I OP&%‘;‘;&%E‘&ORY © Copyright by NCREST, 1986

DECOMPOSABLE OPERATORS AND AUTOMATIC
CONTINUITY

K. B. LAURSEN and M. M. NEUMANN

INTRODUCTION

This paper introduces a class of decomposable operators for which it is pos-
sible to give a very useful algebraic description of the spectral maximal subspaces.
This class, the super-decomposable operators, is a subset of the strongly decompo-
sable operators.

After developing the basic theory, we relate this notion to the classical ones
and present several wide classes of examples, among them multiplication operators.

This leads naturally to questions about multipliers; in Section 3 an investi.
gation is made of some of the relationships between super-decomposability of a
multiplier on a Banach algebra and of the corresponding multiplication operator
on the algebra of multipliers.

Finally, in Section 4 we present some applications to automatic continuity
theory. We give necessary and sufficient conditions on a decomposable operator
Te £(X) and a super-decomposable operator Se £(Y) that every linear map
0:X — Y for which 0T = S0 be automatically continuous. This generalizes work
of Vrbova [23, 24]. Among the corollaries of this is the following: if 0 : L?(R) —
- LI(R) (1<p, g< o0) commutes with some non-trivial translation operator,
then 0 is continuous.

The authors want to thank Ernst Albrecht and the referee for several helpful
comments. The second author was supported in part by the Danish Ministry of
Education and by the Deutsche Akademische Austauschdienst. This support is
acknowledged with thanks.

1. DECOMPOSABLE OPERATORS AND DIVISIBLE SUBSPACES

Throughout this paper we shall use the standard notions and some basic
results of the theory of decomposable operators as presented in [12] and [22]. Let
®F(C) denote the family of all closed subsets of C, and let £(X) be the space of all
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34 K.B. LAURSEN and M. M. NLUMANN

continuous linear operators on a complex Banach space X. Given an operutor
Te £(X), let Lat(T) stand for the collection of all closed linear 7-invariant sub-

spaces of X.
If T has the single-valued extension property, we are interested in an algebraic
representation of the spectral maximal spaces

Xp(F):= \xeX:o;(x) € I} for FeFO,

where g7(x) denotes the local spectrum of 7" at the point x € X. Given a linear map-
ping T': X - X and a subset # of C, we define the space £7(F) to be the span of all
linear subspaces

Y < X suchthat (T 2)Y . Y forall 2e C\F

Thus E(F) is simply the largest linear subspace of X sharing this property; :iis
space need not be closed in general. Recall that a linear subspace Y of X is said
to be T-divisible if '

(7" -AY =Y forail 2eC.

Hence E;3(0) is exactly the lurgest 7-divisible linear subspace. It is casily seen that

Er(O) = E;(F) whenever o(T) n F = @; for a proof of this and for further infor-
mation on divisible subspaces see for instance [10].

1.1. PropPOSITION. Ff T e ¥(X) has the single-valued extension property, then
X(F) € Ex(F) for all Fe §C).
Moreover, if T e 8(X) is decomposable, then the identity
Xl#1r = ELF)Y  jor di Fe FC)
holds if’and only if for every F = §(C) the linewr operator
Vet X{X1(F) = X/X 0 (F)

canonically induced by T on the quotient space XIX7(F) has no divisible linear sibh-
space different from {0).

Proof. The first assertion can be easily deduced from {12, Proposition 1.1.2].
Now, let T e £(X) be decomposable and assume that Fe F(C) satisfies Xp(F) -
= E,(F). We claim that {0} i3 the only divisible linear subspace for 7. Given an
arbitrary Tp-divisible subspace Z < X/X(F), we define ¥:=: Q-1(X) < X, where
0 : X - X/X(F) denotes the canonical quotient map. The space Y is T-invariant.
Furthermore, for all Ae C\F and v e Y there exists ve Y such that Q) -
= (Tp — A)Q(v), which implies u — (T — A)}®) € X4(F). Noting again that
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o(T| X(F)) = F, we obtain u — (T — A)®) = (T — 2)(w) for some w e Xy(F)
and therefore =+ (T — 2)(v + w)e (T — 2)Y. We conclude that Y = (T — )Y
for all A e C\F and hence ¥ < E(F) = X,(F). This forces Z to be trivial.

We finally suppose that none of the respective operators on the quotients has
a divisible subspace different from {0}. Given any F e §(C), let U, V < C be open
such that F < U < U < V and assume that U is connected and. unbounded. As T
is decomposable and C = V y (C\U), we obtain X = X,(V) + X (C\U). Hence,
by [2, Lemma 3], the induced linear operator T;; on the quotient space X/X (V)
satisfies o(7};) € o (T | X;(C\U)), where o, denotes the full spectrum, i.e. the com-
plement of the unbounded component of the resolvent set. Since (T | X (C\D)) <
€ C\U and since U is connected and unbounded, we conclude that o(Tp) <

= C\U g O\ F. Consider ETT/(F) < X/X (V). By the remarks immediately before
this proposition, the equation (73 — /I)ETV(F) = ET.[}(F) holds not only for all
A€ C\F, but also for all /. e F, hence for all 2 € C. Consequently, by our present
assumption, ET.[./(F) = {0}, Now

OE(F) =: Q(T — NE(F) = (T; — DQE(F) for all ) C\F,

where Q: X — X/X (V) denotes the quotient map. By maximality it follows that
QELF) < E’[‘.V(F) === {0} and thus Ex(F) € X(V). Taking for U and ¥V the comple-
ments of suitable discs in the complex plane, we arrive at

EF) € XH(C\D)

for every open disc D < C with positive distance from F. Since C\.F can be cover-
ed by countably many such discs D, and since X,(-) preserves countable intersec-
tions, we conclude that ,

Ex(F) € ( X(C\D,) = XT( NV D) = X(F),

n=1 n==1

which completes the proof.

