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INVERSE LIMITS OF C*ALGEBRAS

N. CHRISTOPHER PHILLIPS

INTRODUCTION

The purpose of this paper is to develop certain properties of inverse limits
of C*-algebras which are needed for the development of their representable K-
-theory in[30]. These algebras were first systematically studied in[17] as a generalization
of C#-algebras, and were called locally C*-algebras. (Also see [48].) They have since
been studied, under various names, in [36], [12], [13], [14], and elsewhere. Voiculescu
introduced essentially equivalent objects, called pro-C*-algebras, in [41], where
he applied them to the construction of noncommutative analogs of various classical
Lie groups. (An example of what is meant here appears in Example 1.3(8) of this
paper.) Countable inverse limits were introduced in [8] under the name F*-algebras.
They were reintroduced by Arveson in [4] as o-C*-algebras, and were used there
for the construction of the tangent algebra of a C*-algebra.

We will follow Voiculescu (approximately) and Arveson, and call the objects
we study pro-C*-algebras and, in the case of countable inverse limits, o-C*-algebras.
Our interest in them stems from the fact that the category of ¢-C*-algebras contains
both C*-algebras and objects corresponding to classifying spaces of compact Lie
groups. Tt is also possible that the noncommutative analogs of loop spaces will
be found among the pro-C*-algebras.

The topics that we treat here are chosen because they are needed for the follow-
ing application. In [30] and [31] we define representable K-theory for o-C*-algebras,
and generalize the Atiyah-Segal completion theorem [6] to C*-algebras. This theo-
rem asserts that, if G is a compact Lie group, X is a compact G-space, and the
equivariant K-theory K%(X) (defined in {37]) is finitely generated over the represen-
tation ring R(G), then a certain completion K%(X)" is naturally isomorphic to the
representable K-theory RK*((Y x EG)/G). Here EG is a contractible space on which
G acts freely, and it cannot be replaced by the algebra of continuous functions
vanishing at infinity on any locally compact space. However, a substitute for £G
can be chosen in such a way that the analog of the functor X — (X x EG)/G sends
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C*-algebras to o-C*-algebras. Thus, we need enough information about o-C*-alge-
bras to be able to define their representable K-theory.

Our original purpose for generalizing the Atiyah-Segal completicn theorent
was to obtain the following corollary, not involving ¢-C*-algebras, which will be
proved in [31]: if £~ 2 is a homotopy of actions of a compact Lie group ¢ on
a C#-algebra 4, and if K. (C%(G, 4, «)) and K.(C*(G, A4, «™)) are both finitely
generated as R(G)-modules, then for appropriate completions there is an isomorphism
K.(C*HG, 4, 5N = K (CHG, 4, 20" . Here TG, A, xW) is the crossed product
C#-glgebra and the R(G)-module structure is as defined in Section 2.7 of [ZY].
(The result is false without the completions, as wiil be shown in [31].) Cur proof
makes essential use of the representabic K-theory of certain ¢-C*-ajgebrus. (One
can obtain a weaker result without explicitly using representable K-theory or
a-C*-algebras, but the proof is artificial and the result is not strong enouvgh to prove,
for instance, the nonexistence of homotopies of actions.) Thus, even in a problem
only involving C*-algebras we are led to introduce o-C*-algebras and their repre-
sentable K-theory.

This paper is organized as follows. In Section 1 we present some basic defini-
ti ons and propositions, and some examples. There is some overlan with the material
of [17] and [36]. For completeness we state all of the resulis, but we give proofs
only when they are shorter or when we improve the results. In Section 2 we
give a new characterization of the commutative unital pro-C#-zigebras, and give
counterexamples to several plausible conjectures related to this characterization.
Section 3 is devoted to femsor products, limits, approximate identities, and muiti-
plier algebras. Most of the material has not previously appeared, although an
extensive ‘reatment of temsor products from a different point of view is giver in
[13], and approximate identities are shown to exist in [17]. (Our proof is much
shorter.) In Section 4 we take up Hilbert modules over inverse limits of C*-algebras.
These have not previously appeared in the literature, and the proofs are not quite
as straigintforward as those in Section 3. Finally, in Section 5 we restrict ourselves
to a-C*-algebras, and prove for them several results, such as a stabilization theorem
for countably generated Hilbert modules, which we were unable to prove for more
gencral inverse limits.

Since writing the first version of this paper, I have received a copy of the thesis
of Jens Weidner [47). Its first chapter contains a treatment of inverse limits of C%-:1-
gebras guite similar to ours. Weidner goes on to define KK-theory for pro-C*-clge-
bras in 2 manner rather different from our approzch in [30]. 1 am also grateful to
Jens Weidner for detecting an error in our original description of the commutiive
pro-C*-algebras.
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1. BASIC PROPERTIES OF PRO-C*-ALGEBRAS

Recall that an inverse system of rings consists of a directed set D, a ring R,
for each d € D, and homomorphisms

T[de:quRc

for all pairs (d, ¢) € D X D such that d > e. These homomorphisms are required
to satisfy Tya = ide and m, fomy, =7y ; for d > e > f. The inverse limit of this
inverse system is a ring R equipped with homomorphisms %, : R — R; such that
Ty 0¥%g = %, Whenever d,ee D with d > e, and satisfying the following universal
property in the category of rings. Given any ring S and homomorphisms ¢, : S — R,
satisfying 7, . o @, = @, for d > e, there exists a unique homomorphism ¢ : S —» R
magkin the following diagrams commute for d > e:

The inverse limit R, denoted by lim R, can be conveniently obtained us

R = {re T R : 7y (r(d)) = r(e) for all d, ¢e D such thatd > e}.

deh

With this identification, », simply becomes the restriction to R of the projection

from JI R, to R,. Observe that if each R, is a topological ring, and if the maps
eeD

7y . arc all continuous, then R is also a topological ring, with the restriction of
the product topology, and the maps x, are continuous. In fact, this topology on R
is the weakest such that the maps 3, are all continucus, and R is the inverse limit
of the system {R,} in the category of topologicu! rirgs. We will refer to elements
of R as coherent sequences {r,} (where ry € R, for d € D) wherever it is convenient
to do so.

We will occasionally also take inverse limits of modules, vector spaces, and
abelian groups. Thus, we note that the results just stated for rings are also valid in
these other categories. Furthermore, if {R;} is an inverse system of rings as above,
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and if {M,} is an inverse system of abelian groups such that each M is an R;-module,
and such that the maps o, , : My — M, satisfy o, (rm) = ny (r)o, (m) for re R,
and me My, then lim M is a (lim R;)-module in a natural way, and the action is
continuous. T “*

The following definition is a way of singling out the inverse limits of C¥-alge-
bras without specifying a particular system. (The inverse limit is unchanged, for
example, if the directed set is replaced by a cofinal subset.)

I.1. DEFINITION. A pro-C*%-algebra is a complete Hausdorff topologicut
z-algebra over C whose topology is determined by its continuous C*-seminorms in
the sense that a net {a,} converges to 0 if and only if p(a;) — 0 for every continuous
C*-seminorm p on A.

These objects are called locally C*-algebras in [17] and LMC*-algcbras in [36].
If the topology is determined by only countably many C#-seminorms, then we have
the a-C*-algebras of [4]. Closely related objects were called pro-C#-algebras in [41]:
the exact relation will be explained after Corollary 1.13.

We will use the following notation throughout this paper. If A is a pro-C*-al-
gebra, then S(A) denotes the set of all continuous C*-seminorms on A. For p € S(A4),
we let Ker(p) be the set {« € A : p(a) = 0}, which is a closed ideal in 4. (This nota-
tion is not quite standard because p is not & homomorphism.) We also let 4, be
the completion of A/Kerip) in the norm given by p, so that A4, is a C*-algebra.
(We will see in Corollary 1.12 that 4/Ker(p) is in fact already complete.) For a ¢ 4,
we denote its image in 4, by a,,.

1.2. PROPOSITION. /4 topological #-algebra A is a pro-C*-algebra if’ and only
if it is the inverse limit, in the sense above, of an inverse system of C*-algebras and
w-homomorphisms. In this case. we have A = lim A,.

PESLH

For the proof, see ilie remarks following Satz 1.1 in [36]. Note that S(A) is
directed with the order p < ¢ if p(x) < g(x) for all x, and that there is a canonical
surjective map A, — A4, whenever p < g. One of the most useful consequences of
this proposition is that every coherent sequence in {4, : p € S(4)} determines an
clement of A.

The homomorphisms of pro-C#-algebras are of course the continuous #-ho-
momorphisms. Since =-homomorphisms need not be continuous (sce Example 2.11),
we adopt the convention throughout this paper that, unless otherwise specified,
‘““homomorphism’> means ‘“‘continuous x-homomorphism’’.

1.3. ExampLEs. (1) Any C¥-algebra is a pro-C¥-algebra.

(2) A closed =-subalgebra of a pro-C%-algebra is again a pro-C¥-algebra.

(3) If X is a compactly generated space ([43], Section 1.4), then C(X), the set
of all continuous complex-valued functions on X with the topology of uniform con-
vergence on compact subsets, is a pro-C*-algebra. (We should point out here that
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Example 2.1(3) of [17] is wrong, since the algebras considered there need not be
complete. See Example 2.12.)

(4) A product of C*-algebras, with the product topology, is a pro-C*-algebra.

(5) A o-C*-algebra ([4], page 255) is a pro-C*-algebra. In particular, the tan-
gent algebra defined there is a pro-C*-algebra.

(6) Given any sets G of generators and R of relations, as in [7], satisfying the
consistency condition but not necessarily the boundedness condition, there is a
universal pro-C*-algebra, which by abuse of notation we write C*(G, R), generated
by the elements of G subject to the relations R. To construct it, let F(G) be the
free associative =-algebra on the set G. For any function p : G - L(H), where L(H)
is the algebra of bounded operators on some Hilbert space H, we also let p denote
the extension to a *-homomorphism from F(G) to L(H). Then C*(G, R) is the
Hausdorft completion of F(G) for the topology given by the C#-seminorms
a > ||p(a)ll as p runs through all functions from G to L(H) such that the elements
p(g) satisfy the relations R in L(H). This procedure can be shown to work for much
“more general relations than the ones considered in [7]. See [33] for more details.

