— Sf(s)ds — of(t) — SHg(t —8)f(s)ds =g'(t) (0 < ¢t < 2a).

(g

The solution f of this Volterra integral equation is absolutely continuous and, dif-
ferentiating again, we find

—f(t) — of '(©) —\ H,(s)f(t — s)ds =0 (0 < < 2a).

[P

As f(0) = 1, this relation implies (0 -+ ) = — 1/o and f’ is absolutely continuous.
on [0,2a] with a derivative —H,, given by

) 4 aH () + H,(1) + SHg(s) H(t—s)}ds=0 (0<1< 2a).
o

With the remarks before Theorem 5.1 the statement (1) is proved.

If f'e Pua is given as in (2), we choose a continuation f € B, and the corres--
ponding transform g, given by an equation of type (5.4) or by (5.10). The restriction
g = §[[_2a, 241 belongs to some class ®,,, and as g and f are connected by the
equality (5.5), it follows that g has an accelerant and that the representation (5.3):
holds. Applying part (1) of the theorem, the statement (2) follows. (3) has been prov--
ed already, and (4) is an easy consequence of the above considerations.

5.2. Combining the results of § 3 and Theorem 5.1 we get immediately the fol-
lowing result:

THEOREM 5.2. Suppose the function g € ®,.., 0 < a < 0o, has a representa--
tion (5.3) with an accelerant H, € LX(— 2a, 2a) and admits more than one continuation
g € ®,. Then the function f € P,.,,, given by (5.5), admits more than one continuation

feB,. With the resolvent matrix W = (W)l of f in Theorem 3.1, the relation

©0o
— izzs e~ ig(¢)dr =

Q

Wn(z)_T (2) -+ wip(2)
(2w11(2) + W (2)T(2) + 2wia(2) + Won(2)

(Imz < —7y)

with some 7y > 0 establishes a bijective correspondence between all continuations
£€6, of gand allTe N,.

This follows from the fact that the relation (5.10) between the continuations.
g and f can be written as

0(z) = R()(zR(2) + 1)~
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for the corresponding Fourier transforms. Therefore we find a resolvent matrix
W,(z), giving a description of all continuations & € ®,, from a resolvent matrix
W(z) of f by the relation

(5.11) W (z) = (1 (1)) We).
z

REMARK 1. In Theorem 5.1 the resolvent matrix W from Theorem 3.1 can be
replaced by the resolvent matrix W from Theorem 3.2.

REMARK 2. If we introduce W,(r; z) as the resolvent matrix of g,:=g|[_2,, 27 »
where r is not a singular point of H, then W,(r; z) satisfies the same canonical
differential equations as W(r; z). If, in particular, x = 0, then the resolvent matrix
W(r; z) of the restriction g,, 0 < r < a, given by (5.11), is the solution of the ini-
tial problem

dW,(r; 2) 7

d = ZWg(r; Z)ch(f), Wg(()? Z) = 12
r

with o from (4.10).

REMARK 3. Instead of (5.4) we can consider the more general transformation

R(2) = 0,0()(1 — 2w, Q(2)

. . Wy
with w;, w; > 0. Then the above transformations hold between the functions —=
Wy

and w,g instead of f, g, respectively.

§ 6. CONTINUOUS ANALOGUES OF ORTHOGONAL
POLYNOMIALS ON THE UNIT CIRCLE

6.1. Let again H e LY{— 2a,2a) be a Hermitian function. Suppose that
— 1 ¢ o(H). Then the resolvent kernel I',(z;s) exists. We put in the following
T (t):=T,0) (0 <t < 2a)
The orthogonal functions of first and second kind, associated with H, are defined
as follows:
2a
D(a; z) := ei‘"(l — S Fa(s)e‘i”ds) (ze 0),
0
2a
E(a; z):= e“”(l- S La(s)e‘i“ds) (ze O,

0
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respectively, with
{6.1) L(s) 1= —2H(s) + I',(s) + ZSH(S —Hr,nde (0 < s < 2a).
0
Observing the relation (1.14), we have also
2a
{6.2) L(s) = — T(s) ~— 2SH(S — ) r(de (0 <s < 2a).

The following lemma is well-known.

Lemma 6.1. If y € LY0, 2a) the function
2a
D(z):=1— Sx(s)e"i”ds
0
has the property
Di(zy—>1 if |zl 00, Imz<O.
Indeed, if z = x + iy we have
2a 2a
’Sx(s)e‘i‘zds < Slx(s)l e’ ds
[} 0

which becomes arbitrarily small for all y < y, with a suitable y, < 0. In the strip
0 >y > y, we use the relation (3(s) := x(s) if s € [0,24] and = 0 if s ¢][0, 2a])

2a oo
w)e-mds| < (|50 — jf(s +—"—) o ds -+
2 x
0 — QO
1 ~ /4
+—\Nx s+ — | lds|l — ern¥|,
2) x

where the terms on the right hand side become arbitrarily small if |x| — oo.

Lemma 6.1 implies that the functions D(a; -) and E(a; -) have only a finite
number of zeros in the half plane Im z < 0. This statement will be made more pre-
cise in n 2 below.

Now let
2a

(6.3) E@) = o (1 - SL(s)e““ds)
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with some L € I}0, 2a), and choose y > 0 such that D(a; z) does not vanish if
Imz < — y. Then a generalization of a theorem by N. Wiener implies for Imz <
< — 7 the representation

2a 2a

6.4) (1 — SL(s)e‘i”ds) (1 — S I"a(s)e‘i*'sds)_1 =1+ ZSﬁa(s)e‘i”ds
0 0 0

with some function ]?I“ on [0, co] such that the function e_yl-?,, belongs to LY(0, co).
(Here e_, denotes the function ¢ — e~ (0 < ¢ < 00).) The relation (6.4) can be
written as

0L/ﬁ§

L(s)e s7ds = SI’,,(s)e“i”ds +2 S Ha(s)e'i”ds —_
0 0

S etz S (s)H (t — s)dsdr —

) S e~itz SF(S)H (t —s)dsdr (Imz < —y),

t=2a §:20

which is equivalent to
!
L(t) = — 2H,() + () + ZSFa(s)fIa(t —9ds (0 <1< 2a),
1]

6.5)

0= — I~{,,(t) —i—SF,,(s) ]-?,,(t —5)ds (2a< t < o0).

Now the following proposition can be proved easily. It explains the choice
of L, in (6.1).

ProposITION 6.1. Let E(z) be of the form (6.3) with L € L0, 2a). Then L coin-
cides with L, from (6.1) (that is E(z) = E(a; z)) if and only if the function 1~{a in (6.5)
is a continuation of H: H,(t) = H(t) (0 < t < 2a).

Proof. If H,(t) = H(t) (0 < t < 2d), then from (6.5) and (6.1) it is evident
that L(t) = L,(t) (0 <t £ 2a).
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Conversely, given L, by (6.2), and L = L, it follows that the function 4(r) :=
:=H,(t) — H(t) satisfies the Volterra integral equation

t
4@) =SA(£ —wl,wdu (0 <1< 2a),
[}
which has only the trivial solution A(f) = 0 (0 < ¢ < 2a). The proposition is proved.

COROLLARY 6.1. We have

E(a; 2) C - .
——==1+2\H)e "dt (Imz<g —
g =12\ A0 (Imz < —y)

with some function I—ia on [0, oo0) such that
e_,H,e E0,00) and H(t)=H({) (0<t<2a).
The following relation betwesn D(a; z) and E(a; z) is of fundamental impor-
tance.

THEOREM 6.1. The orthogonal functions of first and second kind satisfy the re-
lation

(6.6) D(a; z2)E*(a; z) + D*(a; 2)E(a;z) =2 (ze C).

(If F is an entire function then we define F#(z) := F(Z) (ze C), Fy :=
= (F — F*))2, F, := (F — F%)J2i)

Proof. The relation (6.6) can be written as

2a 2a
— S L(s)e'*ds — \ I',(t)e " dr — S L(s)e~=ds —
0 [

sy

2
I

2a « 2a

— S T(He*dt +

0

LT, (e~ dsdr +

S
S

2a 2a
+ S S T ()L (De*s=0dsdt == 0
00
which is equivalent to
2q~u 2a—u

6.7) —L,(u) — ')+ S L () (s + u)ds + S T ()L (s + u)ds =0

0 [
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(0 < u < 2a). By the definition of L,, the left hand side is equal to

2a 2a—u
2 S H@u — o)l (v)dv — 2 S T () + v)dv —
u 0
(6.8)
2a-u 2a 26—u 2q
—2 S S H(s—nDI,(t)dt T (s+u)ds—2 S S T ($YH(s+u—1)(1)dtds.
s=0 ts 5=0 t=s5+u
The first two terms give
2a 2a 2a
2 Sr,,(u)( — It —u)+ H{t —u))dt =2 S (0 S H(t — s — u)T (s)dsdr,
u t=u s=0

and the last two terms of (6.8) can easily be transformed into the same expression
with opposite sign. Thus (6.7) and therefore (6.6) are proved.

COROLLARY 6.2. If D(a; z) = O then D(a; z,) # 0, that is, D(a; -) has no real
zeros and no comp lex conjugate pairs of zeros. In the same way, E(a; -) has no real
zeros and no complex conjugate pairs of zeros.

In the next section we shall show that this property is characteristic for
orthogonal functions.

6.2. THEOREM 6.2. Let I' € LY(0, 2a) be such that the entire function
2a

(6.9) D(z) := eiaz(l — S I'(ei# dt)

has no real zeros and no complex conjugate pairs of zeros. Then the equation
2a
6100 I+ SH(t — ) T(s)ds — H() (0 <1< 2a)

0

has a unique solution H e LN0,2a). If we extend H to [--2a,2a] by H(t):=

i=H(—1)(—2a<t<0 ), then —1 ¢ o(H) and D(z) is the orthogonal function of

Sirst kind associated with H. The total number of zeros of D(z) in C_ is equal to #1.u

(the total number of negative eigenvalues of I + H).

Proof. (1). In this part of the proof we suppose additionally that D(z) does
not have any zeros in the closed lower half plane Imz < 0. The function
(D(x)D*(x))~* belongs to the Wiener ring R, therefore it admits a representation

(D(x) D*(x)-1 = 1 + S H()e~"*dr (xeR)

-0
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with some Hermitian function H € L'(R). This relation can be written as

0 2% oo
0=— S I(—e~*™dr — \F(z)e“"‘dz + S H(t)e ™*dr +
—2a 0 ~o0
2a 2a 2 oo
4+ S r(He'"* dx S [(s)e*ds — S T(t)e*™*dr S H(s)e ™*ds —
[} [} — o0

(6.11)

2a 0
— SI’(s)e‘i’“ds S H(t)e™ dr +
0 —00

2a oo
T(1)e=de S [(s)e~*ds S H@)e **du (x € R).

0

cl_,\g’

In the followmg it is convenient to extend the function I to the whole axis
putting I'(t) = 0 (¢ ¢ [0, 2a]). Then (6.11) is equivalent to

2a-1

0 = — (=) — () + H() + S TGIT(s + 1)ds g a(0) +

2a 2a

6.12) | O+ ndsg o0 - S FOHG -+ 1)ds —
2a i 2a 2a ,
— S [ (s)H(t — 5)ds +S S H(t — u + $)[(s)[(w)dsdu (1 € R),

where x4 denotes the characteristic function of the interval 4. If we define the func-

tion v:
2a

6.13)  u(t) := — I'(t) + H(r) — S TEH( — s)ds (0 < ¢ < o0),

5=0

then (6.12) implies

0= v(t) — Sf(;vju(t + s)ds (0 <t < o0),

or
0

6.14) 0 = u(t) — S oI (s — 1)ds (0 < t < oo).
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This Wiener-Hopf equation with kernel k(r — s) := I'(s — t) has only the obvious
solution: v(t) =0 (0 < 1 < 00). Indeed, the symbol of this equation is given by

(o] (o]
1 — S eZk(f)dr =1 — S eH I (—t)dt = D*(—z)e~1% .
-00 . ' —o0
This function is bounded on the closed lower half plane and does not vanish there.
Hence its index (that is the increase of the argument if z runs through the real axis,
divided by 2x) is zero. Now the statement follows from [24, Theorem 1]. Thus we
have shown that the relation
2a
6.15) )+ SF(S)H(t —s8)ds=H(@) (0 <1t<2a
0

holds. _
Next we prove that — 1 ¢ o(H). Assume to the contrary that there exists a non-
trivial solution ¢ of the homogeneous equation
2a

(p(t) + SH(t — )p(s)ds =0 (0 <t < 2a0).

0

Then, according to Theorem 1.1, ¢ can be chosen such that ¢(0) # 0, that is

2a
S H(—s)p(s)ds # 0. On the other hand, ¢ must be orthogonal to the right hand

[

side of (6.15):

S H(s)o(s)ds = 0.
(]

As H is Hermitian this is a contradiction.
Now the resolvent kernel I',(z, s) of H is given by Corollary 1.1:

Fa(tas):r'(t_s)-{—r(s_t)—!—
(6.16)

min(s,t)
4 S (TRa—t-+r)rQRa—s+r)—I(t—nL(s—r))dr (0<s, 1<2a).
(1]

In particular, I',(z,0) = I'(t) (0 < t <€ 2a), thus D(z) in (6.9) is the orthogonal func-
tion of first kind associated with A.
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(2). Now let D(z) have zeros z, .. ., z; of multiplicities 5,, .. ., %, , respective-

k 7.\ %,
ly, in C_. Then the function Dy(z) := D(z) II (Z ZJ) ’ admits also a repre-
j=13\2 — Zj
sentation of the form (6.9) with some I', instead of I' (see [24, Lemma 4.1]). As
Dy(z) does not vanish in the closed lower half plane, by the first part of this proof
it is the orthogonal function of first kind, corresponding to some Hermitian func-
tion H, € LY(—2a, 2a). The corresponding orthogonal function of second kind is

given by

6.17) Ey(z) = e""( 1—

cg/\‘g

Ly(t)e #ds )

with some L, € L'(0, 2a) and we have
(6.18) Dy(2)EF(2) + D§(2)Eo(2) = 2.

By R(z) we denote the sum of the principal parts of E,(z)/Dy(z), corresponding
to the poles z,, ..., z;, and define a function E(z):

E(z) := D()(Eo(2)/Dy(z) — R(2)) + D()R*(2).

