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ON FACTORIAL STATES OF OPERATOR ALGEBRAS. III

R.J. ARCHBOLD and C.J. K. BATTY

1. INTRODUCTION

In this paper we extend and clarify results from [6, 8, 19] concerning the pure
state space P(4) and the factorial state space F(4) of a C¥*-algebra A. Crucial
to this programme is the notion of a primal ideal of a C*-algebra, defined in Section 3.

Subsequently, we investigate the associated notion of a (weakly) primal face of a
compact convex set.

To describe our results, a convenient starting point is the following result (A)
of Glimm, Tomiyama and Takesaki {30; Theorem 2], in which P(4) denotes the
set of pure states in the state space S(4) and the bar denotes w*-closure :

(A) PlA) 2 S(4) = Je1t11er A is one-dimensional

[or A is prime and antiliminal.

This theorem has been split by the discovery in [6 ,8] of the following results (B)
and (C), in which F(4) denotes the set of factorial states of 4 (recall that ¢ € S(4)

is factorial if the GNS representation =, gives rise to a commutant 7,(4) which is
a factor):

(B) F(A) 2 S(4) « A is a prime C#-algebra;
(©) P 2 Fi4) = {elther A is abelian
tor A contains an abelian ideal I such that 4/I is antiliminal.

We shall denote by F(4) (respectively F (4), F;,(4), F;;(4)) the set of factorial
states ¢ such that n,(A4) is type I (respectively finite type I, type U, type III).
Result (D) below is closely related to (B) and it was used in the proof of (C)
(see [8D:

(D) For any C*-algebra 4, F,(4) 2 F(4).
Finally, result (E) was obtained in [6] as a corollary of (B):

(E) If kerm, contains a prime ideal of 4 then ¢ € F(4). The converse is false.
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Since it follows from (D) that F,(4) = F(4), the possibility that F,,;(4) = F(4)
was touched upon in {6]. Our first main result (Theorem 2.1) uses (C) to show that

Fu(4) 2 F(4) « 4 is antiliminal.

Indeed, this is analogous to (C), with F,,,(4) taking the role of P(A4).

At the start of Section 3 we define the term primal ideal, and then in Theorem
3.3 we obtain the following generalization of (B), in which 7 is an ideal of the
C#-algebra A:

I is primal « S(4/I) € F,(4) < S(4/I) € F(A).
Here S(A;I) is identified with a subset of S(4) (see below). Result (}) is then
improved and clarified by Theorem 3.5:
¢ € F(4) « ker 7, is a primal ideal.
It follows (Corollary 3.6) that if A is unital:
F(A) is a union of (w*-) closed split faces of S(A).

In Theorem 3.8 a simple argument shows that various subsets of S(4), including
F(A) and 'P@-‘), are unions of (w*-) closed faces of S(4). The result for m) has

been previously obtained by Shultz [27). The faces for F(4) may be taken to be the
annihilators of the primal ideals; only in special cases have we been able to chaiuc-

terize the faces for P(4). In Theorems 3.10 and 3.11 we offer alternative proofs
of Glimm's Stone-Weierstrass theorem and Glimm’s characterization of the vector
state space of a C*-algebra of operators [19].

Section 4 is concerned with P(4) and F(4) for a von Neumann algebra A
with centre Z. Theorem 4.2 extends [6; Theorem 4.3(1)] and shows (in particuiar)
that

peF) = ¢ | ZeP(2).

This was implicit in [6] but not actually stated there. This result and (C) immediate-
ly lead to Theorem 4.4, a result of Glimm [19; Theorem 3]:

If A has no central summand of type I then P(4) = {p e S{4) : ¢ | ZeP(Z).

Suppose that B is an ultraweakly dense C*-subalgebra of a von Neumann algebra A.
Glimm [19; Theorem 5] proved that

(F) P(B) = P(4)| B.
Using this result and tensor products, it was shown in [6, 8] that

©) F(B) = F(4) | B.
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In Theotem 4.5 we prove (G), without recourse to (F), by using the theory of primal
ideals. We then use (G) to simplify, in part, the proof of (F) (see 4.6—4.9), thus
fulfilling a programme suggested by Professor R. V. Kadison during the 1983
OATE Conference in Romania.

In Section 35, the duality between ideals of a C*-algebra A4 and faces of S(4)
(see below) leads to the definition of a (weakly) primal face of an arbitrary compact
convex subset K of a locally convex space. This is related to the existing notion of
(weak) primeness of K introduced by Chu [12] and Ellis [18] in much the same way
as primality of ideals is related to primeness. A face F of S(4) is (weakly) primal if
and only if F is contained in the annihilator of a primal ideai. In Theorem 5.4,

we show that the weakly primal faces F determine the space A(K) of continuous
affine functions on K in the sense that

(H) A(K)|X = {feCr(X):f | Fn XeA(F)|Fn X for each weakly primal face F}

‘where X is the closure of the extreme boundary of K. This improves results obtained
in 11, 17, 18] where either larger faces F are considered or restrictions are imposed
on K. On the other hand, if K is the complex state space of a function algebra, it
was shown in [17] that the weakly prime faces (which are smaller than the weakly
primal faces) determine A(K). In Theorem 5.8, it is shown that this is also true for

a unital C*-algebra A. Indeed the prime ideals determine A4 in a sense stronger than
that of (H), namely:

() A= {feCc(P(4):f|P(4/I)e A| P(A/I) for each prime ideal I of A}
(where A acts on P(4) in the obvious way). As a consequence of (H) or (I),
A = {fe Cc(F(4)) : f | C is affine for each convex subset C of F(4)}.

1t follows that F(A4), with its topological and convex structure inherited from S(A),
determines A up to Jordan isomorphism (Theorem 5.10).

Finally, in Section 6 we suggest a possible characterizaton of I_’(_Zé) in terms
of the geometry of S(A).

We conclude this secton with some more notation and preliminaries. For a
Hilbert space H, we shall denote by L(H) (respectively LC(H)) the C#*-algebra of
all bounded linear (respectively compact linear) operators on H. If S is a subset
of L(H), we shall denote by S the closure of S with respect to the weak operator
topology. if & is a unit vector in /, we shall denote by w, the statc of L(H) given by
wda) == {a, &) (a € L(H)). Suppose thata C*-algebra 4 acts non-degenerately on H.
Then w, I A is called a vector state of A. The w*-closure of the set of all such states
is called the vector state space of A.

Suppose that 4 is a C*-algebra (with or without identity). For ¢ e S(4),
(H,, n,, &,) will denote the Hilbert space, the representation, and the cyclic vector,
associated with ¢ by the GNS construction. For a non-degenerate representation ©
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of 4 and a unit vector € H,,, let »7 be the state defined by w,(a) = {alam, . 1f
n == m, for some ¢ € S(A), we shall write ? instead of @y I == 7w, (b)Y, (D),
for some b € 4 with ¢(b*b) > 0, we shall write ¢, instead of w?, so that ¢,(a)

= @(b*ab)/p(b*b).

By an ideal of A we shall mean a closed two-sided ideal, unless stated otherwise.
For an ideal I of 4, we shall identify S(4/I) with {¢ € S(A4) : o(I) - - {0}}, and S([)
with {9 eS(A):!|o |I" =1} (see [24; 3.1.6]). Then P(A) := P(41)u P(I) [i5:
2.11.8] and F(A) = F(4/I) U F(I) (see [6; § 2]). Similarly, for the spectrum and pri-
mitive ideal space of 4 we have A = 4/ v 7 and Prim(4) = Prim(41) y
U Prim(Z) [15; 3.2.1).

For a compact convex subset K of a locally convex space, the set of all extreme
(respectively primary [31]) points will be denoted by d.K (respectively d,.K). Fora
subset £ of K, the convex hull (respectively closed convex hull) of £ will be denoted
by co(E) (respectively co(E)).

The dual of a C*-algebra A4 will be considered in the w*-topology, except
where stated otherwise. If 4 is unital, S(4) is a compact convex set, P(A) == d,814),
F(A) = 0,:5(4), and there is a bijective correspondence between closed faces F
of S(A4) and closed left ideals L of A4 given by

FoF. - {aeA:¢la*a)==0 for all p & F)
Lo Lt {oeS(A): ¢ | L =0}

In particular, all closed faces are semi-exposed. Furthermore, F is split if and only
if Lis a (closed two-sided) ideal 7, so that F == S(A/I). There is also an isometric
isomorphism between the scif-adjoint part of 4 and A(S(A)) given by a — a,
where a(p) := o(a). See [7; 5.21, [24: 3.10], [28; 111.6], [31; 4.5] for further details
of these correspondences.

