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SOME REMARKS ON THE GROUPOID APPROACH TO
WIENER-HOPF OPERATORS

ALEXANDRU NICA

INTRODUCTION

Let P be a closed convex cone in R such that sp P = R”. The Wiener-Hopf
operator with symbol f€ C (R") on P is the operator in Z(L(P)) deﬁned by the
formula:

W o(1)E1(0) = Sf(t — $)E(s)s;
P

the C*-subalgebra of £ (L*(P)) generated by {W(f)|f€ C(R"} is denoted by
#(P) (the C*-algebra of the Wiener-Hopf operators on P). A fruitful method of
studying #°(P) was discovered by P. Muhly and J. Renault in [7]. They found
a locally compact groupoid (with a canonical Haar system) ® having the property
that C%4(®) (the reduced C*-algebra associated to ) is isomorphic to ¥ (P)
and obtained information about #'(P) from the structure of ®. In fact,

Ck (%) = C*(®) because the groupoid % is amenable in the sense of Renault.
Details may be found in [8].

In the present paper we pursue this approach to the study of #°(P). We shall
describe a new presentation for ®, which has the advantage that it can be studied
with the use of quite sophisticated tools from convex analysis. More precisely, we
shall construct and study another groupoid — let .us call it ¢ — which also has the
property that Ckq(y) (or, equivalently C*(g) is isomorphic to %#'(P); a posteriori
it can be seen that % and g are iso- morphic.

The crucial point is the following: the closed invariant subsets of &° (or
g°) give information about the ideal structure of #'(P) (6° and ¢° are the unit
spaces of & and g, respectively); that is why a good description of ®° (or g°)
is necessary. In [7], Muhly and Renault emphasized a class of elements of &°
which is “indexed” by & (P) (the set of faces of P) and found cases — among them,
the polyhedral and the self-dual cones when this class exhausts G°. Making a

parallel study for g, we find a class of elements of ¢° indexed by ¢ (P), with P the
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<“‘dual” of P, and we find a sufficient condition on P which assures that this lar-
ger class of eiements exhausts g* (the condition is: “p is tame” — Proposition
6.1). It is likely that “most cones' satisfy this condition, but all we can say at
this moment is that polyhedral cones, all cones in R? and the forward light cone
in any dimension satisfy it. The description of ¢° seems to be difficult when
P is not tame (see Observation 6.2.2°).

The subjects of the various sections of the paper are as follows: in Section 1
we make the simple, but important observation that additional conditions con-
cerning the continuity axiom are needed when we want to reduce the Haar
system of a locally compact groupoid to a locally closed set. In Section 2 we
consider in an axiomatic manner the construction made in [7] and show that
the axiom (M4) (which initially appears to be just a technical condition) leads us
in a natural way to the groupoid g. In order for this machinery to work, a cer-
tain condition (M) on P turns out to be necessary and sufficient. In Section 3 we
show that (M) is always fulfilled when P is a closed convex cone in R" with
sp P = R" (the setting of Section 2 is a little bit more general). Section 4 is devoted
to the construction of the previously mentioned class of elements of ¢°, which is
“indexed’” by 5’7(f’). Tn Section 5 we introduce the (new) notion of “tame con-
vex set”’; this is a preliminary for Section 6 where we show that if P is tame
then the class exhibited in Section 4 exhausts g°. Finally, in Section 7 we se
that when P is tame, the closed invariant subsets of ” are in bijective corres-
pondence with the subsets of ,’/7([3) which are hereditary and closed relative to a
certain natural Hausdorff distance.

It is very probable that using the results of Section 7 and some facts about
fields of C*-algebras, one can show that #7°(P) is postliminary when P is tame.
However, this is not done in the present paper. Another subject for further re-
search is given by the fact that generating systems — the axiomatic presentation
of the construction made in [7] — can be used to study C*-subalgebras of L(L¥(P))
which are greater than #°(P). This is, in fact, already done in [3] in the discrete
case (the facts about generating systems are stated for “a closed cone P in a
locally compact second countable unimodular group G”; in {3] P is N* and G
is Z%2).

When writing this paper, the author was not aware of the work of A. Dynin,
[4), where the connection between #7(P)" and 37(2’) is established in the case o
completely tangible cones. The methods used by Dynin are completely difterent
from the groupoid approach o the problem.

The examples of cones with tame dual mentioned above (polyhedral cones,
3-dimensional cones, light cones) are completely tangible, but the exact relation
between the cones with tame dual and the completely tangible ones is not clear
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at this moment. Tn [2] (which is an appendix to [4]) it is shown that the intersections
of finitely many smooth cones and the closures of homogeneous cones of finite
type are completely tangible.

Finally, the author wishes to thank those who advised him during the
preparation of his graduation paper, on which this paper is based.

1. THE CONTINUITY AXIOM FOR REDUCED GROUPOIDS

1.1. Let g be a locally compact groupoid. If ¥V is a non-void, locally closed
ubset of ¢, then the reduction of g to V, denoted by g] V is defined to be
{xeqg I(/(.x) eV,r(x)eV}. g [ V is also a locally compact groupoid ([7], 2.2.5,
p. 14).

Let us suppose that on g we have a left Haar system A = (1%) by defin-

e9®

ing:
)] o' =" |{xeg"|dx)eV}, VrveV,

we obtain a natural candidate for a left Haar system on glV. It is easy to verify
that (6")ey is left translation-invariant; as it is pointed out in [7], 2.5, p. 16, an
additional condition is needed in order that (¢%),¢, satisfy the support axiom (re-
quired by any Haar system —see [7], 2.4, p. 15 or [8], Chapter I, Definition 2.2),
Tn this section we make the simple but important observation that additional
conditions are necessary in connection with the continuity axiom, too.

1.2. NoTtaTioN. We shall consider the particular case of the reduction of
a transformation group to a closed set. Thus let G be a locally compact group
U a locally compact space and GxU — U a continuous action on the left.
(The groupoid we obtain is Gx U, the domain and codomain of (¢, v) are © and
tu, respectively.) On G we take a left Haar measure p which induces a left
Haar system 4 = (3%),cy on GX U by the formula:

fdi* = Sf(t'l, w)du(t), Yue U,V feC(Gx Uy

91

G xU)"

(we have (GXU)* = {x € GXU|r(x) =u} = {(t™", tu) | t € G}). The conjugated
right Haar system (4,),ey is given by:

( fdi, = S fi, wdu(r), Vue U, VfeC(GxU))
(GxJU)“ bei

(we have (Gx U), = {x € GX U |d(x) = u} = Gx{u}; here p~* is the right Haar
measure conjugate to u).



166 ALEXANDRU NICA

Now let ¥ be a non-void closed subset of U. For any v eV we define:
2 G,={teGtveV};

it is clear that G, is closed and contains e, thz unit of G. We denote the
reduction of GxU to ¥ by g. Obviously for any veV, g, = G,x{v} and hence
o, = 4,! g, integrates according to the formula:

3 Sfdm — Sf(t, WAuI1),  Vfe o).

g!’ GU

The next proposition gives equivalent conditions for (¢,),er to be a right Haar
system (which is clearly equivalent to the fact that (¢%).cp is a left Haar
system) in terms of the sets (G,).er of (2).

1.3. ProrosiTion Using the above notation we have that:
1° (6,)vev satisfies the support axiomif and only if supp p™*'G, =G, Ve eV.

2° (o)eev satisfies the continuity axiom if and only if Vav HS fdut is

GU

continuous for every fe CG) if and only if V 3 v > g € L*(n™) is continuous
when L*® (u™Y) is regarded as the dual of LN ™) with the w* topology.

Proof. 1° comes out from (3). The equivalence between the last two state-
ments of 2° is clear (C(G) is dznse in LY u~1)). It remains to prove the equiva-
lence between the first two ones.

“=" We take fe (C.(G) and vyeV. Let ¢ be in C (U) such that ¢ ==1
on a neighbourhood of v,. We define a 0 in C_(g) by 0(t, v) == f(t)@(r). By the

hypothesis, V' 3 v > S()daU — o(r) Sfd;r‘ is continuous and this function coincides

with v — Sfd;t“ on a neighbourhood of r,. Hence for fixed f, V3t~ Sfd,u"

Gv Gv

is continuous at every point of V.

*«="7 We have to show that V3 »S()dau is continuous for every @ in

gv
C.(g). When 0 is of the form 0(, v) = f(t)p(v) with fe C (G),¢ €C,(U), this
is a direct consequence of the hypothesis and the equality (3). It is clear that the
set of those 0 for which the desired continuity holds is a linear subspace of C_ (g)
and so we obtain that this set is sequentially dense in C (g) with the inductive limit

topology.
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Now let us fix 0 in C(g) and v, in V. Consider a sequence (8,):2, In
C.(9) converging to f in the inductive limit topology and having the desired
property. Consider a compact subset %" of g such that supp0, = X',V n, a positive
f € C(G) which is identically one on prg(#") and a compact neighbourhood ¥,
of vy. For any n and v e Vy:

i SOdo’v — S 0do, Sedav — S(),,do’v
9

g 9
v Yo v v

<
I\ +

(]
]

0

+ ‘ SO,,do‘v — \ 6,do,
g g

v

+ S 0,de, — S 0do,
[ 0
3

Y Y Yo

=1

and is less

The first term of the sum can be written SO(t, v) — 0,(t, v)du=(¢)
G

~

than |0 - - onnws fdu~1; so is the third term and we get:

GU

-
‘ S()dav — S 0ds,

0

| < 200 — 0,liosup \ fdu™ +
|

«
o
Q

4)

Having (4), the proof is carried out with the usual argument involving three times

¢ (note that sup Sfdp‘1 is finite being the supremum of a continuous function
wey
0

on a compact set).

1.4. EXAMPLES WHEN (6,),ey 1S NOT A HAAR SysTEM. 1° Let R act on itself
by translations. If we make the reduction to Z, then G, = Z, Vve Z and the
support axiom is not satisfied.