Then E(z) is an entire function, which belongs to the Wiener ring R, . Moreover,
observing that in (6.17) we integrate only from zero to 2a and that D(z)/D,(z) is
a rational function it follows that

— -ayF(1
fim DI~ EG _
y1oo y

Therefore also E(z) admits a representation

2a

B(z) = ei”( 1 — S L(e-i dt)

with some L € L*0, 24). If we chose y > 0 such that Imz; > —», j=1,2, ... k,
then from the generalization of Wiener’s theorem used already above it follows that

=142 S He *dt (Imz < —vy),

(1]

E@)

(6.19) 0

where H is such that the function e_,, H belongs to L}(0, o). Moreover, (6.18) implies
that

(6.20) D(2)E*(z) + D*(2)E(z) = 2.
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Now we shall establish the relation (6.10) between the given function I' and H
in (6.19). To this end we first observe that (6.19) is equivalent to

(6.21) L(s) = —2H(s) +- I'(s) + 2SF(u)H(s —wydu (0 <5 < 2a),

(6.22) 0= —H()+ S FH(s —w)du  (2a < s < o).

If we extend L to the real axis putting L(t) = 0 (¢ ¢ [0, 27]), then (6.20) gives
—I(t) = L) = T(—=0) — L(—=1) +
2a
+ S I'(u + L) du +
0
Thus from (6.21) we obtain for # € R:

Tu — )Lw)du=0 (teR).

S w2 §

t

2H(t) — ZX[O’w)(t)(F(t) + SH(t — w)(u) du) —

—t

PN ) (F(—z )+ S H(—t—uw)I'(u) du) +

6.23)

+

w2 §

T+ 1) (-2% + T+ zS’r(s")H(u — s)ds) du +

+ S I'lu—1) (-2H(u) + I'(u) + 2 SF(S)H(M — s)ds)du = 0.

If H is extended to the negative axis by H(t) = H(—?) (—co <t < 0) and we
restrict ¢ in (6.23) to be nonnegative, it follows that

H@) — @) — S TWH({ — w)du + S I'u + OF(uw)du — S T'(u — t)H(u)du +-

2a 2a
+ S Sﬁs—)r(u)H(s +t—u)dsdu=0 (t=0).

0
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This equation coincides with (6.12) if 7 > 0, therefore it can be transforméd into
(6.14) with v given by (6.13). As we know from (6.22) that v(t) = 0if 7 > 24, it
follows

0= v(t)‘-—vs oI — Hds (0 < ¢ < 2a).

t

This Volterra integral equation has only the trivial solution, that is v(f)=0(0<¢<
< 2a). Therefore the relation (6.10) holds. Now it follows as in Part (1) of the proof
that — 1 ¢ o(H) and that D(z) is the orthogonal function of first kind associated
with H.

The statement about the zeros of D(z) will be proved in § 7.2.

COROLLARY 6.3. Suppose the entire function D(z) has the same ﬁfopérties as
in Theorem 6.2. Then the equation
(6.24) ' . D(2)E*(2) + D*(2)E(z) = 2

i

2a

has a solution E(z) which is of the form E(z) = ei‘”( 1 — S L(r) e—izt dt-) with some

Junction L € [0, 2a). Moreover, this solution is uniquely determined in the class ‘of all
entire functions which are bounded in the closed lower half plane and after division by
etiaz tend to | if z goes to infinity along the negative imaginary axis. The fi{nctions D(z)
and E(z) are the orthogonal functions of first and second kind, respécﬁvely, cor-
responding to some Hermitian function H € LX(—2a, 2a), and we have

(6.25) %% =1+ 28 Hitye"#dr (Imz < — )

Jor some y = 0, where H is such. that e_;f[ € LY0, o0) and fI(t) = H(@)if —2a<
<t <€ 2a
It remains to prove the uniqueness statement, the other parts of the Corollary
6.3 have been established during the proof of Theorem 6.2. If there are two solu-
tions E\(z), Ex(z) of (6.24) with the indicated properties, then Ey(z) := E,(z) — Ex(z)
satisfies the equation

6.26) | E@ _ _ E@
D(z) D*(z)

(=: F(z)).

After division by ei7 it is bounded on the closed lower half plane and tends to
zero if z tends to infinity along the negative imaginary axis. As e“?D(z)~!is bound-
ed outside of a compact part of the closed lower half plane, the left expression in
(6.26) is bounded there. Now it follows from (6.26) that F(z) is a bounded entire
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function, hence F(z) = const. and this constant must be zero as lim F(—iy): : 0.
ytoo

Therefore Ey(z) = 0 and the uniqueness is proved.

COROLLARY 6.4. Let D(a; z) and E(a; z) be the orthogonal functions of first and
second kind corresponding to some Hermitian function H e LX—2a, 2a). Then there
exists a Hermitian function Hy € L\(—2a, 2a), such that —1 ¢ o(Hy) and E(a; z)
(D(a; 2)) is its orthogonal function of first (second, respectively) kind. It is given by
the integral equation

(6.27) Hy(t) + H(t) + 2 S Hy(s)H(t — s)ds =0 (0 <t < 2a).

Indeed, if H is defined by (6.25), then we have

Dl 2)

OO~ -1 OO~
1 =2\ H(r)e izt de =1-+2\ H()e #*d
Ea; 2) (+ S O ) - S e
(4

(Imz < — y,) with some function I-fd on [0, oo0) such that ey, I-}d € LY(0, 00);
here y, is such that all the zeros of E(a;-) are in the half plane Imz > —y,. The
function Hj is the restriction of Hy to [0,2a], extended by the relation H,(—1)==

— Hy(t) to [—2a, 2a).
The connection between H and H, can also be expressed as follows:

2a
1+ 28 H(t)e~ izt dt + ofe~2iar) —
0

-1

= [ 142\ Hyeitds + o(e"*’i”’)] (Imz | — o0).

O 0

The function Hy will be called the dual function of H. Evidently (H,), == H. It is
easy to see that the function L, can be obtained from the resolvent kernel of H,
in the same way as I', was defined by means of the resolvent kernel of H.

REMARK 1. Observe that the Hermitian function H € LY(—2a, 2a), —1 ¢ o(H),
is completely determined by only one of the orthogonal functions D or E. In the
positive definite case (x = 0) the following simple relation holds true:

__wl_l_.. =1+ S H(ye-*tdt (xeR);

here H € LX(R) is again a continuation of H.
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6.3. Let again H € LY(—2a, 2a) be a Hermitian function. We associate with
it the dual function H,, defined on [0,24} as the solution of the integral equation
(6.27) and extended to [—2a, 24] as a Hermitian function. We shall establish a simple
connection between the scalar product [-,-] on L%0, 2a) given by (1.25) and the
scalar product [-,-]; defined in the same way with H replaced by H, .

If ¥ € L0, 2a) we define ¥ € L0, 2a):

t
20):= 1) + 281{(: — @ ds O <1< 2a),
1

and ¥ e L¥0,2a):
?
() = x(t) + 2 S Hyit — s)(s)ds (0 <t < 2a).
0

These relations we shall formally write as
(6.28) X =2+ 2Hxy, ¥ =1+ 2Huy,

that is, in these formulae H and H, are considered to be zero outside of [0,24]. With
this agreement (6.27) takes the form

(6.29) Hy + H+ 2(H;xH) = 0,
and the scalar product (1.25) can be written as

[x, ¥ == (x, y) + (Hxx, ) + (x, H#p),
where (-, ) denotes the scalar product of L¥0, 2a).

(1°) The mapping y —»;’Z establishes an isomorphism between L*(I + H) and
L¥I + H,); its inverse is given by y — %.

Proof. We have
()" = X + 2H#3 =y + 2H*y + 2Hyxy + 2Hay) =
=y + 2QH 4+ 2H; + AH*H)xy =y

and
Do) — 1% s = O ) + (Hex, 1) + (4, Hey) —

here the last equality is easy to check using (6.28) and (6.29).

As an immediate consequence of (1°) we have:

PROPOSITION 6.2. Let H € L\(—2a, 2a) be a Hermitian function. Then

(1) The relations —1 € a(H) and —1 e o(H,) are equivalent. If they hold the
mapping @ — @, given by (6.28), establishes a bijection between the D-chains of H
and Hy for the eigenvalue —1.

11 .. 2650
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(2) The n,-spaces L*I + H) and LI + H,) are isomorphic.

6.4. By C, we denote the set of all functions ¢ which are defined and conti-
riuous on [—2a, 0) and (0,2a] and such that @(0-+) exist. On the linear set of all
entire function @:

&(z) = S eZp() dr  (z e.C)

—2a

with ¢ € Cy we consider the following linear functional ©,,:

(6.30) QH@)——‘I ( 9(04) + p(0—) + 2 SH(r)w(r)dr).

Now let y € L¥0, 2a) be given, and
2a

X(z) := S e"¥y(rydr (ze Q)

0
be its Fourier transform.

(2°) If y € L¥0,2qa) the following relation holds:

(63 l) Q;.I ( ezsz(Z) - e2ia/1X(}»)

z— )

) — A;(z) e2iaz,

Here the A at €y indicates that the functlonal Q, acts with respect to the
variable 4, and X is the Fourier transform of % = x4+ 2Hsy.

Proof. We have

2a
2iaz — elidl i iz(2a~t) __ oid2a-1t)
e¥ez X(z) — et X(4) _ S e e (1) dt =

z— 7 z— A

0

2a 2a-t¢
= iS giza-1 el=sds y(r)dt ==

0 0

2a 2a—-s

— 1 S eils S e—iz(t+s)x(,) d[ ds,éﬂiaz’ .

5=0 t=0
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and the definition (6.30) of the functional Q,, gives

Q;.{( e2iazX(Z) . e2ialX(/’{) ) _

z— A
2a 2a 2a-t .
= ezi“z(S x(De zdr +2 \ H(t) \ e #6+9y(s)ds dt) =
0 t=0 =0
2a t
= g?iaz S e-iz'(x(t) +2 S H(t — s)y(s)ds )dt = ezi“z)?(z).
? 520

The proposition (2°) implies that the mapping y — % of LI -+~ H) into
LI + H,) can also be realized by means of the functional Q,: If y € L¥0, 2a) is
given then the left hand side of (6.31) is €%9* times the Fourier transform of .

In (2°) the functions X(z) are generated by the powers (e~%)* with ¢ € [0, 2a].
A corresponding statement for the interval [—a, g] is as follows.

(3°) Let Xi(z) = aelo? S e~57y(s) ds with some o ¢ C, ye L —a, a).

-a

Then the following relation holds:

%( 10 = 10

) = gelez + S e—-i:z)'z(s) ds
with

x(s) + 2 S H(s — wyy(u) du + 20H(s + a), —a <5 <0,

I

70 =1 -
1(s) — ZSH(S —uwy@du, 0<s <a.

Proof. We have

X(2) — X4(A)

z—2

a a s
— aieiaz Seis(l—z) ds + i S X(S) e—iszg e—it(2-z2) drds =
0 a 0

0

a
= ol S e-—itleiz(aﬂ-t) dr — 1 e-—itl S e—iz(s—t)x(s) ds dr A+
0 s=1

| C™

Za t
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4 a
+i e~ it S e~ 126 Ny(s) ds dt = S e~y (1) dt,

t=wg S=—a a
¢
sigern i | emoogas —axico,
s:—n
Xl(t) = { a
—i S e~iz(s=Ny(s) ds 0<r<a.
s=t
It follows
0 a
Xi(2) — X;(4 ; i i
Qﬁ{( i ) )1(/) ) = gelaz S C—ISZX(S) ds — S e““z(s) ds 4+
’ S=-—a $==0

a

H() S e~ 26—y (s)dsdr=
s=t

0 H a
+2 S l_{_(’}-)(aei:(“'*') + S e“:(s“))((s)ds)dt——2s

t=—

a s=—a t=0

0

== geld? S e‘i”(x(s) + 2aH(a + sy + 2 S H(s — u)y(v) du) +

—a a

a a

+ Se-m(— 2(s) — ZSH(S — u)x(u) du)ds = aee? 4 S etz (s) ds.
0 s -4

The following relations between the orthogonal functions of first and second
kind are an immediate consequence of (3°). Here we write D(z) instead of D(a; z), etc,

(4°)
Qﬁ;r( D(Z)—P(l)

s — 4

D*(z) — D*(7)
z— A

) — E(), Q% ( ) = — E%(2),

z— 2 z— 2

Q?{d (M) = D(2), Q}}Id (M ) = —D*(2).

Proof. We have
D(z) = els — S I(s +a)e-i=sds, E(z) = elor — S La - s)e~i=s ds,
therefore the first relation in (4°) follows if we show that y(s) = —I',(s + a), o = 1

implies %(s) = —L,(a -+ s); here y and % are connected as in (3°). This can be easily
verified by means of (6.1) and (6.2).
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Between D(z) and D*(z) the relation D*(z) == D(—z) holds with D(z) = ei#? —

- S I(s + a)e~izsds. If in the first part of this proof we replace I'{s + a) and

—-a

L,(s 4+ a) by their complex conjugates and . by —/ (which implies that H has to
be replaced by H), it follows that

D(—z2) — D(—2)
—z 44

9},( ) = E(—2).
This proves the second relation in (4°). The last two relations are now an immediate
consequence of Corollary 6.4.

Finally, the first relations in (4°) and (6.6) imply

o ( D)D*({) — D(C)D*(i)) _ Q;{(;D(_’f))_*")_@ DY) -+

A=t

(6.32)
D*(() — D*(A)

A—¢

+ D(C)) — E(QD¥Q) + EXDDQ) = 2.

7. A GENERALIZATION OF HERMITE'S THEOREM AND A CONTINUOUS
ANALOGUE OF THE SCHUR-COHN THEOREM

7.1. In [38] the following statement was proved:

(1°} If F € N,, then for arbitrary c € C, the function F — ¢ has in C_ zeros:
of total order x.

Recall that for a kernel K by »(K) we denote the number of its negative squa-
res. If € = (¢;,) is an infinite matrix, then »(€) is the maximal number of negative
eigenvalues of all the matrices (Cjk)}:]ks(] S N=1,2,...

ProrosITION 7.1. If K(z,{) is holomorphic in z and { on the closed unit disc,
K(z, §) = K((, 2),

Kz, )= Y, cuz/l* and € :=(cy),
Jyk=0

then x(K) = »(G).

Proof. We observe the relation

1 1 1
cjk roz z;{; K(Z, C) Zj+1 Ek+1
ls{=1 1¢]=1

dzdZ, j k=01, ...
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and approximate the integrals by Riemann sums. This implies for arbitrary
N=12, ...

(c;)f = lim 1 % K(z,, zm)—l— o 4z,AzZ,, VY =
M 4n? ILm=:1 Z[j+1 Z§1+1 J k=0

— lim —— 3*k)M3

Maoco 472
with k,,; := K(z,, z,,) and
Az 4
o
3=
Az Azpr
z}w PR V;']I;\]{-‘{-l—

As the matrix 3%(k,)M3 has at most »(K) negative eigenvalues, we get x(€) <
< x(K). The converse inequality follows from the relation

[+ M *
i =, . . 2 (N)
( y c,-szzfs,) = 3¥C,)¢3. = Jim 3 (2R3t
- 00

Jk0 [m=1
. A
with ¢,; 1= ¢y,

(1]

2(1) Zg Zar

2 2.2, Do :
3, 1= 1 1 1 and 3(N) t=— N N N
e 4 Za ... 2Zp 1 T Zy Zy ... 2p

Voo : 0

(==
)

In the following the multiplicity of a zero z, of an analytic function G will
be denoted by x4(zy), and we put xg(z) = 0 if G(z) # 0. If D(z) (#0) is an entire
function, we consider the Hermite kernel Kp:

a Kute, 0 = POZL=2OPE 1)

Evidently, K3, is determined by its values in an arbitrary neighbourhood of some
point z, € C.