Unfortunately it is not always easy to decide whether a given decomposable
operator satisfies the condition concerning the quotients in Proposition 1.1. We
therefore introduce the following class of operators, where the usual decomposition
property from spectral theory is slightly strengthened ; see for instance [22, Defini-
tion IV.4.12]. Let I denote the identity operator on X.

1.2. DeFINITION. An operator T € £(X) is called super-decomposable, if for
every pair of open sets U, ¥ < C such that UU ¥ = C there exists some R ¢ £(X)
such that RT = TR, o(T{R(X)) c U, and o(T|{(I — R)(X) = V.

This definition makes sense, because the condition RT = TR forces the spaces
‘R(X) and (I — R)(X) to be T-invariant. We shall see that Proposition 1.1 can be
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considerably strengthened in the case of a super-decomposable operator. First,
however, we show that these operators admit partitions of unity in the sense of
spectral theory and note some useful characterizations.

1.3. THEOREM. Every super-decomposable operator T € £(X) is strongly decom-
posable. Moreover, for every finite open covering {Uy,..., U,} of C there exist
Ry,..., R, € &(X) such that R, - ... -- R, = I as well as

RT=TR, and o(T|R(X)<c U, fork==:1,..m

Proof. First note that 7 is decomposable by [2, Corollary 2]; see also [22,
Theorem IV. 4.28). Let € denote the corresponding spectral capacity, and consider
an open covering {U,,..., U,} of C, where m > 2. Then there exist opecn sets
V,, W, < C satisfying

C\0,L ...uU)s W,csW,csV,cV,c U,.

By assumption, we obtain an operator ;e £(X) such that ;7 : 7§, and
o(T| $i(X)) = V1, o(T| (I — SP(X)) € C\W,. Since W, U U U ... U U,, - C, an
obvious repetition of this argument supplies us with open sets V,, W, < C and
with operators S, € £(X) commuting with T for k == 1,. .., m such that

Wkgykg:l_/ng[;, WlU"‘UWm:C’
o(T!SX) s Vi, olT|T— S)X) = C\W,

for k=~ 1,...,m. We now define
Ri:=8, R.: (U~ 8S)...(~ S.0S, fork==2,.. m

Obviously T commutes with each of the operators Ry,..., R, . Furthermore, one
¢asily verifies by induction that

R+ ... 4RI —{T—8)...I—8) fork=:1,...,m.
We shall use this for k = m. Observe that every ¥ € Lat(T) satisfies ¥ < G(a(T] ¥))

and that SE(F) < €(F) for all Fe F(C) and all Se (X)) commuting with T.
Hence our construction yields

T—S) ... T~ SHX) < () ECW,) = € (c\ ¥ Wk) - §(@) - {0)
I 1 k=1

and consequently R, + ... -- R, == I Now let ke {l,...,m} be given. Since
(T | S (X)) € V¢, it follows that S,(X) < €(7,). Also

RX) =T =S ... I~ 5-)SX) s T— Sy ... I— S )EFY) « €V
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so that Rk(X) < €(V,). We know that for every fixed 2 e C\U, the restrictions
(T—2) l €W, and (T — /I)I S (X ) are bijective on (,(Vk) and on SL(X), respecti-
vely. This forces (T — 1) ] R.(X) to be buecuve on R, (X) as well. Indeed, T — 1
is one-to-one on &(¥,) and hence also on R,(X); and if 'A e £(E())) denotes
the inverse of the operator (T — 1) | €(7,), one easily verifies that AS,(X) < S0,
which implies AR(X) < R(X) and consequently AR(X)< R(X). Thus
o(T |m) < U,, which settles the last assertion of our theorem. For arbitrary
Fe F(C) we finally note that R,E(F) < €(F)n €U, = CFnT,) fork —1, ...,
m and hence

€(F) S REF)+ ... + R,EF) = €FnT,) + ... + GFnT,).

Of course, the strong decomposability of T is also immediate from the characteri-
zation in [22, Theorem [V.4.28], which has to be applied to the restriction of T
to an arbitrary spectral maximat space for 7.

1.4. THEOREM. For every T e 2(X) the following assertions are equivalent:

(@) T is super-decomposable.

(b) For every open covering {U,, Uy} of C there exist spaces X, , Xy € Lat(T)
as well as opemtors Ry, Ry &(X) commuting with T such that R, + Ry, = I and
R(X) € X;, o(T|X) S U, for j=1,2.

() T is decomposablc, and for every pair of spectral maximal spaces Y, Z e

€ Lat(T) satisfying o(T l Y) n o(T| Z) = O there exists some R e £(X) comnuting
with T such that R|Y == 0 and (I — R)|Z = 0.

Proof. (a) = (b) is obvious. .

(b) = (c). Again, it follows easily from [2, Corollary 2] or {22, Theorem
1V.4.28] that T is decomposable. Now, let ¥, Z e Lat(T") be spectral maximal spaces
for T such that ¢(T'| Y) and 6(T| Z) are disjoint. Then U, := C\o(T | Y)and U, :=

: C\a(Tl Z) are open with U, U U,=C. Let X;, X5 and R, R, be chosen accord-
ing to condition (b). In order to show that R, , Y -+ 0, we fix an arbitrary ye Y.
Then 64+(R,y) € a(y) € o(T | Y)= C\U, by [12, Proposition 1.1.2}. On the other
hand, we conclude from R,(X) < X, = X(o(T'| X)) that 6,(R,y) € o(T| X)) € U,.
It follows that o(R,y) = O, which implies R,y == 0, again by [12, Proposition

1.1.2]. Thus R, | Y : = 0, and the same reasoning shows that R, |Z:: 0. Consequ-
ently R :== R, has the desired properties.