(7) Associated to every pro-C*-algebra as in [41] there is an inverse limit of
C*-algebras, and thus a pro-C*-algebra in our sense. Thus, the category of pro-C#*-
-algebras contains various dual group algebras.

(8) We consider a specific example similar to but not the same as the examples
in [41], namely the noncommutative infinite unitary group U, (co). It isthe noncom-
mutative analog of lim U(n). Let U, () be the universal unital C*-algebra generated
by {x;;}]j-1, subject to the relation that (x;;) is a unitary element of M, (U, (n)).
(These algebras were first introduced in [9].) Define a map n,, : U (n + 1) = U, (n)
by x;;+>x; for 1 <4,j<n X41 0011, and x;;/>0 when i=n+1 or
J = n + 1 but not both. Then U, (0) is defined to be lim U, ().

(9) The multiplier algebra of the Pedersen ideal of a C*-algebra (see [22])
is a pro-C*-algebra. See [32] for details.

Our next goal is to define functional calculus in pro-C#-algebras. For this,
we need the unitization and the spectrum.

1.4. DeriniTION. ([17], Theorem 2.3). Let A be a pro-C*-algebra. Then its
unitization A* is the vector space 4 @ C, topologized as the direct sum and with
adjoint and multiplication defined as for the unitization cf a C*-algebra. Note that
At is a pro-C*-algebra, since A+ = ]i_m Af.

1.5. DEFINITION. Let A be a unital pro-C#-algebra and let ae 4. Then the
spectrum sp(a) of ae A is the set {ie C: i — a is not invertible}. If 4 is not
unital, then the spectrum is taken with respect to 4+.

Unlike in a C*-algebra, the spectrum need be neither closed nor bounded.
Indeed, if S = C is any nonempty subset, then C(S) is a pro-C*-algebra. (Note
that S is metrizable, hence compactly generated by [43], 1.4.3.) The identity function
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z: 8§ = C is an clement of C(S) whose spectrum is S. However, the spectrum is
always nonempty. Indeed, by examining coherent sequences, one obtains the folow-
ing:

1.6. LemmA. ([25], Corollary 5.3). Ler A = liLnAd, and suppose the mars
Ty ot Ag = A, are all wnital. Then for a € A, we have sp(a) = ) sp(x(a)), where
d

sg 2 A = Ay is the canonical map.

A stronger result is found in Theorem 7.1 of [21. In the case of & counteble
innverse limit, a furtner generalization is given in Theorem 4.2 of [3].

1.7. CororrARy ([17], Corollary 2.2 and Proposition 2.1; alse sec [48], Thico-
rem 3.1). Lot 4 be a pro-C*-algebra, and let a e A. Then:

D If a is selfadjoint, then sp(a) < R.

(2) If a has the fori b7b, then spla) < [0, cc).

(3) If a is unitary, then spla)y <« {ieC :ji =1

Proof. This follows immediately from the lemma and the corresponding facts
in C*-algebras. Q.E.D.

1.8. ProposiTioN. ((17], Theorems 2.4 and 2.5; [48], Theorem 3.4). Let 4 be
a pro-C*-algebra, and let o € A de normoel, that is, aa = aa™. Thep there /s ¢ unique
rhomomorphisin from the pro-Ch-alzebra {fe Cisp(@)) 1 fi0) = 0} to A wiicit sciey
the identity function to a. If A is waital, then this map extends uriquely to a home-
morphism from C(sp(a)) to A wirich seads 1 t0 1.

Proof. The required map is the ons sending f to the coherent sequence
(fie)y 1 p € S().

The proof that it satisfies the rexuirad properties is easy. Q.ED.

We write, of course, fia} for the image of f under this map.

In the same manncr, we obtain holomorphic functional calculus for arbitrary
eements of a pro-C*-algebhra. For convenicnce, we state only the unital case. If
U = Cis open, then we let H{U) denote the set of all holomorphic furctions from
U to C, with the topology of uniform convergence on compact subsets.

1.9. PROPOSITION. Lot A be a unital pro-C*-algebia, Iet ac A, evd let U 2 C
he an open set containing spiey. Then there exists a unigue continuecrs vital iente-
morphism s fla) from H(U) to A sending the identity fumction to a. This Fompw-

morphism satisfies sp{f(a}} = f{sp{a)).

Of course, in this situation, '+~ f{a) is not a #-homomorphism. Alsc, il is
perfectly permissible to take U = sp(a)} if sp{«} happens to be open.
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1.10. DEerFinITION. (Compare [36], Satz 3.1). Let 4 be a pro-C*-algebra. Then
the set of bounded elements of A is the set

b(4) = {ae 4 : ||allw = sup{p(a) : p € S(4)} < oo}.

1.11. PROPOSITION. Let A be a pro-C*-algebra. Then :

(1) b(A) is a C*-algebra in the norm || |lo.

(2) If ae A is normal and e C(sp(a)) is bounded, then f(a) € b(4).
(3) If ac A is normal then a e b(A) if and only if sp(a) is bounded.
(4) b(A) is dense in A.

(5) For ae b(A), we have spyq(a) = Spa(a).

(6) If g S(A), then the map from b(A) to A, is surjective.

Proof. (1) See[36], Satz 3.1.
{2) We have p(f{a)) < sup [f(2)| for all p e S(A).

A€sp(a)

(3) We have gl = sup p(a) = sup |} because sp(a) = | sp(a,)
PES(A) AEsp(4) PES(A)

and each a, is normal.

(4) This is [36], Satz 3.6. However, a shorter proof is as follows. By consider-
ing the decomposition into real and imaginary parts, it is enough to prove that
the selfadjoint part of b(4) is dense in the selfadjoint part of 4. In [36], it is proved
that for x € A selfadjoint, there is a net {x,} in b(4)n {x}’ (second commutant)
converging to x. We produce a sequence {x,} in b(4) n {x}'’ which converges to x,
by setting x, = f,(x), where

£, = A —n<i<n

(5) Since spya)(a) is closed and contains sp 4(a), the inclusion—s_EI(Z) < SPu(4)(a)
is immediate. For the reverse inclusion, note that if the distance from 1 to sp,(a)
is ¢ > 0, then p((A — a)~1) < 1/e for all p € S(A4).

(6) This follows immediately from (4), as is shown in {36] in the remark
after Folgerung 5.4. (Note that there 4, means the algebra A/Ker(p) before being
completed.) Q.E.D.

1.12. CoroLLARY. ([36], Folgerung 5.4). For p € S(A), the map A - A, is
surjective, that is, A/Ker(p) is complete.

1.13. CorOLLARY. (Compare [36], Folgerung 3.3). Let ¢ : A — B be a =-ho-
momorphism (not necessarily continuous) between pro-C*-algebras. Then ¢ defires
a homomorphism from b(A) to b(B).



166 N. CHRISTOPHER PHILLIPS

Proof. Taking unitizations, we may assume that ¢ is unital. Then for zny
a € A we have sp(e(a)) < sp(a). If a is selfadjoint, then so is ¢(a), so ¢(a) is
bounded by Propositicn 1.11 (3). Now use the decomposition into real and imagi-
nary parts. QED.

We note that this result cannot be used to prove that every homomorphism
is continuous. In fact, in Example 2.11 below, we will produce a discontinuous
homomorphism by exhibiting a pro-C#-algebra A such that b(4) = 4 as sets but
the topologies are different.

We can now explzin how our pro-C*-algebras are equivalent to those of
[41]. If 4 is one of our pro-C#-algebras, then for any cofinal subset D of S$(A),
the pair (b(A4), D) is a pre-C¥-algebra asin [41], while if (B, D)is a pro-C*-algebra
as in [41], D being a directed system of C*-seminorms on B whose supremum is
the norm on B, then

A = lim B/Ker(p)

peD

is a pro-C*-algebra in our sense, and satisfics b(4) = B. Also, note that if {4}
is an inverse system of C¥-algebras, then b(lim 4,) is the inverse limit of {A,}
in the category of C“-a.gebras (as opposed to the inverse limit in the category of
topological algebras, which is what we have designated lim 4,).

We also note that the term “bounded elements™ 1s justified by looking at b(A)
for some of the examples consider earlier. For example, if X is compactly generated,
then b(CLY)) is the algebra Cy(X) of all bounded continuous functions en X. If 4
is a product [ 4;, thea b{4) is the £~ sum of the A;, consisting of all ac f 4,

iel il
such that sup{ia;jl :ie !} < co.

Reeall that a unitzl topological algebra is called a Q-algebra if its group
of invert:ble elements is open, and that a nonunital topological algebra is @ Q-alge-
bra if its unitization is a Q-algebra. In some papers on pro-C#-algebras (rotably
123D, it is frequently cssumed that the pro-C*-zlgebras in question are aiso Q-ulge-
bras. Therefore we include the following proposition. (This result has already been
noticed by Mallios - see [15].)

1.14. PROPOSITION. A pro-C*-aleebra A 1s a (-aigebra if or:d only if i is
isomorphiic, as a topolosical s-elgebra, (o a C¥-algebra.

Proof. It is well known that Banach algebras are Q-slgebras. So let A be
a pro-C*-zlgebra which is also a Q-algebra. We may assume that A is urital.
Since the group of invertible elements is open, there is p € S(4) and ¢ > 0 such that
the set U ={ae A :ple — 1) < g} consists entirely of invertible elements. Let
a € Ket(p), and suppose that @ # 0. Then there is g € S(4) such that q, # 0, whence.
aa, # 0. Using Lemma 1.6, we see that there is 2 positive real number A € sp(a©a)
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Therefore | — A~'a*a is not invertible. However, 1 — A~'a*a e Usince p(A~*a%a) = 0.
This is a contradiction and it follows that Ker(p) = {0}.

Now let g€ S(4), and suppose that ¢ > p. Then there is a surjective map
A, = A,. Since 4 — A, is surjective (by Corollary 1.12), while A — A, is injective
(because Ker(p) = {0}), we see that A, — 4, is injective as well. Therefore it is
an isometry (because A, and A4, are C*-algebras), whence g = p. Since S(4) is
directed, we conclude that p > g for all g & S(4). Consequently the map 4 — 4,
which is already known to be continuous and bijective, has a continuous inverse.
So A is isomorphic, as a topological *-algebra, to the C*-algebra 4,. Q.E.D.