PRroPOSITION 7.2. If D(z) is an entire function and x(Kp) is finite we have

Y (p(2) — %p(ENF = w(Kp).®
zeC_,

*} If a is rea - we put et = max(a, 0).
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Proof. It is easy to verify that the relation

(7.2) . Kz, 0) =2 DR(Z)m DJ(Z)/DR(Zz:ZDJ(C)/DR(C)

holds. Therefore the hypothesis of the proposition implies Dy/D; € N,. From the
theorem quoted above it follows that the function

DG _ . Dye) — iDy2) _ i( D) i‘)
Dy(2) - Dy(2) Dg(2)
. . D(z) T
has »% zerosin C_. If D(z,) = 0, z, € C_, then z, is a zero of D—(—) of multiplicity
R rR\Z

%p(zo) — min(xp(zy), #p(Zo))s

which is equal to xp(zy) — #p(Z,) or zero, and the statement follows.

Propositions 7.1 and 7.2 imply immediately the following generalization of
Hermite’s theorem about the number of zeros of a polynomial in a half plane to
entire functions. If D is an entire.function by €, we denote the matrix (c;;) with

Koz 0= Y, cuall

k=0
THEOREM 7.1. If D is an entire function and «(Kp) is finite then

Y, (p(z) — #p(Z))* = (Cp).
zeC.
Using a result of M. G. Krein about entire functions of the Hermite-Biehler
class a complete description of all the entire functions D with %(K,) < oo can be
given.

THEOREM 7.2, Let D(z) be an entire function. The kernel Ky, has a finite number »
of negative squares if and only if D(z) admits a representation

. * 0 Lz Re P,(z/a,
(1.3) D(z) = EG) e [T z — B) I ( 1 — ) oo KT
j=1 k=1 o7
with an arbitrary real entire function E(z),a 2 0, be R, ,eC_ (j=1,...,%),
a,e C, (k= 1.2,...) and polynomials
Pk

25, RePyz) = 5 (Pd) + PEG);

k

22
Pk(z):=z+—2—+ e+

the integers p, have to be chosen such that the second product in (7.3) converges (if it
is infinite).
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In the representation (7.3) we can always choose p,=k. If p:=:
:=inf {11 Y] la,|~* < 0o} < oo we can put p, = [p].
P

Proof. With [:= (1 4+ iz2)(1 —iz)~%, 7:= (1 + i) —i)~* and X():==
1= D(z)/D*(z) it follows that

X(HX*(T) — 1

4 A4 1).
20— 1) DO + DA+ 1)

Kp(z, {) = D*(2)

If z, { € C, we have |{|, i2] < 1. Therefore the kernel K, has x negative squares if’
and only if the function X(I)(]!| < 1) belongs to the generalized Schur class S, ,
introduced in [40]. It follows from [40, Theorem 3.2] that X(/) has x poles in the open
unit disc. Thus the function D(z)/D*(z) has x' (<x) mutually different poles
Bi.,..., B in C, of total multiplicity x:

w; =% with »; 1= 3,.(B;) — %p(B)) (> 0).
=1

’

The factor H (z — Bj)"D(Ei) is common to D(z) and D*(z), hence H ((z — Bz —
j=1 j=1
- Bj))z”(ﬁf) is a real factor of D(z). As this factor can be taken to E(z) we can sup-

pose that D(B;) # 0, xpe(B;) = #p(B;) = ;.
Putting P(z) == [] (z — B,)’7, it follows that the function

j=1

D\(z) = D(2)/P(z)
has no zeros in the lower half plane. Moreover,

Ky(z, {) == Dy(2)K p(z, DF(Q) + P*(2)Kp (z, OP(D).

The first term on the right hand side is a nonpositive kernel with » negative squares,
the second term has an at most finite number of negative squares. As D,(z) has no
zeros in the lower half plane, by the considerations at the beginning of this proof
(applied to D, instead of D) it follows that the kernel KD1 1s positive definite. Accord-
ing to [41] (see also [42, Theorem VIIL.6)) the function D;(z) admits a representation.

z Re P, (z/a,)
)e v

D,(z) = E(2)eiez%b fi (1 _F
k=1

Ay

where E(z), a, b, etc. have the properties mentioned in the theorem. With a suitable
enumeration of the zeros of D in the lower half plane (according to their multipli-
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cities) the representation (7.3) follows. The converse statement is now easy to see,
and the theorem is proved.

7.2. Now let an entire function of the form

2a

(7.4) D(z) := iz (] — S I'(r)e-iz dt}

(1]
with soms T € LY0, 2a) be given. It is not hard to check that the kernel Kp(z, {)
admits the rzpresentation (comp. [29], in the discrete case see also [30])

2a 2a
(1.5) Kplz, {) = ciaz=9 S g e~ 17 e55(5y(t — 5) — y(t, 5)) ds d¢
b0
with
mings, £)
Wt,8) =Tt —s)+ (s — 1) + IFQa—t+nlRa—s+r)—
0
1.6)

— I'(t — (s — r)dr;

here we put again I'(¢) := 0 if ¢ ¢ [0, 2a].

In the following the integral operator in L%0, 2a) with the kernel y(¢, s) will
be denoted by I'. Recall that s, denotes the total number of negative eigen-
values of the operator 7 — I

LemMma 7.1. If D is given by (1.4) we have
#(Kp) = .

~ Proof. If, for short, %(Kp) = %, there exist n different points z;, z,, ..., 2,
{n > »x) such that the nXxn-matrix & := (Kp(z;, z))7 has x negative eigenvalues.

That is we can find x linearly independent n-vectors El Y e Z, such that

(8,6 <0

for each nonzero vector Eof the linear span of the El, R E;. If E,, =0, .-
&5, p=1,...,%, we define the functions

n . _
1.7 P, =Y e WE, p=1,...,% 0 <1< 2a)
k=1
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®

Then for o(t) := Y} 7,0,(1), 7, € C, it follows

p=1
n -
. —1i - ) - = I
(78) ((I - r)(p’ (p)L2 0.9 = Z € e KD(zk > zl) Z 76Cat Z I‘pgpk
0.20) 9 G Py
and this is negative for each non-zero function ¢ in the linear span of ¢;, ..., 0,.

Therefore

%,_I‘ > x’ = X(KD).

Let now I — I' have »’ negative eigenvalues. As the linear span of the functions

e;-(z € C) is dense in L*0, 2a), there exist " functions ¢,,p =1, ..., %', of the
form given in (7.7) such that

((I - r)(pa (p)L2(0,2a) <
for all non-zero functions ¢ from the linear span of ¢y, ..., ¢, . This, by (7.8).

implies-that the matrix (Kp(z, z,))‘;‘/ has at least »’ negative eigenvalues, that is
Z(KD) 2 %' = Xl—r‘,
and the lemma is proved.

Combining the results of Proposition 7.2 and Lemma 7.1 we have the follow-
ing.

THEOREM 7.3. (Continuous analogue of the Schur-Cohn theorem™). If D(z)
is given by (1.4) and T denotes the integral operator with the kernel y(t, s) from (1.6}
we have

Z (%D(Z) —xp(ZN* =x;_r.

z€C_

That is, the total number of zeros of D(z) in C_, which do not correspond to
complex conjugate pairs of zeros, is equal to the number of negative eigenvalues
of 7 — I'. We mention that it was shown in [44] that the total number of real and
of complex conjugate pairs of zeros of D(z) coincides with the dimension of the
kernel of I —T.

If the function D(z), given by (7.4), does not have any real zeros or complex
conjugate pairs of zeros, according to the statements of Theorem 7.2 which are
already proved, there exists a Hermitian function H € LY(-2a, 2a) such that y(z, s}
in (7.6) is the resolvent kernel of H (observe that the right hand sides of (7.6) and
{6.16) coincide):

I—-T={+H"1.

#) For the classical theorem of Schur-Cohn see [431.
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Moreover, D(z) is the orthogonal function of first kind associated with H. If we
observe that »;.p = %, 4, Theorem 7.1 implies that D(z) has », , zerosin C_,
Thus also the last statement of Theorem 6.2 is proved.

Furthermore, if we start again from a Hermitian function H € LY(—2a, 24), the
formulae (7.5) and (7.1) give a relation between (the Fourier transform of) the resol-

vent kernel I'(s, t) of H and the orthogonal functions of first kind of A
D)D) — DOD*E) _
i(z—10)

(1.9) 2

—_ eia(z—-f) S e_iZI (elgt —_
1]

I'(z,s) e’fsds) dz.

S ¥

§ 8. THE OPERATOR Ay = 14 IN LYI +H)
i dt
8.1. Let H € L*(—2a, 2a) be a Hermitian function. In this section we sup-
pose that —1 ¢ o(H). According to the remarks at the end of § 1.6, the operator 4,
in L¥(I 4+ H) is closed, n-Hermitian with deficiency index (1; 1) and simple. Recall
that L2%(I 4 H) is the space L*—a, a), equipped with the scalar product (1.25):

a

(o, ] = Sq)(z)w)dw S SH(t—s)w(s)T/f(?Sdsdr (0. ¥ € I¥(—a, a)).

-a

In this n® we shall give a description of all the n-selfadjoint extensions of Ao in
L1+ H) along the well-known procedure, which can easily be generalized to
7T,-Spaces.

Ifz ¢ ap(fi(,), z#3, by ¢, we denote again a nonzero defect vector: g, 1 R(A,—
— 1), see (1.28). Choose z, # Z,, zy ¢ ap(Ao) such that [qzo, q'zo] > 0. According
to [34] there exists an /2 > O such that this condition is always satisfied if |{Im z,| > A.
For arbitrary 7, |y] = 1, we put

% = )’é:vo - Qzu
and define an extension A} of A, in L2(I + H) on the linear span of D(d4,) and v,
@8 A, = v2ogz, — 20d:z,.
Then A’l; is n-selfadjoint. We mention that for arbitrary y € C the relation
Im{A3y,, ] = Tmz(1—|y19)[gs,, gs,]

holds true. An explicit description of the operator /'12; is as follows.
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(1°) The domain D(A3) consists of all absolutely continuous functions
¢ € L¥—a, a) such that @' € [*(—a, a) and
(8.2) @(@)(yD*(Z,) — D*(zp)) — @(—a)(yD(zo) — D(zy)) = O,
the operator A is given by the relation

D*(zy) — yD*(2,)
D(zy) — yD(3,)

83) (Mio)n) = -:-<p'(z> + _il,_(,,(a)( i, —a) — F (s a)),

(¢ € D(4Y).
Here D(z) = D(a; z) is the orthogonal function of first kind associated with H.

Proof. We first observe that the orthogonal function D(z) can be written as

2a a
D(z) = ez — S I,(s,0) e~2(s-a) d5 = elaz — S f"a(a, t) ezt dr.
0 -

a

The defect vector q,ﬂ, given by (1.28), is absolutely continuous (observe (1.27)):
(8.4) 41 (1) = izeg= (0) + 1t, @) D(zy) — I, —a)D*(z)

and we have
ézo(a) = D(z,), qzo(_a) = D*(Zo)'

Therefore ¥, is absolutely continuous, Yy € L¥(—a, a) and
¥ (@) = yD(Z,) — D(z,), ¥, (—a) = yD*(Zy) — D*(z,).

It follows that also ¢ € 3(/43), which is by definition of the form ¢ = ¢, + &y,
(0o € D(4,), & € C), is absolutely continuous and satisfies the boundary condition
@y, (—a) — o(—aW,(a) =0,

which is equivalent to (8.2).
Conversely, let ¢ be an absolutely continuous function, ¢’ € L%(—a, a), which

satisfies (8.2). Observe that |y (a)} + ly,(—a)| # 0, otherwise ¥, € D(4,), which is
impossible as no linear combination of the defect vectors q,o and i];o belongs to

D(A,). Assume e.g. ¥.(a) # 0. Then

o(a) o(a)
= — VY, + y
? ( @ ) @

and the first term on the right hand side belongs to D(AO).
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In order to prove (8.3) we observe that (8.4) and (8.1) imply

Yy = 145, + I(t, )(yD(Z,) — D(z,)) — I'(t, — a)(D*(Z,) — D*(zo))-
Consequently,

Ao+ &) = i (on -+ &0 +ii EE(t, —a)yD*(Zo) — D¥(zp)) —

— I'(t, &)(yD(Z,) — D(z)))
and, as

¢ = o@y (@~ = e(@(D(Z) — D(z))™",
the relation (8.3) follows. The statement (1°) is proved.

Now it is easy to find the resolvent of A}:

(A3 — zD)~) (1) = i et S e-izay(s) ds +

8.5)

t

( S (F(s, a) — AQz)[(s, —a)) e=i# ds + A(zg) €2 )

—a

F(u; z) &7
D*(z) — A(z)D(z)

with
Fu; 2) = Se*ﬂu(t)du A(z) = (D*(z0) — YD*(END(;) — yD(E)

8.2. Evidently, the spectrum of Ag is the set of zeros of the entire function
D*#(z) — A(zy)D(z), which gives some information about these zeros. The formula-
tion of this statement will be left to the reader. We shall show, however, how these
connections between o'(A ) and the zeros of D*(z) — A(z,)D(z) can be used in order
to show that D(z) has x zeros in the lower half plane.

To this end we first mention that the operators /i can be defined for arbitrary y
such that |y| < 1, and that in this way we get all the maximal =-dissipative *) exten-
sions of A4,. The relation (8.3) can be written as follows:

(A3o) (z)——~<p<z)+ —w(—a)(l"(r _a) — Dz = 1D(Z) f(r,a)).

D¥(zy) — yD*(Z,)

%) An operator A in the 7,-space IT, is called m-dissipative if Im[Ap, @] > 0 (p € T(A))
and maximal z-dissipative if it does not have any proper #-dissipative extension, see [8].
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Now we consider the following operator B: ZD(B) is the set of all absolutely conti-
nuous functions ¢ such that ¢’ € L¥—a, a), (o(a) =0, and

(8.6) (Bo)(t) := —<p )+ - <p( al(t, — a).
Evidently,
(8.7) B = A3 with y, := D(z,)/D(Z,).

This connection, however, we shall use only later. First we prove in a straightfor-
ward way the following proposition.

(2°) The operator B in LI + H) is maximal n-dissipative,
(8.8) Im(By, ¢] = lp(—a)* (¢ € D(B)).