(c) = (a). Given an arbitrary open covering U, V of C, we choose open sets
U,, U,, Vy, V¥V, € Csuch that Uy V; = C and

cU,clUcl,cslU, VeV ,eV,sV,cV.

Then F,:— C\U, and F,:= C\V; are closed and disjoint. Hence condition (c)
supplies us with some R ¢ £(X) commuting with 7 such that R|X;(F) =0 and
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(I - R)| X7(F.)+ -0. We want toshow that o(T i R(X)<U,. Since U, u (C\U,) C,
we have the splitting

X — XT(UB) -+ XT(C\UI) S XT(UL’) -+ XT(FI)'

Since R| X7(F,) - 0, we have R(X) = R(X(U5)) = X7(Uy). Now take any 4 €U,
and consider the operator §:-= ((T-- 2) | Xo(U.))™* on X(U,). It suffices to
show that SR(X)  R(X), since this implies S(R(X ) < R_(—)? ) so that the restriction
S [ R(X) will be the inverse of (T --7) j R(X). Given an arbitrary x e R(Y), we
have x -z Ry for some y € X;(Us) and hence

Sx =+ SRy : « SR(T -~ 2)Sy -z S(T - )RSy = RSy ¢ R(X).

We have shown that a(TI'R.(‘.X*)) < U, < U. By the same reasoning, we conclude
that a(’I’| (I — RY(X)) is contained in V. This completes the proof.

The concept in condition (c) has been studied earlier by Apostol {9]; we shall
return to this in Section 3. Condition (b) has becn considered by Wang [23] who
also notes the equivalence of (b) and (c).

1.5. PROPOSITION. Let T e &(X) be super-decormposable and assume thar 0}
is the only T-divisible linear subspace of X. Then Xy{F) == E{(F) jor ali F = §FQ).

Proof. Given a closed subset F of C, it sufices {o show that E. (I o X,{1)
for an arbitrary open neighborhood V of F, since X;(-) is known (¢ preserve coun-
table intersections. We choosz an open subset U of Csuch that Fe U U« ¥
and choose R e 2(X) commuting with 7 such that a(T_ﬁ RXNce C\Uc C F
and a(T! (I — R)(X)) < V. The last inclusion implies that (7 -- R)(X) <= X,{} .
Hence Ex(F) & X4(V) will foilow as soon as R{[-(F)) is seen to be : - {8}. To this
end, let Z denote the largest linear subspace of R(X) such that (7'-- )/ .7
for all L e C\F. Since 0'(T| R(X)) < C\F, the space Z is actually 7-divisibic.
Hence our assumption on T forces 7 to be trivial. On the other hand, we huve
REAFY) : = (I — AR(ELF)) for zli e CN\F and consequently R{E,{F) ¢
¢t Z = {0}. The assertio:t fol ows.

1.6. REMARK. Super-decomposablc operators may well have non-triviud
divisible subspaces. Indeed, in the following section we shall see that compaci oper-
ators as well as quasi-nilpotent operators are necessarily super-decomposable, but if
X (0, 1) and if T< 2(X) denotes the Volterra operator given by

(T1)s) = xf(zf)dr for all fe ([0, 1) and s {0, 17,

o
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then 7' is both compact and quasi-nilpotent and has the following non-trivial divi-
sible linear subspace

Y 1= {feCx(0, 1)) : f¥(0) = 0 for all k=0,1,2,...].

On the other hand, it will become clear that in many important cases non-trivial
divisible subspaces do not exist.

1.7. R:MARK. The algebraic representation X;(F)= E;(F) from Proposi-
tion 1.5 should be compared with the structure of the spectral maximal spaces for
generalized scalar operators, which is of a similar flavor. We first note that there
is an alternative description of the space E;(F) for an arbitrary linear mapping
T:X - X and F < C: consider the transfinite sequence of spaces given by
Y(0) .= X,

Y 4 D= () (T — D)Y@,
C\F

i€

and if o is a limit ordinal

Y(@):= (M Y (B

f<a

Then it is easy to see that this transfinite sequence is eventually constant and that
this constant value coincides with the space E (F). Now, for a generalized scalar
operator 7 € £(X) Vrbova {24, Theorem 1.2] proved the existence of some pe N
such that

XAF) =AGQF(T — 2)?X  for all Fe §(C);

moreover, in the special case of a normal operator on a Hilbert space p can be A
taken to be 1 by a theorem of Ptak and Vrbova [19]. In light of the preceding dis-
cussion, this representation is certainly more precise than the identity X (F) =
=: Ef(F) for all Fe §(C). In particular, it follows that generalized scalar operators
do not have divisible subspaces different from {0}. Again, we shall see that all gene-
ralized scalar operators are super-decomposable.

Proposition 1.5 is also related to [15, Proposition 3.1].

2. EXAMPLES OF SUPER-DECOMPOSABLE OPERATORS

In this section, we present some important classes of super-decomposable
operators. Qur arguments will sometimes be easier than the corresponding classicai
proofs concerning decomposability, as given for instance in [12]. This simplifi-
cation is due to the very useful characterization of decomposable operators from
[22, ‘Theorem IV.4.28], which is in some sense incorporated in our definition of
super-decomposable operators.
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Our first result is an imrediate consequence of the definition of spectral oper-
ators in the sense of Dunford on an arbitrary complex Banach space X.