It follows that the “‘complete locally m-convex QC#*-algebras’ of [23] and the
“Waelbrocck C*-algebras’ of [24] are exactly the C*-algebras.

2. COMMUTATIVE PRO-C*-ALGEBRAS

Tn this section, we consider the commutative unital pro-C#*-algebras. The
results in [17] (Section 4) and [36] (Satz 1.1) are useful representations of commutative
pro-C*-algebras, but they give us no convenient way of determining what all of the
commutative pro-C*-algebras are. Using the noiion of a quasitopological space,
due to Spanier [46], we obtain a much more satisfactory result, namely that a certain

functor analogous to X — C(X) is a contravariant category equivalence. We begin
by recalling the definition.

2.1. DeriNtrioN. ([46]). A guasitopology on e set X is an assignment to each
compact Hausdorff space K of a set Q(K, X) of functions from K to X such that
the following conditions hold:

(1) Q(K, X) contains all constant functions from Kto X.

(2) Iff: K, — K, is continuous, and g € Q(K,, X), then go fe Q(K;, X).

(3) If K is the disjoint union of compact Hausdorfl spaces X and K,, then
f € Q(K, X) whenever f|K; € Q(K;, X) for i = 1, 2.

@) Iff: K, - K, is continuous and surjective, and if g : K, — X'is a function
such that go f € Q(K,, X), then g € O(K,, X).

If X and Y are quasitopological spaces, that is, sets equipped with quasito-
pologies, then a function 2 : X — Y is said to be quasicontinuous if for every compact
Hausdorff space K and every f € O(K, X), the function 1o fis in Q(KX, Y).

Any topological space X can be made into a quasitopological space by letting
Q(K, X) be the set of all continuous functions from K to X. Thus, it makes scnse to
speak of a quasicontinuous function from, for example, a quasitopological space
X to a topological space Y. We remark that, as observed in Section 11 of [38], the
compactly generated spaces then become a full subcategory of the category of quasi-
topological spaces and quasicontinuous functions.
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The spaces relevant to the study of pro-C*-algebras are given in the following
definition:

2.2, DEeFINITION. A (quasi-)topological space X is called completely Hausdorff
if for any two distinct points x, y € X there is a (quasi-Jcontinuous function f : X —
— [0, 1] such that f(x) = 0 and f() = L.

This condition is stronger than being Hausdorff and weaker than complete
regularity, even among the compactly generated topological spaces -— see Examples
2.13 and 2.14.

2.3. DerFINITION. Let X" be a quasitopological space. Then C(X) denotes the
=-algebra of all quasicontinuous functions f: X — C, with the topology determined
by the seminorms f\. . = |if* g, for K compact Hausdorff and g € Q(K, X).

2.4, LeMMA. If X is a quasitopological space then C(X) is a pro-C*-algebra.

Proof. The only issue is completeness. So let {f,} be a Cauchy net in C(X).
For each x € X the inclusion {x} — X is in Q({x}, X}, whence f, converges point-
wise to a function f: X—C. If now g € O(K, X), then f, cg must converge uniformly
to some f®) e C(K), and clearly ) = f>g. It follows that f is quasicontinuous, and

that f, — / in C(X). Q.E.D.

Our main result is that X — C(X), restricted to the full subcategory of com-
pletely Hausdorff quasitopological spaces, defines & contravariant category equi-
valence. (The claim made in an earlier version of this paper, that one could restrict
to completely Hausdorfl compactly generated spaces, is false, as was pointed out
to us by Jens Weidner. See Example 2.11.) In proving our result, it is useful to
introduce the following category of compactly generated spaces with distinguished
families of compact subsets. As a byproduct of our proof, we then obtain a more
concrete description of the completely Hausdorff quasitopological spaces.

2.5. DefFINITION. Let X be a topological space. A distinguished family of
coipact subsets of X is a set F of compact subsets of X satisfying the following
properties:

(1) Every one point subset of X is in F.

(2) A compact subset of an element of F is in F.

(3) The union of two elements of F is in F.

(4) The family F determines the topology of X, that is, a subset C <. X is
closed if and only if Cn K is closed for all Ke F.

If (X;, F)) and (X, F,) are topological spaces with distinguished families of
compact subsets, then a morphism from (X, F;) to (X,, F,) is a continuous function
f X, - X, such that f(K) € F, for every Ke F;.

2.6. PROPOSITION. The category of completely Hausdorff spaces with distin-
guished families of compact subsets is equivalent to the category of compleiely Haus-
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dorff quasitopological spaces, via the functor assigning to (X, F) the quasitopology
given by

Qr(K, X) ={f:K— X :fis continuous and f(K) e F}.

Furthermore, under the correspondence of this functor, a function from X to a topolo-
gical space is continuous if and only if it is quasicontinuous.

Proof. We first observe that the statement of the theorem defines a functor.
The sets Qp(K, X) satisfy conditions (1) through (3) of Definition 2.1 by the
corresponding conditions of Definition 2.5, and they satisfy (4) for the same reason
that the quasitopology defined by a topology satisfies (4). If f : X; — X, is continuous
and f(K) € F, for Ke F, then it is immediate that fis quasicontinuous.

We now construct an inverse to this functor. Let X be a completely Haus-
dorff quasitopological space. Define a topology on X by declaring U c X to be
apen if for every compact Hausdorff space K and every g € Q(K, X), the set g=%(U)
is open in K. It is immediate that this does in fact define a topology on X, and
that each Q(K, X) consists of functions which are continuous with respect to this
topology. Furthermore, it is easily verified that if f: X — Y is any function to a
topological space Y, then f is continuous if and only if f is quasicontinuous. In
particular, X is completely Hausdorff in this topology.

We now define Fy to be the set of all ranges of elements of the sets Q(X, X).
These ranges are all compact because the elements of Q(K, X) are continuous.
Conditions (1) and (3) of Definitiont 2.5 follow from the corresponding conditions
of Definition 2.1, and 2.5 (2) is obtained by using the fact that compact subsets of
X are closed and applying 2.1 (2) to an appropriate inclusion map. To verify 2.5 (4),
let C < X, and suppose that Cn g(K) is closed whenever ge Q(K,X). Then
g£~Y(C) is closed whenever g € Q(K, X), whence C is closed by the definition of the
topology on X. This completes the verification that F is a distinguished family
of compact subsets of X.

To complete the definition of the inverse functor, we look at morphisms.
Thus let f: X; - X, be quasicontinuous. Then for g € Q(K, X;), the function
fogisin Q(K, X,) and is hence continuous. It follows that f is quasicontinuous when
X, 1s regarded as a quasitopological space and X, as a topological space. There-
fore f is continuous. It is obvious that f sends ranges of elements of O(X, X)) to
ranges of elements of Q(K, X,).

It remains to prove that our two functors really are inverse to each other.
If one starts with a space X with a distinguished family of compact subsets, thén
the topology and family of compact subsets obtained from the associated quasi-
topology are the same as the original topology and distinguished family, using
condition 2.5 (4) (for the topology) and the fact that X is Hausdorff (for the dis-
tinguished family).
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For the composition in the other order, it is necessary to show that if X is
a quasitopological space, then QFX (K, X) = Q(K, X) for every compact Hausdorff
space K. It is only necessary to prove that QFX(K, A)c OK,X). So let ge
€ QFX(K. X). Then there is a compact Hausdorff space L and a function fc G(L, X)
such that g(K) = f{L). Writing g =i=g,, where / is the inclusion of g(K) in X
and g, : K - g(K) is the obvious surjection, we see by 2.1 (2) that it suffices to
show that /e Q{g(K), X). Thus, we may assume that g is surjective, and in fact
a homeomorphism onto its image. Therefore & = g7lof : L — K is a continucus
surjective map such that g -1 e Q(L, X). So g€ O(K, X) by 2.1 (4), as desired. Q.E.D.

As in the preczding proof, we will write (X, Fy) for the topological spacc with
distinguished family of compact subsets determined by the quasitopological space X.

2.7. THEOREM. The functor X — C(X) is a contravariant category equivclence
from the category of completely Hausdorff quasitopological spaces to the catezory
of commutative uniial pro-C*-algebras and unital homemorphisivs.

Of course, if f: X, — X, is quasicontinuous, thea C(f) : C(X,) —» C{X,) is
the homomorphism given by C(f)(h) = i = f.
For the proof of this theorerm we need 2 lemra.

2.8. LuMMA. Ler X be a completely Hausdorfi topological srace, and let F
be a family of compact subsets of X satisfying the first three conditions ¢f Difinition
2.5. Then for any compasi set Lé& F, there exists a net of continuous functions o X
which converges uniformly to O on the members of ¥ and does not converge wiformly
on L.

Proof. Let Ke F, and choose a point x & L — K. Because X is completely
HausdorfT, therc is for every v e K a continuous funciion f, : X — [C, 1] such that
£ =1 and fi{) = 0. Composing f, with a continuous furction from {0, ij to
[0. 1] which sends ! to [ and vanishes on a neighborhood cf 0. we may assume
that f, vanishes on a neighborhood of y. Since K is compact, the infimum of an
appropriate finite subcollection of the functions f, will be a continuous function
Ay X — {0, 1] which vanishes on £ and isequalto i at x e L. The set Fis direcied
with respect to inclusion (by 2.5 (3)), so {/i}xzr is the required net. GQ.E.D.