2. FACTORIAL STATES CGF TYPE Il

In [8; Theorem 3.4] it was shown that if 4 is a C*-algebra then P(4) 2 F(4)
if and only if either A is abelian or 4 contains an abelian ideal 7 such that 4 /[ is
antiliminal. In the following result F,(4) replaces P(A) at the expense of the
abelian ideal.

THECREM 2.1. Let A be ¢ CH-algebra. The following conditions are equivaicnt.

(1) Fyy(4) 2 FA);

(2) A is antifiminal.

Proof. (1) = (2). Suppose that Jis a nonzero liminal ideal of A. Let ¢ € P(J)
have cxtension i € P(4). By (i) there is a net (¢,) in F,;(4) such that , — .
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Hence i, | J - ¢. So eventually y, | J is nonzero and then ¥, | J € F;;(J), a con-
tradiction since F,,;(J) is empty. It follows that A is antiliminal.

(2) = (l). Suppose that A4 is unital. Let I be the intersection of the kernels of
the type 11l factor representations of 4. Suppose that I has a type 1Ll factor repre-
sentation w. By [15; 2.10.4] = extends to a type HI factor representation ¢ of A.
This gives a contradiction, since I & kero. Thus / has no type Il factor represenia-
tion and so I is postliminal by the Glimm-Sakai theorem [26; Theorem 2]. By (2),
I== {0}. Thus if a € A*\{0} there exists a type 111 factor representation 7, of A
on a Hilbert space H, such that n,(a) # 0. Let

S={w;om,:acA*\[0), &€ H,, [i¢] = 1}.

If ¢ € S then 7, is a subrepresentation of some n, and hence ¢ € F(4) (see [16;
1.2.1, Proposition 2]). Since @ {m,:ae A*\{0}} is faithful, § = P(4) by [I5;
3.4.11. Thus F(4) 2 § 2 P(4) @ F(4), the last inclusion holding since A is
antiliminal [8; Theorem 3.4].

Now suppose that 4 is not unital and let A be obtained by adjoining an iden-

tity. By (2), A is antiliminal and so F,,,(,I) o F(/]) by the previous paragraph. Let
¢ € F(A) have extension y € F(A4). There is a net () in F;;(4) such that y, —
and-hence ¥, | A — . Eventually §, | 4 is nonzero and then , | A € Fy,(4). Thus

¢ € F;;,(A4). This completes the proof.

Since F(A) = S(4) if and only if A is prime [6; Theorem 3.3], we obtain the
following result which is analogous to the theorem of Glimm, Tomiyama and
Takesaki (see [30; Theorem 2]).

COROLLARY 2.2. Let A be C*-algebra. The following conditions are equivalent.
) Fm(A) 2 S(A);
(2) A is prime and antiliminal.

Glimm proved that if A4 is a separable C*-algebra which is not postliminal
then A has a type II factor representation [24; 6.8.7]. It follows by the methods of
this section that if A4 is separable then

(i) F,(4) = F(4) if and only if 4 is antiliminal;

(i) FT]@ 2 S(4) if and only if A4 is prime and antiliminal.

It is also easy to see that the general conjectures (a) and (b) below are either
both true or both false:

(a) Every non-postliminal C*-algebra has a type II factor representation;

(b) For every antiliminal C*-algebra A4, F,(4) = FA).

COROLLARY 2.3. Let A be a C*-algebra.

(1) Every type 11 factor state is a w*-limit of type Il factor states.

(2) If A is separable, every type 111 factor state is a w*-limit of type II factor
states.



58 R.J. ARCHBOLD and C. J. K. BATIY

Proof. Let ¢ € F||(4) and let J be the largest postliminal ideal of 4. Then,
by Theorem 2.1,

¢ e F(AlJ)) < ¥ (4]J) = F,(A).

The proof of (2) is similar, using (i) above.

We complete this section with the following strengthening of [6; Coroi-
lary 3.4).

THEOREM 2.4, Let A be a C#-algebra. Then
Fu(4A) U F,(4) € P(4) n S(4).

Proof. Suppose that ¢ € F);(4) U F;(4), and let J be the largest postliminal
ideal of 4. Then ¢(J) == {0* (for, otherwise, ¢ € F(J) ¢ F,(4)), and so

@ € F(A/J) < P(4]J) S P(4).

Alternatively, one may observe that n,(4) is a prime, antiliminal C *-algcbra,
so that

o e S(A/kern,) = P(d/kern,) = P(4).

3. THE FACTORIAL STATE SPACE

In this section we require a weakening of the notion of primeness, as defined
beilow.

DEFINITION 3.1. An ideal 7 of a C*-algebra 4 is said to be primal if wihcnever
nzland J;,J,,...,J, are ideals of A such that JiJ, ... J, = {0} then J, < 1
for at least one value of /.

Such ideals in Gelfand rings have been recently described as “weakiy prime™
[9], but we prefer the term “‘primal’ since we wish to avoid confusion in Section five
witix the notion of weak primeness in convexity theory (see [18]). It is immediate
from Definition 3.1 that the zero ideal is primal if and only if it is prime, and that
any ideal containing a primal ideal is itself primal. Clearly, every prime ideal is pri-
mal ; an elementary example of an ideal which is primal but not prime may be
obtained as follows. Let 4==LC(H)+4CE;+CE, where E, and E; are infinite dimen-
sional projections with sum 1 on the Hilbert space H and LC(H) is the clgebra of
compact operators. Since {0} is a primitive ideal, LC(H) is primal. However, LC{7)
is not prime since it is the intersection of the two maximal ideals which properly
contain it.

It is remarkable that, whereas only prime C*-algebras can occur as guotients
by prime ideals, any C*¥-algebra can occur as a quotient by a primal ideal. To sec
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this, let A be a C*-algebra acting on a Hilbert space H and let B be the C*-algebra
of all sequences x = (x,),», of elements in L(H) which are norm-convergent to an
element a(x) in A. Let I be the ideal of null sequences, and for each » let g, be the
=-homomorphism of B onto L(H) defined by g,(x) =: x,. If J is an ideal of B such
thatJ ¢ Jthen eventually g,(J) is a non-zero ideal of L(H). Since {0} is a prime ideal
of L(H) it follows easily that [ is a primal ideal of B. Clearly A =~ B/I.

In view of both the definition of primeness and the second part of [19; Lemma
11], it is natural to ask whether the variable integer n in Definition 3.1 may be
replaced by a fixed integer, perhaps # = 2. The following example, which adapts an
idea from [22, § 6.2], shows that the answer is negative.

ExampLE. Let n 2 2 and let H=H @ H, ® ... ® H,,; where each H;
is an infinite dimensional Hilbert space. Let K; = LC(H,) and let ) be the projec-
tion from H onto H;. For each i let {e{):1 < j < n+ 1,j # i} be a set of infinite
dimensional projections with sum e(. Let A4, be the abelian C*-algebra consisting
of those bounded linear operators a, on H for which there exist (necessarily unique)
scalars o,(ay), wy(ag), - . -, a,41(ae) such that

n+l

a, = @ ® wiaed.

i==l j#i

a1

Let /== ® K; andlet A =14 A,. Then Iis an ideal of the C*-algebra A (see
i1

115; 1.8.4)).
Let J be an ideal of A such that J & 7. Then thereexists ¢ = (¢, @ a4, @ ...
.®a,)t+aed with g,eK; 1 <i<n+1), aye A, and a;(a) # 0 for
somej. Leti s j (I < i < n <+ 1). Since g; € K; there exists a unit vector #;; € ¢{’(H)
such that |la#;;l|l < (1/2)|a;(a,)|. Let p;; be the prolectlon from H onto the linear

span of #;;. Then p;; € 4 and so

0 # aipij -+ oagp;; = ap;;eJn K.
Since K; is a minimal ideal of 4,J =2 K;and so J 2 @ K;. Thusif J;, J;, ..., J,
itJ
are ideals of A with J, & I (1 < r < n) then at least one of the ideals X ; is contained
in every J, and so JyJ, ... J, # {0}.
On the other hand, for 1 € i < n + 1 we may define
Ji = (® K;) + {a,€ A, : aj(ap) = 0 for all j # i}.

i
Then J; € I (1 €i<n+1)but JiJ, ... J,4 = {0}

If Prim(A) is Hausdorfl then every proper primal ideal of A4 is maximal. This
is an immediate consequence of the following proposition which describes primal
ideals in terms of the hull-kernel topology on Prim(4).
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PROPOSITION 3.2. Ler I be an ideal of a C*-algebra A. The following conditivns
are equivalent.