2.1. PROPOSITION. Every spectral operator T € £(X) is super-decomposable.

Next, let Q be a non-empty subset of C, and let 9 be an admissible algebra
of complex-valued function on @ in the sense of [12, Definition 3.1.2]; standard
examples are the algebras C*(Q) and C*(Q), where Q is an open (and bounded)
subset of Cand ke {0, 1,.. ., oo}. An operator T € £(X) is called W-scalar, if there
exists an algebraic homomorphism @: 9 — 2(X) such that &(1) - - T and &(Z) - - T,
where Z denotes the identity function on Q. By [5, Proposition 71, such a homomor-
phism is necessarily an ¥-spectral function in the sense of [12, Definition 3.1.3].
Consequently, the present definition of an -scalar operator coincides with the
usual terminology from [12, Definition 3.1.18). Moreover, T € £(X) is called Y-spec-
tral [12, Definition 3.3.5], if there exists an -spectral function @ : A — L(X) com-
muting with T such that T is quasi-nilpotent equivalent to 9(Z).

Every operator T e £(X) with a totally disconnected spectrum is -scalar
for some admissible algebra ¥ [12, Example 3.1.20]; this holds, in particular, for
all compact and all quasi-nilpotent operators. Another important example is fur-
nished by the generalized scalar operators: recall from [12, Definition 4.1.2]
that T'e £(X) is generalized scalar, if there exists a continuous homomorphism
& : (=(C) —» 2(X) satisfying &(1) = I and #(Z) =- T. We mention in passing that,
according to a recent automatic continuity result from [8, Theorem 6.5], the coati-
nuity of such a functional calculus @ : C*(C) —» £(X) for T is equivalent to the ab-
sence of non-trivial 7-divisible subspaces.

2.2. PROPOSITION. Every W-spectral operator T € £(X) is super-decomposuble.
In particular, all generalized scalar operators as well as all operators with totally
disconnected spectrum are super-decomposable.

Proof. Let & : A — £(X) be a homomorphism satisfying &(1): : Tand &(T"

+ TP(f) for all f e A such that T is quasi-nilpotent equivalent to S ::: ¢(Z). Now,
given an arbitrary open covering {U,V} of C, there exist f, g € % such that supp /< U,
suppg <&V, and f -{- g+~ 1 on Q. Obviously R :== @(f) e &(X) commutes with S and
T. To prove that ¢(S lﬁ(—f)) « U, fix some k € W such that suppk < U and &k |
on an open neighborhood of supp f. Since A is admissible, for every 2 € C\U there
exists some k; € W satisfying (Z — Ak, = k on Q. Because of ¢(k)P(f) : &),
we conclude that

(S - - DAPk,)x = D) (S — A)x = d(k)x = x  for all xe R(X).
Morcover, clearly @(k;)x € R(X) for all such x. Thus ¢(S | R(X)) < U and similarly

a(S ! (I - R)(X)) € V so that S is super-decomposable. From [12, Theorem 2.2.1]
we conclude that 7' is decomposable and satisfies X7.(F) == X(F) for all Fe &C).
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Since R(X) < Xy(U) = X(U) and (I — R)X) < Xs(V) = X1(V), we finally deduce
from Theorem 1.4 that T is super-decomposable.

2.3. THEOREM. Let A be a commutative Banach algebra over C and assume
either that the spectrum W(A) is totally disconnected or that A is semi-simple and
regular. Then, for every a€ A and every algebraic homomorphism & : A — 2(X),
the operator P(a) e &(X) is super-decomposable. Moreover, the operators R e 2(X)
vccurring in Definition 1.2 may be chosen in the unitization of $(A4) in 2(X).

Proof. (i) We first take the case that 9 :—= MM(A4) is totally disconnected.
Let us also assume that 4 has no identity element, which is slightly more involved
than the case of a unital Banach algebra. Consider the unitization A: =A®C1ofthe
Banach algebra A4 and the canonical extension DA~ £(X) of the homomorphism
® given by d(u + A1) := ®@) + 2l for all ue A, AeC. Then M := M(4) is
the one-point compactification of the locally compact space MM with the Gelfand
topology. Since an operator T € £(X) is super-decomposable if and only if T—ul
is super-decomposable for some u € C, it suffices to prove the assertion for an oper-
ator ¢(a) € £(X), where a € A satisfies 0 ¢ o(a). Now, given open sets U, V < C
such that Uu ¥V = C, we may assume that p € ¥, where u is the complex number
for which a— 1 € A. Then K :=I\&~1(V)is a compact subset of M and &~X(U) n M
is an open neighborhood of K in M, where & 9 — C denotes the Gelfand trans-
form of @ on M. As M is locally compact, there exists a compact neighborhood
L of K in M such that L a~*(U). Since L is compact and totally disconnected,
we may apply [26, Theorem 6.2.6] to obtain a compact and open subset C
of M such that K € C € L< a~YU). By the Shilov idempotent theorem [20],
there exists an idempotent e e A such that & == 1 on C and & = 0 on IM\C.
We claim that the operator R := ii(e) € £(X) satisfies the conditions of Definition
1.2 for T:= (E(a). Certainly R and T commute. Moreover, given any Ae C\U,
since o(ae) = ?z@(ﬁﬁt) < U U {0}, there exists some e, € A satisfying (ze — A)e; = e,
at least if A # 0. Since a € A is invertible and ee 4 is idempotent, we arrive at
(a — A)e;e == e for some suitable e, € A including the case A = 0. It follows that

(T — DPlee)x = Pleze) (T — )x = Ple)x == x

and ®(¢,e)x € R(X) for all x e R(X), which implies (7| R(X)) = U. A similar
argument ensures that a(TI (I — R)}X)) € V, which settles the first half of the
theorem.