Pioof of Theorein 2.7. Here also we need an inverse functor. It assigns to a
commutative unital pro-C*-aigebra A the space ®(A) of all {continuous) howmo-
morphisms fron 4 o C. If K is a compact Hausdoff space, then Q(K, &(A4)) is
taken to b2 the set of ail functions g : K — ®(A4) such that the formula ¢ (a}{x) =
= z(x)(e), for ¢ € 4 and » € K, defines a (continuous) homomorphism from A to
C(K). Properties 2.1 (1) through 2.1 (3) of a quasitopology are immediate. For pro-
perty 2.1 (4), letf: Ky - K, and g : K, — ®(4) be as in 2.1 (4). Let ¢ : C(K,) =
— C(K)) be given by (i) = hof. Then ¢ is a homeomorphism onto its image.
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The relations ¢g.r = Yoy and gofe O(K,, X) now imply that g € Q(K,, X), as
desired. Also note that for every a € A, the function x +— x(a) from &(4) to C is
quasicontinuous. It follows that ®(A4) is completely Hausdorff. To complete the
construction, observe that if yy : 4, — A, is a (continuous) unital homomorphism,
then the function x — x o ¢, from ®(4,) to H(A4,), is quasicontinuous.

We now prove that these two functors are inverses of each other. This will
be done using Proposition 2.6. Let A be a commutative unital pro-C*-algebra.
For each continuous C*-seminorm p on A, let #(A4,) have the usual weak* topology

and identify it in the obvious way with a subset of ®(4). Then ®(4) = ) ®(4)).
PES(4)
Let &(A) have the direct limit topology, and set F = {®(4,) : p € S(A4)}. Then it

is easy to show that (P(A), F) = (P(A), For). We must therefore prove that the ob-
vious map from A to the continuous functions on #(4), with the topology of uniform
convergence on members of F, is an isomorphism of pro-C*-algebras. This is
equivalent to the assertion that 4 2 lim C(@(4,)) via the obvious map, and follows

from the natural isomorphism C(®(4,)) = A, and Proposition 1.2. This proves
that the composite of our functors in one order is the identity.

For the other order, we let X be a completely Hausdorff quasitopological
space. Topologize $(C(X)) in the manner of the previous paragraph, and let F
be the corresponding distinguished family of compact sets. We must show that
the map sending x to the evaluation ev, at x determines an isomorphism from
(X, Fx) to (®(C(X)), F). The injectivity of x +> ev, follows from the fact that X
is completely Hausdorff. For surjectivity, let o : C(X) —» C be a homomorphism.
Then there is Kand g € Q(K, X) such that |a(i)] < [li]lg , = |Jhoglle for all /1 € C(X).
1t follows that a defines a homomorphism from C(K) to C, which must be ev, for
some y € K. Then o = evy,,.

For ge O(K, X), we clearly have {ev, 1 xe g(K)} e F. Conversely, if L = X
is a compact set not in Fy, then it follows from Lemma 2.8 that {ev, : xe L} ¢ F.
Furthermore, if K€ Fy then the relative topology from X is the same as the relative
topology from the identification of K ‘with a subsst of $(C(X)). (X is compact in
both topologies.) It follows from condition 2.5 (4) and the definition of the topology
on P(C(X)) that x> ev, is a homeomorphism. This completes the proof that
(X, Fy) 2 (B(C(X)), F). Q.E.D.

2.9. CoroLLARY (of the proof). Let X he a completely Hausdorff quasitopolo-
gical space. Then C(X) = lim C(K).

KEFX

2.10. REmARK. It follows from Proposition 2.6 and Theorem 2.7 that the
category of commutative unital pro-C*-algebras is contravariantly equivalent to
the category of completely Hausdorff topological spaces with distinguished families
of compact subsets, as given in Definition 2.5. Note that such a space is necessarily
compactly generated, by 2.5(4), and that every compactly generated completely
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Hausdorff space can occur (with the family of all compact subsets). We have two
reasons for not using completely regular spaces here. First, in Example 2.12 below,
we show that there is a compietely regular space X such that C(X) is not a pro-C*-
-algebra in any topology whatever. Secondly, condition 2.5 (4) cannot be dropped
(for example, C([0, 1]) is not complete in the topology of uniform convergence o
finite sets, that is, the topology of pointwise convergence), and it forces us to allow
all compactly generated completely Hausdorfl spaces. In Example 2.13 below, we
show that these peed not be completely regular.

The remainder of this section is devoted to counterexamples.

2.11. ExaMpLE (Weidner). We will produce a commutative unital pro-C*-ai-
gebra 4 which is not isomorphic, as a pro-C*-algebra, to C(X) for any completely
Hausdorff topological spuce X. Thus, one cannot avoid using quasitopologies or
distinguished families of compact subsets, at least if one insists that the continuots
functions separate the points.

Let F be the set of countable closed subsets of [0, 11 posessing only finiiels
many cluster points. Then F satisfies the conditions of Definition 2.5 relative to the
usual topology on [0, 1]. (F-or 2.5 (4), note that the sets of the form {x,} U {x}, where
N, — X, already determinc the topology.) Now let 4 be C([0, 1]) with the topology
of uniform convergence on the members of F. It follows from Lemma 2.4 that 4
i1s a pro-C*-algebra.

Suppose that X is 2 completely Hausdorff topological space such that there
is an isomorphism ¢ : 4 — C(X). Then for each x € X, the homomorphism ev o ¢
must be evaluation at some f(x) € [0, 1]. (This follows from the proof of Theorem
2.7.) Clearly ¢@(h) = hcf for every 1€ A. The function f is injective because X is
completely Hausdorff, and continuous because the usual topology on [0, 1] is the
weak topology determined by A. Also, f must have dense range because ¢ is in-
jective. If now ¢ ¢ fiX), then the function h(x) = (+ — f(x))~* is in CtX) but not
in the range of ¢. Thus f is in fact bijective.

It follows from Lemima 2.8 that /~1(K) is not compact for K¢ F. Therefore
f is not a homeomorphism, so that there is a set C < [0, 1] which has a limit
point t ¢ C, but such that f~3(C) is closed. Let {z,} be a sequence in C which
converges to f, and let 7 = {t} u{t, :ne Z*}. Then {f~Yz,)} =f~UT)nfHC)
is a closed subset of X, and it is not compact because its image 7 \.{z} in {0, 1]
is not compact. Consequently f~(7") is not compact. This contradicts the assumption
that ¢ is a homeomorphism, by Lemma 2.8. Therefore the space X canno* exist.

We also point that L.emma 2.8 shows that the identity map from 4 to C([0. 1]}
(with its usual topology) is a discontinuous bijective *-homomorphism from a
pro-C*-algebra to a C*-algebra. Furthermore, note that every element of A4 is
bounded, even 'though 4 is not a C*-algebra. Actually, these phenomena can occur
even for A = C(X) for an appropriate compactly generated completely Hausdorff
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space X, for example the set of countable ordinals. (See Proposition 12.2 and the
remark following it in [25].)

2.12. ExampPLE. We will produce a completely regular space X such that
C(X) is not algebraically isomorphic to any pro-C*-algebra. Let Z+* be the set of
positive integers, let BZ+ be its Stone-Cech compactification, choose xq€ fZ* \
N\Z*, and let X = Z* U {x,}. Then X is completely regular, since it is a subset
of fZ+, and it is realcompact ([16], Chapter 8), since it is countable. (See [16], 8.2.)
Suppose that C(X) is algebraically isomorphic to a pro-C*-algebra. Then we must
have C(X) = C(Y) algebraically for some compactly generated completely Hausdorff
space Y. By [16], 3.9, there is a completely regular space Z and a continuous surjective
function f: ¥ — Z such that the corresponding map C(Z) — C(Y) is an algebraic
isomorphism. Since Y is completely Hausdorff, f must also be injective. Let W
be the realcompactification of Z ([16], 8.4 and 8.5), so that in particular C(W) =
=~ ((Z) algebraically. Therefore C(W) = C(X) algebraically, so, by [16], 8.3, we
have W = X. Since Z is a subspace of W, this homeomorphism implies that Z is
countable and hence already realcompact, thatis, W = Z ~ X. We thus have a
continuous bijective map f: ¥ — X such that i~ hcf is an algebraic isomorphism
from C(X) to C(Y). By [26], Example 12.5, every compact subset of X is finite. There-
fore cvery compact subset of Y is finite, and, since Y is compactly generated, Y
must be discrete. Since there are no discontinuous functions on Y, but there are
discontinuous functions on X (for example, 7 =0 on Z+ and A(x,) = 1), we obtain
a contradiction. Thus, there is no topology on C(X) in which it is a pro-C*-algebra.

2.13. ExampLE. We will produce a completely Hausdorff compactly generated
space X which is not completely regular (in fact, not regular). Thus, the topology
on X is not the weak topology determined by C(X), and hence differs from the topo-
logy used in [17], Section 4 and in [36], Satz 1.1. Also, one cannot require the spaces
in Definition 2.5 to be completely regular. Let @ be the first uncountable ordinal,
let » be the first infinite ordinal, set Y, = {x:%x < Q} and Y, = {x : x < »},
and let T = Y, x Y, \\ {(©2, w)}. Then it is well known (see [20], Problem 4F) that
T is not normal, and in fact that the closed subsets 4 = {Q} X {x : x < w} and
B = {x % < Q} x{w} do not have disjoint neighborhoods.

Let X be the space 7 with the subset A4 collapsed to a point, with the quotient
topology. This is a space of the sort shown in [20], Problem 4G to be Hausdorff
but not regular. (The point 4 and the closed set B do not have disjoint neighbor-
hoods.) Now Y, X Y, is compact, so that T is locally compact and hence compactly
generated ([43], L.4.1). It now follows from [38], 2.6, that X is compactly generated.
Furthermore, X is completely Hausdorff: let x, y € T be two points whose images
in X are distinct. Then at least one of them, say x, is not in 4. Since T is completely
regular (being a subspace of the normalspace Y; x Y,), there is a continuous function
f:T —10,1] such that f{x) =0 and f =1 on {y} U 4. This function defines a



174 N. CHRISTOPHER PHILLIPS

continuous function from X to [0, 1] taking the values 0 and 1 on the images of x
and y respectively.

2.14. ExaMpLE. We will produce a regular compactly generated space Y
which is not completely Hausdorfi. As a consequence, we obtain an inverse system
{A,} such that the maps A, — A4, are all surjective but the maps limA, — A, arc
not all surjestive. fndz2d, we have C(Y) = lim C(X) as K runs through all compact
subsets of Y, and each restriction map C(K) — C(L) is surjective, but the maps
C(¥) - C(K) are not all surjective. (Take K = {a, b} where a,be Y cannot be
separated by a continuows function.)