The linear span of the algebraic eigenspaces of B, corresponding to eigenvalues in the
lower half plane C_ , is a x-dimensional negative subspace. All the eigenvalues of B
are geometrically simple.

Proof. If we observe (8.6) it follows that
Im(Bo, ¢] = —Re{( + H)¢', 9) + ¢(—a)(U + B)I(-,~2), ¢)} =

a a

__ ;{S oGdl + S Podr + S SH(r—s)qa'<s)¢'<?§dsdr+

-a —a

ua a

+ S S His — D)@' (5)(1)dsdt + o(—a) S H(t + a)o(t)dr +

—-a —a —-a
a

+ o(—a) S iT(r'JE&yp(r)dz},

and integration by parts gives (8.8). The relation (8.8) implies that B does not have
any real eigenvalues. Indeed, Bp, = 24y, 29 = 4o, implies @o(—a) = 0, and the
doy

boundary problem —1 T Ao®gs @o(—a) = @o(a) = 0 has only the obvious
i t

solution @ = 0.

By (8.8), B is dissipative. If 4(z) # Q its resolvent exists and is given by the
formula (comp. (8.5))

((B — zD)~Wu)(r) = iei# S e~ z5u(s)ds +
(8.9) -

t
+ iD(Z)_]ﬁ/’;(_u;z)ei“ (S j"(s’ #a)eizsds - eiza) R

a
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According to [8] the maximal n-dissipative operator B in the 7, -space L*I -+ H) has
a x-dimensional nonpositive invariant subspace ¢ such that Im o(Bl¥) <0
and all the algebraic: eigenspaces corresponding to eigenvalues in C_. belong to Z.
By the above remark we have even o(B( &) < C_. The last statement in(2°) follows
- 1 d .
from the fact that the initial problem - - —d(pA = Ap, @(a) =0, has a unique (up
: ' 1 t

:

to constant multiples) solution. The proposition (2°) is proved.

As the eigenvalues of B are geometrically simple, their algebraic multiplicities
coincide with the orders of the corresponding poles of the resolvent. Thus, from (2°)
and (8.9) we have the c

COROLLARY 8.1. The orthogo;;al function D(z) has zeros of total multiplicity
xinC._.

This fact was"stated in Theérem 6.2 and proved by a different method (usmg
a generalization of the Schur-Cohn theorem) in § 7.2. The idea of the proof in
this n° (considering the spectrum of the maximal n-dissipative operator B) was also
applied by L. A. Sahnovig [12], who proved the statement of Corollary 8.1 for the.
case of a generalized function H.

As we have mentioned already, the operators A%, || < I, are the maximal
n-dissipative extensioﬁs of A, in LI + H). Here we have |y| < 1 if and only if
A3 is not m-selfadjoint. Thus (8.7) and (2°) imply immediately the following state-
ment. s : IR

(3°) There exists an h = 0 such that
|D(2)| < |D(Z)] if Imz > h.

In the positive definite case (x = 0) this property (with s = 0) p]ays a crucial
role in the theory of De Branges [36].

1 d
i dr
LI + H). To this end we apply [9, Satz 3.10]. This, however, is not so straight-
forward, as J, is only a generalized scale vector. Therefore we shall choose a
dg-sequence (u,) of functions u, € L¥(T + H), which are symmetric with respect to
zero, and shall calculate

8.3. Now we find the Jg-resolvent matrix of the operator AO = n

(8.10) o tim W, (2) =: Wi (2);

n—oo
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here W, denotes the u,-resolvent matrix of A,. It turns out that the limit in (8.10)

exists for all ze C. *
First of all we observe that with the defect vector ¢, from (1.28) we have for
arbitrary f € L¥(—a, a)

[f, 451 = (I +H)f, (I — Dye.) = Sf(f)e—iztdr‘

It follows (see [9, § 3.1]) that

P(z)f := lim —[fi

n—co n b E]

= Sf(t)e-—izt de. ==

-a

Recall that 2(z) is considered as a mapping from LX{ + H) into C. The adjoint
mapping 2(z)* is given by

P(z)y'a =aqg. (xeC),
and we get

P(DOP)* = S e"""(eit‘ — S I, s)e’ ds) dr.

a a

On the other hand, the term on the right hand side can be expressed by means of
the orthogonal functions of first kind and it follows

D(z) DX(0) — D()D*(z)
iz — 0 '

P@PQ)* =

For later use we formulate the following consequence of this identity:
(4°) If D is the orthogonal function of first kind, the kernel Ky (see (1.1)) has
infinitely many positive squares.

Indeed, we have Kj(z, {) = P(2)P({)* and the elements Z({)*a (x € C, { # )
span the whole space L[ 4 ﬁ), which is infinite-dimensional.

=) In fact, the generalized scale vector &, belongs to some space with negative norm. Here,
however we shall avoid the theory of space triplets and use the simple limit procedure (8.10).
%) The functionals £(z), ()(z) in this and the following sections correspond to the oper-
ator /lo in L3I + H) They are different from £(z) and ((z) in § 3, corresponding to A4 in I (f).
We hope that no confusion arises.
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Next we calculate Q(z) from [9, (3.4)]:

Q@) f = lim [(A} — zI)=Xf — P(2)fIu,), ).

n— 00

Here )12, is an arbitrary z-selfadjoint extension of A4,. It follows that

t
iei# S e~izsfisyds t <0,

—-a

lim (43 — 2I)~(f —(PD)f)u,) = |

n— 00

—iei”Se‘i”f(s) ds >0,
H

and

a

Q) f = % { S e-i55 f(s) ds — S &35 f(s) ds} +
s 0

(8.11)

+1i SH(—— 5) el Se’i"f(t) drds — iSH(— 5) ei”Se"'”f(t)dt ds. ®

On ‘the other hand we have

PD—2@) . ( . |
szl S € {X[_a,o] (t) S —X[o’a](t)

t=—a S=-~—a s

||o_,§=

t

and the definition of the functional Q4 implies

8.12) ay( ZO=2E 1) = F-a0r.

*) We mention that Q(O)f can also be written as follows:

a
QO) f=i Sf(t)g'(t) de
—-a
where g is given by (2.2). It follows that

ROy = —il—D) g, QOO = -D¢, g).
12 - 2650

} ezt -9 f(s) dsdr

377
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Now the following relations are easy to check:

®.13) I 4@ — OREPQ) = ——;— EGDHO) + E*@)DQ)),
(8.14) 1 — (= 0P = ——;— (D@EXQ) + D*DEQ),
(8.15) 2 — DREDAD) = -} (—EQE*() + E*@EQ).

Indeed, we have from (8.12), (6.32) that

2RPQ)* — PHPD* ) e

L)
A— Z

14z — DQ@PQ* = 1 + (z — o'*? %(

Fz— C)_;_ ok ( 1 [D(X)D*(C) — DOD*()  DHD*() — D(C)D*(Z)D=

i =0 i(z —90)

A—z

1 1 1
] — O - D()D*(8) — D()D*(X)) —

1

— 2z

(DD — D(C)D*(Z))) -

D) — D(z) D) — D) — D*(z) D(C)) -

LA —Z A —Z

1
=1 +‘2“Qf}1(

1 DA)D*() — D(OD*(4 1 . "
2 A—¢ 2 S
Formula (8.14) is an immediate consequence of (8.13), and the proof of (8.15) is
similar. ' - _ ‘
Now [9, Satz 3.10] implies that the d,-resolvent matrix is given by the formula

(L+mazor awaor )

Ws (@) =
—22@P20) 1 — 22(z)Q0)*

[}
Thus we have proved the following relation:

(8.16) Ws (2) = (—E""(Z)/Z E(Z)/Z)( —D(0)  —iE(0)/2 )

iD*(z)  1D(z) D*(0) —iE*(0)/2
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In §9 we shall need a description of all the dy-resolvents [(/Z — z)™16y, 0]
of AO:

(8.17) (A — zD)718, 8o) := lim [(4 — zI)~" u,, u,),

n-o0

where A is an arbitrary n-selfadjoint extension of /'10 insome m,-space 1~7,‘3L2(I + f—I)-
According to the definition of the u,-resolvent matrix this description is given by
the fractional linear transformation generated by Wao(z), if the parameter T runs

through the class 1\70 :

(8.18 A — zD)-1§ , 8] = w(2)T(2) + wyp(2)
. e = =07 o] W (2)T(2) + was(2)

(Imz < — y)

with (w;(2))} = Wao(z) from (8.16). This J,-resolvent matrix is real and normalized
such that

det W,jO(Z) = l, Wgo(O) =TI

The matrix

g (PO —iEO)2\(—1 —i
’ (m@ —wmwM1 —J

satisfies the relation V JV§ = 2J. Therefore the fractional linear transformation
generated by V, maps the class ]\70 onto itself. If W,so(z) in (8.16) is multiplied from
the right by ¥, we get the matrix

| _ Eq(2) Ei(2)
(8.19) W) = (_ 2D,2) 2DR(Z)) '

Its entries are real entire functions and it has the property det W(z) = 1. Thus we
have proved the following theorem.

THEOREM 8.1. Suppose —1 ¢ o(H). Then the matrices W = (wp)i, given by

(8.16) and (8.19), are dy-resolvent matrices of A,, that is, for both matrices W the
relation (8.18) with some y > O establishes a bijective correspondence between the

set ﬂ’o (T e N, ) and the set of all dy-resolvents of the operator A,.

REMARK 1. In the dy-resolvent matrices W from (8.16) or (8.19) the elements
of the first line can be obtained from the elements of the second line by means of
the functional Q. This follows immediately from § 6, (4°). E.g., for the resolvent
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matrix W of (8.19) we have

2 — Diy(z) + Dy(A)
QH( ]z — 2

) = 1 ER(Z)a

%( Do) fko.)

) — {E2).

REMARK 2. Suppose that ¥ = 0. Then for the entries w(z) of the resolvent
matrix W,;O(z) in (8.16) the following analogues of the formulae of Christoffel-Dar-
boux hold true:

wi(2) =1+ iZ—ZS(E(r; z2)D*(r; 0) — E*(r; z)D(r; 0))dr,

Wy(z) = —i-S(E(r; 2)E*(r; 0) + E*(r; 2)E(r; 0)) dr,
Wo(2) = — z S (D(r; 2)D*(r; 0) + D*(r; z)D(r; 0)) dr,

Wao(z) = 1 + —12—2— S (D(r; 2)E*(r; 0) — D*(r; z)D(r; 0))dr.

They will be proved in § 11.3.

§ 9. CONSTRUCTION OF THE RESOLVENT MATRIX OF g € ®,,, WITH ACCELERANT
BY MEANS OF ORTHOGONAL FUNCTIONS

9.1. In the following theorem we give a description of the set of all continua-
tions g € G, of the function g € ®,,, with accelerant in the indetermined case. A
resolvent matrix for this problem was obtained already in § 5. Here, however, we
find a resolvent matrix whose entries are in a simple way connected with the ortho-
gonal functions of first and second kind.

THEOREM 9.1. Let g € ®,., be of the form (2.2) and suppose that —1 ¢ o(H)-
Then the relation

ool 1 EQTE + E@
1.9 iz Se g(r) dr zg(0) + Y DTG 1D

(Imz <—1y)

[
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establishes a bijective correspondence between all T € ﬁfo and all continuations
£eb®, of g

Proof. Without loss of generality we can suppose that g(0) = 0. The proof
is divided into two steps.
(1) Let g € ®, be a continuation of g. We consider the linear space % of all

functions ¢ € CP(R) with the property S @(t)dt — 0, equipped with the scalar

-— 00

product
0.2) 5,0y = S S i — 93T dsdr

(@, l,@ € CP(R)). It can be canonically embedded into a m,-space Z. As on the right
hand side of (9.2) the kernel g(t — s) can be replaced by Gg(t, s), we have 2’ < .

In order to prove the converse inequality with a function ¢ € & we associate the
function ¢:

4
o(1) = S #(5)ds.
—~00
If ¢, l’/; € %, such that their supports are contained in (—a, a), it follows that

[(AP’ 'ﬁ]l = S

a

S ¢t — ) () B ds dt
(9.3) -

= S oY) dr + S S H(t — ) (s)Y(r) dsdr.

According to Theorem 2.1, (1) we have %’ > 3, hence ' = » follows.

By .,‘?‘, we denote the m,-space generated by all ¢ € % with support contained
in (—a, a). The relation (9.3) implies that the mapping

-9 (pe, suppp < (—a,a)

establishes an isomorphism between the 7, -spaces ,Z?a and L3I + H).In & (3?,,) we

. X ol . . d A
consider the operator 4, (4,), which is the closure of —1— o defined onall p € &
1 t
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(¢ € & with supp® = (—a, a), respectively). It is easy to see that the isomorphism
@ — ¢ associates with /30 the operator A'o in L}/ + H). The operator /;1\0 is a m-self-

adjoint extension of /fo. Hence [(A:, — z[)”lé\0 , 30] is a dp-resolvent of the operator

Ag in L¥I + H). We shall find this dp-resolvent explicitely. To this end we observe
that for arbitrary @ € & we have

=}
~

(A — zD) -1 p)(1) = —iSe”('-”(?J(s)ds (Imz < —y),
hence

(A — 2D)=15,)(r) = 287 o @) T i66(1)  (Imz < —).

A
Here we have used the relation §, = do and the fact that J, is always considered as
a J,-sequence of even real nonnegative smooth functions. This implies in parti-

cular that Sg’(’s) do(s)ds = 0, and we get finally

—-a

(Ao — 217183, 80)] = S S ot — ) (Ay — 2D =8)(5)5y(t) ds it =

= - S 8oty \ &'(t — 9)[idy (s) + ze‘"x(_w,o} (9)]dsdt =

‘ék_/'sg

(o]

= —izZS z(s)e~izds.
0

Thus, according to Theorem 8.1, for an arbitrary extension g € &, of g there exists
aTe No such that (9.1) holds.

(2) It remains to show that for arbitrary 7 € N, there exists an extension
£ € G, such that (9.1) holds. We first observe that the right hand side in (9.1) is a
function of class N,. for some »’, 0 < »’ < x. This follows from the fact that it
is a limit of a sequence [R.u,, u,], n = 1,2,..., and that each function of this
sequence belongs to some class N, 0 < %, < ». (It will follow from this proof that
we always have x' = x).

If T(z) = —1 (Imz < 0), the right hand side in (9.1) becomes —2!— —%EZ;, which
1 ¥4

according to Corollary 6.3 admits the representation

L ED (ol gem _
TR (1 +28Ha(t)e dt) (Imz < —y)
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with some locally summable function ];I',, which is an extension of H and such that
the integral exists. Then the function g,:
t
~ 1 , ~
go(t) = — By || — S(r —s)H,(s)ds (teR)
0

is an extension of g and we have
[e=]
- = — 122§ goMe~#dr (Imz < —y).
H

From Proposition 5.1 it follows that g, € G-, where »’ (<) is such that £2iD € N,-.
On the other hand, g, is an extension of g, hence %' = .