(ii) We now consider the case that A is semi-simple and regular. Without loss
of generality, we may also assume that 4 has a unit element 1 € 4 and that &(1) - - I,
since otherwise the following argument can be applied to the unitization 4 of 4
and to the canonical extension ® of ®. Given an arbitrary open covering {U, V}
of C, we choose open sets U;, ¥; < Csuchthat U, <« U, V, & V,and U, Uy ¥, == C.
Then @~%(U;) is an open neighborhood of the compact set K := M(A)\a~(V,)
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in YR(A). By the regularity of A, there exists some » € 4 such that h-:1lona neigh-
borhood of K as well as supp?; € a~Y(U,). Using the semi-simplicity and again the
regularit)//\ of A, we may successively choose ¢, de A such that be: = ¢, ¢d = d and
¢::1,d: -1 on certain neighborhoods of K. We assert that R::: @(c) € 2(X)
has the desired super-decomposability properties for T := &(a). Clearly RT : : TR.
Since supplA) < a~YU,) and U, € U, [12, Theorem 6.2.5] supplies us, for every
7. ¢ C\U, with some b, ¢ A satisfying (¢ — 2)b, — b. Taking the identity bc - - ¢
inte account, we arrive at

(T~ DB,y - OBYT —~ Dx = D) - - x

for all x‘eR(X ). Moreover, we have @(b,)x e R(Xj for all such x and therefore
o(T| R(X)) € U. On the other hand, we know that supp(l — d) € 2= (V). V, V-

and (1 —d)(1 —¢) 1 ¢ Hence the same method yields the inclusion
a(_’l‘f (I — R)(X)) « ¥V, which completes the proof of the theorem.

The preceding result is related to [3, Corollary 4.7] concerning systems of ope-
rators with non-analyiic functional calculi. The following casy consequence strength-
ens a classical result on the decomposability of certain multiplication operators
from {12, Theorem 6.2.61.

> 2.4. COROLLARY. Let X he a commutative, semi-simple and regular Bungcl
algebra over C. Then every multiplication operator on X is super-decomposable and
has no divisible subspace difierent from {0}.

Proof. For each ¢ - X, let T, e 2(X) denotc the corresponding multiplica-
tion operator on X given by 7,(x):: : ex for all xe X. Then Theorem 2.3 applics
o the left regular representation @ of X given by ®(a):-: T, for all ac X. In
order to prove the last assertion, we observe that every divisible linear subspace V
of X for such an operator T, is obviously contained in the radical of X. Heace the
semi-simplicity of X forces Y to be trivial.

Unfortunately, tiis resuit does not carry over to the case of multipliers on
reguior Banach algebras and to the case of multiplication operators on semi-
-simple Banach algebras. We shall investigate the important examples of the Banaci
algebras LY(G) and M(G). where G denotes an arbitrary locally compact abelizn
group. The algebras of ail absolutcly continuous and all discreic measures on G
will be denoted by M (¢) and M (G), respectively. Thus M, (G) = LYG) in the
canonical way; and M (G} - M4(G) is exactly the subalgebra of all measures on G,
whose continuous part is cven absolutely continuous.

Now, for each pe M(G) let 7, : L¥G) - LY(G) denote the corresponding
co:volution operator given by T,(f) -+ = f for all fe LYG). Thus tie operaiors T,
for st ¢ M(G) are precisely the multipliers of the Banach algebra LY(G); see {18,
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Theorem 0.1.1]. We shall also consider the convolution operators f*u 1 M(G) » M(G)
given by 7:”( v) := e v for all u, v e M(G), which are just the multiplication oper-
ators on the Banach algebra M(G).

1t is well-known that M, (G) and M (G) are both semi-simple and regular
Banach algebras acting on LY(G) and on ,M(G) by convolution. Hence Theorem 2.3
ensures that 7, and 7:; are super-decomposable, whenever g€ M (G) U M (G).
Recently, it has been observed independently by Albrecht {4, Lemma 3.2] and by
Eschmeier [14, Corollary 3] that for every non-discrete locally compact abelian group
G there exists y € M(G) such that neither T, nor i‘,, is decomposable ; thus answer-
ing in the negative a question of Colojoard and Foias [12]. On the other hand, it
is shown in [4, Theorem 3.1] and [14, Corollary 12] that T, is decomposable at least
for all measures p € M, (G) + M (G). We now give a short proof of a slight exten-
sion of this result, which will be useful for us in connection with certain automatic
continuity problems. A precise characterization of thosc it € M(G), for which T, and
7~'” are (super)-decomposable, is still missing.

2.5. THEOREM. For every je M(G), the convolution operators T, and 7~“, on
LX) and M(G), respectively, do not have any divisible subspace different from {0}.
Moreover, T, e 2(LNG)) and 7~’H e 8(M(G)) are super-decomposable, whenever
ne M (G) -+ MJG).

Proof. For fe L)(G) and e M(G), let f. fi : G — C denote the corresponding
Fourier and Fouricr-Stieltj'es transform on the dual group G of G. Consider a
T,-divisible subspace Y < LYG) and fix an arbitrary f¢ Y. Then, giverAl “/e(Ai,
we have /- uxg — fi(y)g for some suitable g ¥ and consequently f(p): : 0.
This impliesf: 0 forall feY and hence Y : : {0}. Next observe that 7’,, is a multi-
plication operator on a commutative and semi-simple Banach algebra. Thus every
Tff,‘,-divisiblc subspace Y € M(G) has to be triviail, as well. For the main assertion
here is a proof which is completely different from the corresponding arguments in
4] and [14]: Since M(G) is a commutative semi-simple Banach algebra with unit,
there exists a closed regular subalgebra A of M(G), which contains all closed regular
subalgebras of M(G). This interesting result was obtained by Albrecht {4, Theorem
2.4] using the theory of decomposable operators. Now, M, (G) and A7 (G) arc cer-
tainly closed regular subalgebras of M(G) so that M (G) -~ M, (G) < A. Hence
the assertion follows immediately from Theorem 2.3: simply apply this resuil to
{he representation @ of 4 on LY(G) and A/((), vespectively, given by convolution.