2° Let Z act on R by translations. If we make the reduction to [0, 1],
then G, = {0,1}, G; = {—1,0} and G, = {0}, Vv €(0, 1). The continuity axiom
is not satisfied (take for instance f = y;, € C(Z)). ‘

1.5. DrriNiTION. Let (g, 2) be a locally compact groupoid with left Haar

system and V a locally closed non-void subset of ¢°. If (6")ey from (1) is a left
Haar system for g | V, we say that A'can be reduced to V.
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2. #(P) WRITTEN AS THE REDUCED C*-ALGEBRA OF A GROUPOID

2.1. The setting in which we are working is slightly different from the one
of Section 3 of [7] and is described as follows: we consider a locally compact
second countable unimodular group G and a left Haar measure p on G. We
say that a closed subset F of G is solid if F+# @ and suppu|F =F
(this clearly happens when @ # F = clos [7“). We consider (and fix) a solid closed
subset P of G which is a cone; that is, PP & P and P 3¢, the unit of G. We
shall constantly write Q for P~ For any fin C(G) we define the Wiener-Hopf
operator with symbol f on P to be:

We(f) € L(Lu|P)).

WANE) = Sf(rS‘l)é(S)dﬂ(s)-

P

That 1s, W, is the compression to Lz(ulP) of the regular left representation
A:C(G) - L(L¥(p)). The C*-subalgebra of & (Lt |P)) generated by RanW, is
denoted by #°(P).

2.2. THE DEFINITION OF A GENERATING SYSTEM.

2.2.1. The axioms which appear.in the next definition represent a transfor-
mation of the statements of Lemma 3.3, p. 33,[7]; the novelty consists in the
axiom (M4) which surprisingly turns out to be more than a technical condition
{as we shall see in 2.3.1).

DEFINITION. A generating system over P is a system (U,GxU - U, V)
where: U is a locally compact space, Gx U — U is a continuous action on the
left, ©: G — U is a function and V is the closure of 7(P) in U, having the follow-
ing properties:

(M1) st(t) = 1(st), Vs, 1€ G.

(M2) ¥V is compact.

{M3) te G and t{t) e V imply r € P.

{M4) The canonical Haar system on thc transformation group GxU can
be reduced to V.

2.2.2. OBSERVATIONS. 1° The function 7 : G — U in the above definition is
automatically continuous because t(r) = t1(e) (and the action of G on U is conti-
nuous).

2° Taking Proposition 1.3 into account, we may express the fulfilment of
(M4) in terms of the sets (G,),ey given by (2). More precisely, (M4) is satisfied if
and only if every G, is solid (recall that G, is closed and contains e) and the
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function V> vy, € L®(u) is continuous when L®(u) is regarded as the dual

of LY(u) with the w* topology (here we have u = p™%). v
Let us also notice that G, = Pt7', V¢t € P; indeed, we have s € G, if
and only if

(M1) (M3) -
ST(EV < 1(st)eV <« steP «se Pt™L

In [7], Muhly and Renault have emphasized (in a particular case) the con-
nection between genérating systems and Wiener-Hopf operators. We rewrite, in
Lemma 2.2.3 and Proposition 2.2.4, one of their results (see 3.6 and 3.7, p. 38 —40,
[7]) using the above terminology. Proposition 2.2.4 explains the term ‘‘gener-
ating system’’,

2.2.3. LeMMA. Let (U,GXxU - U,t; V) be a generating system over P.
Let g be the reduction of GXU to V (a locally compact groupoid) ; due to (M4),
8 has a canonical left Haar system. For every f € C (G) we denote by f~ the function
g3 (t, v) = f(t), which is in C(a) because V is compact.

Let us consider a v in V; the Dirac measure J, on V induces a measure v=> on
g (see 2.11, p. 21,[7). There exists a unitary operator T:L*(v™") —»LZ(uIGU), T
and T* being described as follows :

for any n e C(g), Tn = {, where {(t) = n(t, v);

for any £€C(G,), T*C = n, wheren(t,w) = {ég) gﬂ ::Uv

Moreover we have:
T{(Ind 8 )fIT* = W5 (f), VfeC (G,

where Indd,: C(G) — (L¥(v™Y) is the induced representation (2.12, p. 22, [7])
and WGU( 1) is the Wiener-Hopf operator with symbol f on G,.

2.2.4. PROPOSITION. We keep the same notation as in the preceding lemma.
There exists a canonical isometric s-representation n:Crq(g) — L(L¥(u |P)) such

that n(}') =Wu(f), Vfe€CG). Rann is called the C*-subalgebra of ¥(L¥(u IP))
canonically generated by (U,GXU — U, t; V).

2.2.5. ReMArk. The representation of 2.2.4 is obtained by putting v = e
in Lemma 2.2.3 and proving that Ind 3, is isometric on C4(a) (we note, of course,
that G (., = P). Tt is clear that Rannm =2 #(P). If we obtain for some particular
generating system that Rann = %'(P), then we have a “presentation” for #(P)
as the reduced C*-algebra of a groupoid (this is what we need).
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2.3. THE EXISTENCE OF GENERATING SYSTEMS IS EQUIVALENT
10 THE CONDITION (M)

2.3.1. Let us take the particular case when G = R? and P = [0, 00)*. When
considering generating systems, we should keep in mind the following example of an
action GxX U — U together with a function 7 : G = U ; GXG — G is defined to be

(t, ) >t + u and 1(¢) = t. Here clos(P) = P is not compact, i.e. (M2) is not
fulfilled; we overcome this difficulty replacing G with its one-point compactification
G U {oco}. The action becomes

(1, 1) {

t+u fuedG
o fu=oo’
7 remains the same. We have V = P U {oo} and it is easily seen that conditions
{M1), (M2) and (M3) are satisfied.
For (M4) we have to look at the sets (G,),ey (Observation 2.2.2); they are
G,=P —1t, Vte Pand G,, = G. Obviously, each G, is solid. Using the uniform
continuity of the functions in C (G) we see that V5 v+ %G, € L*®(u) is w*-conti-

nuous on 7(P) = P. What remains to be verified is whether this last function is
continuous at co, or equivalently if:

(5 lim f(s)ds = S f(s)ds, VfeC,(RY).
tEP p_, R®

When ¢, — oo as in Figure 1.1, then (5) takes place because for every f in C.(R?)
we have suppf < P — 1, for sufficiently large k& (in the picture we represent
t, + Q = —(P — 1) and —supp/f). But when ¢, —» co on a vertical line, as in Fi-
gure 1.2, then it may happen for some fthat S J(s)ds = 0, V k and still S J(s)ds# 0.

P—lk Re

‘ \

.

f
/
A

t

Figure 1.1 Figure 1.2
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So axiom (M4) is the one which causes trouble when we are looking for
generating systems. The one-point compactification does not satisfy it because
“it has not enough points at infinity”’. In the general case, writing an arbitrary

£ 3
v e V as lim(r,), with (1), a netin P, we sce that it is necessary that x,_, 5 . .
a a a

Hence P must be compactified by adding one point for each “type of convergence
to oo’ where the type of convergence to co determined by a net (z,), in P must
be connected with w*-limy,, . In this way we are led to the construction made

in Proposition 2.3.4,

2.3.2. DeFINITION. We say that P satisfies condition (M) if every element of
w"‘-clos{;(“2 | te P} < L®(u) is of the form ' with 4 a closed solid subset of
G (recall that Q@ = P7Y).

2.3.3. OBSERVATION. The set 4 which appears in the preceding definition
is uniquely determined. Indeed, let 4 and B be closed solid subsets of G such
that y =y, p-a.e. Then u(A\.B) = u(B\A) = 0. But AN\ B is open in 4 and
suppu |A = A, hence the equation u(4 \ B) = 0 implies 4\ B = @. Hence A< B
and. by symmetry we obtain 4 = B.

2.3.4. PROPOSITION AND DEFINITION. There exist generating systems over P
if and only if P satisfies condition (M). More precisely (for the sufficiency) if (M)
is fulfilled we can construct the following generating system, called minimal: U is
the unit ball of L*=(u) with the w* topology; GX U — U is given by (t,h) > h oL
where L 1. G — Gis L~1(s) = t7%; 1 : G - Ulis defined to be 1(t) = Yo

Proof. “="" Let (U,GXxU — U, 1; V) be a generating system over P. An
arbitrary element of w*-clos{y,, | 1 € P} can be written as limy, o> Where (2,),

is a net in P for which v == limt(ta)e V exists. This happens because V is

compact hence every net in V has a convergent subnet. (M4) implics that

xP’_1—+ %g, (see also Observation 2.2.2) and using the unimodularity of G we

obtain y, o 2, Xc-l‘ We may take 4 = G;! (4 is solid due to (M4)).
& a Ly
“<="> We assume (M) satisfied and we prove that the minimal generating

system described in the proposition makes sense. It is easily seen that (¢,/1) +> ho L

is a continuous action on the left. The verification of (M1) is trivial and (M2)
is satisfied because U itself is compact (by the Alaoglu theorem; we also note
that U is metrizable because G is supposed to be second countable).

We prove that (M3) is fulfilled. Let ¢ be in G such that 7() € V. Thus there

*
exists a sequence (f,)7%; in P such that P 5%, Itisclear that 1,Q > Q for
n=3»00
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every n and this implies 1Q 2 @ (otherwise @ # Q\1Q is open in Q. We consider
an open relatively compact subset D of G intersecting Q\rQ and we see that

0 < u((Q\1Q) n D) < o0 hence S X onroynp 9K TJzSK‘Q\’QmD du, a contra-
o 0
diction). But from tQ = Q (3e) we obtain r™* € Q, i.e. t€ P,

Now we take (M4). We shall use a

LeMMA. Let v be an arbitrary element of V and let A be the unigue closed
solid subset of G with y, = v (see Observation 2.3.3). Then G, = A7,

Proof of the lemma. “<” Let t be in G,. We have to =1y ==y €V
*®

Let (1,)2., be a sequence in P such that y, 0 SN Xoa- Using the same argument
n =00

as_in the proof of (M3) we see that 14 = Q. Hence tA 3¢, i.e. f€ AL
“2” Let t be in A”'. Consider a sequence (¢,)?, in P such that

* V* . - . .
% o %2754‘ Then %, 0 51y, (the action of G on U is continuous), that is

n=-»00

t
X o —>X,,- We need to show that y € ¥ (= t € G,); to that end we shall prove
7

n-co
that the sequence (2£,), is “‘asymptotically’’ in P.