Now let T e ]VO be arbitrary. Then we have

E(DTQ@) + Efz) . Eq2) ! 1
{9.5) 4 REL =
—Dy(2)T(z) + Dg(z)  D,(2) | D,(z)|2! T() — Di(z)
' ) ' l Dy(z)
The definition of D(z) implies
DY) = o e — ey — — S ()e» — T() e=)ds,
i

a

. | . .
therefore e®|D,(iy)| —>'—§~ (y | —o0). Hence there exist C > 0, y, < 0 such that
{9.6) D)% < Ce?r forally < y,

The function T'— Dg/D;does not vanish identically in C_; otherwise we would
have T = D,/D;, which is impossible because of proposition (4°) in § 8.3 and (7.2).
Furthermore, we' have — Dy/D;e N, (see §7.1), hence —(T — Dg/Dy)~*e N,
with some %'': 0 < %’/ < x. Therefore, if y | — oo, then |T(iy) — Dg(iy)/D,(iy)|*
is of polynomial increase (see [2]). Together with (9.5) and (9.6) this implies

©7 L _EETO 5D | EE) oy
2 —Dy(2)T(z) + Dg(2) 2D(2)
(z == iy, y | — oo) with some polynomial p. If we put in this relation 7(z) = —i

(Imz < 0), then, as was shown above, the first expression on the left hand side is
of the form

©9.8) : —iz S e-izt go(r)dt
0
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with some extension g, € 6, of g. It follows from (5.2) that
lim EO)
yi-o0 2yD(iy)

ER(2)
2Dy(2)
ed by g, g€ ®,, x’ < x, which is by (9.7) also a continuation of g. Hence we

have again »'' = 3. If we apply the same argument to 1 EDTE) + E,2) s
2 —D,@T(E) + D)
Eq(2)

, we find that for arbitrary T e ]Vo the relation (9.1) holds
2Dy(z)

with some g € ®, which extends g. The theorem is proved.

By Proposition 5.1, also — admits a representation (9.8) with g, replac-

start-

ing from —

REMARK 1. The operator A, in L3/ + H) is n-selfadjoint if and only if g has

a unique continuation g € ®,, . Indeed, if A, is not n-selfadjoint its 6,-resolvents gene-
rate infinitely many continuations g € ®,, of g. Conversely, if g has infinitely many
continuations g € ,,, according to Part (1) of the proof each g generates a §y-resol-

vent of A,, hence A, is not n-selfadjoint.
REMARK 2. According to Theorem 8.1, the resolvent matrix

( Eq(2) Ey2) )
—2D,(z) 2Dg(2)

in Theorem 9.1 can be replaced by the matrix W(;o(z) in (8.16). This amounts just to
another “parametrization” of the set of all continuations g.

9.2. The continuation g € &, of g in Theorem 9.1 does, in general, not have
an accelerant. That is, the second derivative g’’(¢) exists on [2a, co) only in the sense
of generalized functions. The following theorem gives a sufficient condition that the
extension g € ®, of g in Theorem 9.1 has an accelerant.

THEOREM 9.2. Let g € ®,., be as in Theorem 9.1. Then the extension g € G, in
(9.1) has an accelerant He Lioc with the property

(9.9) Se—ﬂ' |H(1)|dt < oo

for some B > 0 if and only if T € N, admits a representation

(9.10) Tz = —1+ Se‘iz’t(t)dt (Imz < —a)

[}
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with some function T on [0, 00) such that
(o]

Se*“’lr(r)ldr < oo for some o > 0,
0

If =0 we can put B =a=0, that is in this case g has an accelerant
H e L'(—o0,00) if T admits a representation (9.10) with 7 € L}(0, co),

Proof. We suppose again that g(0) = 0. From (9.1) it follows that for a func-
tion T of the form (9.10) we have

—iE(z) + Eg(2) S e~ 1(¢)dr

. _— 1
__.122Se—-lztg(l)dt —_ —
2
1)

[=>=]

D(z) — D,(Z)S e~z g(r)dr

8

—i -+ I‘(l)(t)e—-izt dt

S

1
2

14 r(z)(,)e—iz:dt

S Q

with functions 'V, I'®, on [0, o0) such that S e~ [Y)|dt < co. According to
0

a generalization of a result of N. Wiener (see [45]) this can be written as

'(3' + Sﬁ(r)e"i"dr)

1

with a function I:[having the property (9.9) if only f > max(a, ).
In order to prove the converse we first observe that the relation (9.1)
can be written as:

2DR(Z)QE(Z) — Ey(2)

T =25,50,6) F B

(Imz < —vy),

Qg(z)::~iz'38e-"“§(t)dt. if & has an accelerant H, then it follows
1)
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that
. o0
1 . o~
QE(Z) = > + i Se"-”H(!) dt
0
and we get the relation

IO (tye -zt dt

I (nye~iet dt

with functions '™, I® on [0, c0) such that
Se-meaxm<<w,
0
Now the proof can be finished as in the first part. The theorem is proved.

9.3. The statements about the continuations of ge 6., with accelerant A
can be formulated for H as follows.

THEOREM 9.3. Let H € LY(—2a, 2a) be given. If —1 ¢ o(H) the formula

©.11) - ( 142 EfDT(2) + E|(2)
i

Imz<—j
oo STV

H(r)e i dt) + e~z p(z) =

(L] g’a

establishes a bijective correspondence berween all T € ]\70 and all functions @ witl
the properties:

(1) For some'y' > 0 the function ® is holomorphic in the half plane Imz < —y’.

(2) (i) = O(y) (¥ 4 — o).

(3) The expression on the left hand side in (9.11) belongs to N, .

If —1 € a(H) there exists a unique function ® with the properties (1), (2), (3).
With ¢y and iy from § 2.1 it is given by the relation

2a
1

o4 .
- (1 -+ ZS }[(jt)e—iztdt) + e~Zerp(z) = 2i F (o3 2)

i F(po;2)

Proof. Let —1 ¢ o(H). The expression on the left hand side of (9.1) can be
written as

2a
1 . . Lo
- j~(| T+ 2 H(r)e‘”’dt) + - H e~ Hazqp(z),
2 2
0
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with
. 2a 2a oo
D(2) 1= —az + ~;~ — zS(2a — SYH(s)ds + iSH(s)ds — izZSe“z'g(t + 2a)dr.
0 ' 0 I
Evidently, ¢ has the properties (1), (2) and (3).
Conversely, given ¢ with these properties and denoting the left hand side of

(9.11) for a moment by Q(z), it follows that—]—— Q(y) - 0 if y | — oo, hence by
y

Proposition 5.1 we have

O(z) = —iz® S e~z g(r)dr .
0
with some function g € ®, . Using the property (2) of @ we find |

[o] 2a
iz? S e~i=t g(r)dr + ]— + ig H(t)em 2t dr = O(je~%ie z]).
1 1
0 [

t
. .~ | ( ~ <
This implies g(r) = — ——24t — S(z — 5)H(s)ds (0 < r < 2a). Hence g € G, is an ex-
) .

tension of g, and according to Theorem 9.1 the equality (9.11) holds with some T € ]~\/0
If —1 € o(H) the statement follows in a similar way from Theorem 2.1, (3).

REmARK. The condition (2) can be replaced by the condition

1@yl = Oy (¥ 1 —o0)

for an arbitrary positive integer n.

9.4. Now we prove the statement (3) of Theorem 2.1. Combining proposition
(4°) of § 1.5 and the Remark after Theorem 9.1 we see that the following statements
are equivalent: ’

(1) g has a unique continuation g € ®,,.

2) —1 € o(H).

(3) The operator A, is n-selfadjoint in L3/ + H).

If ¢ has a unique continuation g € &, according to part (1) of the proof of
Theorem 9.1 it is given by the equality

_izzge"”é () dt = [(Ay — 2I)718,, 3] (Imz < —),
h

where the expression on the right hand side is defined as lim[(Ao — zI)7w,, u,)

n-oco
with a dy-sequence (u,) of real even nonnegative smooth functions. An easy calcu-
L]
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lation gives

0
[(Ay — zI)= 8, Og] = iF (Pp: z)-l{.g';(qbogz)(—zl—- + S H(r)e~i=t d,) _

0 a ‘
_ Se—izx ¢0(S) ds — S Ft) S eiZ(t—S)¢0(s) ds dt},

F (@g; 2) := S(bo(s)e—‘" ds. Here ¢, is again the first element of a D-chain of H for

-a

the eigenvalue 2 = —1. The expression in the brackets {-} can be written as

F s 2) = S Do) e =t dr,  lt) = %«po(z) + SH(z — ) o) ds

{—a <t < a). That is we have

9.12) -—iz2ge‘i“§(t)dt =i

0

F s 2)

B (ImZ < -V),
F (o3 2)

and the statement (3) of Theorem 2.1 is proved.

REMARK. The Fourier transformations in (9.12) are connected by the relation

Q;,(f(%;Z)—F/"’((bo;/i)
" )
zZ— A

):: — F s 2).

‘This follows from statement (3°) in § 6.

9.5. If g € G,.,, given by (2.2), has a unique continuation g € ®,,, for arbitrary
b > a the restriction gl[_zb, sy does not have an accelerant. Indeed, assume to
the contrary that for some b > a we have ‘

g(r) = g(0) — ;—;ti — S(t — $)H(s)ds (—2b <t < 2b)
0

with a Hermitian function H e L(—2b, 2b). Then for arbitrary ¢ € [a, b) the restric-
tion g[[_gc, 2} has the unique continuation g in &, , and the interval [a, b] consists

of singular points of H, which is impossible (see statement (3°) of §1). A more ex-
plicit form of the continuation g is obtained in the following theorem.

THEOREM 9.4. Suppose that g € ®,., in (2.2) with accelerant H has a unigue
continuation g € ®,, that is —1 € o(H), and let ¢,, n be the same as in Theorem 1.1

8
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with ). = — 1. Then this continuation g is determined by the relation
- 1 ~ ot
g't) = — ?'50(0 — H(t) — Z c;baajt)  (1>0),
iz
MO N -
where c¢; = (—(pﬂg )((0‘;) ) , H(@t) :=H(t) if 0<t<2a and on (2gj, 2a(j + 1))
@(0)

the function His defined recursively by the Volterra integral equations

o§(0) H(r) + S A)e§D( — v)do =

2aj

2aj
= ¢§(2a) H(t — 2a) — ¢;p{"*V(t — 2aj) — H(v)p§+(t — v) do

v=1t—2aj
(Qaj <t <2a(j+1), j=12,...).
Proof. According to Theorem 1.1 we have
@§(0) = ¢f’(20) =0 (0 <j<n—1,
9§2(0)] = l9§?(2a)| > 0

and ¢{" is absolutely continuous. It is easy to see that the function , has similar
properties. Integration by parts gives the relation

2a
¥§2(0) + S YE () e di — e (2a)
g" .
(913) '/(WO’ Z) — 0
F(@o; 2) S
@§™(0) + S @§ (1) et dt — e~ 2a)

0

If we consider the ring of summable functions on the group R X N and observe

that #(¢,; -) has only a finite number of zeros in the lower half plane it follows from
[45] that the right-hand side in (9.13) can be written as

©.14) - Sﬁ(t)e-izr d — 3 ¢ cmters
1]
0
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Comparing (9.13) and (9.14) we obtain the following relations (we write ¢@:= ¢{®,
Y = yg):
Y(0) = —c0(0),
—¥Q2a) = cop(2a) — ¢,0(0),
0= —¢;p(0) + ¢;-10Qa), j=23,...,

t
019 ¥ = —ap'®) — pOH) - S A —u)dy, 0<1<2a

0

0 = H(t — 2a)p(2a) — H(t)p(0) —

9.16) o
—c;'(t — 2aj) — ﬁ(t — W) du, 2aj <t < 2a(j+ 1),
u=0
J =12, .... The first relations imply
1
— ¢(Q2a) +Y(2a)
fl 2TV heneen,
T2 ¢(0) 0 > T @0 TV

¢Q2a) \/ : : :
hence ¢; = (“(OT) > lgl=1, j=12,... and the sum in (9.14) converges if
@

Imz < 0. Further, the relation (9.15) can be written as

t
©0.17) Y'(@)= — %— Q') — (p(O)fI(t) — Sqo’(t — 5)H(s)ds, 0<1?<2a

[
On the other hand, the definition of ¥, implies

4
1
() = = oul0) - S HO)po(t — 5)ds,

0

which gives ,
W= = —- () - SH(syp(t —5)ds
or
O18) VO = — ¢~ HO0O) — §<p'<r _ DHE)ds, 0<1t<2a

0
As this Volterra integral equation has a unique solution, comparison of (9.17) and
(9.18) yields H(t) = H(t) (0 < t < 2a).
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Finally, the equation (9.16) can be written as

t

ﬁ(r) + —¢(10) ZS‘ H@)o'(t — vydov =
9.19)
¢02a) ~ ¢ . I ~ p'(t—1v)
= H(t — 2a) — —2— @'(t — 2a))— \ Hp) LY
»(0) =2 »(0) P2 t_s © #(0) a

2aj <t <2a(j+1). If we put H(t):= HQaj +1) 0O <t<2a), j=012,...,
the equations (9.19) become

H1) + (p—(IO;SHj(U)(pI(S —vdv =

2q

— (p(za) Hj—l(s) _ ﬁ_. (p'(s) — SI{j_l(u)-(Bl(t—_i)dU, J = 1,2, cee e

©(0) ¢(0) ¢(0)

Denoting the L'-norm of H, by |H}|,, it follows that
|l < ')’olHj—1[1 +y, J=12, ...,

and |H;l; < ¢/ with some C >0, j=1,2,.... This implies that the integral in
(9.14) converges if Imz < —y for some y > 0:

o
-~ " 00 s o .
S |H(t)| |e—lztl dr < z l}{j}le(lmz)Zaj < Z Ci eIm 2)2aj
) =0 j=0
Thus we have shown that

[ ]

FWoi2) _ _ Sﬁ(z)e—mdf — Y ge ¥ (Imz < —y)
(1]

F(po; 2)

for some y > 0, where H and c; are as in the theorem. On the other hand, from
(9.12) we have

FWo:d_ 1, S eI (1) dt,
F (993 2) 2
X3
and the statement follows.