Let us finally note that, in general, the sum of two sunpcr-decomposabie
operators may be fur from being super-decomposable, as can be easily inferred
from [22, Example V.6.29]. Thus the preceding result is not a compietely trivial
consequence of Theorem 2.3.
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3. SUPER-DECOMPOSABLE MULTIPLICATION OPERATORS

We now continue our investigation of multiplication operators. The emphasis
will be on the relations between the concept of super-decomposability and some
aspects from the theory of decomposable multiplication operators developed by
Apostol [9].

Again, let X be a complex Banach space, and consider a closed sub-algzhra
B of £(X) containing the identity operator I. Recall from [9, Definition 2.7] that B
is normal with respect to a given operator T € B, if for every pair of spectral mani-
mal spaces Y, Ze Lat(T) satisfying o(T| ¥Y)no(T|Z) = @ there exists R : B
commuting with T such that R | Y = 0 and (I — R) | Z == 0. With this notior, the
essential part of Theorem 1.4 may be rephrased as follows :

3.1. THEOREM. An operator T € &(X) is super-decomposable if and onlv if' T’
is decomposable and £(X) is normal with respect to T.

In [9], Apostol is primarily interested in an operator T € B belonging to the
center Z(B) of the a]gebm B. In this situation, he studies the corresponding multi-
plication operator 7 : B — B given by T(S) :== TS for all Se B. Notable among
his results is the following [9, Theorem 2.10]: If T e Z(B), then Te £(B) is decom~
posable if and only if T e 2(X) is decomposable and B is normal with respect to 7.
We now prove an extension of this.

3.2. THEOREM. For every T € Z(B) the following assertions are equivaicat:

(i) For every open covering {U, V) of C there exists R ¢ B commuting with T
such that o(T | R(X)) € U and o(T | (I — R)(X)) = V.

(i) For every open covering {U,, Us} of C there exist spaces X,. X, € I_‘.tf 1 }
and operators Ry, Ry € B commuting with T such that Ry -i- Ry == I and R{X) &
a(T? XpeU; forj 1.2

(iii) T ¢ (X) is decomposable, and B is normal with respect to T.

(iv) T e 2(X) is super-decomposable, eand B is normal with respect to T.

W) Te L(B) is decomposable.

(vi) Te L(B) is super-decomposable.

Proof. The equivalence of the assertions (i), (ii), (iii) is immediate from the
proof of Theorem 1.4. By (i), it is clear that (iit) is equivalent to the formally stronger
statement (iv). The equivalence of (iv) and (v) is the content of [9, Theorem Z.1(},
and the implication (vi) => (v) is obvious. Finally suppose that (i) — (v) are fuliilied.
We shall use Theorem 1.4 to show that 7 e £(.B) is super-decomposable.

Consider an arbitrary open covering {U,, U,} of C and choose open scts
Vi, V, < C such that ¥,y ¥, =-C and V; € U; for j = 1, 2. By (i) we obtuin
operators R; , R, € Bcommuting with 7 such that R, -+ R, == [ and a(T] R; (X))"V
for j--1,2. The correspording (left) multiplication operators RI, R‘ ¢ 2(B)
satisfy R, -i- R2 = Iy, the identity operator on B. Moreover, since T is decono-
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sable on X, Ri(X) = X3(V;) for j == 1, 2. We also know that T is decomposable on
B, and by {9, Lemma 2.9] the spectral maximal spaces for T are given by

Bz (F)-= {SeB:S(X)< Xy (F)} forall Fe ().

Consequently, if X; == Bz(V;) for j = 1,2, it is clear that X; e Lat(T), o(i‘] b OR=
=V, € U;,and Ry(B) < X, for j = 1,2. By (b) of Theorem 1.4 it follows that
T« R(B) is super-decomposable.

An obvious combination of Theorems 2.3 and 3.2 leads to the following
result ;

3.3. CoroLLARY. Let A be a commutative complex Banach algebra and assume
that the spectrum of A is totally disconnected or that A is semi-simple and regular.
Let ae A, consider an algebraic homomorphism @ : A — 2(X) and suppose that B
is & closed subalgebra of £(X) such that fe B, $(A) = B, and T := ®(a) € Z(B);
Jor instance, B may be taken to be the closed subalgebra of £(X) generated by I and
®(A). Then the corresponding multiplication operator T € 2(B)is super-decomposable.

To give another typical application of the preceding theorem we recall some
notions from the elementary theory of multipliers [18, Chapter 1]. Let A be a complex
Banach algebra without order, which means that if Ax = {0} or if x4 == {0} then
X :0. AmapT: A — A is a multiplier on A if xT(y) = (I'x)y for ali x, y e A. The
set M(A) of all multipliers on A is a commutative closed subalgebra of £(4) contain-
ing the identity operator [18, Theorem 1.1.1]. Hence we obtain from Theorem 3.2:

3.4. CoROLLARY. A multiplier T on a complex Banach algebra A without order
is super-decomposable on A, if the corresponding multiplication operator T: M A4) -

— M(A) is decomposable on M(A).

We finally consider multiplication operators on B == £(X). This case is not
covered by the theory of Apostol [9], but it turns out that some of his techniques
can be extended to this setting. We start with the following observation, which may
be viewed as a counterpart of [9, Lemma 2.9].

3.5. LEMMA. Suppose that T € £(X) has the single-valued extension property
und that the spaces X((F) are closed for every Fe F(C). Then the corresponding
rmultiplication operator Te (R(X)) has the single-valued extension property, its
local spectrum is given by

o5(S) = L—J;;T(Sx) Jor every S e 2(X),
x€
and we have the representation
La(F): = 8(X)7(F) = {Se &(X): S(X) = X (F)} for every Fe FC);

in particular, 2z(F) is spectral maximal for T.
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Proof. 1t is routine to check that if 7" has the single-valued extension property
then so does 7. Also, given & ¢ 2(X), the definition of local spectrum immedis oy
yields that 6,(Sx) € 0;(S)for every x € X. Thus, ifK:::D;a:(ST), then K < 6~'5.