Let V2 V, 2 V32 ... be a base at e, every V, being open and relative-
ly compact. Using an argument of the same type with the one which proved
(M3), we see that for every n there exists a k, such that m > k, implies #,0 n
n v, # @; of course, we can arrange that k&, < k, < k; < ... . So we obtain
the subsequence (t )2 of (t,)2, with the property that i, @ 0V, # 4, Va.
For every n we take g, € Q such that . q,€V, and define p, = q,1€ P. We
have th g, e, therefore P,,(tt,\,")‘1 —>e using again the continuity of the action,

* * 3
woo -1 w : w . s
from x”an ”__;),(,A we get p, (¢ ) X"k,,Q ':c’)xm‘ ie. xan,:_:z X,,- Hence y, 18
in V.
From the lemma it is clear that every G, is solid. Moreover, consider a
convergent sequence v, —> v in ¥ and an fe C(G). Let 4 and (4,), be closed
=20

solid subsets of G such that v = y, and v, = %, » Vn To end the proof we have

to show that Sfdu med,u; this is equivalent to S (fo]nv)du—ﬁs (f o Inv)du

A -A

bp v n

(where Inv: G — G is Inv(r) = t7%). But our hypothesis is X4 __“i);(A; so the

n psoo

last limit does clearly exist.
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-2.4, THE MINIMAL GENERATING' SYSTEM. The next proposition shows that
the minimal generating system can be used to study # (P).

2.4.1. PROPOSITION. We ugse the notation of Proposition 2.2.4 for the minimal

generating system. Then { fl 1€C(G)} = C[g) S Ckulg) generates Cla(g) as a
C#-algebra. Consequently Rann (the C*-subalgebra of Z(L*(u|P)) canonically
associated to the minimal generating system) is W (P).

Proposition 2.4.1 is very close to Proposition 3.5, p. 35, [7]; in fact, its proof
is just a transcription of the proof of the quoted proposition and that is why we
omit it.

In order to justify the term ‘‘minimal generating system’~ we mention
(without going into details) that one can define an injective homomorphism
from the groupoid associated to the minimal generating system into the groupoid
associated to an arbitrary generating system, and that this homomorphism induces
a surjective C*-algebra homomorphism in the opposite direction. We also men-
tion without proof the following uniqueness property:

2.4.2. ProposiTioN. Let (U,GXU — U, 1: V) be a generating system over P.
We denote by o the reduction of GX U to V (g’ is a locally compact groupoid with
a canonical Haar system). The following are equivalent:

1° The C*-subalgebra of £(L*u|P)) canonically associated to (U, GXU - U,
T; V) is W(P). :
22° If vy, v,€V and G,,1 = G,,z, then v, = v,.
3° o is topologically isomorphic (in the sense of 2.9, p. 20, [7]) with the grou-
poid associated to the minimal generating system.

Proposition 2.4.2 explains (a posteriori) the numerous similarities between
the generating system presented in [7] and the minimal one.

3. ANY CLOSED CONVEX SOLID:CONE IN R” SATISFIES (M)

3.1. We maintain the notations used in Section 2 with the following special-
izations: G = R" for some n € N* and P has the property that AP & P,
¥ 1 €[0,00), i.e. P is what one usually calls a convex cone. Of course, we shall
write the law of composition on G additively. It is not difficult to observe that in
this case the condition on P to be solid is tantamount to spP = R"” or equi-

valently to P+0O (see also [l]. Lemma- 2.1, p. 8). In what follows we shall
work yvith the: dual of P, which is the closed convex cone: :

(6) P={eR|(x,& >0, VxeP)}
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Our purpose is to prove the following statement, at which we arrive in
Corollary 3.4.5:

@) “r, |Q € A = R, A closed and convex} is wr-compuct®.

It is obvious that 1+ Q 2 Q,Vte P; so (7) implies wi-clos{y, . lrepry =
s {xA[Q < 4 = R", A closed and convex} which is more than (M). In order to
obtain (7) we shall develop another description for {XA l Q0 < A< R" Aclosed

and convex} where the topology is given by a Hausdorfl distance between closed
convex cones.

3.2. HAUSDORFF DISTANCES. The left, right and symmetrized Hausdorif dis-
tance between two arbitrary compact convex non-void subsets A and B of R”
are defined respectively by the formulas:

dy (A, B) = inf{r > 0|4 + rB 2 B}
dy (A, B) =inf{r > 0| B + rB 2 A} (= dy (B, A))
du(A, B) = max(dy (4, B), dy (4, B)).

Here B stands for the closed unit ball of R” with the Euclidean norm. Tt
is known that dy; is a metric on the set % of compact convex non-void subsets
of R” and that (£, d,)) is complete. Besides, a theorem of Blaschke which we shali
repeatedly use says that for any Ke.#', the set {de A" | A © K} is d,-compact.
A related (but simpler) result we also mention is that for any closed convex non-
-void subset F of R", {4 €A | A < F} is dy-closed. For the details, the reader
may consult [5], Section 7, p. 19—20.

Identifying the closed convex cones in R" with their intersections with B,
we obtain a metric on the set of closed convex cones; more precisely we put (C;
and C, are arbitrary convex cones):

dy,c(Cy, Cy) = dy (C, 0 B,C, 0 B)

®) dy.c(C1, Co) = dy (C, 0 B.Cy 0 B)
dH.C(C1: C,) =dy(C, n B,C, n B).

As a coroliary to the Blaschke theorem we obtain without difficulty that the set
of closed convex cones in R* with d . is compact. A useful property of ¢,
(and, by symmetry, of dy ¢ ,) is the following: for every /€ C, there exists s € C;
such that |s — ! < dyyc(Cy, Cit| (Cy and C, are as in (8); this property is

obtained consider.ing[—ll«te C, n B and the definition of &, (C, n B, C, " B) =
t

= dH,C,l(Cl , Co)).
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3.3. A first set which can be put into bijection with { |Q = 4 = R", 4
closed and convex} is of course {4 |Q < 4 < R", A closed and convex} (this
comes out from Observation 2.3.3). Another one is given by the next

PRrOPOSITION AND DEFINITION. For any closed convex subset A of R" which
contains Q we define its support function o, to be:

0. P 0,00, o, = sup (x, &), Ve e P.
xe

64 is positively homogeneous (with the convention 0-00 = 0), subadditive and lower
semicontinuous.

The mapping A o, is a bijection between {A l Q c A c R A closed and
convex} and the set of positively homogeneous, subadditive and lower semicontinuous

A
Sunctions from P into [0, 0c0]. Its inverse associates to the function ¢ the set:

A={xeR|{x,& < o), YEeP)

The proof of the proposition and the definition of ¢, can be found, with
some slight changes, in [9]. We only mention that the main tool used in the proof
is the separation (Hahn-Banach) theorem in R" and R™+1, '

3.4. CONES “OF EPIGRAPH TYPE”.

3.4.1. DerFiNiTiONS. 1° For any ¢ P [0, ool, positively homogeneous, sub-
additive and lower semicontinuous we define its epigraph:

E@) = {(& v) e R™*1|v > ¢(&)}.

(It is easy to see that' E(¢) is a closed convex cone in R"+1)

2° A closed convex cone C = R™1 js said to be “of epigraph type’ if it
has the property:

“(¢,w) € C and v > u (a real number)”’ = “(£,v) e C”.

3° We denote by & the set of closed convex cones in R"*! which are of
epigraph type and are contained in Px[0, ©0).

3.4.2. LemMA. The mapping (pn——>E~((p) is a bijection between the set of
positively homogeneous, subadditive and lower semicontinuous ﬁmctions from P into
[0, oo] and &. Its inverse associates to C € & the Sfunction:

o) =

inf{u > 0] @& weC} ifIu > 0 such that ¢, u)eC
otherwise.
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Proof. Clear.

3.4.3. LeMMA. Let us denote by d:c the (symmetrized) Hausdorff distance
on the set of closed convex cones in R"*'. Then & is d;:c-closad (and hence

—~

dy -compact ).

—~—

~ ~ ~ 4 ~

Proof. Let (C.)., and C be closed convex cones in R"*1 such that C, 2S¢

and each (:‘k is in &. Then C:,[ < ﬁx[O,oo), Vk > 1, implies Cc };X[O,oo)
(see 3.2, the result stated after the Blaschke theorem). Further let (&, ) be in C

and consider an arbitrary v > u; we shall prove that (£,v)e C. We write
€l +v =a(a will be used as a majorant). Consider an arbitrary ¢ € (0, 1)

such thate < ' *andak for which d:c(é,,, C) < ¢. There exists (&, 1) € C,
a

such that {(&,, i) — (€, ) < (¢, ) < ea. Then |y, — p| < ea implies y, < p +
+ ¢a < vand hence (§,.v) € (:‘k (Cl. is of epigraph type). Now there exists (1, 1) € C
such that 1(1, 2) - (&, v} <2 (G, V). But (€, MIKIE] + v<IE] + v + i€ — &/ <2a
and we get |4 - v| < 2ea, Iy — & < lp— &) + & — & < 2ea + ea = 3ea, and
hence (2, 7) — (¢, v)I < 5ee. Making ¢ tend to 0 we obtain that (&, v) € closC = C.