The space Y is the space of Example 3 in Section VIL7 of [11]. It is shown
there that ¥ is regular and not completely Hausdorff, so we nezd only show that ¥
is compactly generated. This fact was pointed out to us by Mladen Bestvina.

Let 7 be as in the previous exampie, and let X = ZXTU {a, b}, where
Z x T is given the product topology, 2 neighborhood base at a consists of the scts
[7,00) X T U {4}, and a neighborhood base at b consists of the sets (— oo, n] x T'C {h}.
(The intervals are to be interpreted in Z.) Then the space Y is an identification
space of X, from which it follows ([38], 2.6) that it is sufficient to prove that X is
compactly generated. This is easily seen to follow from the fact that Z < 7' is locally
compact, and hence compuactly generated, together with the fact that ¢ and b have
countable neighborhood bases.

3. TENSOR PRODUCTS, LIMITS, AND MULTIPLIER ALGEBRAS

in this section, wc generalize to pro-CH-aigebras two standard constructions
on C*-algebras, namely tensor products ané multiplier algebras. We aiso consider
direct and inverse limits, and approximate identities. Tensor products have pre-
viously been studied (from a different point of view) in [13], but there is very little
overlap between that pzper and our discussion. Approximate identities are shown
to exist in [17], but our proof is much shorter. Otherwise, our results are new.

We begin with tensor products. Uniess otherwise spzcified, all tensor products
of C*.algebras are maximal C¥ tensor products. {See [39]. Section IV.4 for general
information on tensor products of C#-algebrus.) The topology in the following
definition appears in Section 3 of [13], where it is called the projective tensoriai
Lm.c. C*-topology.

3.1. DEFINITION. Let A and B be pro-C*-algebras. Their maximal tensor product
A® B is the pro-C#-algebra obtained by completing the aigebraic tensor product
of A and B for the family of greatest CH-cross-seminorms p ® g determined by p
and g, as p runs through S(A4) and g runrs through S({B).

As an immediate corollary of the definition, we obtain:
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3.2. PROPOSITION. If A =1im A, and B =lim B, ,then AQB = lim A,®B,.

deD ek (d,e)eD%E
Of course, in D X E we have (d,, e;) < (dy, e;) exactly when d; < dyand e, < e,.

Proof of Proposition 3.2. The only nontrivial point is to ensure that if (dy, ;) <
< (ds, ey), then there is in fact an extension of the obvious homormophism of the
algebraic tensor products to a homomorphism Ay, ® B., & A4, ® B.,. This follows
from [39]. Proposition 1V.4.7. Q.E.D.

We then obtain the usual universal property.

3.3. PROPOSITION. Let A, B, and C be pro-C*-algebras, and let ¢ : A - C
and Y 1 B —» C bz homomorphisms whose ranges commute. Then therc is a unique
homomorphism 1n:A®B — C such that nla®b) = e(@)y(b) for all ac A, be B.

Proof. Since the algebraic tensor product is dense in 4 ® B, the homomorphism
7 is unique if it exists. For existence, it suffices to find continuous homomorphisms
7, : A® B — C, for re S(C) which are coherent in the obvious sense. To define
7, , use the continuity of ¢ and ¥ to find p € S(4) and ¢ € S(B) such that r > pog,
g>y. Then take 7, to be the composite 4 ® B — 4, ® B, — C,; thefirst map is conti-
nuous by the definition of 4 ® B and the second one exists by the corresponding
universal property for C*-algebras. It is easily secn that 5, does not depend on the.
choice of p and ¢. Q.E.D.

The minimal tensor product can be defined in the same way, using the injective
tensorial Lm.c. C¥-topelogy as in Section 3 of [13]. Minimal tensor products are
also functorial, as can be seen from the corresponding result for C*-algebras, {39]
Proposition 1V.4.2. See [13] for more in this direction.

For the applications we have in mind, however, at ieast one of the factors,
say A, will be nuclear in the sense that A, is nuciear for every p € S(A). In this
case, the minimal and maximal tensor products will agree. (This remark generalizes
the comments about type I algebras on page 126 of [13].) Note that any commutative
pro-C*-algebra (unital or' not) is nuclear, and that any nuclear C*-algebra is nuclear
as a pro-C*-algebra.

We now show that the tensor product of 2 pro-C*-algebra 4 with an algebra
of the form C(X) is what one expects. If X is a quasitopological space (Definition
2.1), then we let C(X, 4) be the »-algebra of all quasicontinuous functions from X
to A, with the topology determined by the C*-seminorms |ifily . , = su};\) p(fog(x))

x€K

for K compact Hausdorff, g€ Q(K, X), and p € S(A4). Equivalently (using Propo-
sition 2.6), C(X, A) is the algebra of all continuous functions from X to A4 with the
topology of uniform convergence on each element of Fy in each continuous C*-semi-
norm on A.

3.4. PROPOSITION. Let X be a completely Hausdorff quasitopological space.
Then the obvious map from C(X)® A to C(X, A) is an isomorphism.
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Proof. Write' A =lim A, and C(X) = lim C(K). Now apply Proposition 3.2,

KeFX

using the fact that the C*-seminorms f+> sup p(f(x)) which define the topology
xek

on C(X, A) are exactly the cross-norms p ®|| ', where lIf|, =sup!f(x)’. Q.E.D.
XEKR

A similar result holds when C(X) is replaced by the C*-algebra Cy(X) of conti-
nuous complex-valued functions vanishing at infinity on the locally compact space
X. Thus, given a pro-C*-algebra 4, we let Cy(X, A) be the set of all continuous
functions f: X - A which vanish at infinity in the sense that p < f vanishes at infinity
for every p € S(A).

3.5. PROPOSITION. [0t 4 be a pro-C*-algebra and let X be locally compact.
Then Co( XY@ A = Cy(X. A via the obvious map.

Proof. By the reasoning of the previous proof, we must show that the obvious
map from lim Cy(X, 4,) to C,(.Y, 4) is an isomorphism. This is essentially trivial.
PESIA) Q.E.D.

3.6. RemArRK. Tensor products do not behave well with respect to the functor
b introduced in the previous section. For example, if X and Y are locally compact
then it is easily shown that C(X)RC(Y) = ClA x Y). Now b(C(X)) = C{X) = C(fX),
where fX is the Stone-Cech compactification of X. Since (X x Y)is in general larger
than fX < fY. even when one of X and Y is compact (see Chapter 8 of [42]), we do
not in general have b{C(X)® C(Y)) = b(C(X)) ® b(C(Y)).

One might hope that if 4 is a simple C*-algebra then b(4 ® B) = A ® b(B)
However, even that is faise. Let 4 = K, the algebra of compact operators on & se-
parable infinite dimensional Hilbert space #, and let B = C(Z*). Choose & basis
for H, and let e, be the projection on the space spanned by its first 7 elements. Define
a € C(Z*, K) by a(it} = ¢,. Then a € b(K®C(Z*)). However, {¢,®1} is an appro-
ximate identity for K& (Z£%) and e, ®1)a — ¢, ® 1!| does not converge te 0, so
ag K® C(Z).

We next turn to limits. The following result is sufficiently obvious that we omit
its proof.

3.7. PrOPOSITION. Inverse limits exist in the category of pro-CH-algebras.
Slightly trickier is:

3.8. PROPOSITION. Direct limits exist in the category of pre-C*-algebres.

If {A.)eer is a dircet system of pro-C¥-algebras, with homomorphisms

041 Ay > Ap for 2 < f8, then the direct limit is constructed as follows. Let

D= {p € [ S(4.) 1Pp0 Qg < Py fOr @ < [3},

a€&/
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ordered by p < q if p, < g, for all «. Then D is a directed set. For p € D, set
B, = llm(Aa),, ,andset B = llmB .Then 11m A, is the closure of the union of the ima-~
ges of the 4, in B. We omit the details of the proof because direct limits are suffi-
ciently badly behaved that they do not seem to be of much use. Indeed, in the follow-
ing example, we produce a countable direct system in which every map is injective
and no algebra is zero, but for which the direct limit is zero. Also, we show in
Example 5.10 that a countable direct limit of o-C*-algebras is usually not a ¢-C*-al-
gebra.

3.9. EXAMPLE. Write Q = {x;,x5, ...}, and set X, =Q \{xy, ..., x}
Set 4, = C(X,), and let ¢, : 4, > A,,, be the restriction map. Note that ¢, is
injective, since X, ,, is dense in X,. We claim that limA, =0. It suffices to show
that, for any sequence p,,p,, ... of continuous C*-seminorms on A, A,, ... sa-
tisfying p, .1 0 @, < p, for all n, we have @(A,,),,n = (. For each » there is a compact

set K, = X, such that p,(f) = sup|f(x)| for all fe A4,. The condition p, . ¢, < p,
xeK"

is equivalent to K,,;, < K, . Since () X, = O, we have (M K, = O, whence K,, = O

for some m. So p,, = 0 and lim(d4,), =0, as desired.

Before turning to multiplier algebras, we need a lemma to the effect that pro-C*-
-algebras have approximate identities. Following [28], 1.4.1, we use the following
strong definition of an approximate identity.

3.10. DErFINITION. Let A be a pro-C*-algebra. Then an approximate identity
for A is an increasing net {e;} of positive elements of 4 such that [l¢,|l < 1 for
all . and, for all a € 4, we have e;a — a and ae, — a. Here, of course, x is positive
if it has the form y*y for some y € 4; equivalently, x is normal and sp(x) < [0, o).

3.11. PROPOSITION. Every approximate identity for b(A) is an approximate
identity for A.

Proof. By definition, an increasing net {¢;} of positive elements, bounded by
1, is an approximate identity for 4 if p(e;a -- a) - 0 and p(ae, — a) — 0 for all
a€ A and p € S(4). The result now follows from the fact (Proposition 1.11 (5))
that the map from b(4) to 4, is surjective. Q.E.D.

3.12. CoroLLARY. (Compare [17], Theorem 2.6). Every pro-C¥#-algebra A has
an approximate identity which is also an approximate identity for b(A).