(1) Lis a primal ideal.

(2) Whenever n 2z 1 and Uy, U,, ..., U, are open subsets of Prim(A) with

U 0 Prim(4/I) non-empty (1 < i € n) then (YU, is non-empty.
i-:1
(3) There is a net (P,) in Prim(A) which converges to every point of Prim(4f).

Proof. (1) = (2). Let U, be an open subset of Prim(A) intersecting Prim{.4.1),
and let J; be the ideal such that U; = Prim(J;)) (1 <i<n). Then J; I (1 € i< n}
and so JiJ, ... J, # {0} by (1). Hence (M U, is non-empty.

i=1
(2) = (3). Let « = (Ug)geprimcayy Where each Uy is an open neighbourhood

of Q and Uy - = Prim(4) for all except finitely many Q. By (2), there exists
P,c(M{Up: O € Prim(4/I)}. The set of all such « is directed by the definition that
(Ug) = (V) if and only if Uy = Vy for all Q € Prim(A/I). Then the net (P,) is
convergent to each Q in Prim(4/]).

(3) = (1). Let J,, ..., J, be ideals of A4 such that J; £ I (1 < < n). Then
there exists Q; € Prim(4//) such that J; & Q;. By (3), there exists x; such thut
Ji & P forallx > o, Fixx > 2, o, ...,%,. Then J, & P, (1 € i < n). Since
P, is prime, JiJ, ... J, ¢ P,. In particular, J,J, ... J, # {0}.

The equivalence of (2) and (3) above is simply a matter of general topology.
It is also the case that Prim{A) and Prim(4/I) may be replaced in Propositior 3.2
by A and (4/D)".

Note that if (P,) is a net in Prim(A4) and S is a non-empty subset of Primi(.1)
such that P, —» Q for each Q ¢ S (and hence for each Q in the closure of §) then
it follows from Proposition 3.2 ((3) = (1)) that (M}{Q | Q € S} is a prima lideal of 4.
If Prim(A) is not Hausdorff then there exists a net (P,) with distinct limits @, and
O, in Prim(4). Then @, N Q, is primal but not maximal. Thus, for any T
-algebra A, every proper primal ideal is maximal if and only if Prim(4) is Hausdoril.
In particular, these equivalent conditions are satisfied if 4 is abelian.

We turn now to the connection between primal ideals and the factorial state
space F(A4).

THECREM 3.3. Let I be an ideal of a C*-algebra A. The following conditioas
are equivalent.

(M) I'is a primal ideal.

(2) S(4/1) = Fe(4).

(3) S(/I) = F(4).

Proof. (1) = (2). We adapt the proof of [8; Proposition 2.2]. Let ¢ :=: ’Za i@

i1
be a convex combination of purc states of 4/I Since the set of such combinations
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is w*-dense in S(A/I) (even if A4/l is non-unital), it suffices to show that ¢ e F(4).
Let U be an open convex w*-neighbourhood of 0 in 4* and let

Vi={rJd:yePA), ¥y —op,eU} (1<i<n).

Since Y — [m,] is an open map of P(A4) into /_f, V,= JAi for some ideal J;. Since
@i(I) == {0} but ¢,(J;) # {0}, J; is not contained in I. By (1), J,J, ... J, # {0} and
so there exists an irreducible representation n of 4 such that [x] eji (1<j<n).
For each 7 there exists ¥; € (¢; -+ U) n P(A) such that [my,] = [n]. Then y, , Y5, .. .,

..., Y, are equivalent, so yy = Y, 2y € Fi(4) (see [8; Section 2]). Since
i=1

V==Y M~ 0)eU

and U was arbitrary, ¢ em as required.

(2) = (3). This follows from the fact that F.(4) < F(4).

(3) = (1). Suppose that J, , J,, ..., J,areideals of 4 such that J; £7 (1 <i<n).
For each i there exists @;€J* and ¢, e S(4/I) such that @(a;) > 0. Let ¢ =

n

zapT? Y ¢.. Then ¢(a;) > 0 for each i, so by (3) there exists € F(4) such that

i- .1
Y(a;) > 0 for each i. It follows that m,(J;) # {0} and so m,(J;) = 7?.;(7) for each 7.
Hence

TCw(J,) Tcl[/(-lz) “e. TC,J,(Jn) = 7t¢(A)
and so JiJ, ... J, # {0}. Thus I is primal.
COROLLARY 3.4. (see [6; Theorem 3.3] and [8; Proposition 2.2]). Let A be a
C*-algebra. The following conditions are equivalent.
(1) A is a prime C*-algebra.
(2) 8(4) = F(4).
(3) S(4) = F(4).

Proof. Take I = {0} in Theorem 3.3.

THEOREM 3.5. Let A be a C*-algebra and let ¢ € S(A). The following conditions
are equivalent.

(1) ¢ € F(A).
2) kern, is a primal ideal of A.

Proof. (1) = (2). Let J,, J,, ..., J, be ideals of A such that J; ¢ kern, for
each i. Then there exists a; € J; such that ¢(a;) # 0 (1 < i < #n). By (1), there exists
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i € F(A) such that y(a;) # 0 and hence J; & kerm, (1 < i < n). Since ker:, is
prime, JiJ; ... J, & kerm,. In particular, JyJ, ... J, # {0}.

(2) = (1). Write I =: ker n,. By (2) and Theorem 3.3, we have ¢ € S(4 T
< F(A).

Theorem 3.5 clarifies the results of {6; 4.1] where, in a particular example,
a state ¢ € F(Aj is exhibited with ker ,, containing no prime ideal. In this casc. it
is easy to verify that ker n, satisfies condition (3) of Proposition 3.2.

In view of Theorem 3.5, it is natural to ask whether, given a proper primal
ideal I of A, there is a state ¢ em) such that kerm, = /. By Theorem 3.3. this
amounts to asking whether A4/I has a state ¢ with kern, - - {0}. The answer is
affirmative if Prim(A4/I) has a countable dense subset (this holds if A/I is separabie,
for example). On the other hand, since we have seen that any C%-algebra can occur
as a quotient by a primal ideal, it is possible to construct 4 and I so that 47 is an
inseparable C¥*-algebra with no state ¢ satisfying kerm, - {0}.

COROLLARY 3.6. Ler A be a unital C*-algebra. Then
F(A) =\ {S(A4/1) : [ a primal ideal},

a union of closed split faoces of S(A).

Proof. 1f I'is primal then S(A4/1) < F(4) by Theorem 3.3. If ¢ e F(4) tien
o € S(Ajkern,) and kern,, is primal by Theorem 3.5.

Unlike the case of F(A4) in Theorem 3.5, it is not possible in general to charac-
terize states ¢ in P(A) purely in terms of kern,. For, if 4 is the C*-algebra of
7731 complex matrices then S(4) # P(A) (== P(4)) but kern, - {0} for all ¢ e S{A).
However, Shultz [27] has proved that P(A4) is & union of closed faccs, and we eniurge
on this in Theorem 3.8 below.

Recall that a subset F of a compact convex set K of a locally convex space is
said to be extremal (in K) if, whenever x, ve K, 0 < /. < land ix -+ (1 ~- A)r ¢ E,
then x, y € £ (equivalently, E is a union of faces of KX). The following lemmuz is
fairly standard (see, for example, [27 ; proof of Lemma 11} and [29]).

LemMA 3.7. Let E be o compact extremal subset of K. Then E is a univir of
coimpact faces of K.

THeorREM 3.8. Let A he a unital CH-algebira and let I be a collection of
non-degenerate representations of A. Let

VA o] rnell,neH,, ui -1}
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Then Vy,(A) is a compact extremal subset of S(A), and there is a family & of closed
left ideals L of A such that

VII(A) :U{LJ— L Eg} to
= {@ € S(4) : p(L) = {0} for some L € £}.