For the converse inclusion consider X3(K) and.sﬁwposc 4 ¢ K. Since A.7K)
is closed, [12, 1.3.8] shows that A, :=- (2 -~ T) | X¢(K))~! exists. Morcover. ‘or
every ¥ € X, Sx ¢ X(K) (by definition of K and of X1(K)) and hence A, Sx is weli-de-
fined. It is clear that 2 -» 4.$ defines an analytic function on CNK and irce
(A- T)4,S: S for every /¢ K, it follows that 7 € p=(S). Thus ¢5(S) < K.

If Fe§(C) then 5(S) < Fif and only if 6,(Sx) & F for all xcX, koree
S ¥x(F) if and only if Sx ¢ Xp(F) for all x < X. This proves the formula giren
for 25 (F). The rest is immediate from [12, 1.3.8].

3.6. THEORYM, If T'e Q(X) is super-decomposable, then the corresponsiis
ndtiplication operator T ¢ Q(L(X)) is super-decomposable.

Proof. Proceed as in the second part of the proof of Theorem 3.2, with Lema
3.5 used instead of [9, Lemma 2.9].

4. APPLICATIONS TO PROBLEMS OF AUTOMATIC CONTINUITY

Let X and Y be complex Banach spaces and consider decomposable operatars
T 2(X) and Se 2(Y). it follows easily from the definition of spectral maxiziii
spaces that every continuous linear map 0 : X - Y intertwining 7 and S in the scase
that 07 =: SO satisfies

OX(F)<e Y (F) for all Fe §(C).

In the theory of automatic continuity, it is of some importance to know whetier
this inclusion holds without any continuity assumption on the intertwining operator
{). This problem was posed by Jewell {11, Problem 22, p. 200] and can also be found
i [13, Problem 20, p. 464]. The results of Section 1 admit a partial positive solution
which suffices for the applications we have in mind. In general the answer turns vat
to be negative: we give 2 counterexample based on an idea ccmmunicated to us
by Barry Johnson.

4.1. PROPCSITICN. Assumie that T e 8(X) has the single-valued extension piro-
perty and that S ¢ L(Y) is super-decomposable without any non-trivial divisible sib-
space. Then every linear transformation 6 : X — Y with the property 0T : : S0 neces-
Sarily satisfies 0X(F) < Y({F) for all Fe FC).

Prooj. By the first part of Proposition 1.1

0X1(F) € OEL(F) == O(F — )Eg(F) = (S — })0Eq(F) for every i e C\F.
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This shows that 0E(F) ¢ E¢(F) and since Eg(F)-: Y4(F), by Proposition 1.5,
the proof is complete.

4.2. EXaMPLE. There exist a super-decomposable operator T € 2(X) on some
Banach space X and a discontinuous linear transformation 0 : X — X commuting
with 7" such that 0X,(F) < X,(F) does not hold for all Fe F(C).

Proof. Let T,y € £(X,) be a quasi-nilpotent operator on a Banach space X,
with a non-trivial divisible linear subspace Y, for T,; for instance, T, may be taken
to be the Volterra operator considered in Remark 1.6. Let X;, Y,, T, be copies of
Xo, Yy, Ty, respectively, and consider the operator T € 2(X) given by

T=Ty,®(I—-T) on X:=X,® X,.

Then it is clear that ¢(T) == {0, 1}. Hence T is decomposable, since there is an ob-
vious way of defining a spectral capacity € for 7, which takes only the values
{0}, Xy, X1, and X. Moreover, it is easily seen directly and can also be deduced from
Proposition 2.2 that T is actually super-decomposable. Since Y, is a T,-divisible
inear subspace different from {0}, the restriction T'| X, == T, cannot be algebraic;
also the copy Y, is a non-trivial divisible subspace for the restriction 7T ] X, =
= I — T, . Hence, by [21, Theorem 3.6] there exists a discontinuous linear mapping
0: X, - X, such that 0T, == (/ — T,)8. Define 0y: X — X by 0,(x,, x;) = (0, 0x,);
direct computation shows that 0,7 = T0,. Now observe that X;({0}) = €({0}) == X,.
Suppose that 0p X, < X,. Then actually 0,X, = X, n X, = {0}, which is impossible
because of the discontinuity of @ on X,. This contradiction completes the proof.

We next turn to our main result on the continuity of intertwining operators.
This theorem covers the case of generalized scalar operators considered by Vrbova
[23, Theorem 3.5], [24, Theorem 1.4] as well as the case of certain operators with a
spectral reduction considered by Johnson and Sinclair [17, Theorem 4.3]. Moreover,
since operators with a countable spectrum are super-decomposable by Proposition
2.2, our theorem is closely related to a basic automatic continuity result due to
Johnson and Sinclair; see [17, Theorem 3.3] and also [21, Theorem 4.1]. In the latter
results, the spectrum of the operator Son the range space Y is assumed to be count-
able, whereas the operator T on the domain space X is not restricted to be decompo-
sable. Thus the following theorem is not quite a generalization of these classical
results, but it is suitable for a number of applications.

Recall that a complex number A € C is a critical eigenvalue of the pair (7, ),
if A is an eigenvalue of S and if the codimension of (I —- A)(X) in X is infinite.

4.3. THEOREM. Assume that T e Q(X) is decomposable and that Se 2(Y)is
super-decomposable. Then the following assertions are equivalent:

(a) Every linear transformation 0:X — Y for which 0T = SO is necessarily
continuous.
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(b) The pair (T, S) has no critical eigenvalue, and either T is algebraic or S has
no divisible subspace different from {0}.