3.13. DerINITION. Let A be a pro-C#-algebra. Then the multiplier algebra
of A is the set M(A) of all pairs (/, r) of continuous linear maps from 4 to A4 such
that / and r are respectively left and right A-module homomorphisms, and r(a)b =
= al(b) for all a,b € A. Such a pair is called a multiplier. (Compare [28], 3.12.1,
where such objects are called double centralizers. Since we have no reason to think
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that such maps are automatically continuous, we simply assume it.) Addition is
defined as usual, multiplication is {/;, )k, 2) = (Lis, Fory), and adjoint is (/, r)¥ =
= (¥, ¥}, where r*(a) = r{a*)* and similarly for /*. For each p € S(4), we define
a C#seminorm by i(/,r) , ==sup{p({(a)) : p(a) < 1}, and a family of seminorms,
indexed by ae 4, by (I, 7)|,, = pll{@)) + p(r(a)). (It will be proved in the next
thecorem that | |, is in fact a C*-seminorm.) The seminorin topology on M(A) is
the one generated by the seminorms |- 'l for p € S(A4), and is the anziog of the norm
topology on the multiplier algebra of a C*-algebra. The strict topology on M(A) is
the onc generated by the secminorms '-", , for p & S(A4) and a € 4. Finzlly, we define
a map from 4 to M(A4) by aw> (I,, 7,), where [,{b) = ab and r,(b) = ba fora, b€ 1.

3.14. THEOREM. Let A be a pro-C¥-algebra. Then:
(V) If A = limA,, and the maps x, : A > A, are all surjective, then M(A),
deD

with its seminorin topology, is isomorphic to im M{A,).

(2) The isomorphisin of (1) identifies the stiict topology on M(A) with the topology
on lim M{A,) obtained by takiag the iaverse limis for the strict topoiogies oi the M{A,).

(3) B(A) is a pro-CF-clgebra in its seminorm topology.

(4) M{A) is compleic in the strict topology.

(5) Themap a > (I,, 1) is a homeomorphisin of 4 onto a clesed (in the seminorm
topolegy ) ideal of A.

(6) The image of A xader the map of (8) is dense in M(A) for the strict tepolegy.

Proof. (1) Since %, : A — A, is surjective for all d, the maps 4, = 4, are slso
all surjective. Therefore we have maps M(A4,} > M(A,) defined as in Theorem 4.2
of [1]. (They need not be surjective—see the example foliowing that theorem.) Fur-
thermore, if p, € S(4) is dzfined by py(a) = |[#(2) |, then we have 4, = 4,,. There-
forc the inverse system {A4; :d e D} is a cofinal subsystem of the inverse system
{4, :p e S(4)}. Consequently the inverse systems {M(4,) :d € D} and {M(A)):
1 p € 8(A)} have the same ‘nversc limit, and it is enough to prove the result for
D = S(A4).

It is clear that cverv clement of}im M(A,) defines a muitiplicr of £, and that

PES(A)
the resulting map to M{4) is a homeomorphism onto the set of clements x € 17(4)
such that jjx};, < oo forail 2. So we have to prove thatif (/, r) € M(4) then (4, 7). <
< co. This will follow if we can show that (/,r) defines 2 muitiplier of A,, s'nce
multipliers of C*-algebras are automatically bounded ([28], 3.12.2). So let ¢ € Ker(p);
we have to show that [(«), 7(a) € Ker(p). Since Ker(p) is a closed subalgebra of 4.
it is @ pro-C*-algebra and therefore has an approximate identity {¢,}. Then i(e) =
= lim r{e,a) = Iiin e;r{(e) € Ker(p), since r is continuous. Similarly #{a) € Ker(p).
2

So (1, r) defines an element of M(4,).
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(2) For the same reason as in (1), it is enough to consider the particular inverse
system {4, : p € S(A4)}. (Note that if B — C is a surjective map of C*-algebras, then
M(B) - M(C) is strictly continuous.) The statement to be proved is now immediate.

(3) This follows from (1) because there is always at least one inverse system
{A,} with inverse limit 4 such that the maps 4 — 4, are surjective, namely {4, : p €
€ S(4)}.

(4) M(A,) is complete in the strict topology by [10], Proposition 3.6, and in-
verse limits of complete spaces are complete. Now use (2)..

(5) This follows immediately from the equation ||(Z,, 7,)||, = p(a).

(6) Let {e,} be an approximate identity for 4, and let (, r) € M(A). We claim
that (/’(”,1)’ r,(pl)) — (1, r) strictly. Now the algebraic properties of multipliers and
the definition of |-, , give

s 1) = Crte 3> Trte DMlpa = PUE) — €,0(@)) + plr(a — aey)).

Since {e,} is an approximate identity and r is continuous, both terms on the right
converge to 0. QE.D.

Using (5) of the previous theorem, we will identify 4 with the obvious closed
subalgebra of M(4).

Multiplier algebras of pro-C*-algebras have the same kind of functoriality
as for ordinary C*-algebras:

3.15. ProposiTION. (1) Let ¢ : A — B be a homomorphism of pro-C*-algebras
which has dense range. Then ¢ determines a canonical homomorphism M(A) — M(B).

(2) Let B be a pro-C*-algebra and let A be a closed subalgebra of B containing
an approximate identity for B. Then M(A) can be canonically identified with a subal-
gebra of M(B).

Proof. (1) It is enough to produce a consistent family of maps from M(4) to
M(B,) for g € S(B). So fix ¢, and note that go ¢ € S(4). Furthermore, the obvious
map from A4,., to B, is a homomorphism of C*-algebras which has dense range and
is therefore surjective. The required map is then the composite of M(A) — M(A44.,)
and the map M(A,.,) — M(B,) defined in [1], Theorem 4.2.

(2) For p e S(B), the restriction p|4 is in S(4), and 4, is a C*-subalgebra of
B, containing an approximate identity for B,. So M(4,) <= M(B,) by [1], Proposition
2.6. Since A is closed in B, we have 4 = lim A,. Now use the easily verified fact
res(B)
that the inverse limit of injective maps is injective. Q.ED.
For use in [30], we prove here the analogs of two other well known facts about
multiplier algebras of C*-algebras. For the purposes of the next lemma, a subset
S of a pro-C*-algebra A is bounded if for all p € S(4) therc is a constant M(p) such
that p(a) < M(p) for all @ € S. (This is the usual notion of boundedness in topologi-
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cal vector spaces. Note that any subset of b(A) which is bounded for |- | is bounded
in A, but of course not conversely.)

3.16. PROPOSITION. Multiplication is jointly strictly continuous on bounded
subsets of M(A), for any pro-C*#-algebra A.

Proof. Let S, T <« M(A) be bounded, let p € S(A), and let M(p) be 2 bound
for the values of /-1 on S and T. Let {x;} and {y,} be nets in S and T converging
to x and y respectively. Then, for all a e 4, we have

p(x35a — xya)y < M(p) p(y,a — ya) + p(x;ya — xya) = 0.

Similatly p(ax,y; — ax)) = 0. Q.E.D.

3.17. PROPOSITION. Let X be a completely Hausdorff quasitopological space
and let A be a pro-C*-algebra. Then M(C(X)® A) can be canonically identified with
the set of all strictly continuous functions from X to M(A).

Proof. This is true for X compact and A a C*#-algebra by [1], Corollary 3.4.

The result of the proposition is obtained by writing C(X) = lim C(K), and taking
KeF

inverse limits, using Proposition 3.4 and Theorem 3.14. ’ Q.E.D.

4. HILBERT MODULES

We now define Hilbert modules over pro-C*-algebras. As in the previous
section, the results are the obvious generalization of the known results over C*-alge-
bras, and can be made to follow from them. The proofs, however, are not quite as
straightforward. Hilbert modules over pro-C*-algebras do not seem to have pre-
viously appeared in the literature, except in [23], where the special case of finitely
generated projective modules is treated in Sections 1 and 2, and where the Hilbert
space £2(A) over A, in the special case in which 4 is also a Q-algebra, is discussed
in Sections 7 and 8. (This special case is useless for our applications -— seec Propo-
sition 1.14.)

We refer to Section 2 of [18] and Section 2.8 of [19] for the standard definitions
and results which we generalize below. (See also Section 5 of [34].) We state ali the
definitions first, and then prove that they make sense afterwards.

4.1. DeFINITION. Let 4 be a pro-C*-algebra, and let E be a complex vector
space which is also a right «-module, compatibly with the complex algebra structure.
Then E is a pre-Hilbert A-module if it is equipped with an A-valued inrer product
{,> ExE — A which is C- and A-linear in its second variable, is conjugate C-
and A-linear in its first variable, satisfies (&, #>* = (», &) for &, y € E, and is positive
Ké € = 0inAdforallé, and (&, &) = Qonlyif ¢ = 0). We say that E is a Hilbert
A-module if E is complete in the family of seminorms &, , = p({¢&, <HN* for
p € S(A).
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If E is a Hilbert 4-module, and ¢ : A —» Bis a homomorphism of pro-C*#-alge-
bras, then we construct a Hilbert B-module ¢.(E) as follows. First, form the alge-
braic tensor product E® 4 B, which is a right B-module in the obvious way. (Of course,
we identify A ® b and E®4b for £ € E, b€ B, and L € C)) Then define a B-valued
pre-inner product by (¢ ® b, n ® ¢) = b*@({&, 5))c. The Hilbert B-module ¢.(E)
is then the Hausdorff completion of E® 4 B for the family of seminorms obtained by
composing the above inner product with the C*-seminorms in S(B). Note that if
Y : B —» C is another homomorphism of pro-C*-algebras, then ¥, (¢.(E)) is cano-
nically isomorphic to (i o ),.(E).

If £ and F are Hilbert A-modules, then we denote by L(E, F) the space of all
continuous adjointable 4-module homomorphisms from E to F. We write L(E) for
the =-algebra L(E, F). With ¢: A — Bas above, define ¢, : L(E, F) = L(@0(E), ¢..(F))
by ¢.()E®b) =t ®b. We topologize L(E, F) via the seminorms |[|¢]|, =
= ||(%,):(t)l| as p runs through S(A4), where x,: 4 — A, is the quotient map. For
¢ € F and 5 € E, we define the rank one module homomorphism 8; , € L(E, F) by
O: (%) = &{n, A> for A € E. Then the space of compact module homomorphisms
K(E, F) is defined to be the closed linear span of {0;,:¢ € F,n € E} in L(E, F).
We write K(E) for the %-algebra X(E, E).