Proof. Let (p,) be a net in Vy(A) which is w¥-convergent to @ € Vp(A4). If ¢, =
=1 w:“ and @,(6%b) > 0, then (¢p,), = wnf‘ where y, = }|ﬁa(b);1a|{“1na(b)l7a, and
4 n

((@,)s) is wr-convergent to ¢, (assuming @(b*b) > 0). Hence ¢, € V;;(A). For any
unit vector n € H, , let (b,) be a sequence in A such that ||7,(b,)¢, — #l| = 0. Then
@, — @fll = 0, s0 wf € V(4.

Now suppose that ¢ = Ay + (l‘ — X)p where ¥, peS(4) and 0 </ < 1,
There exists x’ € m,(A4) such that ||x'¢,[l=1 and ¢ = cuf?';‘p € Vu(A). Similarly,
p € Vy(A). Thus Vy(4) is extremal.

The final statement now follows immediately from Lemma 3.7 and the corres-
pondence between faces and left ideals described in Section 1.

In the case where IT is a collection of irreducible representations, Theorem 3.8
was proved in [27; Lemma 11). In particular, if IT consists of all irreducible repre-
sentations, it follows that P(A) is a union of closed faces of S(4). Similarly, if IT con-
sists of all factorial representations, Theorem 3.8 shows that F(4) is a union of
closed faces. However, Theorem 3.5 gives extra information about F(4) in that it

shows that the faces may be taken to be the annihilators of the primal (two-sided)
ideals.

Unfortunately, in general it does not seem easy to describe the family & of

left ideals L such that L* < P(A). If A is 2 von Neumann algebra, it follows from
[19; Theorem 4'] that one may take & to be the set of left ideals of the form

norm-closure(x{A4] + L;)

where x{A] i1s a Glimm ideal of 4 (see Section 4), p is a non-zero abelian projection
in A, and L}, is the left ideal of 4 generated algebraically by {g € 4 : g is an abelian
projection and pg = 0}. The structure of P(A4) can also be described if 4 is anti-
liminal or if 4 acts on H with 4 2 LC(H). In the first case P(4) = F(A), and in the

second case P(4)-: U {F.: e H, j|&]l -+ 1} where
Fo= {dog|A+ (1 —2Dg:0< 2 <1, geSA/LCHN,

a closed face of S(4) (see [19; Theorem 2]). The fact that P(4) is a union of solit
faces if A4 i3 antiliminal has already been observed by Shultz in the proof of [27;
Theorem 17].
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We conclude this section by offering alternative proofs of two theorems from
[19]. Our proof of Glimm’s Stone-Weierstrass Theorem is essentially a reorganiza-
tion of existing methods.

LEmMMA 3.9. Let B be a C#-subalgebra of a unital C#-algebra A. Suppose
that B contains the identity element of A and that B separates F(A). Then B . = A.

Proof. Suppose that B # A. By the Hahn-Banach and Krein-Milman

theorems there is a non-zero extreme point m of the compact convex set
the A% [ < 1, i(B)y=-1{0}, I self-adjoint}.

Let I be the largest ideal of A that is contained in kerm. Then I is prime
[l; Lemma [il.5].

Let m : A — A/I be the quotient map. Since S(4/I) < F(4) (by Theorem 3.3),
n(B) separates S(4/I) and so n(B) == A/J [15; 11.3.2). This contradicts the fact that
m(B)- : {0} and so B+ A.

Recent work of Anderson, Bunce, Longo and Popa [4, 23, 25] shows that if A
is separable then one may replace F(4) by F(4) in the above lemma (and hence
W) by F(4)n P(A) in the following).

THEOREM 3.10. [19: Theorem 1]. Let B be a C*-subalgebra of a unital C*-
-algebra A. Suppose that B contains the identity element of A and that B separates
P(A). Then B = A.

Proof. Let J be the largest postliminal ideal of 4 and let = : 4 — A/J be the
quotient map. By [8, Theorem 3.4], F(4/J) = P(A/J) = P(A). So n(B) separates
F(4;7). By Lemma 3.9, =n(B) = A[J. Since B 2 J [15; 11.1.5, 11.1.7], we conclude
that B = A.

The next theorem is Glimm’s characterization of the vector state space of
a C*-algebra of operators [19]. We simplify one part of the proof by using a tech-
nique which Glimm himself developed later in [19].

THEOREM 3.11. [19; Theorem 2). Let A be a C*-algebra of operators oi a
Hilbert space H and suppose that 1 € A. Let ¢ € S(4). The following conditions aire
equivalent.

(1) @ is a w*-limit of vectors states of A.

2 o - Mo, ' AY - (4 — D where 0 < 2 < 1, & is a unit vector in H and
Y is a state of A which annihilates A 0 LC(H).

Proof. (1) = (2). Let ¢ = Iim(w% | A) where each ¢, is a unit vector in .
Suppose fitst of all that 4 =2 LC(H). By [15; 2.11.7], ¢ = ¢, + (1 — 7)Y where

0<4ix<1,0,eS(LC(H)) and € S(A/LC(H)). If 7. = 0 there is nothing to prove,
so let us assume /. # 0.
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By [15; 4.1.3], @, | LC(H) = Y nilw,, | LC(H)) where {,, %z, ...}isanortho-
i1

normal set of vectorsin #H, 11;20 (1 <i<oo)and Y, w1 Hence ¢,= Y piw,, | A)
i==1 i1
[24; 3.1.6]. We now adapt an argument from the proof of [19; Theorem 4]. Let p
and g be distinct positive integers. Let E, (respectively E,) be the projection from H
onto the linear span of 7, (respectively 5,). Let W be the unique partial isometry in
L(H)such that W(n,) = n,and W(1 — E,) = 0. Note that £,, E,, We LC(H) € A.
For each a, &, = s,n, + t,n, + (1 — E, — E )¢, for some scalars 5,and 7,. Hence
[ CECas Eay  <WE,, €a>] _ [Isal‘“’ ,as-a]
WHe, &y KB, &od Sty [

which has determinant zero. Thus

o) @(E) 0 /u,

Since A # 0, at least one of yt, and p, is zero. It follows that ¢ has the required form.
Now suppose that 4 D LC(H). Let p be a w*limit point of the ne
(wga | (A 4+ LC(H))). By the first part of the proof.

p = Moy | (A+ LCH)) + (1 — Wy

where 0 € 1 < 1, ¢ is a unit vector in H and  is a state of 4 + LC(H) which
annihilates LC(H). But p |4 = ¢, so

¢ = Nog| A+ 0=

and Y | 4 is a state of 4 which annihilates 4 n LC(H).
(2) = (1). See the proof of [19; Theorem 2].

4. VON NEUMANN ALGEBRAS

In this section we study F(4) and P(4) for a von Neumann algebra 4, paying

particular attention to the relationships with F(B) and P(B) when B is a unitai ultra-
weakly dense C*-subalgebra of 4. We begin by recalling some definitions and nota-
tion from [19; Section 4].

Let 4 be a von Neumann algebra with centre Z and let X be the maximal ideal
space of Z. For x € X, let x[4] denote the smallest ideal of A which contains x.
We shall refer to x{A] as the Glimm ideal of A corresponding to x. Let A(x) =
= A[x[A] and let , : A - A(x) be the quotient map.

5 — 1481



66 R. J. ARCHBOLD and C.J. K. BATTY

LeEMMA 4.1. Let A be a von Neumann algebra and let B be an ultraweakly
dense Cé%-subalgebra of A. Let x € X (as above). Then

(1) B n x[A] is a primal ideal of B.

() x[A] is a primal ideal of A.

Proof. (1) Suppose that J; , J, . . ., J, are ideals of Bsuch that /;J, ... J, == {0}.
Then J,J, ... J, = {0}. For each i, there is a central projection g; in A such that
J; = Aq;,andso q,g, . ..q, = 0. Since Y,(Z) = C, there exists i such thaty(q;) 0
and hence J; < B n x[4].

(2) This follows from (1) if we take B =- A4.

Of course, x[A] is actually a prime ideal of A but this requires a slightly deeper
argument {19 ; Lemma 11]. The next result extends [6; Theorem 4.3.(1)].

THEOREM 4.2. Let A be a von Neumann algebra and let ¢ € S(A). The following
conditions are equivalent.

(1) ¢ € F(A).

(2) ker n, contains a primitive ideal of A.

(3) kerm, contains a prime ideal of A.

(4) kern,, is primal.

(5) ker n, contains a Glimm ideal of A.

©) o | Z € P(2).

Proof. 1t is immediate that (2) = (3) = (4).

(4) = (1). This follows from Theorem 3.5.