Proof. The implication (a) = (b) is well-known and does not depend on decom-
posability properties of T or S; see [21, Lemma 3.2 and Theorem 3.6). We now
assume that condition (b) is fuifilled, and consider an arbitrary linear mapping
0:X - Y satisfying 0T : SO. To prove the continuity of 0, it suffices to construct
a non-trivial polynomial p € C{y] such that p(S)®% -- {0}, where ( is the separating
space of the mapping 0 given by

® - {reY :there exist x,€ X with x, - 0 and 6(x,) - 1}.

Indeed, this is standard: cancel from p all those factors y — 2 for which S - AT
is one-to-one, i.e. suppose that all the zeros of p are eigenvalues of S. Since (7. S)
has no critical eigenvalue, this means that p(T)X is of finite codimension in X. Hence
the open mapping theorem implies that p(T)X is closed and that p(7) is an open
mapping from X onto p(T)X. Since p(S)® == {0}, it follows [2], Lemma 1.3] that
p(8) - Op(T) is continuous on X, and hence that 8 is continuous.

Now, if T is algebraic, we choose a non-zero polynomial p € C[y] satisfving
p(7) = 0 and observe that

p($)6 < p(S)6(X) < 0p(T) (X) = {0}.

It remains 1o consider the case that S has no divisible linear subspace other
than {0}. From Proposition 4.1 we infer that 0X(F) € Y4(F) for all Fe F(C).
and since Xr(+) and Y(-) are spectral capacities, this enables us to use the auto-
matic continuity theory for generalized local linear operators [6], [7]: by [6, Theorem
3.7} or [7, Theorem 4.3] there is a finite subset 4 of C such that (5 is contained in
Y¢(A). Let Z < Y¢(A) denote the largest linear subspace of Yg(A) such that
(S -~ ))Z = Z for all 2€ 4. Because a(S | ¥5(A)) € A, we obtain (S — 2)Z = Z
for every 4 e C and thereforz Z = {0} by our assumption on S. Consequently, if
G & ® denotes the largest linear subspace of & for which (S — )G, -+ Gy
for all e A, we have o = Z and hence G, = {0}. Since the set A is finite,
we may apply [17, Lemma 3.1] and [17, Theorem 3.2] to obtain some non-trivial
polynomial p € C[y] having all its roots in A such that p(S)®& = {0}. The assertion
follows.

We close with thres typical applications of this theorem. Our first result is
related to [16, Theorem 7.4], but here we do not need a hermitian involution. Of
course, the assertion can be easily extended to the case of an intertwining operator
defined only on a closed ideal of the given Banach algebra. The proof follows imme-
diately from Theorem 4.3 combined with Corollary 2.4.
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4.4. COROLLARY. Let X and Y be commutative semi-simple and regular Banach
algebras, and consider a pair (T,, T,) of multiplication operators on X and on Y,
respectively, which has no critical eigenvalues. Then every linear transformation
0: X — Y satisfying 0T, == T,0 is automatically continuous.

The next result provides a positive partial answer to a problem posed by
Johnson [16, p. 98]. We do not know how far the condition on the measure u can be
relaxed in this context: it is clear that the result remains valid whenever the corres-
ponding convolution operator T, on LY(G) is super-decomposable, but as mentioned
earlier, this condition is not fulfilled in general.

4.5. CoroLLARY. Let G be a locally compact abelian group and consider a mea-
sure pe M (G) + M,(G), whose Fourier-Stieltjes transform [i is non-constant on
every non-empty open subset of the dual group G. Then every linear transformation
0: LNG) — LMG) satisfying p* 0(f) = 0(u = f) for all fe LNG) is necessarily
continuous.

Proof. Note that the condition on fi guarantees that the corresponding convo-
lution operator 7, on L'(G) has no eigenvalues. Hence the assertion follows from
Theorem 4.3 in connection with Theorem 2.5.

We finally consider periodically invariant linear operators between L?-spaces
onthereal axis. Givena e Rand1 € p < oo,let 7, denote the translation operator

on the space L”(R) given by (T,f) (r):=f(t —a) for all fe L’(R) and teR.
Then we have:

4.6. COROLLARY. Let | € p,q < oo and consider a linear transformation
0: L"(R) — LU(R) such that 0T, = T,0 for some « € R\{0}. Then 0 is automatically
CORIIAUOUS.

Proof. First note that T, has no eigenvalues. Moreover, it is not hard to ses
that T, is a generalized scalar operator on LP(R). Indeed, since || TX|| = 1 for all
ke Z, a functional calculus @ : C*(C) —» £(X) for T, on X = L?(R) is obviously
given by

O(f):= 3 a(HTE for all fe C=(C),

k.o2—-co

where ¢,(f) € C denotes the k-th Fourier coefficient of the restriction of f to the
unit circle. In particular, it follows that T, is super-decomposable and has no divi-
sible subspace different from {0} Hence Theorem 4.3 shows 0 to be continuous.

We conclude by mentioning a few open problems :

First of all there is Barry Johnson’s question {16, p. 98] to which Corollary 4.5
is a partial answer: For what measures u is Corollary 4.5 valid?

4 — 1481
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The results of Section 3 bring the following to mind: with the notaticn from
there, if 7': £(X) - 2(X) is super-decomposable, is 7: X — X decomposabic?
Is there a converse to Corollary 3.4?

And finally, although the super-decomposable operators do not appear to
form an algebraically *‘nice’” set, as it was noted at the end of Section 2. the
results of Albrecht [3], notably [3, Theorem 2.6], may lend some hope for a positive
answer to this question: do the super-decomposable multipliers form a Banach
algebra? Since the notion of super-decomposability may depend on the space on
which the multiplier acts, this (Ioosely phrased) question probably contains several
distinct versions.
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