The first three parts of the following theorem contain the statements needed
to ensure that this definition makes sense. The other three statements are alsc analogs
of standard results in the C*-algebra case.

4.2. THEOREM. (1) The functions || ||, of the previous definition are seminorms.

(2) The pre-inner product defined on E® , B satisfies all of the properties of an
inner product except that {n,n) may be zero for nonzero n € E® 4 B.

(3) The map @, : L(E, F) > L{p.(E), ¢.(F)) is well defined.

@) Pu(K(E, F)) « K(@.(E), 9.(F)).

(5) L(E) and K(E) are pro-C*-algebras.

6) L(E) = M(K(E)) canonically.

Since this theorem needs to be proved in stages, we will carry out the proof

as a sequence of lemmas. We also need the inverse limit description of Hilbert
A-modules.

4.3. LeMMA. Let ¢ : A - B be a homomorphism of pro-C*-algebras, and
let E be a pre-Hilbert A-module (except that we do not require that {&, &) = G imply
&=0). Then {é€ E: (& &) =0} is a submodule of E.If B is a C¥-algebra,
then the function & - ||p({&, E)|[V2 is a seminorm on E.

Proof. We first observe that it is enough to prove the first statement in the case
of a C*-algebra. Indeed, with x, : B — B, being the quotient map for g € S(B), we have

{{eE:0(&8) =0} = qELSJ(B){é‘ € E :1xz00((,8)) =0},
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and the union is increasing. Next, replacing B by ¢(4), we can assume that B = 4,
where pla) = ie(a)i.

Let E, = E-Ker(¢), the linear span of all products éa for ¢ € E and
a € Ker{w). Then F/E, is a B-module with (¢ + E)b = ta + E, where o(a) = b,
and has a B-valued pre-inner product given by (& + E,,n + E> = o(KE, 7). It
now follows from the C%-algebra case that ¢ + Ey+—> |[{¢ + E,, ¢ + Epp Mt is a
seminorm on EfE,, whence ¢ > lo({¢, D)2 is a seminorm on E. In particular.
{& e E: (&, &)) =0} is a vector subspace of E, which is readily seen to be a sub-~
module. Q.ED.

If A is a pro-C*-algebra, p € S(4), and E is a pre-Hilbert A-module, then
we write E, for the Hilbert 4,-module obtained by completing the pre-Hiibert
A, moduie E14C € E:piE,¢)) =0} as in the proof of the above lemma. Note
that the result of the lomima ensures that this makes sense. Also note that, with
#p 14 = 4, being the quotient map, we have (i,).(E) = E,, via the map ¢ &% >
> za. where #,(g) = b, and bars denote images in E, of elements of E. In particular
{(#,):(E) is & Hilbert 4, -module. Similarly, for p > ¢ and n,, : 4, > A,, we have 2
canonicai isomorphism E, 2 (7,,).(E,).

For the purposes of the next proposition, observe that if ¢ : 4 = Bis a homo-
morphism of C#-algebras and E is a Hilbert A-module, then there is 2 norm-reducing
homomorphism ¢ from £ to ¢.(E) over ¢, given by o(é) =limé®e; where

i

1¢;} is an approximate identity for B. (Note that this net is Cauchy, and its limit

does not depend on which approximate identity is chosen. In this case, ©.(F) is
already known to be a Hiibert B-module by [34], Theorem 5.9.)

4.4. PROPOSITION. Let A =limA,, withmaps ny . Ay > Acand ;1 A > 4,.
If the sty are all surjective, then each Eilbert A-module E'is the inverse limit lim (:¢.),(F)
of a system of Agmodules. Conversely (without assuming surjectivity of flil; 4}y Given
Hilbert Agmodules E, and a colierent family of isomorphisims E. = (ry ).(Ez). the
inverse limit E = imE; is a Hilbert A-module such that (x;).(F) is cancricaily
identified with a closed submodule of E;.

Proof. We do the second part first. The isomorphisms E, & (7, ).(F) yield
coherent module maps o, .: E; > E, over my, satisfying (ad,‘_,(&_‘:), Og (1) =
74 (<& 1)), so it is clear how to make }i_mE,, into a pre-Hilbert h_m Agsmodule

Completeness and the statement about (x,).(E) are immediate.

For the first part, it is enough to prove that E = lim E,. There is an obvious
PES(A)

isometry (in the sensc of the A-valved inner products) from E to lim E,. Since the

image of E in each E, is dense, so is the image of Ein lim E,. Since E is compiete,

we have £ =~ limE,,. Q.E.D.
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4.5. LemMma. Let A be a pro-C*-algebra, let E be a Hilbert A-module, and let
P € S(A). Then the map E — E, is surjective.

Proof. We lct b(E) be the set of bounded elements of E, where ¢ € E is bound-
ed if (&, &> is a bounded element of A. Then b(E) is a complex vector space
and a right b(4)-module because, when E is identified with limE,, we see that

b(E) corresponds to the set of bounded coherent sequences. The Cauchy-Schwarz .
inequality, applied to the Hilbert modules E, over the C#-algebras A, , yields, for
&, n e b(E), the inequality [|<, n)|1% < (K&, EXleoll{n, D], SO that the restriction
to H(E) of the A-valued inner product on £ is a b(4)-valued inner product on b(E).
The proof of completeness in [36], Satz 3.1, also applies here (compare with Propo-
sition 1.11 (1)), and shows that b(E) is complete for the norm ||¢{l = |IK&, ED|'Y2.
Therzfore b(£) is a Hilbert b(A4)-module.

Sincz ¢ : b(A4) — A, is a surjective map of C*-algebras (Proposition 1.11 (5)),
and since clearly ¢.(b(E)) = E,, the lemma. will follow if we can show the follow-
ing: whenever ¢ : 4 — B is a surjective map of C*-algebras, and E is a Hilbert
A-module, then the canonical map o : E — ¢.(E) is surjective. Now in this case
¢.(F) is the completion of E/E,, where E, = {¢ € E : p({¢, £)) = 0}, in its obvious
pre-Hilbert B-module structure, as in the proof of Lemma 4.3. So it is enough to
show that E/E, is already complete, and this will follow if we can show that its

norm (& + El| = |lo(¢&, ED)|/2 is just the quotient norm from E. (We know that
E is compleie.) Thus, we have to show that, for ¢ € E, we have [jo({¢, ENME =
= inf £ + 1.

nek,

For one direction, we observe that if £ € E and 5 € E,, then

1€+ 7l1® = IIKE + n, &+ mli = llo(& + 1. &+ m)Il = lloKe, O,

where ¢((&, n>) = 0 because @({n,n») = 0, by the Cauchy-Schwarz inequality in
the form (&, n)>*<E, 0> < |I[KE, EDII<n, 1> ([34], Proposition 2.9). For the other
direciion, let ¢ € E and choose an approximate identity {e;} for Ker(¢). Then
Ee, € E, for all 2, and we have

li;“ g — Sesl* = li’lm (1 — e, (L — il = li;m (1 — e;)<E, O3 =

= inf )u<¢', EXVE 4+ )2 = (& EDN,

x € Ker{g

where the second last equality is [28], 1.5.4. This shows that inf |i& + ]| <
nek,

< Hle(CE, E)I[2, as needed. Q.E.D.

4.6. LEmMMA. Let ¢ : A > B be a homomorphism from a pro-C*-algebra to
a C*-algebra. Then for each Hilbert A-module E, the module ¢ (E) is a Hilbert
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B-module, and ¢, defines a map from L(E, F) to L(¢.(E), ¢.(F)) which sends K(E, F)
to Kig.(E), ¢..(F)).

We note that the existence of the map from L(E, F) to L(¢.(E), ¢.(F)) is
exactly what is needed to define the topology on L(E, F) under which K(E, F) is the
closure of the finite rank module homomorphisms.

Proof. Letp € S(A) be p(a) = [l¢(a)jj,and let iy : 4, — B be the obvious map of
C#-algebras. Then ¢.(E) = ¥.(E,), which is a Hilbert module by [34], Theorem 5.9.

Now lIet t € L(£, F). Choose an approximate identity {e;} for Ker(¢), and
observe that, for ¢ € E with (K¢, £€)) = 0, we have

m S — éey, & — &ey) = li?l«é, &> — <K& e — li;n e{K&, &) — (&, $ey) =0,

since p(e;) < 1 for all p & S(4). So Ee; — ¢. Therefore
8, 18) = lim{eS, t(&e;)y = lim{¢g, 18)e; € Ker(p).
A A

That is, <, ¢> =0 implies (€, 1¢) = 0. So we obtain a map from E/{{c E:
1 p(KE,8)) =0} to F'iée F: K&, &) =0} which is easily seen to be adjointable
and a B-module homomorphism. By the previous lemma, this map is actually an
adjointable module homomorphism from E, to F,, and hence an element ¢, of
L{E,, F,). (The map ¢, is automatically continuous, by Lemma 2 of [i8].) Applying
.. and using the relations ¥ .(E,) = ¢ (E) and ..(¢,) = ¢.(¢), we see that . (1) e
€ L(p.(E),.(F)) is in fact well defined. Obviously ¢,, is a homomorphism.

it remains to verily that ¢, sends K(E, F) to K(¢.(E), 0.(F)). Since ¢, is
continuous (¢~ ¢, is continuous by definition, and ¢.. is continuous because it
comes from a map of C*-algebras), it is enough to show that ¢.(0; ) is a compact
module homomorphism for ¢ € F and y € E. Now {0 ,), is the rank one meodule
homomorpuism determined by the images of ¢ and 5 in F, and E, respectively.
Therefore ¢.(0; ) = ¥.(0.,),) € K(W(£), ¥.(F)) by [19], Section 2.8. Q.E.D.

4.7. PROPOSITION. Let A be a pro-C#-algebra, and let E and F be Hilbert
A-modules. Then we nave canonical isomorphisms L(E, F) = imI(E,. F,) and
K(E.Fy = limK(E,. F.).