3.4.4. PrROPOSITION. The mapping lz:(a,,)»—» x4 IS continuous from (ég, d;;)
into (L®(R"), w*),

Proof. Taking into account Proposition 3.3 and Lemma 3.4.2, we have to
prove that if (¢,)?; and o are positively homogeneous, subadditive and lower

semicontinuous functions from 2 into [0, oo] such that E(<pk):—_'1§ E((,o), then, put-
ting 4, = {x € R"|(x,&) < &), VEe fA’} Vk>1and 4 ={xeR" [{(x,& <
< (&), Ve i’} we have XA",‘,/%ZA‘ In fact with (@2, 0,(4)°, and 4
as above, we shall prove:

(a) VxeR"\ A, 3k, such that xe R"*\ 4,, Vk > ky; and

(b) Vxe A, 3k, such that xe A, Vi > k.
Indeed, (a), (b) and the fact that 2,(04) = 0 (where /, is the Lebesgue measure on

&
. - . w
R") imply via the dominated convergence theorem that y o2 a
A o

(a) Let x be in R" '\ A4; there exists ¢ € P such that {x, &> > @(&). Consider
an ¢ > 0 such that {x, &> — (&) > el + 1xDI(&, @(&))] and a k, such that k = k,

implies d:;(ff((pk), E((p)) < g. We fix an arbitrary k > k, ; there exists (¢, ,v;) € ;i’((pk)
for which (¢, v) — (& @& < €€, @(E))]. We have:

Pl < vie < 0(€) + l(€, e < {x, &> — &lx| I, @O =
={x, &> + (x, & — &> — x| g, o) < (x, &
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(the last inequality holds because (x,& — &> < |x]|& — &) < |xlel(&, @(E))-
Finally ¢ (£)< {x, &> implies x € R" '\ 4, .

(b) We begin by noticing that for any x e A we have (6,8 <) VEe
€ IA’\{O}; indeed for every & # 0 in P we have x + e € A for a sufficiently small
g > 0, hénce {x, &) < {x + &, &> < @(&). This implies in turn that for any x € A
therc exists a 6 > 0 such that (&) > 0l&| + (x,E>,VE € f’; indeéd, we may
take & = inf{p(&) — (x, &) |E € P, |€] =1} which is strictly positive being the
infimum of a lower semicontinuous strictly positive function on a compact set.

We fix from now on a point x € A for which we shall prove (b). Obviously,

we can find 0 > 0 such that y = (1 + O)x € A We apply to y the remark made
in the preceding paragraph and we get a 6 > 0 such that @(&) > 8|&] + {p, &,
VieP. We take 0<ge<(min(, 0l +6+]|y) and k, such that
d;_;(ET((pk), E((p)) < ¢ for any k > ko ; we consider arbitrary k > k,and £ € P and
we shall prove that {x, &) < @ (&) (this clearly implies x € 4,, Vk > k).

If ¢ (&) = oo we have nothing to prove, so we shall assume ¢(£) finite. Then

€, o) € E(p) and we can find (n,v) € E(p) such that 1(n,v) — (&, 0&)l <
< )&, 0, (&))]. We obtain:

® o) = v - &l N = o) - &, P(E))I.
But we can also write:
@) = 6lnl +<y,m> = S + 3 &> = OE —yl — (3, & — 1) 2

> 68l + 08— (@ + WIE—-nl =

2 Ol + p, & - (0 + WD, eu(©).
fntroducing these estimations in (9) we get:

P& 2 Sl + <y, &) — (O + IyDElE. puEN — €l(E, pu(O)
and consequently:
(1 + 0pu(&) = 09 () + ou(&) 2
= 0pi(&) + O1E] + (¥, &> — (1 + 6 + [YDel¢, pu(8))],

where the last inequality takes place because 8¢ (&) + &l = (min(d, )|, o (N
and min(5, 0 > &(1 + & + |y]). Finally we see that ¢, (&) > (1/(1 + ) {(y, &) =
= {x, &)

12 — 1193
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Proposition 3.4.4 and Lemma 3.4.3 have the following immediate conse-
quences:

3.4.5. CoroLLARY. 1°{x |Q S 4 € R*, 4 closed and convex} is w*-com-
pact.
2° x> E(0,) is a homeomorphism from { L | Q< A< R, A closed and

convex} with w* onto (&, dy ¢).

4. WHAT IS w*-CLOS{%,,, | 1€ P}?

4.1. We continue to work with the same closed convex solid cone P & R"
from Section 3. Taking into account the results of Sections 2 and 3, we have
at our disposal a locally compact groupoid with Haar system (g, 4) such that its
reduced C*-algebra is isomorphic to % (P). (Because R" is amenable, C¥*(g, 1) =
= Cra(g, 4).) The next step is to obtain information about W (P) from
the structure of (g. A). In connection with this, an important fact is that
the closed invariant subsets of g" give rise to ideals in the associated
C*-algebra (see 2.16, p. 26,[7] or Proposition 4.5, p. 101, [8]). For the moment
we only try to describe explicitely g°, which is equal to w*-clos{xtw ] te P} by
Proposition 2.3.4. In Section 6 we shall succeed in doing this for P in a
large class of cones; in this section we shall only emphasize a class of elements
of ¢” which is connected to the facial structure of PA(Proposition 4.6.2). In order
to make things look natural we shall first present (in Subsection 4.4) a more
visible connection between q° and the faces of P, which was put into evidence
by Muhly and Renault in [7], and after that we shall extend it. But first of
all we nced some convexity preliminaries.

4.2. FACES OF A CONVEX SET. We shall use for “face’ the following defini-
tion ((4], Scction 2, p. 31):

4.2.1. Dermition. Let € be a convex non-void subset of R". A subset F
of C is called a fuce of C if it is non-void, convex and extremal (in the sense that
.t €C, ie(0,1)and (I — V1, + Aty € Fimply ¢, 1, € F). We denote the set
of faces of C by F(C).

Clearly #(C) # © because F(C)> C. The intersection of an arbitrary
family of faces of C is still a face of C, if it is non-void, and this is why we can
define for every non-void subset A of C the face of C generated by A, which
is (M} F. We shall use the following well-known result:

oz

4.2.2. PrOPOSITION. Let C be a non-void convex subset of R" and let m be
the dimension of C (m = dimflC, where LC is the affine variety generated by C)-
Then every Fe F(C) but C has dimension strictly less than m and is contained in
C\intncC. In fact, \J F equals C \ints¢C.

FeEF(O)
FzC
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4.2.3. CorROLLARY. If C is a non-void closed convex subset of R", then all the
Juaces of C are closed. If, moreover, C is a closed convex cone, then all the faces
of C are closed convex cones.

Proof. Assume C closed and fix an Fe #(C). It is clear that F is a face
of (1F) n C and that dimF < dim((flF) n C) € dim(fl F) = dim F. The pro-
position applied to (flF) n C yields F =(fLF) n C (a closed set). The rest is
trivial.

4.3. DUALITY FOR CLOSED CONVEX CONES. We have already introduced the
notion of “the dual of a closed convex cone’ (relation (6) in 3.1). We introduce
now a somewhat more complicated concept, which will be needed in the proof
of 4.6.2.

4.3.1. DeFmuTion. Consider a couple R < ¥V = R" where R is a closed
convex cone and V is a linear subspace. The dual of R in V is by definition
the following closed convex cone contained in V':

DR ={EeV|{xE 20, VxeR].

4.3.2. RiMARK. Let R be a closed convex cone in R". Among the various
“duals’ of R, the most important are the extreme ones: Zpn(R) (= ﬁ) and Z_, p(R).
Every other 2,(R) can be recaptured from them according to the relations:

BR) =R n V=2a,R) + (VS spR).

4.3.3. PRrRoPOSITION. The following relations concerning dualization . hold
(R, R,, R, are closed cones, V' is a linear subspace of R"):

I° R VR =2,(9,(R) =R

2R VSR =9,(-—R) =—2,R).

IPRLR, SV ER = P,(clos(R, + Ry)) = Zp(R)NDy(Ry) and D,(Ry N
0 Ry) = clos(2,(R)) + 2,(Ry)).

4 R, S R, V< R =P, (R) 2 Zy(Ry).

Proof. See [1], Theorems 2.1 and 2.2, p. 5--6.

We now introduce an operator between #(R) and f(k) which turns out
to be very important for our purposes (to motivate its appearance look for
instance at Lemma 4.4.2). As in the case of the dualization operation, we shall
wotk in a slightly more general context.

4.3.4, PrOPOSITION AND DEFINITION. Consider a couple R< V< R" as in Defini-

tion 4.3.1. For Fe F(R), set Ok(F) = 9, (R)n F*. Then O%(F) lies in #(2,(R)),
and O% is a monotone map (relative to containment) from F(R) into F(Z.(R)).
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Proof. Immediate.

4.3.5. OBSERVATION. Let R and ¥ be as in 4.3.1. Then O%(F) can also be
written:

(10) Ok(F) = 2,(R) n 9y(—F), VY FeF(R).
Applying %, and taking into account point 3° of 4.3.3, we get:
an G (OR(F)) = clos(R — F), Y Fe Z(R).

(10) and (11) together yield:
(12) 05, (Ok(F)) = R n clos(F— R), Y Fe F(R).

Indeed we have:
(10)
0L, OKF) = DADR) N Dy(—OR(F)) =

= R A [—2,@%UFN'S R 7 clos(F — R).

Relation (12) is an explicitation for the operator Ogv(m o ®% on F(R). Tt is
clear from (12) that this operator carries each face of R into a greater one.
However, @;fvm, ¢ @% is not always the identity of #(R) (in 4.5 an example is
given when @% is not surjective). The next proposition presents two statements
weaker than “@;V(R)- O% = id Z(R)" which do not fail to be true and are
needed in the sequel.

4.3.6. PrROPOSITION. Let R and V be as in 4.3.1. Then:
(13) 1° @%-04 &) Ok = Ok.

2° For any Fe F(R) we have: @;V(R)(@K(ﬁ")) = Re F =R

Proof. 1° We fix an Fe Z(R) and denote Ok(F) by #. We have
@Z(@ZV(R)((b)) 2 & (sec 4.3.5) and this is “2” in equation (13) applied to F.

Applying ©% to the similar inclusion 6;;,(,{)(@};(13‘)) > F we obtain “<"°, too.