(1) = (6). If ¢ € F(A4) then n,(Z) consists of scalar operators and so0 ¢ : Z is
multiplicative. Thus, by continuity, if ¢ € F(4) then ¢ | Z is multiplicative.

(6) = (5). Suppose ¢ | Z € P(Z). Let x = ker(e | Z)e X. 1t follows from the
Cauchy-Schwarz inequality that ¢(x[A]) = {0} (see [19; p. 232, Remarks]), so

ker n, contains the Glimm ideal x[A].
(5) = (2). This follows from the fact that any Glimm ideal is a primitive ideal

of A [20; 4.7].
The equivalence of (4) and (5) in Theorem 4.2 is a special case of the follow-
ing result.

ProrosITION 4.3. Let I be an ideal of a von Neumann algebra A. Then I is
primal if and only if I contains a Glimm ideal of A.

Proof. If I contains a Glimm ideal of A then, by Lemma 4.1, [ contains a
primal ideal of 4 and hence is itself primal. Conversely, suppose that [ is a primal
ideal of A. Then I n Z is a primal ideal of the centre Z of 4. Since Prim(Z) (= X)
is Hausdorff, In Z is maximal (see the remark preceding Proposition 3.2). Thus
InZ = x for some x e X and hence I 2 x[A].
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We now give a new proof of a result due to Glimm.

THEOREM 4.4, [19; Theorem 3]. Let A be a von Neumann algebra with no
central summand of type 1. Then

P(A) = {9 eS(4) : ¢ | Ze P(Z)}.

Proof. Since A is antiliminal, P(4) = F(4) [8; Theorem 3.4]. The result now
follows from Theorem 4.2 ((1) < (6)).

Suppose that B is a C*-algebra of operators acting on a Hilbert space H and
that | € B. Let A be the von Neumann algebra generated by B. Glimm proved that
'P(_B) =8 I)_(;ﬂ | B [19; Theorem 5]. Using this result, it has been shown that F—(B) =
= F(A) | B (see [6; Theorem 4.6] and [8; Theorem 5.3)). Motivated by a question
posed by Professor R. V. Kadison during the 1983 OATE Conference in Romania,

we now prove the factorial result directly and then use it to simplify the proof of
Glimm’s theorem.

THEOREM 4.5. With the above notation, F(B) = F(A) I B.

Proof. It follows from [6; Proposition 4.4] that F(B) = F(A)I B.

Conversely, suppose that y € F(4). By Theorem 4.2, kern, 2 x[A] for some
x € X (the maximal ideal space of the centre of A4). Let ¢ = ¢ I B e S(B) and let
I:-Bnx[A4], a primal ideal of B by Lemma 4.1. Then ¢(I)= {0} and so

¢ € S(B/I) = F(B) by Theorem 3.3.

COROLLARY 4.6. Suppose that B is an antiliminal C*-algebra of operators acting
on a Hilbert space H and that 1 € B. Let A be the von Neumann algebra generated

by B. Then P(4)| B < P(B).
Proof. By Theorem 4.5 and [8; Theorem 3.4] we have

PUD) | B = F(A) | B — F(B) — P(B).

In proving that P(A) I B = P(B) in general, Glimm made a reduction to two
special cases. In the proof of Theorem 4.9 below we shall make a similar reduction
using a different technique. Then the first case will be dealt with by applying
Corollary 4.6 (in place of [19; Lemma 13]). To handle the second case, in Lemma
4.8, we modify Glimm’s approach. For the sake of completeness we shall give the
details. The following lemma will be used in place of [19; Lemma 12].

LemMMA 4.7. Let B a postliminal C*-algebra acting non-degenerately on a
Hilbert space H and let A be the von Neumann algebra generated by B. Let q be a
non-zero central projection in A. Then there is a non-zero central projection z in A
and b € B such that z < q and bz is a non-zero abelian projection in A.
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Proof. The algebra Bq is isomorphic to a quotient of B and is therefore post-
liminal. Thus, since Bg generates the von Neumann algebra Ag, we may assume
that ¢ =- 1.

Let b, be any abelian element of B* with ||b,] = 1 (see [24; 6.1]). Define

f,g: R—> R by
[ (z>~1-) 1 (t?—l-)
2 2
S() = . &)= .
0 t < L 2t ( t < | )
2 ‘ 2
Let p == f(h,), a non-zero abelian projection in A, and let b = g(b,), an abelian ele-
ment of B. Then p = bp = pb. Let ¢ € B. Since b is abelian

peb? == p(beb)b = pb(bcb) = peb.

Hence I(b* — b) = {0}, where I is the ultraweakly closed two-sided ideal of A gene-
rated by p. There exists a non-zero central projection z in 4 such that I == Az. Hence
z(b? -~ b) +~ 0 and so zb is a projection which is abelian in A4 since b is abelian in B.
Since zbp - = zp == p # 0, zb is non-zero.

Lemma 4.8. Let B be a C*-algebra, acting non-degenerately on a Hilbert
space H, containing a postliminal ideal J which generates the same von Neumann
algebra A as is generated by B (that is, J is ultraweakly dense in B). Then

FCD) | 8 < PB).

Proof. Let x € X (the maximal ideal space of the centre Z of A). Since A is
a type [ von Neumann algebra it follows from [19; Theorem 4] that there is an irre-
ducible representation n, of 4 on a Hilbert space H, such that ker n, = x[4] and
7(A) 2 LC(H,). Let & be a unit vector in H, and let ¢ = w; < 7, € P(4). We shall

show that ¢ | Be P(B) (examples show that ¢ | B need not lie in P(B)).

Since A is type I, there is an abelian projection e in A4 such that n(e) is the
rank one projection onto C¢& (see the proof of [19; Theorem 4]). Let g be any pro-
jection in Z with m.(g) =: 1 and g < c(e) (the central carrier of ¢). By Lemma 4.7
there exists a non-zero projection z, in Z and b, € J such that z, < g and bz, is
a non-zero abelian projection in 4. Let w, be a non-zero partial isometry in 4 such
that wiw, <b z,and w oy <e [28; V.1.7]. Note that ew,=w, =w,b,z, . By Kaplansky’s
density theorem there exists v, , € B such that [jv, .|| = 1 and [lev, bz}l > 1 —n~?*
(n=1,2,..)). Let,, be an irreducible representation of A such thati| n, ,(ev, ,b4z0)1i>
> 1 —n~% Then n,,(z,) =1 (since it is not zero) and so =, ,(b,) = 7, .(b,2,)
which is an abelian, hence rank one, projection in 7, ,(B). Let , , be a unit vector
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in the range of this projection. Then 1 > ||n, (v, )¢, .1l > 1 —n~" Let

”q,u = ”T[q.n(.vq,n)éq,"”—]nq,n(vq,n)éq.n

and let ¢, (respectively ¥, ,) be the pure state of 4 defined by r, , and ¢, , (respec-
tively n, ). Since the projection onto C¢, , belongs to n, .(B), ¢,., ] B e P(B). Since
Mo € T u(BYeyns Vo | B€ P(B).

Lety e m) be a limit point of the net (y,,) (Where (g, , ;) > (g, n) if and
only if g, < g and n, > n). Let r be a projection in Z with ¢(r) = 1. Then rc(e) # 0
and if ¢ is a projection in Z with n(¢g) = | and ¢ < rc(e) we have

1= ‘//q,u(zq) < lpq.u(q) < 'l/zl,n(r) <P m=12,..)

and so Y(r) = . Since ¥ | Z, ¢ | Ze P(Z), it follows that ¥ | Z = ¢ |Z. Thus
¥(x) == {0} and hence Y(x[A]) = 0 (see [19; p. 232, Remarks]). So there is a state v
of 7 (A4) such that Y = Yo m,. But

‘/’q,n(e) 2 ||nq‘,,(ev,,,")iq,nl\z ==
o ””q,n(ev,,,,,b,,z,,)||2 > (] — ,,-1.)2

and so I — y(e) = t/;(nx(e)). Since m(e) is the rank one projection onto C¢, we have
¥ == ;| n(A) and hence y — ¢. Thus
@|B=y|B=1limy,,|Be P(B).
Finally, let S=={peS(4) :p|BeP(B)}, a w*closed subset of S(4). Let
a: . a¥e A and suppose p(a) = 0 for all pe S. Since ¢ € S, {(n (@), &) = 0. But
x and ¢ were arbitrary and so ( @ n,)(a) = 0. Since () x[4] = {0} (see [19; p. 232,
XEX xXEX

Remarks]), @ m,is a *x-isomorphism and so ¢ > 0. It follows from [15; 3.4.1] that
NEX
S 2 P(A).