REMARK. Evidently, the continuation g has the property that |g'(2aj + ) —
—g'Qag-) =1, j=12,....
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§ 10. REPRESENTATION OF THE RESOLVENT MATRIX OF fe, .,
WITH ACCELERANT BY MEANS OF ORTHOGONAL FUNCTIONS

10.1. Suppose we are given a function fe P..., 0 < a < oo, with the follow-
ing properties:
(i) f has an accelerant #; and admits a representation

) =1-2) —g(z _ Hs)ds (] < 2a);

{(ii) f has more than one continuation f e P,.
Then the transformation described in Theorem 5.1, (2) gives us a function g € ®,.,
with accelerant H, and the property —1 ¢ o(H,). Combining the results of § 5.1 and
Theorem 9.1 we find:

THEOREM 10.1. Let f € B,., have the properties (i), (ii). Then the formula

o0

—i S e~#f(r)dr =

0

1 E)T() — Ey2)
2 (D) — ZE(NTC) + Dy@) + 2Ex(2)

establishes a bijective correspondence between all Te N, and all continuations

j~'€ B, of f. Here D, E are the orthogonal functions of first and second, respectively,
kind, associated with the accelerant H, of g, given by Theorem 5.1, (3).

Remark 1. If we observe Remark 3 after Theorem 5.2 it is easy to see that
a similar result holds if the conditions f(0) =1, f'(0+) = —2 are replaced by
f0) >0, f/(0+) <.

REMARK 2. As the normed resolvent matrix of a function fe B,., is uniquely
determined, the 2% 2 matrix function

1 1 1 1 1
( TEO =BG ) ( TEO  —5 EO)
D@ @) D) + 5@ )\ D® DO

coincides with the matrix function W(z) of Theorem 3.2. A direct proof of this
fact is left to the reader.

10.2. In n° | the resolvent matrix of a function fe P,,, with accelerant was
expressed by means of the orthogonal functions, corresponding to the accelerant H,
of a transformation g of f. Moreover, we had to suppose that f(0) > 0. In this n°
we give another expression for the resolvent matrix of f € P, without this restriction,
but we suppose that —1 ¢ o(H,). Then the orthogonal functions D(z) and E(z),
corresponding to the accelerant H, of f, exist and the resolvent matrix will be expres-
sed in terms of these orthogonal functions.
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Let /'€ P.., have the following properties:

(i) f has an accelerant H; and admits a representation
t

10 = — L1t - S (t — DHLs)ds  (t] < 2a).

0

(i) —1 ¢ o(H,).

(iif) f has more than one continuation f € B,.
Then f e 6,,,, with 5’ = x or ¥ — 1, and f has infinitely many continuations g € ®,,
because of condition (ii), see § 2. A description of all these continuations is accord-
ing to Theorem 9.1 given by the relation

o0

_iSe_sz,g(,)dt: Ly L BOTE — BE)
¥4

222 De(2)T(z) + Dyz)

(10.1)

= @T@ @

Wa(2)T(z2) + Wypl2) v
with some y > 0 and T e ]\70. Here D(z), E(z) are the orthogonal functions corres-

ponding to the accelerant H; of f, and W is the matrix function

1

1
TN — (D (N — [ 9,2 ——-f0) | (Ey(z) —ER(2)
W(z) = ()2 (20 Zl )( o D )

On the other hand, it will be shown in [7} (comp. [31]) that this set of functions g is
also given by the relation
© 00

(10.2) —i Se"iz’g(t)dt =

0

w12(2)T(2) + wyo(2)
Wo1(2)T(2) + wep(2)

(Imz < )

where W == (w;;)? is the resolvent matrix of fe .., given by (3.4) and 7, is an
arbitrary function of the form
. ] 5
Ty(z) = To(2) + ; Yo (Th€N)

with

u, 2
(10.3) yo 1 A1 Goll*

(90, 0]

Here u = 23,, and g, is the defect vector of 4 in I1,(f) corresponding to z = 0,
see (3.2). Thus the description (10.2) can be written as follows:

[»¢]

(10.9) —i Sc-i-"g(z) de =

0

;""11(2)710(2) -+ i."’12(2)
’7’21(Z)T o(2) + ‘7’22(2)

(Imz < —y)

13 -~ 2650
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with the matrix function

> = (. 2__ 1 '}70/2
W) = W) = W) ( . )

As the left hand sides of (10.1) and (10.4) define the same set of functions if 7' or
T, runs through N,, it follows that the relation

(10.5) W(z) = a(2)W(2)V,

must hold with some locally holomorphic function a(z) in C, U C_ and a J-unitary
matrix Vy: VFIV, = J. We shall show that in this relation «(z), ¥V; and 7, are
determined from the condition that the entries of W(z) are entire functions,
det W(z) = 1 and W(0) = I,.

In order to do this we introduce the matrix

(106 oy (B RO) (BO ROV
Dp(z)  Dy2) Dg(0)  D40)
Then (10.5) becomes ,
1 .
(10.7) W(z)—-oc(z)( = “‘2'f(°)) vﬁ(z)y(l "z'-y)
Lo 1 0 1.
with

i (EAD) —E©)
V= w (DR«» D,(0) ) &

The condition det W(z) = 1 implies a(z)? = 2z° or a(z) = }/2z. From (10.7) we have

(10.8) wy(2) = TF;; (&11(2)011 + ‘3’12(2)921) - 1/2_ S0 (ﬁ’zl(z)vu =+ ‘?’zz(z)”m),

hence w,,(0) == 1 yields v,; = 0, and, putting z = 0 in (10.8), we get

— —1
1= [ ~-= w0 /2 f0 , Or Dy = — .
( 7 0~ 120 ) *2f(0) — Wip(0)/2)
Further,
' Wapl(2) = ZVE [‘i’zl(z)vm + a’zz(z) ( - ‘)j_ﬂ Ugy + 1’22)]
which gives for z = 0 that 1 = —]/5 Yoln , hence

(10.9) = flo) — “1(0) .
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Comparing in the relation

| po—

wig(z) = 7%—; Wi2(2)1g + Wia(2) (— ”);—0 Uy + 022)] -
(10.10) ' |
— V210 [fém(z)vm + »"vzz(z)(— o + v)]
zZ

the terms with z-1 we find

0= V—-— [0 — chiz(o))’o”zl] + fo (©0)yov21,
hence

b =17 (10— 20 ).

Finally, comparing the terms with z° in (10.10) we get

1 Wia(0) — 4f (O)Wz»(O)

wi(0) +

1
U22=W

As [u, g,] = 1 (see (2.14)), we find from (10.3), (10.9) and § 2, (6°):

A =f(0) — ) W12(0)

Thus the elements of ¥ and y, can be written by means of 4:
Yo=4, vn=0, v,=24, vy=—(24),

vge = (I/2)~942(0) + (4)/2)~2(W15(0) — 4 f(O)w}s(0)).

In order to express these numbers by the orthogonal functions we observe
the relations

Wy(z) = Ey(2)D,(0) + Eg(z)Dg(0),
Wa(2) = Ey(2)Ex(0) — Ex(2)E;(0),

ﬁ’zz(z) = DR(Z)ER(O) + Dy(z)E(0).
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It follows that
w11(0) = E5(0)D,(0) + Ex(0)Dg(0),

w13(0) = Ej'(0)E(0) — Eg (0)E,(0),

W22(0) = DR(0)Ex(0) + D(O)E0),
(10.11) 4 =f0) — ;— (E5(0)E(0) — Ex(0)E,(0)).

With the functionals 2(z), Q(z), corresponding to the operator A4, in L*I + H),
we can write (see §8.3):

wi(2) = 1 + 2Q(2)2(0)%,

Wya(z) = 22Q(2)Q(0)%,

Wys(2) = 1 — 22(2)Q(0)*,
hence

Oy

wi(0) = QO)2(0)*, w1s(0) = 4Q'(0)Q(0)*,
w3(0) = —2(0R(0)%, 4= f(0)— QOIQO)".

Thus we have proved the following

THEOREM 10.2. Suppose that the function f € B,.., 0 < a < oo, has the pro-
perties (i—iii). Then the resolvent matrix W(z) of fin (3.5) is given by the relation
W(z) — 1/z —f(O)) l?(z)( 0 4 )
0 z —1/4 1/z+9
with
Ui := UDUO), UE) = (E’(Z)/Z —Exla) 2)
D(z)  Dy2)

5= £10) + 3‘ 50 — 2/(0)izs0)

and 4 given by (10.11), where D, E are the orthogonal functions corresponding to the
accelerant Hy.

In the relation (3.5) the matrix function W(z) can be replaced by

Lo}, (P °
Wiz):=| % v@|

— 1
0 z 24z
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In order to see this we have only to observe the relation

( 0 A 1 0V/ O 4
1 1 =i 1 1
i "z‘+5) (;A“ 1)(“;{ 5)

and the fact that the second factor on the right hand side is J-unitary. The matrix
function W,(z) is in general not normalized: W,(0) # I,.

§ 11. THE CANONICAL DIFFERENTIAL SYSTEM FOR THE RESOLVENT
MATRIX OF ge®,, WITH ACCELERANT

11.1. In this n° we suppose that the Hermitian accelerant H on [—2a, 2d],
0 < a < oo, is continuous. Recall that r € (0, @) is a singular point of H if —1 € ¢(H,).
We consider an interval [b,, b;] = (0, @) which does not contain any singular point
of H. In particular the interval [0, b,] has this property if b, is sufficiently small. As H
is continuous, also the kernel I'(z, s) (0 < s, ¢ < 2r) is continuous if r is not a sin-
gular point of H, and for these r the function A4:

(11.1) A(r) :=2T,(2r, 0) = 2I' (2r)
is well defined. The relation (1.23) implies
or.0)

= AOC(t,2r) (0 <t < 2r).
r

Therefore the derivative of
2r

D(r; z) = ei* (1 — SF,(s)e“i”ds), I,(s):=1TI,(s,0),

0

with respect to r exists and equals
[GE)

r

2r
r

=izD(r; z) + ei”(~—2I",(2r_)e‘2i”—S(z%gﬂe”i”ds) =
r
[1}

= izD(r; 2) — A(r)e-irs (1 __S meazudu)

0
(observe Proposition 1.1, (2)). This gives

(11.2) _@_‘l;ié_z)_ — i2D(r; ) — A(rYD*(r; 2).
r

In the same way it follows that

(11.3) OECS2) ik 2) + AGE 2).

or



398 MARK G. KREIN, HEINZ LANGER

Now we consider the matrix function

(11.4) V(r;z) = ( Ex(r;z)  E\r; Z))
—Dy(r;z)  Dg(r; 2)
which for r = g appears in (9.1). Evidently
(11.5) limV(@;,z)=1 (ze€O.
rio

Introducing the real continuous functions a(r), f(r):

(11.6) A(r) = alr) + iB(r)
and the matrix function
. B(r) —Ot(r))
11.7 P(r):= by < r < by,
aLm o=(10) Th) G<r<h

the relations (11.2) and (11.3) imply:

THEOREM 11.1. Let H be a continuous Hermitian function on [—2a, 2a],
0 < a < co, and suppose that the interval [by, b,] = [0, a] does not contain any singular
point of H. Then the matrix function V(-; z) from (11.4) satisfies the canonical dif-
ferential system

(11.8) a2 ,

r

=zV(r;z) + V(r; 2)P(r) (b, < r < by)

with the continuous real 2 X 2-matrix function P given by (11.7).
COROLLARY 11.1. Under the conditions of Theorem 11.1 we have
V(by; 2) = V(by; Z)Vbo(b1§ z),
where Vbo(r; z) is the solution of the initial problem

dVs (r; 2)
———id;;——J: =V (r; 2) + Vi (r; WPy (by < r < by),
(11.9)
Vbo(bo; )=1.
If, in particular, by = 0, then the matrix function V(r; z), 0 < r < by, is uniquely
determined by (11.9).

REMARK 1. We mention that, conversely, for an arbitrary continuous function
A(-) on [0, 4] there exists a continuous Hermitian function H on[—2a, 2a], I+ H > 0,
such that (11.1) holds: A(r) = 2I'(2r, 0), where I', is the resolvent kernel correspond-
ing to H (see [10]).

REMARK 2. If H is real we have D*(r;0) = D(r; 0) and the relation (11.2)
implies

___dD((ir; 0 = —AF)D(;0) (by < r < by).
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If, in particular, the interval [0, a] does not contain any singular point of H (that

is % == 0 in Theorem 2.1, (1)), it follows that D(r; 0) = exp (— SA(S) ds) or

2r 2r
n(]+ SF,(S,O)ds): —SI’,,g(t,O)dt. 0 <r < a)
J .

According to the remarks at the end of § 4.1, if ¥ satisfies the canonical system
(11.8), and U, is the solution of the initial problem Uy = UyP, Uy(ry) = I, for
some ry € (b,, b,), then the function W: W(r;z) = V(r; z)Uy(r)~* satisfies the
canonical system

{11.10) W'J = z:WH

with 3¢ := U,U§. As Uy(r) is iJ-unitary, in the relation (9.1) the matrix
V(a; Z) — ( ER(Z) EJ(Z))
—Dy(z) Dg(2)
can be replaced by W(a; z).
‘We mention that higher smoothness properties of H imply also higher smooth-
ness properties of the function A in (11.1) and hence of « and . In § 12 we shall
need the following:

LemMA 11.1. If, additionally to the above conditions, the accelerant H is abso-
lutely continuous (has a continuous derivative) on (by, b,) then also A is absolutely
continuous (has a continuous derivative) on (b,, b,).

Proof. The relation

r.(2r,0) + \ H{t — )" (u,0)du = HQ2r) (b, <r < b))

S P

implies
OT (u, 0)

or

1 d4@)

u= H'Q2r),
2 dr @)

+ H(t — 2r)A(r) + S H(r —
0

and the statement follows easily.

11.2. If the accelerant H is not continuous the function A(r) does in general
not exist. In this case with the resolvent matrix W,,0 in (8.16), which gives also a des-
cription of all the continuations ge @, of g in (2.2) (see Remark 2 after
Theorem 9.1), can be associated a canonical differential system with a real det-normed
Hamiltonian (which, in general, cannot be written with a potential).
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In this n° by W(r; z) we denote the resolvent matrix given by (8.16):
- ITPR . _ . i .
AL1D) W i (B2 B z)/z)( D(50)  —iE(;0)/2 )
iD*(r; z) iD(r; z) J\ D*(@r;0) —iE*(r;0)/2
Evidently, limW(r; z) = I,.
rio

THEOREM 11.2. Let H € LY—2a, 2a) be a Hermitian function, 0 < a < oo,
and suppose that the interval [b,, b;] = [0, a] does not contain any singular point of H.
Then the matrix function W(-;z) from (11.11) satisfies the canonical differential
system

dwi(r; 2)

dr

(11.12) J = zW(r; 2)#(r) (by < r < by)

A A
with the continuous real det-normed Hamiltonian H#(r) = Uy(r)Uy(r)*, where

—E*(r;0)/2 E(r; 0)/2)

Uy(r) = ( iD*(r; 0) iD(r; 0)

Proof. First we suppose that H is continuous. Then we can differentiate the
elements of W(r;z) = (w;(r; z)); with respect to r, using the relations (11.2),
(11.3). It follows that

(32 _ L (izE#(r; 2) + ADEG; 2D 0) +
dr .2
+ ; E*(r; 2)(—A(r)D*(r, 0)) +
(11.13)
+ ";‘ (izE(r; z) + A(E*(r; 2))D*(0; 2) — % E(r; )A(r)D(r; 0) =

- _125 (E(r; 2)D*(r; 0) — E*(r; 2)D(r; 0)),

and, in the same way,

dwye(r; z)

dr

—i— (E(r; 2)E*(r; 0) + E*(r; z)E(r; 0)),

dwy(r; 2) _

11.14
(11.14) ar

—2(D(r; D*(r; 0) + D*(r; HD(r; O),
dwy,(r; 2) _ iz

i EY (E(r; 2)D*(r; 0) — E*(r; 2)D(r ; 0)).
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These relations can be written as

dW(r; z) J = 2W(r: 2) (—D(r; 0) —iE(r;0)/2 )‘1( —E(;0)2 D(r; 0) )
dr ’ D*(r; 0)  —iE*(r; O)2 E*(r;0)2 —iD(r;0)
:and the product of the last two matrices is #(r).