=

2° For any F € Z(R) we have:
. v (12) ()
Dy, & (Ok(F)) = F< R n clos(F — R) = R<>clos(F— R) 2 R«

(2) ®) ©
<clos(F— R)2 spR< F— R2spR < F=R,
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where “<="" of (a), (b), (¢) are trivial and ““="" are proved as follows:

(a) clos(F — R) is a cone which contains R (by the hypothesis) and —R
(obviously); hence it contains R — R = spR.

(b) It is known that ints, g(F — R) = intsp glclos(F — R)]; using the hypo-
thesis we obtain F — R 2 intp, (F — R) 2 spR.

(c) Any ¢ € Rcan be written as f — r with f € Fand reR; hence F3 (1/2)f =
= (1/2)(¢t + r) and the extremality of F implies t € F.

4.4. w*-CLOS {X,,,|? € P} 1s CONNECTED WITH Z(P). In [7], Muhly and Re-
nault emphasized a class of elements in the unit space of the groupoid they
used which is ““indexed” by ZF(P). Keeping in mind that their groupoid is iso-
morphic to the one associated to the minimal generating system, it is not hard
to find the following result:

4.4.1. PROPOSITION, For any Fe F(P) and a€ P we have that
ZetostasFigy 5 i1 w*-clos{xHQ | te P}

The proof is just a transcription of the one of Proposition 3.11, p. 45, [7],
and we omit it. (In fact, Proposition 4.4.1 and 4.4.3 are not used in the sequel,
but are introduced to make things look natural.)

Now, the minimal generating system is advantageous because we can find
out accurately “by what must we divide” the sets in 4.4.1:

. 4.4.2. LemMA. Let F, G be in F(P) and a, b be in R". Then Xelos(at F+ @) €445
XetosprG+0) i1 L2(R") if and only if OX'(F) = OR'(G) L (a — b).

Proof. We shall use the fact that Xetos@rF+0) = Xelos(h+G+0) in L®2(R") if
and only if clos(a + F + Q) = clos(b + G + Q) (Observation 2.3.3).

“="’ Denote clos(a + F+ Q) =clos(b + G + Q) by A. For any ¢€ P

we have:

sup (t,&) = sup Ca+[+¢q,& =(a,&) +sup(f, & =
ted SEF, q€Q feF

 [Ka & if £eO%(F)
_‘{ 00 otherwise.

Analogously we see that:

b, &y if E€ OR(G)

00 otherwise.

sup{t, &) = {
1ed
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Therefore OR'(F) = OR'(G) = {¢ € P|sup (1, €Y < o0). In addition, we obtain
1€A

@, & = (b, &, YEeOR(F) = OR(G), that is (a — b) L OF'(F) = 6%"(G).

*<="" Tt suffices to prove:

(a) OF'(F) = OR'(G) = clos(F + Q) = clos(G + Q); and

(b) ¢ _L OR'(F) = clos(c + F + Q) = clos(F + Q).
Indeed, if OR'(F) = OR*(G) L (a — b), then we get clos((a ~- b) + F + Q) =
== clos(F + Q) = clos(G' + @) and it is clear that clos(a + F + Q) = clos(b +
+ G + Q). .

(@) It clearly suffices to prove “<”. Note that F< Pnclos(F + Q) =
= @l';"(@g"(p)) = @g"(@;;”(c;)) = Pnclos(G + Q) € clos(G + Q). So clos(G + Q)
is a closed convex cone which contains F and O, and (a) is done.

(b) Tt is sufficient to prove “<’ (¢ may be replaced with —c¢). In fact it

is sufficient to show that ¢ is in clos(F + Q) (because clos(F + Q) is a cone);
so what we need is @}}"(F)L < clos(F + Q). But this comes out from

n L /n\ )
OR(F)* = %A clos(P — F).

Using Lemma 4.4.2 it is easy to establish the following reformulation of

Proposition 4.4.1:

4.4.3. PrOPOSITION. We have an injective mapping:

14) U {®} X clos projspo(P) — w*-clos{¥,.o| 1 € P}
( @ €Ran (92"55;(?’)

defined in the following manner: for any ® € Ran @,‘3" and a € clos projsy o(P) one
takes an arbitrary F € F(P) such that @}}"(F) = @ and sends (P, a) into Xetosta+P+Q) -

4.5, EXAMPLE. Let P be the following cone in R3:
P={t=(,t,,t) Rty > VT + 13,1, > O}.
Its dual is easily computed to be:
P= {t =(1r1, 75, Ta) € R3] T4 = Vrm};

Figure 2 represents the intersection of P (respectively }A’) with the plane with equation
t; =1 (respectively 1, = 1).
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- . . . A .
Tt is not hard to verify geometrically that besides Ran @:‘,", F(P) contains

the sets &, = {(4,0,4)| 1€[0,00)} and ®_ = {(— 1,0,2)| 2€[0,00)}. On the
other hand, in this particular case one can compute W*-clos{y, .o | 7 € P} by ad-hoc

,,/////

{ \
4 Z

Fipure 2

1\,,

methods and besides the range of the function (14), the following two scts of limits
are obtained: {{r|t; < c+1}lc>0} and {{t|ts<c—1}|c >0} (so in this.
case the sets of type clos(a + F + Q) do not exhaust the unit space of the grou-

poid). We note that the extra limits are translates of é_ and 4A>+ , respectively.
Fhis fact leads to the supposition that the function (14) can be extended to a set

where the union is made after ¢ € 3"(13), (and not only after ¢ € Ran ey < .37(13))“

4.6. w*-CLOS{},+0|? € P} IS CONNECTED WITH F(P).
4.6.1. We mention without proof the following remarks:

LemMMA. If @ is in Ran @“ , then:

1° clos projsp o(P) = Dsp o (P).
2° For any Fe F(P) such that 05‘,"(!’) =@ and any a € clos projsp o P) we:

have clos(a + F + Q) = a — .

This lemma enables us to write the function (14) as:

U {®} X Dspa(®) —» whclos{x, o | € P}
@ g Ran l.a;}"

(P, a) >3, 4

Se we are led to the next proposition.
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4.6.2. PROPOSITION. We have an injective mapping :

U {9} X Dypo(®) - wiclos{y,.o | 1 € P}
(15) PeF(P)

(®,0) > 2,5
(which extends the one described in Proposition 4.4.3).

Proof. The fact that x,_5 belongs to w*-clos{y,+o|f€ P} when ¢ and a
are as in (15) is the difficult part of the proof and is based on three lemmas.

LEMMA 1. Let C be a closed convex cone in R” which is not {0}. Then
s < 1 —sec defines a preorder relation on spC. In (spC, <¢) one can
find sequences (t,)., which are increasing and cofinal (ie., t, < t'< ... and for
any t € spC there exists a k such that t <ct,).

Proof of Lemmma I. We prove only the last statement. Let f, be in intypcC
and put ¢4, = kt,, Yk; then clearly t; <. t, <. ... . In addition, for any tespC

. 1 . 1 .
we have lim #; — —k— { =t €intspc C, hence t; — m t € C for sufficiently large k.
1 .
But 1, — Mk« te C implies ¢t < ¢,.

LeMMA 2. Let @ and &, be in & (13) such that ® < &, and:

Dsp

Sp, sp®
(16) Ogty 0,00, (@) = @,
1
Then we have:

we-clos{y _» | 2 € Dep o P)} < W-clos{y 3 | a1 € Dsp 0 (D))}
“-e,

Proof of Lemma 2. We shall assume & # ¢, (® = &, is trivial). We put

]
G = @:pl Y(P) € F(Dspo (Py); G is not {0} because G = {0} and (16) imply & = &,.
We apply Lemma 1 to G and we get a sequence (g,)°., which is increasing and
cofinal in (spG, <;). It is easy to see that for any g’, g"" € G we have: g’ <; g"’" =

=g - tﬁlgg” — qgl. This  implies |_J g, — 651 =G — ('13l (and of course
k=1

g — <f>1§g2 — (31 € ...). Applying the dominated convergence theorem we get

we ‘ spol ~ A _
%eis, T Raoos,y BU @ = Oay0@) (6) =20 — G, therefore & =
~ *
= clos(®, — G) by point 3° of 4.3.3 and what we have obtained is x 3 —k—‘-v;-> X_g-
&% T -
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Now we consider an arbitrary a, € @spwl(qb]). We denote projspe(a;) by a;

it is clear that 2 € Dpo(P). Let us also remark that g, — d=a—& (because

. A A w# . R wik
a—a, € P =N (—P). g ——> %  Impli A— A= -
| (=P K-, — o 7 X _g implies ., ST %, =X,

lll—

and so we see that:

(I7) % _g €wHclos{ Xal-‘fn |a1 € Dpa (B))}, Y a € projsyo(Psp 0, (91)).

A simple procedure of passing to the limit yields that (17) extends to the
case when a € clos projsp o(Zsp ¢1((b])). But using again the relation @ =clos(<i>1-—G)
we can show that this last set is the whole 9., 4(®). Indeed, for any t € D, 0(®) =
=on spP = clos((i)1 — G)nsp® we may consider two sequences, (s)i>, in
(;)1 and (/1,);> , in G suchthats, — I, —>1 and we may project this limit onto sp ®.
We obtain projspe Sp > (because G' L sp @), hence proisp o(projsp q,lsk)-—k:;) t;

but projs, ® Sk is in Zspo (Py) for every k.

LemMa 3. Let @ be a face of P which is not P. We can Sind the faces &,

D, ..., D, uf]3 such that P = P, 2 b, 2.2 D, = § and such that :
(18) OF %1 o (OP@) =d, VI<k<m
k-1 FT -

Proof of Lemma 3. We shall build (@,), recursively. First of all we put
P, = P. Let us suppose further that for a certain k > 1 we have built @,_, €
€ 37(1‘.’) such that @,_, 2 ¢. If &,_, = &, then we stop; if not, we define

(19) O = O %1 o (O () e F(Py-y).