The above proof is based on Glimm’s argument in the proof of [I9; Theorem 5],
but we have avoided his use of the penultimate line of the statement of [19;
Theorem 4], and our representations n, , need not be of his special kind.

THEOREM 4.9. [19; Theorem 5. Ler B be a C*-algebra of operators acting on a
Hilbert space H and suppose that 1 € B. Let A be the von Neumann algebra generated
by B. Then

)| 8 = PB).
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Proof. Since P(A4) ﬂ B 2 P(B), a simple compactness argument shows that
P(4) | B 2 P(B) (see the proof of [19; Theorem 5]).

Let ¢ ef(?ﬁ. In order to prove that ¢ ] BelT(_E) we may assume, by the
continuity of restriction, that ¢ € P(4), and we may also assume, by a routine argu-
ment (see the proof of [6; Theorem 4.6], that B is acting in its universal represen-
tation. Let J be the largest postliminal ideal of B. Then J = Ap for some central
projection p in A. Since ¢ € P(4), either ¢(p) =0 or ¢(p) = 1.

" Suppose that ( p) =- 0. Since B s acting in its universal representation,J n B --J,
and so there is a well-defined =-isomorphism of B/J onto B(l --p) given by
b+ J - b(l —p) (beB). Applying Corollary 4.6 to the antiliminal algebra
B(1 — p) and the pure state ¢ ] A(l — p)of A(l -— p), we obtain a net (p,) of pure
states of B(1 — p) such that

o(b) = o(b(l — p)) =: lim ¢ (b(1 — p)) (be B).

Define ¢, € P(B) by ,(b) -~ @,(b(1 — p)) (beB). Then ¢ | B = limy, < P(B).

Suppose that @(p) : : 1. Applying Lemma 4.8 to the C*-algebra Bp (with post-
liminal ideal J satisfying J = Ap = Bp) and the pure state ¢ ] Ap of Ap, we obtain
a net (¢,) of pure states of Ap such that

@(b) == @(bp) = - lim @ (bp) (be< B).
Define y_ € P(B) by y.(b) = @ (bp) (b B). Then ¢ | B = limy e P(B).
If B is a non-unital C*-algebra then 0 € P(B) [15; 2.12.13]. Tt follows that the

conclusions of Theorems 4.5 and 4.9 are still true if B is a2 non-unital C¥-algebra of
operators acting non-degenerately on H (see the proof of [6; Theorem 4.6.(2)]).

5. PRIMAL FACES

Let K be a compact convex subset of a locally convex space. Recall that K
is said to be (weakly) prime [12, 18] if, whenever F, and F, are closed (split) semi-
-exposed faces of K with K == co(F, U F,), then either K== F, or K- : F,. If A isa
unital C¥-algebra, then S{4) is (weakly) prime if and only if A4 is a prime C*-algc-
bra — equivalently, {0} is a prime ideal in 4 [12, 13]. When these properties are com-
pared with Definition 3.1, a notion of (weak) primality of faces emerges.

DerNiTION 5.1. A closed face Fof a compact convex set K is said to be (weak/s)
primal in K if, whenever n > 1 and F,, F,, ..., F, are closed (split) semi-exposed
faces of K such that K=:co{F,u F, U ... UF,), then F < F; for at least one
value of /.

Note that any closed split face is semi-exposed, any semi-exposed face is closed,
and the convex hull of a finite union of closed split faces is a closed split face (sce
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[7; Chapter 2] and [2; IL.5, I1.6] where the term “relatively exposed’ is used in place
of “semi-exposed’’). The following observations are more or less immediate.

(1) Any primal face is weakly primal.

(2) Kis weakly primal in itself if and only if K is weakly prime.

(3) If F,is a closed face of F, and F, is (weakly) primal in K, then F, is (weak-
ly) primal in XK.

(4) If F is (weakly) primal in K, then the smallest closed (split) semi-exposed
face of K containing F is (weakly) primal in K.

A planar k-gon K, is the convex hull of n (semi-exposed) proper faces if and
ounly if & € 2n. Thus if k > 5, K, is prime but the primal faces of K, each contain
only one point. On the other hand, if k > 4, K, has no proper split faces, so K, is
weakly prime and all its faces are weakly primal.

It is possible to define another stronger concept of primality by omitting the
word “‘semi-exposed’’ from Definition 5.1. However, our definition permits pri-
mality to be described in terms of the ordering of A(K) in the following way (com-
pare [5, 12, 14]). The proof of this result shows that the definition of a primal face
is unchanged if “semi-exposed’” is replaced by “‘exposed’ in Definition 5.1.

PROPOSITION 5.2. A closed face F of a compact convex set K is primal if and
only if, whenever a, ,a,, ...,a,€ A(K) have infimum 0 in A(K), then a; [ F=20
Jor some i.

Proof. Suppose that F is not primal, so that K ==co(F, U F,uU ... UF)
for some semi-exposed faces F; of K not containing F. Then there exist a; € A(K)*
such that q; | F, =0, q; | F # 0. Now a,,4a,, ...,a, have infimum 0 in A(K), so
the stated property fails.

Conversely, suppose that F is primal and &, a,, ..., a, have infimum 0 in
A(K). Let F; = a7 '(0), which is an exposed face of K. Now 0 is the convex lower
semi-continuous envelope of the pointwise minimum of g, , 4, ..., 4,, so that for
any xe€d.K, min(a,(x), ...,a,(x)) =0 ([7; 1.6.1, 1.6.3]. Thus x e F; for some i,
so that K = co(F; U ... U F,) by the Krein-Milman Theorem. Since F is primal,
F < F;, so that a; | F == 0, for some i.

For x € K, let F, be the smallest closed face of K containing x. Then F, is
(weakly) primal if and only if, whenever n > 1 and F,, F,, ..., F, are closed (split)
semi-exposed faces of K such that K =co(F, U ... U F,),then xe LU ... UF,.
In these circumstances, we shall say that x is a (weakly) primal point of K.

ProrosiTION 5.3. Let K be a compact convex set.
(1) Each point of d.(K) is primal.
(2) Each point of 8,:(K) is weakly primal.
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(3) Each (weakly) primal face of K is contained in a maximal (weakly) primal
face.
() Each maximal weakly primal face is split.

Proof. (1) Suppose that K =co(FyU ... U F,) for closed faces F;. By

Milman’s Theorem, d. K < F,U ... U F,, so Bc_Kg Fu ... UF,.
(2) Suppose that K= co(F, U ... U F,) for closed split faces F;. For each
i, 0K = F;U F;, where F] is the complementary face of F;. But F{n ... n F} -

=), 500, KS F,U ... UF,, and hence d,K < F, U ... UF,.

(3) Let # be a totally ordered family of (weakly) primal faces containing a
given (weakly) primal face F,, and let F be the smallest closed face containing y 7.
Suppose that K= co(G, U ... U G,) for closed (split) semi-exposed faces G; not
containing F. There exist F; e # such that F; ¢ G;. Taking F, to be the largest
of Fy, ..., F,, this contradicts the fact that F} is (weakly) primal. Hence F is (weakly)
primal. By Zorn’s Lemma, F, is contained in a maximal (weakly) primal face.

(4) The smallest closed split face containing a weakly primal face is weakly
primal.

If A is a unital C*-algebra and K = S(A), the converse of Proposition 5.3(2)
is true, but the converse of (1) holds only if 4 is an antiliminal extension of an
abelian C*-algebra (see Theorem 3.5, Theorem 5.6 below, and {8, Theorem 3.4}).
If K is a Choquet simplex, so that d,,K =: 0K and every closed face is split, the
converse of (2) may fail, for example if K is a prime simplex in which d_.K # K
(see [2; IL7.17)).

Following Briem {11} and Ellis [18], we can now see that the weakly primal
faces determine A(K) in the following sense. Since each weakly primal face is con-
tained in a member of the Silov decomposition, this result is an improvement of
[17; Theorem 2].

THEOREM 5.4. Let K be a compact convex set, X = 0 K, f be a continuous real-
-valued function on X, and suppose that, for each weakly primal face F of K, there
exists ap e A(F) such that ap |FnX =f|FnX. Then there exists ae A(K)
such that f=a | X.