It H € L*(—2a, 2a) is general, we choose a sequence of continuous Hermitian
functions H" on [—2a, 2a] which converge to H in the L'norm. Denoting the
-orthogonal functions, corresponding to H*, by D, and E, , it follows easily that
Dr;z) » D(r;z) and E,(r;z) —» E(r;z) (n - o0), hence (with evident notation)

Wr;z) » W(r;z), #Hr)—>HF) (n->o0)
Finally, it is easy to check that det ##(r) = 1. The theorem is proved.

ReMARK. If [0, a] does not contain any singular point of H we can put b, = 0,

b, = a, and the relations (11.13), (11.14) are equivalent to the analogues of the
Christoffel-Darboux formulae in Remark 2 after Theorem 8.1.

ProPOSITION 11.1. Suppose that the conditions of Theorem 11.2 are satisfied

for each interval [bg, b1], by < by < ry with some ry < a. Then r, is a singular point
of H if and only if

"1

(11.15) S tr #(rydr = oo.

bo

"y

Proof. 1f Str%”(r)dr < oo, the matrix

b

W(ry; z) = lim W(r; z)
r rl
exists and is nondegenerated. Remark 2 after Theorem 5.2 implies that the restriction

&, == gl[-grl, o) has more than one continuation in the corresponding class G, .
Therefore r, is not a singular point of H. Conversely, if r, is not a singular point

¥
1

of H then the matrix 5#(r,) exists and S tr#(r)dr < oo. The proposition is proved.

by

Proposition 11.1 implies immediately a criterion for the uniqueness of the
continuation g € ®, of a given function g € ®,., with accelerant. Indeed, this conti-

nuation g is uniquely determined if and only if the Hamiltonian s associated with
the accelerant H of g satisfies

S tr #(r) dr = oo

b

if b, is sufficiently close to a, b, < a.
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We mention that this criterion remains true for the more general situation of
a function g € ©,,, with the property that each restriction glj2s,26, 0 < b <a,
has an accelerant. This will follow from the more general considerations in [7].

11.3. Recall that an arbitrary function ge ®,, admits at least one
representation

(11.16)  g(t) = g(0) + iyet - S (ei“ o " iit)2~) dr}(:t) (¢l < 2a)

(o]
with some y, € R and a nonnegative measure 7 on R such that S (1+23)~dr(l)y<co.

-0
It is easy to see that this representation is equivalent to the following representation
of the kernel G,(z, s):

(A117) Gty s) = S € — (e~ — Di-2de(2) (s, it] < 2a).

The measure t in (11.16) or (11.17) is called a spectral measure of g € Goy, . It is easy
to see that the right-hand side in (11.16) defines a continuation g € ®, of g:

o]

(UL18)  £() = g(0) + ivet + S(em._l.ﬁ

-0

(t e R).

At dz(2)
)

'
Conversely, each continuation g € ®, admits a representation (11.18) and thus
gives rise to a spectral measure 7 of g. This correspondence between the continua-
tions g € ®, of g € Gy, and the spectral measures t of g is bijective. An easy
calculation gives

>

—iz? S e-izg(t)dt = —g(0)z — 7 + S
0

— 0o

1+ Az

2 D,
a4 T et

that is, the spectral measure of g is the spectral measure of the Fourier transform
[=o]
z— —iz? S e-iztg(t)dt (zeC.),
0

which belongs to N, .
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Now let H € LY(— 2a, 2a) be a Hermitian function such that 7 + H > 0. With
the canonical system (11.12) we consider the canonical system
d
(11.19) S —w(y ©O<r<a).

Here 5, is the Hamiltonian

_ (01
HAr) = THET,, Ty (1 0).

Let Wi(r; z) denote the solution of the initial problem,

(11.20) ‘iV—Vd(———) — WD) (O <r<a), Wi0;2) = Iy,
r

and let wy(r, z) be the first column of W(r; z), that is, w,(-; z) satisfies the differen-
tial equation (11.19) and the initial condition w,(0; z)T = (1, 0). The Fourier trans-

formation corresponding to the differential system (11.19) and its solution wy(-; z}
is defined as follows (see [46, § 14]):

(11.21) o) 1= S<p(r)Tyf1(r)w1(r ;D)dr  (LeR).

Here ¢ is an arbitrary bounded measurable 2-vector function on [0, a] which vani-
shes in a neighbourhood of r = a. A measure z on R is called a spectral measure of
(11.19) corresponding to the Fourier transformation (11.21) if for each such func-
tion t the Parseval-Plancherel relation

S p()2de () = S P (o) dr

holds (observe that s#,(r) > 0 for all r € [0, 4]).
With the function H we associate the function g, :

(11.22) gu(t) == —[t] — 28(: — $H(s)ds  (It] < 2a).

That is we have g; = 2g, where g is given by (2.2) with g(0) = 0.

THEOREM 11.3. Let H be a continuous Hermitian function on[—2a, 24} such that
I+ H > 0. The set of all spectral measures of the canonical system (11.19), corres-
ponding to the Fourier transformation (11.21), coincides with the set of all spectral
measures of the function g, in (11.22).
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Proof. Let Wy(a;z) =: (wi(2))? (z€ C). Then for arbitrary T e N, the
function
wi(2)T(z) + wh(2)
wi(2)T(z) + wi(2)

(11.23) (z # %)

belongs to N,, and the set of all spectral measures of the canonical system (11.19)
and Fourier transformation (11.21) coincides with the set of the spectral measures of

all the functions (11.23) (T & N,), see [46, §14].
Consider the matrix function

Wir;z) == J,Wy(r; )"y, (0 <r<a;zeC).

Then we have

W(a, Z) — (ny%2(z) ‘viQ(Z))
wy(z)  wii(2)
and
% J=zW(r;2)#F) 0 <r <a),
r

that is, W(-, z) is the solution of (11.12) on [0, a], W(0; z) = I,. On the other hand,
according to Remark 2 after Theorem 9.1 we get a description of all extensions
g1 € G, of g, by the formula

wn(2)T(2) + wis(2)
Wy (2)T(2) -+ was(2)

(11.24) — iz S e g (1) dt = (zeC.)
0

(w23 1= W(a; 2), if T runs through ]Vo. The remarks at the beginning of this
n° imply that the spectral measures of the functions on the right hand side of
(11.24) for T € N, coincide with the spectral measures of g, . The theorem is proved.

We mention that by means of the results of De Branges it can be shown that
in case » = 0 also for an arbitrary function g € Gy, , 0 < a < oo, the set of all spec-
tral measures of ¢ coincides with the set of all spectral measures of a canonical system.

§ 12. REAL ACCELERANTS, ASSOCIATED STRINGS
AND STURM-LIOUVILLE EQUATIONS

12.1. In this section we assume that the Hermitian accelerant H € L'(2a, 2a)
is real: H(t) = H({) = H(—1) (—2a € t € 2a). Then also the resolvent kernel
I, (t, 5) is real if it exists (that is if —1 ¢ o(H)), hence I',(¢,s) = I',(s,t) (0<s,t<20)
and also I',(s) and L,(s) are real. The definition of the orthogonal functions
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D(a, z) =: D(z) and E(a, z) =: E(z) implies

D(—2z)=D*(z), E(—z)=E*z) (zeC)
and

Dy(—z) = Dy(2), Dy(—z) = —D\(2),
Ex(—z) = Eg(2), Ey(—2) = —E\2).
Hence there exist real entire functions dy , d; , eg and e, such that we have

Dy(z) = dp(z%), Dy(z) = z7'd|(z%),
(12.1)
Eg(2) = ep(z?), Ej(z) = ze,(z>).
Evidently, d,(0) = 0.
The function § € ®,, is real if and only if the function

Qg(z) 1= —iz? S eiztg()dr  (Imz < —7v)
¢

has the property
(12.2) 0,(2) = —Q(—7) (Imz < —y).
If g € ®,,, has an accelerant H, it is real if and only if H is real.
We consider now the the real Hermitian function g € ®,.,:
t
(12.3) glt) := — —;— 1) — S(t —H()ds (—2a <t < 2a)

0

with accelerant H € .Ll(-2a, 2a). Suppose that —1 ¢ o(H), that is g has infinitely
many continuations g € ®,,. Such a continuation g is real if and only if (12.2) holds.
On the other hand we have from (7.17) and (12.1)

1 er(z)T(z) 4 ze (z?)
2 S (TR + el

and it follows easily that the relation (12.2) holds if and only if m = — T(—2)
(ze C.). As T e N,, according to [47, Theorem D 1.5.4] the function T admits a
representation

(12.5) T(z) = zS(z®)

with some function S e S.® Replacing T(z) in (12.4) by S(z) from (12.5) we have
proved the first part of the following.

*) Recall that the function S belongs to S if the functions S and S, :S,(z) = 25(2)
belong to N,. Other characterizations of the class S\{oo} are given in {47, §S5]; in 2]
this class is denoted by Ng -



406 MARXK G. KREIN, HEINZ LANGER

THEOREM 12.1. Let the function H € L(—2a, 2a) be real and Hermitian and
g€ 6, be given by (12.3). If —1 ¢ a(H) then the relation

. O 1 ea(z)S(z2) + e,(z%)
12.6 — 1zt dr = — R J I < —
(12.6) iz S e =t g(r)de Y 4@ SE) T ded) (Imz < —y)

0
establishes a bijective correspondence between all real continuations § € &, of g and
all Se S. If —1 € a(H) then the unigue continuation § € &, which is given by (2.3)
is real.

In order to see that the last statement holds we observe that the functions ¢,
and ¥, in § 2.1 can be chosen real. Hence their Fourier transforms have the proper-
ties F(@y; 2) = F(o; 2), F(o; 2) =F (Yy; —Z), and it follows easily from (2.3)
that g is real.

If in particular % = 0, a real function g € &, admits an integral representa-
tion (see, e.g., [6)

. € cosl/Tt — 1
() = S (.328171___ dr;().) (teR)
] )
with a unique nonnegative o-finite measure Tz on [0, o0) such that

o0
S (t + 2)7tdry(2) < oo.
0
The measure t, is called the reduced spectral measure of . If g € By, is real and
g € B, is an arbitrary real continuation of g then each Ty is called a reduced spectral
“measure of g. That is, a reduced spectral measure t of g € ®,,, is characterized by
the property that the relation

(12.7) gty = Swdr(/l) (—2a <t < 2a)
) y
holds. As in this section we shall deal only with reduced spectral measures of g € g4,
the word ‘reduced’ will often be omitted. _
If the conditions in the first part of Theorem 12.1 are satisfied and,
additionally, » = 0, it follows from (12.6) that the relation

"S" d) _ 1 _a@S@+ea@ (40 o0
6,),—2 2 —dy(2)S(z) + dr(2)

establishes a bijection between all spectral measures 7 of g and all S e S.

12:2. If H € LY(—2a, 2a) is real and the interval (b,, by) < [0, ] does not con-
tain any critical point of H, the (real det-normed) Hamiltonian # of the canonical



ON SOME' CONTINUATION PROBLEMS. IV 407

system in Theorem 11.2 is of diagonal form:

—EC30F 0
12 . h(r) 0
o=t = (" hmJ P

0 2D(r ; 0)2

hi(r) > 0, y(r)hy(r) = 1. We fix some r € (b,, b,) or, if b, is not a _sjq'gﬁlar point
of H, r € [by, b,) and introduce the increasing continuous functions

x(r) 1= Shl(s) ds, M) = Shz(s) ds (bo<r<b)

To o

and M: M(x(r)) := #(r) (x(by) < x < x(b,)). Then we have
dM d# dr

= e e = (I (r) T = /11 2,
o dx 2(Nn(r) ™ = ho(r)”

hence M has a continuous derivative. The canonical system (11.12) takes -the form
(12.8) win(r; 2) = =zhy(r)wi(r; 2), walr; 2) = —zho(P)wge(r; 2),+. -
wia(r;z) = 2y (rwn(r; z),  wie(r; 2) = ziy(rwe(r; 2).
If we introduce the functions ﬁ’jk(-; z) on the interval (x(by), x(b)):
;\ij(x(")Q z) :=wplr;2)  (by <t < by,
they satisfy the following equations:
(12.9) ‘DJMD“\:)I2 = _22{3‘,12 s ":Vn = 2_1131%2 s
Dy D Woy = —z%Wsy, Wy = 2 Wy, .
That is, the entries of the matrix function W are connected with..a string. on
(x(by), x(by)) with mass distribution M (see, e.g., [46]). The point b, is singular for the
s .

! : B
canonical system (12.8), that is S tr #(r) dr = oo, if and only if the stringis singular
at x, = x(b,), that is - :

(1210) " x(by) -+ A (by) =

Thus the condmon (11 15) can be replaced by (12.10). Pp ot

. Now suppese additionally that the interval [0, ] does not contam any smgular
point of H, that is g € ®o,, for the function g in (12.3). We choose #j.==.0, ./::= x(a)
and introduce the solutions ¢, 1// of the equation D, D u -+ zu == 0 on [0, I) with
initial conditions-

¢@ﬂ=h 00 ) = 0, wma=m'w&n=h
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Then the matrix function W(r, z) in Theorem 11.2 becomes (with x = x(r)). .

Wir, 2) = W, Z):( Y'(x; 2% Zlﬁ(xszz)).
z7l9'(x;2%)  @(x;2)
This follows immediately from (12.9), if we only observe the initial condi-
tion W(0,z) =1, .
Now from Remark 2 after Theorem 9.1, similar considerations as in the
proof of Theorem 12.1 and [47] we find the following result.