SPOL_Tk-1) &

It is clear that @, € F(P) (because Z(P,_,) € F(P)) and that &, = @. In this

way we construct a (finite or infinite) sequence (#,), of faces of f’, all of them
containing ®. The manner in which we started assures us that at least @, is
constructed.

We now observe that for any k& for which @,_, and @, are constructed, we
have @,_, 2 @, because P, € F(P,_,). If &, were equal to &,_,, then (19) and
point 2° of 4.3.6 would imply &,_, = @, a contradiction. This observation
implies that the sequence we have built is finite (because for any k& for which
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®,_, and &, exist, we have dim &, < dim @,_,, according to Proposition 4.2.2),
hence it is of the form P = @, > > ...>P, =

3
Finally we see that for any 1 < & < m:

(i

sp@ PP (D))
@Jsp ql;k 1 (0,‘_1 (@Ok—l 1( A)) —
Doro. , (@03, (©2% )
T T %spe (P e 0o Ph-a
(13) OSP¢A-1 (Osp@l\ 1(¢)) dj
= Dipr @) k-

Now it is easy to show that y _» € w*-clos{y,4o | te P} for jevery |@ € Z(P)
and a € Zspo(®). Indeed, (P bzing fixed) w2 considzr a szquence B =0, 2 b, ...
- 2 @, = @ as in Lzmma 3 and w2 apply Lamma 2 m times.

It remains to prove that if &, ¥ are in ?](ﬁ) and a € Dp0(P), b € Depw(¥)
are such that g — & = b — ¥, then @ = ¥ and a = b. Here we use

LemMa 4. Let C be a closed convex cone in R If s € R” is such that s + C
is still a cone, then s + C =C and se Cn (—C).

Proof of Lemina 4. 0es+ C =s€ — C; on the other hand Oe€ C=
=ses+C=>25es+ C=s5€C, hence s€eCn(—C). But then s + C = C,
-8 + C < C and therefore s + C = C.

From g — & = b -- ‘1,}, which can be also written ¢ = (a —:Tb) + ‘ﬁ, and
Lemma 4, we deduce that ® =¥ and a —bedn (~——d3) — @' But &=V

implies & = ¥ (point 1° of 4.3.3). Finallyitisclearthata — b csp® and a-- b e d*
hence a = b.

5. TAME POINTED CONES IN R”

5.1. POINTED CONES AND CUTS THROUGH THEM. A closed convex cone
C<=R" is said to be pointed if Cn(—C) = {0} (sze [1], Section 2, p. 7). It is
easy to see that “pointed’” is the dual notion for ““solid”". Indeed, let P be a closed
convex cone in R”; then Pn (—13) = P* and this is why “Pis pointed’ is equi-
valent to “sp P = R"”, i.c. to “P is solid”.

5.1.1. ProrosiTioN aND DEerINITION. Let C be a closed convex pointed
cone in R”.
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1° For any x €€ we have: x € C'e (x,£) >0, V& e C\{0}.
2° We assume C # {0}. For any x € é, the set:

Zx”={§€Cl<x;f> =_1}

is called the cut through C determined by x. X, is convex and compact, with
dimZ, = (dim C) — 1" and has ‘the property. that {)& ]/1 €[0,0),¢€ 2} =C

Proof. 1° “=" For any £ € C\{0} we have x — & € C for a sufficiently
small £>0. Then {(x— €&, &> 20, ie. (x,&> = ¢glé2 > 0.
<" If C ={0}, it is clear; if not, then inf{{x, &) | teC, (=1} =6
is strictly positive (the infimum of a continuous function on a compact set is
attained). Then (x, £) > 8|¢], V& € C and consequently {y e R" ||y — x| <.§}=C.
2° We saw in 1°, part “<="", that there exists 6 > 0 such that {x,¢> =
2 0¢],VE € C. Then X, is contained in {¢ € R"||¢| < 1/8}, ie. it is bounded.
The other stated properties of 2, are immediate.

5.1.2. OBSERVAT;ON. The study of a pointed cone can be reduced to that of
a cut through it. Let us consider for instance the facial structure. If C = R”
is a closed convex pomted cone then it is easy to see that 0 € R" is an extreme

point of C (and in fact the only extreme point). Now let us consider an x & C
and the cut X, through C. It is not hard to prove that there exists a buectxon
between Z(C)\{{0}} and F(Z,), described as follows:

{37(0)\{{0}} 50> &I e F(E)
F(E)a I > (A | 4e0,00), ¢ € T} e FOON{{0}}.

This bijection is a homeomorphism when #(C)\{{0}} and #(Z,) are considered
with the Hausdorff metrics dy; ¢ and dy respectively. In fact it can be shown that
for any @, ¥ € F(C)\{{0}} we have:

f’u,c@, ¥) < 2xldy (PN Z,, ¥ n L),
(@ 0 0, 05 < Qo)1 + 1xI/0)dy'e(®, ¥),

where in the last relation ¢ is inf{<x, &) | ¢ € C,|¢| =1} which appears in the
proof of 5.1.1.

5.2. TAME CLOSED CONVEX SETS. The term “tame’ is ad-hoc. Tt is justified
by the fact that cones for which the dual is not tame seem to be “wild’” indeed
as far as Wiener-Hopf operators are concerned.
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5.2.1. DerINITION. A closed convex set C <= R” is said to be rame if it is
non-void and the mapping:

(20) [0,1]] XCXC —»C, (AE (1 — A+ My

is open (C is taken with its natural topology and [0, 1]XC X C with the product
topology).

5.2.2. OBSERVATIONS. |° Generally, in order to prove that C is tame we show
that the mapping (20) is open at every (4, &,7)e[0,1] > C x C. The fact that
(20) is open at a (fixed) (4, ¢, #) has a useful expression in terms of sequences.
More precisely, the map is open at (4, &, #) if and only if for any sequence ()7 4
in C, convergent to { = (1 — /)¢ + iy, there exist a k, and sequences () 5,
()2 . (in C) and (43>, (in [0,1]) such that & — 3, — 9, A4 —> 4

0 0 k-0 k-0 K-e20
and (1 — 2,)6 + A= Cu- Yk = k.

2° Tt is obvious from the definition that the property of being tame is invu-

riant under affine isomorphisms.

Routine verifications involving the criterion with sequences (point 1° of
5.2.2) yield the following useful results:

5.2.3. LemMa. Let C be a non-void closed convex subset of R”.
1° For any (€,

[(2.¢,n) I (1 — A¢ + iy = { and (20) is open at (4, &, 1)}

is a closed subset of [0,1] x C X C.
2° The mapping (20) is open at (%, &, n) €[0, 1] X C X C if and only if for any
e >0 the set:

f(aa--ane + ).')f'ﬂ),’e[O, 1,8, 7 eC, "¢ —¢]<e, [ —n <S¢} =
=co(f{¢'eC|[¢ —¢i<egu{reC|ly —nl<e)

is a neighbourhood of (I —- )¢ + /n in C.

Let us also notice that the mapping (20) is in fact open al “almost all”
triplets (2, ¢, 1):

5.2.4. PROPOSITION. The mapping (20) is open ai every (Z,¢,n) for which
2€{0,1}, or E=n, or (1 — DE+ Ip eC. (N.B.: The last alternative takes
place whenever i € (0,1) and either ¢ or v is in C; taking into account Observation

2°,5.3.2, we may always assume that C # O -~ and hence that C = clos C J.
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Proof. The proof of the first two alternatives is immediate. When proving
the third one, we shall assume that A € (0, 1) and & # 5. Using the fact that the open
scgment determined by a point of C and one of C is in é, we deduce from
(1 -2+ eC that (I — p)é + une C, ¥ e (0,1). Tt is clear that we can

find &, —k—_;?f and 7, =—> 1 on the open segment determined by ¢ and 7

such that (1 — )¢, + A, = (1 — )¢ + Ay, Vk;thus point 1° of 5.2.4 implies
that we may assume from the beginning that ¢ € C.

Consider an r > 0 such that {¢'€ R"|[& — &| <r} = C. Then for any
0 <& <r we have that

-

(- 1+ 2 | X elo 1], & eC E — ¢ <6 [0 —nl<e)2

2 {0 - N+ |EeC, |8 —¢<e =
={UER | — (1 — DE— An' < (1 — A}
is a neighbourhood of (1 — )& + iy even in R”. Finally, point 2° of 5.2.3 applies.
5.3. CLOSED CONVEX TAME POINTED CONES.

5.3.1. Li MMA Let C be a closed convex pointed cone in R" which is not

{0}. Let x be in C and denote by X, the cut through C determined by x. Then C is
tame if and only if so is X,.

Proof. Wt is a routine check, using the criterion with sequences.

5.3.2. LEMMA. Let C be a non-void compact convex subset of R”,
1° If every point of C'\\inty; ¢ C is an extreme point of C then C is tame.
2" If dimC < 2, then C is tame.

Proof. 1° Taking into account Observation 2°, 5.2.2, we may assume that
dimC = n, and the hypothesis becomes that every point of 0C is an extreme point
of C. In this case it is obvious that every (4,&,#)€[0,1] x C x C satisfies the
hypotheses of Proposition 5.2.4.

2° If dimC < 1, then C satisfies the hypothesis of 1°, so we shall assume
dimC = 2. Using again 5.2.2 we may also assume that n = 2.

We fix an arbitrary (2, £, 9) € [0, 11 XC X C at which we shall prove that (20)
is open. Due to Proposition 5.2.4 we may assume that 1€ (0,1), ¢ # 5 and
(1~ ¢+ Ay = LedC. Let ® be the face of C generated by ( (see 4.2). We
have dim® < 1 because { € 6C (Proposition 4.2) and dim¢ > 1 because { is
not an extreme point (recall that A€ (0, 1), ¢ # #); hence dim® =1 and @ is
the closed segment defined by some & and 7, in C. Using point 1° of 5.2.3 we
may assume that & and 5 lie in the open segment defined by &, and #, .
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It is easy to see that C cannot meet both open half-planes determined
by the line through &, and #, (Figure 3.1). So C is contained in one of the closed

el .