Proof. By a result of Briem [11; Theorem 8] and standard convexity thcory
(see [2; I1.4.5], [7; 1.6.9)), it suffices to show firstly that Sfdu = 0 for all measures
which are extreme points of the unit ball of the space of boundary affine dependences
on K, and secondly that Sfdv::f(x) for all probability measures v on X representing

points x € X. It was shown in [18; Lemma 4] that yu is supported by a face F which
is weakly prime and hence weakly primal in K. Since u is a boundary affine depen-
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dence on F, and fand a; coincide on Fn X,

S./.dll = S fdu = SaF du == 0.
K F

FnX

For x € X, F, is weakly primal (Proposition 5.3) and any representing measure
v is supported by F, n X. Hence

Sfdv = Sa,-xdv = ay (x) = f(x).
X F
x
The characterization of A(K) given in Theorem 5.4 is not intrinsically in terms
of X, since the conditions assume knowledge of A(F) for primal faces F. However,
it does permit characterizations which are intrinsic to larger subsets ¥ of K.

COROLLARY 5.5. Let Y be a compact extremal subset of a compact convex set K,
and suppose that Y contains each primal face of K. Let f be a continuous real-valued
Junction on Y, and suppose that f'| C is affine for each convex subset C of Y. Then
there exists a € A(K) such that f=a | Y.

Proof. The function le satisfies the conditions of Theorem 5.4, so there
exists a € A(K) such thatf| X=ua ] X. For any y € Y, the face F) is contained in Y
(see Lemma 3.7), and f'| F, and a | F, are continuous affine functions coinciding on
d.F, so that f(y) = a(y).

ExampLE. [I17; Example 10]. Let K be the state space of the order-unit
space (4, A+, 1), where A4 is the space of all sequences & = (a,),>, Which converge
to a limit ay, , and

AT z{aeA:oz,, =0, O(OOZ-;-%}-

Now K is a Choquet simplex, with extreme boundary
0.K=1{5,:1 <n<co}U{20e — 6y}

(where & denotes Dirac measure). A closed face Fis (weakly) primal if and only if
is either a singleton or co{d,, 20, — J;}; F is (weakly) prime if and only if F is
a singleton. The maximal primal (respectively, prime) faces are the faces of the ab-
stract Silov (respectively, Bishop) decomposition [17, 7].

This example shows that Theorem 5.4 cannot be improved either by replacing
“weakly primal’’ by “weakly prime’’ or by replacing “Fn X by “9.F”. The exam-
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ple of polygons shows that Theorem 5.4 cannot be improved by replacing *“weakly
primal’” by “primal".

Now let A4 be a unital C*-algebra. It is known that if S(A4) is weakly prime,
then S(A) is prime (and A is a prime C*-algebra) [12, 13]. We shall now see that
similar results hold for weakly primal faces of S(4), and that the notions of
primality for ideals and faces (Definitions 3.1, 5.1) correspond under duality, and
that all the above-mentioned improvements to Theorem 5.4 can be made.

LeEMMA 56. Let Fy, F,, ..., F, be closed faces of S(A) such that S(A) =
=co(F,U ... UF,). Then there exist closed split faces G; of S(A) such that

G, S F, (1 <i<gn)and S(A) =co(G, U ... UG,).

Proof. Let L; == (F;), ,J; be the ideal of 4 generated by L;, and G, - J;*.
‘Then G, is a closed split face contained in F;. Suppose that S(4) # co(G, U ...
... U G,). By the Krein-Milman Theorem, there exists g e P(4) such that o ¢ G, U ...
... UG,, so there exist ;€ L; and ¢; € H, such that n,(a;)¢; # 0. The mappings

(las .o 2= Y, Amg(a)é; (1 <j<n)of C*into H, are non-zero and linear, so
1<i<n

C" is not the union of their kernels. Hence there exist scalars 2; (1 < i < #n) such
that Y Aim,(a)¢;#0 (1<j<n). Let &~ Y, 4,&]~ Y, 4:&;. Then (in the notation

1<ign
of Section 1) w¢ € P(A), but wf(afa;) # 0, so wf ¢ F,U ... UF,. By Milman’s
Theorem, w¢ ¢ co(FLU ... U F,). This is a contradiction.

THEOREM 5.7. Let A be a unital C*-algebra, F be a closed face of S(A), L - - F ;.
and 1. {ae A:aAd = L}. The following conditions are equivalent.

(1) F is a weakly primal face of S(A).

(2) Fis a primal face of S(A).

(3) Iis a primal ideal in A.

@ If i, Jy, ..., J, are ideals in A with J\J, ... J, =: {0}, then J; < L for
sonie 1.

Proof. (1) < (2). This follows easily from Lemma 5.6.

(3) < (4). Since [ is the largest ideal contained in L, this is clear from
Definition 3.1.

(1) <> (4). This follows easily from the correspondence between closed split
faces and ideals, since

S(A) = co(li U ... Udi) ey ... J, = {0}

In view of the correspondence between the self-adjoint part of 4 and A(S(4)),
Theorems 5.4 and 5.7 show that if fis a continuous real (or complex) function on

P(4) and for each primal ideal 7 in A, there exists a; € A such that f(¢) == ¢(q;) for
all ¢ € P(4) n S(A4/I), then f{p) = ¢(a) for all ¢ e I_’—(:Z) for some ae A. The fol-
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lowing is a stronger version of this result (see also [18; p. 232] for the case of von
Neumann algebras), and it shows that the Bishop decomposition determines A(S(A4))

amongst Banach subspaces of Cr(P(A4)) (see [7; p. 236)).

THEOREM 5.8. Let A be a unital C*-algebra, let f be a uniformly continuous
complex-valued function on P(A); and suppose that for each prime ideal I in A, there
exists a; € A such that f(¢) = @(a,) for all ¢ € P(A/I). Thus there exists ae A such
that f(p) = @(a) for all ¢ € P(A).

Proof. Consider f to be extended by continuity to P(4). We shall use the nota-
tion established in Section 1.

Let (¢,) be a net in P(4) which is w*-convergent to ¢ € P(4). There are ele-
ments a, € A such that (p,)(a,) = f((¢,),) for all b € A with ¢,(b*b) > 0. Further-

more (@), = @4, S0 @, € P(A), if p(b*b) > 0 (see the proof of Theorem 3.8). Let
H, be the dense subspace n,(4)¢, of H, and define s : H, —» C by

s(np(b)Ep) = @(b*b)f(@y)  (p(b%b) > 0)
5(0) = 0.
Then
) st = IInlf@g)
where  =: n/lln|l, for non-zero vectors n € H, . In particular, s is well-defined, and,
since f is (norm) continuous and bounded, s is continuous and extends to a conti-

nuous function on H, given by ().
Now

s(ny(b)Ep) = lim ¢, (b*b)f((0,)s) =

= limg(b*a,b).
Thus

3
Y, Vs(mp(daby 4 Agby + 1769)8,) =

J=:0
3 X ) N
= 1im Y i/0y((laby 4 Aoby -+ i/b5)*ag(2uaby - Zeby + iby)) =
J=-0
= lim 4(pa(b.'=3kaa()'1b1 + )"2b2)) =

= ¥ sy 4+ b)) + Za5(olby + b)),

j=0
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Also s(i’) == s(n). Thus the functional ¢ : H,X H, - C defined by

1 32 .. .
a(ny, ) = “Z‘ E Vs(py -+ 1)

j=0

is conjugate-symmetric, sesquilinear and continuous. Hence there is a bounded
linear operator T on H, such that

oy, n2) = Ty, o).

The formula {T#, n) = s() == f(w?) is valid for unit vectors n € H,, and by conti-
nuity for any unit vector ne H,.
Let p be a projection in n,(4) and n be a unit vector in H,. For real ¢, let

e = pn + "1 — p)n.
Then wy = wf, 50 Ty, n,p = {Tn, n) for all real r. Hence

{Tpn, 0 —pny = 0=LT(A —pm,pny (eH,, |nll=1)

80 Tp == pTp == pT. Thus T e m,(A)".

I := Y 2 where 2; >0, Y] 7; = 1, ¢; € S(A), then there exist xje n,(4)"
p A

FARE

@ n .
such that ¢, - Wy, and Y A4x7¥x; = 1. Hence
Jj 1

Y. Aifle) = Y AKTxjE,, Xjled == Y, AKTNFNE, , &) = KT, , &) + - flo).

i1 FA j-1

Thus if vis any discrete measure on S(4) representing ¢, then Sfdv == (). Tt follows

that the same formula is true for any measure v on S(A) representing ¢.