THEOREM 12.2. Let H € L* (—2a, 2a) be a real Hermitian fuﬁction, 0 <a<oo,
I-+H >0, andlet g € Gy, be given by (12.3). Then the relation

"S" dr) _ ¥2S@ +yda) o o)

i—z ¢'(1;2)S(2) + o(l;2)

establishes a bijective correspondence between all reduced spectral measures t© of g
and all functions S € S. In other words, the reduced spectral measures of the real func-
tion g € ®o,, coincide with the spectral measures with support in [0, 00) of the string on
[0, ] with mass distribution M and initial condition y'(0) = 0.

REMARK 1. The length /, = x(a) and total mass M, = M(x(a)) = .#(a) of
the string in Theorem 12.2 are given by

I, = _; S E(r, 02 dr, M, = 28 D(r, 02 dr.
0 0 ’

REMARK 2. If a real function H is defined on the real axis, H(—1t) = H(t)
(t€R), H, := H|_sa2s) belongs to L'(—2a,2a) and I-+H,>0 for each
0 < a < oo, then with H can be associated a singular string with mass distri-

bution M on the interval 0 < x < x(o0) = lim x(a), such that the reduced spectral
at oo

measure 7, of g in (2.2) coincides with the spectral measure with support in [0, co)
of this string (under the initial condition y'(0) = 0). The singularity of this string
follows from the relation

o o .
x(c0) + A (c0) = S (y(r) + ()~ Hdr = 2 S dr = co.
0 [}
The fact that with the function H in Remark 2 there can be associated such
a string is a particular case of a result of M. G. Krein about the inverse spectral
problem for strings. According to these results, also the relation #(c0)~! = 7,({0})
holds. On the other hand, the representation (12.7) for g (with @ =00, v = 1,) implies
3
. .1
7,({0}) = lim (—g(#)/t®) = lim —S (t — s)H(s)ds.
ttoo ttoo 2

0
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Thus the total mass .#(c0) (< co) can be expressed by the accelerant as follows:

t
M(00) 1 = Tim S(t — $)H(s)ds.
ttoo 12
o

In the same way, the total length /(co) can be expressed by the dual accelerant.

12.3. Now we suppose additionally to the conditions at the beginning of
n°® 2 that H is continuous on [—2a, 2a]. Then we can introduce the function A of
(10.1): A(r) = 2I',(2r, 0) (by < r < by) and the relations (10.2) and (10.3) imply

dD(r; 0 dE(r;
R0 aywes 0, GO L 46 0).
dr dr o
Thus we get with r, € (by, b,) or, if b, is not a singular point of H, r, € [b,, b,):
- j A(s) ds _f A(s) ds
D(r; 0) = D(ro; 0)e "o » E(r; 0) = E(ry; 0)e'o ,

and it follows that

r
-4 J'A(s) ds

AM(x). = 4D(ry; 0)%e o

dx

Therefore M has a continuous second derivative. In the same way, stronger smooth-
ness properties of H imply stronger smoothness properties of M.

If H is continuous we can also consider the canonical system (11.8). As H
is real we find (r) = 0, A(r) = a(r) and (11.8) reduces to

(12'11) (Ed;‘f‘“)vjzzzwl, (-(%—oc) Vjy = —2ZUjs, j=12

or
d
(12.12) (c%—{—a)(—;;—r—l—oc)vjl:zzvﬂ, (——+a)(£<+a)vj2=z2uj2, j=1,2.

Suppose now additionally that H is absolutely continuous or has a continuous deri-
vative. Then the function « has the same properties, and we can write the equations
(12.12) as

(12.13) —vj + @ + &) v, = 2205, —vjp + (@ — Yjp =22v), j=1,2.

Recall that these relations hold on each interval (b,, b;) < [0, @] which con-
tains no singular point of H. At the singular points the function « and hence also
the ‘‘potentials”

(12.14) q(r) ===a(r)? — o'(r) or q(r):=ar)®+o'(r) .
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are in general not defined. In the next section we shall show that, nevertheless,
under an additional assumption on H the potential ¢ makes sense on the whole
interval [0, a].

12.4. Let H be a real Hermitian function on [—2a, 2a] and suppose that
(i) H is absolutely continuous,
or
- (i) H has a continuous derivative.
With the real function g in (12.3) we introduce the symmetric kernel

Ryt,s) =gt —s)—glt+s) (—a<s, t<a)

Recall that for an arbitrary real Hermitian and continuous function g on
{—2a, 24],.g(0) = 0, this kernel was introduced in {48], and it ,was shown there that
the kernel R, is nonnegative definite if and only if g admits a representation

gt) = S Cosl/);#ldt()») (—2a €t < 2a)

—oo

with some nonnegative measure 7 on the real axis such that the integral exists.

LEMMA 12.1. Suppose that the real Hermitian function H € LX(—2a, 2a) satis-
fies the condition (i) ((ii) resp.), —1 ¢ o(H) and that the kernel R, isj nonnegative
definite. Then the potential ¢ = o® — o has a summable (continuous, respectively)
continuation to the whole interval {0, d].

Proof. If r is not a singular point of H we have from (11.6), (11.1) and (1.22)

g() = @ — o) = AL2r, OFF — 2 %r,(zr, 0) =
r

(12.15)
=2 i(r,(o, 0) + I,(2r, 0)).
dr '

The operator H in L?(—a, a) maps the set of all even functlons ¢ € L¥(—a, a) into
itself. Indeed, we have for such ¢:

S H(t — 5)e(s)ds = S H(t — s)p(—s)ds =

a

= S H( + s)p(s)ds = \ H(—t — s)p(s)ds  (—a <1 < a).

Rt
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With R, also the kernel

O*Ry(t,5) _

—g"(t —5) — g"(t + 5) = 8ot — 5) + ot + 5) + H(z, 5),
dtds

I;T(t, §) =2 H(t — s) + H({ + s) (—a < s,t < a), is nonnegative definite. Then we
have for even functions ¢ € L¥—a, a):

% S lp(s)i2ds 4 —;—- S S H(t — $)o(s)o(r)dsdt =

= Sl@(s)lzds + SSﬁ(t, e)e()dsdt > 0.

As (I + H)‘l exists, the sign == is excluded for nonzero functions ¢. Thus for the
integral operator I with kernel  in L%, a) the inverse ( + I:I)‘1 exists. It is not
hard to check that the resolvent kernel I (2, ) of His given by

[t,9) =Tt ) + Tt =) 0 <5t <a),

that is we have

Sﬁ(r, (s, ds + Pty w) = Htyu) 0 < 1,u < a).
0

If, e.g., H has a continuous derivative, the same holds for the kernel ﬁ, and
hence also for the function r — I' (r, r) (0 < r < a). On the other hand

L r,r) =r,r) + I'r, — r) = [',(r, 2r) -+ T[,(2r, 0) = I'(0, 0) + I',(2r, 0)

(0 < r < a). That is, by (12.15), the function —2 —;!— f,(r, r) is a continuous exten-
r

sion of g to the whole interval [0, a]. If H satisfies (i), also IA“,(r, r) is absolutely con-

. d . . .
tinuous and hence —2 —&—F,(r, r) is the summable extension of g to the interval
r

[0, a]. The lemma is proved.

REMARK. The condition —1 ¢ g(H) can be dropped if we replace the condi-
tion about the kernel R, by the following: The kernel

(1216)  R(tss) := 3yt — ) + H(t — $) + Ht +5) (0 < st <a)
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is positive definite, that is, it is nonnegative definite and the integral equation

o) + Sﬁ(t, p(s)ds = 0
0
has only the obvious solution ¢ = 0 (in C(0, a) or in L0, a)).

Let H be as in Lemma 12.1 or as in the above remark. Then the function ¢
in (12.14) can be extended to the interval [0, a]. We consider the Sturm-Liouville
equation *)

(12.17) —y'+gqy=zy onl0,d,
and its solutions u(r, z), v(r, z), satisfying the initial conditions
(12.18) u@0)=0, v ©)=1, v0)=1, v(0) = —2H(0).
The relations (12.11) and (12.13) imply that
on(r; 2) = w'(r; 28 + a(u(r;2%),  vy(r; 2) = zu(r; 2%,
Un(r; 2) = -; ~(0'(r, 2%) + a(r)o(r; 27),  veel(r; 2) = o(r; 2°).
Thus (9.1) becomes

1 (u'(a; 2%) + al@)u(a; z%))T(2)+zu(a; 2%)
2 z7Y(v'(a; 25)+a(a)v(a; 22)T(2)+v(a; 2%)

= o]
—iz? Se‘iz‘g(t)dt = (Imz < — )
0

which gives a description of all the continuations g e &, of ge G, if T runs
through the class N,. For the real extensions g the relation (12.2) must hold which
implies —T(—Zz) = T(z), hence T(z) = zS(z?) with some function S e S. Thus we
have proved the first part of the following theorem.

THEOREM 12.3. Suppose that the real function g € ®,,, admits a representation
(12.3) with an accelerant H satisfying (i) or (ii).

(1) If —1 ¢ o(H) and the kernel R, is nonnegative definite, the relation

1 (w'(a; 2%)+u(a)u(a; 2))S(z)+u(a;z%)
2 (v'(a; 29+w(@)v(a; 2)S () +o(a; %)

(12.19) ——izs eizg(r)dr = (Imz < —y)
0

establishes a bijective correspondence between all real continuations g € ®,, of g and
all SesS.

*) This is the second equation in (12.13). Similar results hold for the first equation.
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2) If — 1 € o(H) and the kernel ﬁg in (12.16) is positivé definite the unique
continuation g € ®, of g is given by the relation

—iz S e~izig()dt = —;u(a; 22 (v(a; 22~ (Imz < —y).

Here u and v are the solutions of the initial problem (12.17), (12.18).

By Z, we denote the set of all spectral measures © (see [46]) of the Sturm-
-Liouville problem

(12.20) ' gp=zy on [0,a], ¥(©0)+ 2HOWO) =0,

for which (—o0, 0) n suppt consists of exactly » points. Then the Theorem 12.3
can be reformulated as follows.

THEOREM 12.4. Under the conditions of Theorem 12.3, (1), the relation

(12.21) °§ de(t) _ (W'(a;2) + «(a)u(a; 2))S(z) + u(a; z) (2 &[0, 00))

t—z (v'(a; 2) + w(@v(a; 2))S(2) + v(a; z)

establishes a bijection between allt € X, and all S € S; under the conditions of Theorem
12.3, (2), Z, consists of exactly one element t given by

DSO dz(¢) _ u(a; z)

t—z v(a; z)

(2 ¢[0,00)).

-—Q

Proof. Let S e S be given and define ¢ by (12.21). The right hand side of
(12.21) is of the form

S(z)

S(z)
ala)S(z) + 1

(u'(ll 2 a(a)S(z) + 1

+u(a;2))(v’(a;2) -‘Fv(a;Z))_l-

As S € S implies S(@(a)S + 1)~! € Ny, according to [46] t is a spectral measure of
(12.20). Moreover, comparing (12.21) and (12.19) it follows that

0) 1= —2iz* S et 3(0)dt = z S 0 _
— 72
0 -0

ol =) [l =)
2 t—2z —t—2z 1t —z —1t—z
0 0
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where de(r) = d3(/7) (: > 0), de(r) = —d7(/{i)) (t < 0). As Q €N, (see Propo-
sition 5.1) and the first integral on the right hand side belongs to N,, the function T
has exactly s points of increase, hence 7€ Z,.

Conversely, suppose that we are given a spectral measure t € X, of (12.20).
With 7 we define a real function g, on R as follows:

(12.22) g = ~;.- S Eg-sl—/)f—_—l- dz(2) (te R).

[ee]
This integral exists as St-ldr(t) < co and 7 has only % points of increase on

1
(—oo, 0). It follows that

gt — 5) — £t) —&.(s) =

0 |~

S [(cos VI: — D (cos V)—.s — 1) + sin l/)—wt sin V/"_.s]}.'ldt(}t) -+

0~
+ ; S [(cosh {2t — 1) (cosh|/is — 1) — sinh )z sinh }/As]A-*de()),

hence g, € ®,. On the other hand, according to [46] there exists a T € ]\70 such that

{ &) w@ITE) + u@;2)
S t—z v'(a;2)T(2) + v(a; z)

- CO

Observing the relation

(12.23) O _ —21'28 e-iztg (1) de
()

23
t — z=

é'\,‘)8

this implies
u'(a; 2)T(2%) + ula; 25
v'(a; 2T (z?) + v(a; z2)

[e o]
—2iz S e~izg (1) dt =
0

Recall that u(a; z%), v(a; z%), v'(a; z2), v'(a; z%) are entire functions of exponential
type <a. Moreover, we have
[=e]
—2iz S e~ #g(1) dt = u(a, z?) (v(a, z2))~1

[}
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for some continuation g € ®, of g € ®,.,. Repeating the arguments of Part (2) of the
proof of Theorem 9.1 it follows that g,(t) = g(f) (—2a < t < 2a), hence g, is a
real continuation of g. According to Theorem 12.3, (1), there exists a function
Se S such that

—2iz S e—i='g (1)dt =
0

holds, and, using (12.23) the relation (12.21) follows. The proof of the second sta-
tement of the theorem is similar.

(u'(a; 2% + ala)u(a; zz))S(zz) + u(a; z%)
(v'(a: 2%) + a(a)v(a, z%))S(z?) + v(a, z°%)

(Imz< —vy)

REMARK. It follows from this proof that an arbitrary real continuation ge ®,
of gisa g, for somet € X, see (12.22). Hence for an arbitrary such g the kernel R is
nonnegative definite.
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ERRATUM
CONCERNING THE PAPER

“ON POINT INTERACTIONS IN ONE DIMENSION”

by S. ALBEVERIO, F. GESZTESY, R. HOEGH-KROHN, W. KIRSCH

(J. Operator Theory, 12(1984), 101-—126)

P. 109 and 110. Replace Theorem 3.1 by
THEOREM 3.1. Suppose that V;, 1 < j < N have compact support.
a) If o-lim(H,ny — k®)~1= (Hh N — k%)~ has eigenvalues E, =k}, < 0,
e-0
1 <m< M, M< N then, fore > 0 small enough, H.x has M negative and simple
eigenvalues E.,, which are analytic in & near ¢ =0

(3‘11) ke,m = V”—Es,m = km -+ 0(8), 1l <m< M.

Moreover E,,, are the only eigenvalues of H. n near E,,.

b) If n-hm(He N — k-1 = (H{a N — k¥ and H{z 1w~ has no eigenvalues,
then all elgemalues of H.ntendtozero i.e. are absorbed into the essential spectrum
as ¢ = 0.

P. 110. 9™ and 14" line from below: Delete “Imk > — a”.

P. 110. Replace 6 line from below by: “Moreover, since E,, are simple [10]”.

P. 111. Delete the rest of the proof of Theorem 3.1 (i.e. from line 1 until
Remark 3.1).

P. 111. Delete “part a)’ of Remark 3.1.
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