Bl Jo ¢ | 7 0

Figure 3.1 Figure 3.2

half-planes determined by this line; we denote this half-plane by S. Another
fact we observe easily is that for any {’ in the open segment defined by &,
and 7, there exists ¢ > 0 such that Cn{{"eR*||{" — (i <e} =8Sn{{"€
€ R*| (" — (' < ¢} (Figure 3.2). This implies that for sufficiently small & > 0
we haveco({¢' € C| & — & <efu{n eC|iy —qigep2{{"eC| " - <}
and we only have to apply point 2° of 5.2.3.

5.3.3. PROPOSITION. 1° Any pointed polyhedral cone is taime.
2° Auy closed convex pointed cone with dimension < 3 is tame.
3> The forward light cone in any dimension is tame.

ReEMARK. A (closed) convex cone C is polyhedral if it is finitely gencrated,

ie. C = {}: Al 2as oo 7-,20} for some &, , ...,&, in R, We shall use the fact
. i1

that the dual of a polyhedral cone is still polyhedral; that is, a polyhedral cone

can also be written C = {72 R" | {x;,8>20, VI i< s} forsome xy, ..., x, € R”

(generators of é). For @ reference see [6], Theorem 2.12, p. 83.

Proof. 2> and 3" result from Lemmas 5.3.1 and 53.2. For 1°, let us
consider a pointed polynedral cone C = R”. We shall assume dimC > 2 (we
may assume even dim C = 4, because of 27). Due to Proposition 5.2.4, it suffices
to show that the mapping (20) is open at a fixed (4, &, ) €[0,1] > C < C with
+€(0, 1) and ¢ # . Making a rotation (which is an affine isomorphism) we may
assume that ¢ and y give the direction of the s-th axis of the coordinate system.
i.e. that & = 5% where for instance ¢ € R”'? is obtained from & by deletion of
the n-th component. Using point 1° of 5.2.3 we reduce ourselves to proving that (20)
is open at a (4, ¢, y’') with &’ and #’ in the open segment defined by ¢ and #,
“very close to” ¢ and #, respectively, and such that (1 — )& + iy’ = (1 — A)I +
+ i = { (¢ and 5 ere fixed from now on).
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Let x,, ..., x, in R” be such that C = {£e R"|(x;,¢> 2 0, VI < j < s}
We may arrange that | x;| =...=|x,| = 1. Forany1 <j < swe have {x;, ') =0
if and only if (x;,#n') =0; for instance it is not possible that {(x;,¢> =0
and <{x;,n’) > 0 because {’ — {x;, (') is affine on the closed segment defined by
¢ and 1 and we would obtain {x;, &) < 0 (absurd). So we can write {1, ..., s} =
= 5, U Sy such that (x;, &> = <{x;,n"> =0, Vje S, and {(x;,¢) >0, {x;,n'> >
>0, VjeS,.

For any {’ in the closed segment defined by &’ and #’ we consider the closed
onvex subset of R"-1:

My ={re R"!|(1,0) + {' e C};

it is clear that My 3 0 and that 7t < (r,0) + {' is an affine isomorphism between
My and Cn {0 € R"| 0, = (;}. The key of the proof is the fact that if ¢ > 0 is
such that:

e < min{{x;, &, {x;, 7>}, Vj€S,,
then My n {re R"? [ I7] < ¢} does not depend on {'. Indeed we have:
TEMpy < (x;,(1,0) + {'> >0, VI<j<s<e
SN2 — (g, 0 VIS

If 1] < ¢ and j€ S,, then <{x;, "> = min{{x;, &), {x;,n'>} > &, hence we auto-
matically get <{x9,7> > —[xJ| [t} = —e > —-(x;, {’>. So we obtain that:

teM; and |7l S e=<{xY,7> >0, V/eS, and |1l <e.

At this moment it is geometrically clear that for sufficiently small ¢ > 0 we
have co({&”eC||&" —EI<efuf{n’ €eC|In” —n'i <e}2{{"eC|I{"—|<¢e}
and the use of 5.2.3 (point 2°) ends the proof.

Proposition 5.3.3 tends to support the idea that “most pointed closed
convex cones are tame’’. However, there exist pointed “wild’’ cones, as we shall
presently see.

5.3.4. PROPOSITION. If K is a non-void compact convex subset of R" which is
tame, then F(K) is dy-closed (hence dy-compact; dy is the Hausdorff distance
defined in 3.2). Consequently, if C is a closed convex pointed tame cone, then
F(C) is dyy~closed (and compact).

Proof. Let (F)P., be a sequence in & (K) which converges in the d,; metric
to a non-void compact convex set 4. We know that 4 < K (this is part of the
Blaschke theorem). We necd to show that A is extreme in K.
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Consider a € 4 written as (I — A)¢ + 2y with 2€(0,1) and ¢, pe K.

For any k there exists {, € F, such that [ - ' < dy(4, F,); hence we have

;k—’—-—-> { and the criterion with sequences (Observation 17, 5.2.2) gives us the se-
00

quences (£ , - )P, - (AP, converging to &, i, A respectively and such that
o ¢ 0

(1 — A4S + Ay o . YA = k. We may of course assume 2, € (0, 1), Vhk=k,.
Then the extremality of the F’s implies that ¢, and 5, are in F,, V&2=k,.
Finally, for every k > k, we may find & and #; in A such that i&,---&i < dy(4, F)).
e - i < dy(A, F); it is obvious that LL—/‘?L" "’:t;’"’ hence ¢ and

n are in clos A = A.
The statement about cones derives from the one about compact sets, Lemma

5.3.1 and Observation 5.1.2.

5.3.5. ExampLE. Let B be the closed convex pointed cone in R* which
intersects {& = (&, &y, &y, §) € RY| & = 1} after the set:

Y= CO({(O, Os o 19 E)s (0~ 0: [ l)}'J {('C:l\ é‘gsos ])I \f% + (52 - ])2 = ]})

It is clear that 0 € R? is an accumulation point of the set of extreme points of Z,
without being itself extreme. Thus Proposition 5.3.4 and Observation 5.1.2 imply
hat neither £ nor B can bg tame,

One can compute the analytic expression of 8, too; it is:

e

B ={{=(.d0 6, C4)l o €&+ 68 < 28,8, - &)}

6. WHAT IS w*-CLOS{y, | € P}? (CONTINUED)

The reason we have studied tame cones so thoroughly is given by the next
proposition:

A
6.1. PROPOSITION, Let P be a closed convex solid cone in R® such that P is
tame. Then

(21) we-clos{y,, . 1€ P} ={x_.|®e F(P), a€ Dupo(®).

Proof. “ 2" is the main result of Section 4 (see Proposition 4.6.2). In order
to prove “< ™ we recall that wi-clos{y, , , |te P} = {x, |Q = A<= R", A closed

and convex} which is w*-compact and homeomorphic by y, - E‘(aA) to the set &
defined in 3.4.1 (see Corollary 3.4.5).
We are going to show that the image of the set on the right side of (21)

through y  ~ E(aA) is z!‘,:}compact. This will imply that the set on the right
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side of (21) is w*-compaét. But this set contains {}y ,|ae Pn sp P} (correspond-
N a-~P
ing to Pe ,97(1?’)) which is exactly {Zr+Q | t€ P} and so “<” will become clear.

LeMMA 1. Let @ be a positively homogeneous, subadditive, lower semicontinuous

A A P

SJunction from P into [0, 00]. Then ¢ is of the form o 3 for some ®e F(P) and
a—

a € Dy o(®P) if and only if it is additive.

A
Proof of Lemma 1. “="" For any ¢ € P we have:

(p(é) = Su'P <a - l: £> = <a, é) - in£<t’ é> =

rco teo

{a, &> ifled
{oo if £ P\O.

This expression and the fact that @ is a face yield immediately the additivity of ¢.

“e=>Let us put ® = {€ P|p(¢) <oo}. If a { € ® s written as (I — 1) + An
with A€ (0,1) and &, 5 € P, then (1 — A)o(&) + Ap(n) = ¢() < oo, hence ¢ and
n are in @. It is obvious that & is convex and non-void (@ 3 0), thus @ is a face
of P.

We can extend ¢ to sp® = ¢ — @ by the formula: @€ — n) = p(&) — o(7)
V&, i€ ®. It is easy to see that the definition of ¢ makes sense that ¢ is linear
and that indeed ¢ is an extension of ¢. The linearity of ¢ implies the existence of
an a € sp ® such that ¢(¢) = <a, £), V & € #, and the positivity of ¢ implies that
aisin P. Finally, ¢ is of the form:

a, &y, iféed

(p(é)={ o , ffeP\&

L]

Looking again at the proof of “=>"", we see that ¢ = o, 3.

-
In order to finish the proof of the proposition, it suffices to take (@), and

¢ positively homagen:ous, subadditive and lower semicontinuous functions from P

~ Ay ~
into [0, co] such that E(ep,) l—'_'-o—} E(p) and each ¢, is additive and to show that ¢ is
additive, too. We first prove a lemma about (¢,)¥ , and ¢ (which are fixed
from now on).

LemMa 2. 1° If &, — ¢ in P, then liminf @ (&) > ().
=00 k

<~ 00

- al . r - ” . "
2° For any € P with o) < oo, there exists a sequence (E)°, in P such
that &, Py & and @ (&) e (&)
—00 =00

13 — 1193
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Proof of Lemma 2. 1° The case ¢(¢) = 0 is clear, so we shall assume ¢(¢) > 0.
We take an arbitrary 2 with 0 < o < @(¢) and we prove that ¢ (,) > 2 for
sufficiently large k. Let us suppose that there exist 1 € o(l) < ¢(2) < ... such
that ¢,y(m) < o, VA For any k we have (£, 2) € E~(<p,,(k)). Therefore we can

find (1, B,) € E(p) such that | (n, B) — o 0| < dy.c(E@orsy)s E@)). Eotirr -
We then have (&4, %) — (1, ﬁk)fmo because (£,¢))7.1 is bounded and

Ao (E(@osy), E(0)) ——> 0. This clearly implies that (¢, ) = lim (1., Bi) € E(o),
thus 2 > @(€), contradiction.