Let 4 be an extreme point of the unit ball of the space of boundary affine
dependencies. By [18; Lemma 4], u is supported by a weakly prime closed split
face F. If P =- F, , then P is a prime ideal in 4 [14; Lemma 1.1], so that

S.fd# = Sw(a,,) du(y) = 0.

F
As in Theorem 5.4, this suffices to prove the theorem.
COROLLARY 5.9. Let A be a unital C*-algebra, let { be a continuous complex-

-valued function on F(A), and suppose that f| C is affine for each convex subset C
of F(A). Then there exists a e A such that f(¢) = ¢(a) for all ¢ € F(A).
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Proof. Since S(A/I) < F(A) for every prime ideal I (Corollary 3.6), it follows
from Theorem 5.8 that tt;ere exists ae A such that f{¢) = ¢(a) for all g€ P(4).
Since m is compact and extremal, it follows as in the proof of Corollary 5.5
that f() == ¢(a) for all ¢ c F(A).

Alternatively, Corollary 5.9 may be proved by applying Coroliary 5.5 to the
real and imaginary parts of f with ¥ = F(A).

THEOREM 5.10. Let A and B be unital C*-algebras and let ¥ : F(Z)a F(B)
be a homeomorphism such that ¥ and ¥~ are affine on convex subsets of F(A) and
F(B) respectively. Then there is a Jordan isomorphism & :B — A such that

¥ Pp* I F(A). Furthermore, @ is a -isomorphism if and only if ¥ l P(A) preserves
orientation.

Proof. Let b e B. Applying Corollary 5.9 to the function ¢ — W(p)(b) in
~CC(F—(;§), we obtain a (necessarily unique) element'a € A such that Y(p)(b) = ¢(a)
for all ¢ e F(A). Define ®(b) = a. It is straightforward to verify that ¢ is a unital
linear order isomorphism of B onto A4 (the surjectivity requires an application of
Corollary 5.9 to B). Hence ¢ is a Jordan isomorphism [21; Corollary 5]. By con-
struction, &* | F(A) = ¥. Since ®*(S(A)) = S(B) [10; Theorem 3.2.3], ¥ maps
P(A) onto P(B). It follows from [3; Corollary 8.5] that @ is a =-isomorphism if and
only if ¥ , P(A) preserves orientation.

Alternatively, since ¥ preserves the local affine structure in F(4), one may
show directly that ¥ maps P(4) onto P(B) (also 0,,S(4) = F(4) onto 8,S(B) =
=. F(B)), and that ¥ preserves equivalence and transition probabilities between pure
states. If ¥ | P(A) preserves orientation then, by a theorem of Shultz [27; Theorem
18], there is a =-isomorphism & of B onto A such that ¢* | P(4) = ¥ | P(A) and
hence &* | F(A) == .

In Corollary 5.9 it is not possible to replace m by P(4) except when this
change is trivial, as shown below. The C*-algebras for which ITA) == P~(—A—) are des-
cribed in statement (C) of Section .

PRroOPGSITION 5.11. Let A be a unital C*-algebra, and suppose that le) #
# P(A). Then there is a continuous real-valued Sfunction f on P(A) such that f] C
is affine, for each convex subset C of P(A), and such that there does not exist ac A
with f(@) = @(a) for all ¢ € P(4).

Proof. By [8; Section 3], 4 has a non-abelian ideal I with continuous trace.
It follows from [32; Theorem 6 and Remark on p. 601] that

PA S {do+ (1 —W:0< i<, geP(), yeSA/D).
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Hence any convex subset C of P(A4) satisfies
Cciip+(—ADY:0<2<1, yeS(4/)}

for some ¢ € P(I).

There is an irreducible representation n of 7 on a Hilbert space H of dimension
greater than 1. Let (&;, &) be an orthonormal pair of vectors in H, and 7. =
== 2712, 1o &), By Kadison’s Transitivity Theorem, there exists @ € I such that
n(a)é, = & and m(a)é, = —&,. Let f(Y) = (Y(a)] (¥ € P(4)). Then [ 1s continuous,
and f| C is affine. But

fol) =1, flwl) =1, fw])=0,

so there is no affine extension of f'to S(A4).

We show next how Theorem 5.8 leads to a proof of the Dauns-Hofmann theo-
rem for a unital C*-algebra A [24; 4.4.8]. Let g : Prim(4) — C be continuous. Let
(¢,) be a net in P(4) which is w¥-convergent to ¢ € P(4). Let P, = ker Mo, I
-~ kerm, . Then (P,) converges in the hull-kernel topology to any Q e Prim{A4;7).
Thus if f(Y) = g(kern,) (Y € P(4)), lim f(¢,) exists. Since (g,) is an arbitrary con-
vergent net, and P(4) is relatively compact, it follows that f'is uniformly continuous.
If J is any prime ideal, g is constant on Prim(4/J) by Proposition 3.2.(3). Hence
there is a scalar 2, such that f(§) = 1, = y(4,1) for all ¢ € P(4/J). It follows from
Theorem 5.8 that there exists a € 4 such that f(f) = y(a) for all ¢ € P(4) (in this
case the proof of 5.8 may be considerably simplified since fis constant on the supports
of the measures v and u). Hence a — g(P)1 € P for all P e Prim(4), as required.

Apart from the study of operator algebras, the most important influence in
convexity theory in recent years has been the study of function algebras (see {7;
Chapter 4], [17], [18]). Let 4 be a function algebra on a compact Hausdorff space X,
S be the state space and K be the complex state space of 4, and identify X with
a subset of S. Define a closed subset E of X to be weakly primal if, whenever #n = 1
and G,,G,,...,G, are peak sets for A with X = G,u ... UG,,then E € (G, for
some /. Proceeding as in [18; Corollary 2], it can be shown that if F is a weakly primal
face of K, then Fn X is weakly primal in X. Furthermore, if E is a weakly primal
subset of X, then E is contained in a weakly primal face of K. But it is not clear that
co(£' U (—iE)) is weakly primal in K even if E is a weakly primal generalised peak
set containing more than one point of X. In this setting, it is possible to replace
“weakly primal” by “weakly prime’’ in Theorem 5.4 {18; Theorem 3].
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6. STRONGLY PRIMAL FACES

In this section, we introduce a strengthening of the notion of primality of faces,
and discuss its possible relevance to C*-algebras.

DEFINITION 6.1. A closed face F of a compact convex set K is said to be strongly
primal if, whenever n > | and E|, E,, ..., E, are compact extremal subsets of K
such that K = co(£, U ... UKE,), then d.F < E; for at least one value of /. A
point x € K is strongly primal if F_ is a strongly primal face.

Note that if, in Definition 6.1, “compact extremal subsets” is replaced by
*“‘semi-exposed faces’ or “closed split faces™, then one obtains definitions equivalent
to those of primal and weakly primal faces [given in Definition 5.1. Clearly any
strongly primal face is primal. If Kis a Choquet simplex, and E is a compact extre-
mal subset of K, then coF is a closed split face {7; p. 114]. It follows by Milman’s
Theorem that a weakly prime face of a simplex is strongly primal. An argument

similar to the proof of Proposition 5.3 (1) shows that any point ofgj( is strongly
primal.

Let 4 be a unital C*-algebra. It has been shown in Theorems 3.5 and 5.6 that
a state ¢ belongs to F(4) if and only if ¢ is (weakly) primal in S(A). The following
seems plausible:

CONJECTURE. A strongly primal state of a unital C*-algebra A belongs to P(A)t

By the remarks above, the converse of this conjecture is true. Although it
has not been possible to prove the conjecture, it can be established in any of the
following cases.

(1) A is antiliminal (using [8; Proposition 3.1]).

(2) A is primitive (using Theorem 3.11).

(3) Aisavon Neumann algebra (using [19; Theorem 4']).

It can also be shown that S(A) is strongly primal (in itself) if and only if P(4) = S(4),
or, equivalently, 4 is prime and either antiliminal or one-dimensional (see result
(A) in Section 1).

Finally, we observe that if we defined “strongly primal’’ by replacing “d.F <
< E”’ by “F < E;” in Definition 6.1, then the “strongly primal’’ points of X would
form the smallest compact extremal subset containing J. K, and any ‘“strongly
primal” state of 4 would belong to —P—(ZQ by Theorem 3.8.
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