2°. For any k there exists (¢, v,) € E(p,) such that [ Vi) — (€, @(E) <
< du(E@), @) (€, 0(Q)) . Thus & ——> & and vy —> 0(&); but v > py(&),
V k, and so we find that limsup @, (¢,) < ]A-iillovk = @(£). On the other hand point

ko0

1° says that liminf @, (¢,) > ¢(¢) and hence (pk(ék)k—+ ©(&).
k- 00 -0

Now we are able to show that ¢ is superadditive (hence additive). Let &
and 5 be arbitrary in P.If @€ + 1) = oo then clearly (¢ + 1) = (&) + @),

A

so we shall assume ¢{¢ + #) < oo. Let ({,)i°1 be a sequence in P convergent
to (1/2)(¢ + ), such that ¢(8) ——> @((1/2)(€ +m) (=(1/2)p( + n) <oo; we have

used Lemma 2.2°). P is tame by the hypothesis, hence there exist sequences
@Ik R &, (BT, converging to &, 5 and 1/2 respectively such that
(L 2 + 2= $ow Yk = ky. Applying ¢, in this equality we get ¢ ({;) =
s (1 -= A + Ao = (L — 2)e&) + Zpi(ny). Finally we pass to liminf
and taking Lemma 2.1° iato account we obtain (1/2)e( + 1) = (1/2)p(E) +
+ (1/2)o(n), exactly what we needed.

6.2. OBseRVATIONS. 1° Among the cones considered in Proposition 6.1 are
to be found: a) every pelvhedral solid cone; b) every closed convex solid cone in
R?, ¢) the forward light cone in any dimension. (This comes out from Proposition
53.3)

2° Equality (21} does not hold for P = B where B is the cone considered
in 5.3.5. In fact it is casily seen in the general case that wé-clos{y,.o! 7 ¢ P}

contains X4 for every @€ zln,c-closjf’(ﬁ) and ¢ € Ypo(P); when P -: B,

J’f(i?)= F(B) is not d,; --closed because there exists a cut X through B for which
F(Z) is not dy-closed (see also Obse/\rvation 5.1.2).

Moreover, w*-clos{y,_s ] t € B} can be computed by ad-hoc methods and
the surprising result is that besides {x, s | @ € dy,cclos #(B), a € Dspa(P)}it
contains some sets which are not translated cones. This fact suggests that making
a precise description of w*-clos{y, .o | € P} when P is not tame is a quite difficult
problem.
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3° It can be shown that “@g" ° @“5" = id #(P)" always holds when P is

polyhedral; hence for a polyhedral P the functions (14) and (15) are the same and
we have (taking also Propositions 5.3.3 and 6.1 into account):

w¥-clos{X,4o |t € P} =

= q Fe #(P)and a e clos proj n (P)suchthat 4 = clos(a + F + Q)}.
Xa spoR ()
“p

A
7. THE CLOSED INVARIANT SUBSETS OF ¢® WHEN P 1S TAME

Tn this section we consider a closed convex solid cone P in R" such that P
is tame. Proposition 6.1 says that the groupoid g parametrizing #°(P), which

was found in Sections 2 and 3, has unit space equal to {Xa-6‘> | P e ﬂ'(lA’),

a € Dypo(P)}. Thus taking into account the lemma used in the proof of 2.3.4
we see that:

6 ={(t%,_5)| e FP), ac Dpo(®), 1€ ® — a}.

The source and cosource of (¢, x,_3) €garey,_3 and g, (a=8) = Xprojspp(t-+-ay-o» TES”
pectively. Now by Proposition 4.6.2, x4 =y, s ifand onlyif # = ¥ anda = b
(where @, ¥ € 3’(13), a € Dspo(P), b€ Dypy(W) and this implies that each

{x,.5 a€ Dypo(P)} is a union of orbits of g°. If we also notice that for an

arbitrary @ € !’/7(1;) and an a € Dpo(P), x = (a, x_3) € g has d(x) = x_4, r(x) =
=y, .5 thz following result becomes clear:

7.1. LEMMA. There exists a bijection between the subsets of F (lA’) and the
imvariant subsets of q° which associates to F, < ,.”F(Ig) the set {Xa_%l D eF,,
a € Dy o(P)}.

Tn order to distinguish among the subsets of ,.“/7(13) those which give rise

to closed invariant subsets of g,, we introduces a topology on .97(1"’) in the follow-
ing manner:

A
7.2. PROPOSITION AND DEFINITION. For every Fq < F(P) we define:

Fy = {® e F(P) [wien; dyg . (@, ¥) = 0}
. 0

(dpc. is defined in (8), Section 3.2). Then F o F, is a closure operator on
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— » . . > ) .
F(P), and hence there exists a unique topology U on F(P) such that Fy = F (IA’) is
WY-closed if and only if F, = F,. This closure operator can be described as
Jollows :

7, ={0e FP)|oc clos LJ ¥}
G&’

= {0 e F(P) intpo(@)nclos | ¥ # @).

‘I’E.fo

Proof. /,,r—> o trivially satisfies the closure axioms. (Let us check for in-
stance that /’0 c #,. We take an element O € /,0 and an ¢ > 0. There exists

a ¥ e.Z, such that dy . (0.%) < &2 and a @ € F, such that dc (V. P) <
< ¢/2; 50 dy o (O, D) < dyc (O, W) + dyc, (¥, P) <o)

We further fix a subset #, of ..“7"(13) and show about an arbitrary ® € .97(3’)
that:

@ mf Ay (P, ¥P)=0=Pcclos | V.

< Yesg,
Indecd, for any & € @ and ¢ > 0 we can find a ¥ € &, such that d,, o (P. V) <
< &f(1 + &) and then an y € ¥ such that § - < dy (P, ¥)E < ¢

(b) (intpo®)  (clos \J ¥) # @ = inf dy (P, ¥) = 0.
» .

€F, ver,

Indeed, let us take a point & in the non-void intersection of (b). For any & > 1
there exist ¥, € #, and &, € ¥, such that |¢ — &} < 1/k. But F(IA’) is dy c-compact
(Proposition 5.3.4) and that is why we can extract a dy c-convergent subse-
quence (¥,) 1 of (¥,)P.1. We denote its limit by ¥. For any k there exists
Hoty € W such that |i,) ~— &yl Sy c(Porrys ¥) 1ol and we obtain ¢ =r“f2; Hatiy €

ey
Now ¥ 5 ¢ and ¢ € intypo®P, imply together that ¥ = &. Indeed, for any

ij € & we have lim & -- (1/k)y = ¢ € intspo® and the sequence is in sp @. Hence for
k—00

a sufficiently large (fixed) k we have ¢ — (l/kp = (e ® P. But then k& ==
=g + k{ and the extremality of ¥ yields n € V.

Finally we remark that dy¢ (P, Youy) S dyc (¥, Vo) € dy (Vs Yorr)s
Vk = 1, hence dy ¢ (P, qa(k))—l-:—»—oo-> 0. So (b) is proved and this clearly ends the

proof of the proposition.
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7.3. PROPOSITION. Let &, be a subset of 37(;’). The following are equivalent :

1° The invariant subset of §° associated to F, in 7.1 is closed.

2° F, is dy-closed in F (13) and hereditary (that is, if ®,¥ e F (i’) are
such that ® < ¥ and W € F,, then ® € F,, too).

3° F, iy W-closed.

Proof. 1° = 2° In order to show that F, is dy -closed, it suffices to observe

~ —~

H ,C l H,C

dy
that <15k—l——> P = P x [0, 0) —> D X][0, oo)c»E(o‘ A) - E(a 3) =

K » 00

x_s —;—-—-—»X (here we used Corollary 3.4.5 and the description of ° s
e -+ 00

given in the proof of Lemma 1, Proposition 6.1). For the heredity, let us consider
D,y e.@r’(lA’) such that ® = ¥ € &#,. ?’ is a closed convex solid cone in R,

and ¢ € 5"((1\1,). Applying Proposition 4.6.2 to this situation we obtain
{X -0 | ae @sp ‘IJ((’))} < W:X:-CIO'S{ZI’-—‘;) Ib c l?l} —

— w*-clos{xb P | b € Dopw(¥)}

(which implies ® € F).
2° = 3° Let @ be in %, and consider a sequence (¥)., in %, such that

y (P, wk)t;?o. Because F(.t’) is dy, c-compact we may assume (replacing
(W )P2., by a subsequence) that there exists ¥ = (I",C-lim Y. edyclos Fy = F,.

On the other hand, dy ¢ (P, ¥) = Ilm e, (@, ¥) =0 hence & = ¥ and finally
® € F, because F, is hereditary.
3 w¥

Let us suppose that y =~ . ——> 1 3 where the @,’s are in F,,
’ "0, -®, koo -®

IO

A A d
@ is in F(P), a, € Dspo (P), Vk > 1 and a € Dy o(®P). Then E(aak_;;k)__'ﬁ>
k—

-~

I .~
—5 E(c é) by Corollary 3.4.5. Looking again at the proof of Lemma 1, Pro-
-+ a—

position 6.1, we see that

a, iftéed
o 3(é)={<  ireed
“ 00 if £e PN
and that we have a similar expression for any ¢ 4
% %%

Consider an arbitrary ¢ € #. We know that (£.{a, &) € E(O',,_a)’ so for
any k we can find (.fk,vk)eE(aa _4) such that |(¢,<a, &) — (&, vl <
' k [ 4
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<

dy (E(o a): E(o 5 DI <a, &)l Tt is clear that &, —> ¢ and that &, ¢ @,
a- a—®, v+ 00

(>
Vk>1, so ¢ is in clos {_J ?,. Finally we have & < clos | ) ¥ and Propo-

k1 w550

sition 7.2 implies that & € %, = #,. Hence {Xa-?p, e F,, ac Dypo(P)} is (W)

closed.

b
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