Proof. That an element of L(E, F) defines a coherent sequence of ciements of
I{E,, F,) follows from the previous lemma, and similarly for K{E, F) and K(&,, F,).
The converse for L(E. ) 1s casily shown by using Proposition 4.4 to write £ =ﬁﬂ;‘; E,
and F =!im F,. That the resulting map is a homeomorphism is essentiaily the
definition of the topology on L(E, F).

Now let {¥,} be a coherent sequence of elements of K(E,, F,). We have to
show that the corresponding operator & € L{E, F) is actually in K(E, F). Forp € 5(4)
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and ¢ > 0 choose &, ..., ¢, € F,and 7;, . .., fj, € E, such that || }] 6%._”_ — k)l <e.

Using Lemma 4.5, choose &, ...,¢{,€ F and #,, ...,7n,€ E whose images in F,
and E, are &, ..., &, and #,, ..., 7,. Then set /,, = ¥, Oc,n, € K(E, F). We have
l,. = k as (p, &) — oo (that is, as p increases and ¢ — 0), so k € K(E, F) as desired.

Q.E.D.

~ We are now able to prove -Theorem 4.2.

Proof of Theorem 4.2. (1) This is Lemma 4.3.

(2) For ¢ : A —» B and g € S(B), let ¢, be the obvious homomorphism from
Ato B, . Then, for a Hilbert 4-module E, we have ¢ (E) = lim (@,)..(E). The modules
(9,):(E) are Hilbert B-modules by Lemma 4.6, and the inverse limit is a Hilbert
B-module by Proposition 4.4. The statement now follows.

(3) This foliows from Lemma 4.6, Proposition 4.7, and the expression of
¢..(E) as lim(¢,).(E) in the proof of part (2).

(4) This follows in the same way as (3).

(5) This is immediate from Proposition 4.7.

(6) It follows from the argument used in the proof of Proposition 4.7 that the
map K(E) —» K(E,) bas dense range. By Corollary 1.12, it must be surjective. It
now follows from Proposition 4.7 and Theorem 3.14 that M(K(E)) = lim M(K(E,)).
Since M(K(E,)) = L(E,) by [18], Theorem 1, we obtain M(K(E)) = L(E) by another
application of Proposition 4.7. Q.E.D.

4.8. ReEMARK. The standard examples of Hilbert modules over pro-C*-alge-
bras are the same as over ordinary C*-algebras. If 4 is an inverse limit of C*-alge-

bras, then A” with the inner product ¢, n) = ¥; ¢in,, and
£

£3A) = {é €fI4:yY EFE, converges in A}
k=1

k=1

with the inner product <&, 5> = ¥, &, , are Hilbert A-modules. We have K(4") =
k=1

~ M, ® 4 (where M, is the set of » x n matrices over C), L(4") = M, ® M(A), and
K(¢*(4)) = K({) ® A. If E is a Hilbert module which is finitely generated and
projective over the unital pro-C*-algebra A, then we obtain K(E) = L(E) as usual,
However, the converse, which would be the analog of the proposition in [35], is
false for pro-C*-algebras. (The proof breaks down because the group of invertible
elements in a pro-C*#-algebra need not be open. Concrete examples of this pheno-
menon will be given in [30]. See also Proposition 1.14.)

4.9. ExaMpLE. Let A = C(Z)*, which is just [[ C, and let E = JJ C". We
n=1 n=1

make F into a Hilbert 4-module via (éa), = {0, and (&, 1), = (&, 1>, where
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the right hand side is the usual C valued inner product on C*. Let A, be the product
of the first »# factors of 4. and let E, be the product of the first # factors of £. Then
Ay = Ap . where pya) =supl{ilal:k <n}, and E, =E,. So A =1lim4

E=HUmE, and L(E)==limL(E,) = limK(E,) = K(E) using Proposition 4.7
However, E is not finitely generated as an A-module.

n

In the next section, we will prove a stabilization theorem for countably gene-
rated Hilbert modules over ¢-C*-algebras. T heproof uses induction over the directed
set, and we do not know if the result is true over general pro-C%-algebras.

5. HOMOMORPHISMS AND 6-C%ALGEBRAS

In this section, we restrict ourselves to the o-C*-algebras of Arveson, which
are the inverse limits of C*-algebras whose topology is determined by countably
many C*-seminorms. Equivalently, they are the inverse limits of countable inverse
systems of C*#-algebras. We do this because, in certain ways, the category of -C*-
-algebras is much more manageable than the category of pro-C*-aigebras. In parti-
cular, we have no useful condition for the inverse limit of exact sequences ot C*-alge-
bras to be exact, or for the maps lim A; — 4, to be surjective. We have also been

unable to show that the quotient of a pro-C*-algebra by a closed ideal is again a pro-
-C#-algebra. (The issue here is completeness. 1t is known that in general the quotient
of a complete topological vector space need not be complete - - see [21], 23.5 or
31.6.) However, we do have the corresponding results for o-C*-algebras. Our proofs
use induction over the directed sets of our inverse systems.

In this section, we discuss homomorphisms, ideals, and quotients of o-C*-alge-
bras. We then give the o-C*-algebra versions of the important results from the pre-
vious section in those cases in which they differ, and prove two additional results
related to the earlier sections for which we need to begin with ¢-C*#-algebras. Through-
out this section, we will assume that the countable directed set is ailways Z+. This
can always be arranged, since any countable directed set has a cofinal subset iso-
morphic to Z* (or else has a largest element), and limits are unchanged when the
directed set is replaced by a cofinal subset. We will also always assume that the maps
A, +1 — A, are all surjective; this can always be arranged by replacing cach A, by
the intersection of the images of the 4,, for m > n. Note that an inverse system in-
dexed by Z+* is determined by the maps 4,,, — 4,, and that they can be arbitrary.
Finally, we assume that all ideals are closed, selfadjoint, and two-sided. (It is shown
in Theorem 2.7 of [17] that a closed two-sided ideal in an arbitrary pro-C*-algebra
is necessarily selfadjoint.)

5.1. LeMMA. Ler A =1lim4, be a o-C"-algebra (with all maps A, — A,

surjective ). Then A — A, is surjective.
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Proof. We assume n = 1. (The proof is the same for all n.) Given q, € 4,,
construct inductively a sequence {a,} such that a, € 4, and the image of a,,, in
A, is a,. Then {a,} defines an element of A whose image in 4, is ;. Q.ED.

5.2. THEOREM. Let A be a a-C*-algebra, let B be a pro-C*-algebra, and let
@ :A — B be ax-homomorphism. Then ¢ is automatically continuous.

Proof. 1t is enough to prove that for p € S(B) the maps A — B,, determined
by ¢, are continuous. Thus we reduce to the case in which B is a C*-algebra. Taking
unitizations, we may assume that A, B, and ¢ are unital. Now represent B faithfully
on a Hilbert space and use Lemma 3.1 of [8]. Q.E.D.

We note, however, that a homomorphism of ¢-C*-algebras need not have
closed range. (Consider the inclusion of b(A4) in 4 for any o-C*-algebra 4, for
instance C(R), for which b(A4) # 4)

A sequence

0—»[-1>A£->B—>0

of o-C*-algebras and homomorphisms will be called exact if it is algebraically
exact, o is a homeomorphism onto its image, and f defines a homeomorphism of
A/Ker(B) with B. We will see below (Corollary 5.5) that the topological conditions
are redundant.

The following proposition requires our assumption of surjectivity on the ho-

momorphisms of the inverse system; otherwise part (2) fails — see Proposition 10.2
of [5].

5.3. PrROPOSITION. (1) A homomorphism ¢ : A — B of 6-C*-algebras has closed
range and is a homeomorphism onto its image if and only if it is an inverse limit of
injective maps of C*-algebras.

(2) The sequence of o-C*-algebras

(*) 01545 B0

is exact if and only if it is an inverse limit (with surjective maps) of exact sequences
of C*-algebras.

Proof. For the “if’” parts, the algebraic statements follow from Proposition
10.2 of [5], and the topological statements are casily verified; we omit the details.
For the “only if”* part of (1), write B = lim B, with maps 4,: B — B, and
C#-seminorms q,(b) = |2,(b)]. Let A, be the image of 4 in B,. Then 4, = A, ,

and is hence a closed subalgebra of B,. We clearly have ¢ equal to the inverse limit
of the inclusions of A4, in B,.
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Now we do (2). Using (1), write o as the inverse limit of maps o, : I, = 4,.
Then I, is an ideal in 4,, and the sequence () is easily seen to be algebraically the
inverse limit of the sequences

0—1F, = A, = A,JI, 0.

To show that the identification is also topological, use Theorem 5.2. Q.E.D.

For general inverse systems, we know of no good criterion for the surjectivity
of the last map in the inverse limit of a system of exact sequences. In particular, if
A is a general inverse limit of C*-algebras and 7 is an ideal in 4, we have an obvious
mavo from A/I to lim A,/I,, but we do not know whether it is surjective in general.

PES(A)

The first part of the following corollary has already been observed in {17]

and [41].

5.4, COROLLARY. Lot A be a 0-C*-algebra and let I be an ideal in A. Then Al
is ¢ 6-C*-algebra, and every homomorphism ¢ : A - B of o-C*-algebras such that
oI =0 factors through A|L

Proof. It essentially follows from the proof of the previous proposition that
with 4 = lim 4, and 7, being the image of 7 in A,, we have A/l = Iim 4,'F,. The
last statement follows from the definition of the guotient of topological vector snuess.

C.UD.

The categorical role played by A/I is presumably played in the category of

pro-C*-algebras by the closure of the image of 4 in 1521_ AT,

5.5. COROLLARY. For the sequence of o-C*-algebras and %-homomorphisiis

0I5 a4t 850

to be exact, it is sufficient chat it be algebraically exaci.

Proof. Use the previous corollary {once) and Theorem 5.2 (several times).
Q.E.D.

5.6, PROPOSITION. Lot A be a a-C#-algebra, and let I and J be ideals in A.
Thein I + J is a (clesed) ideal in A.

Proof. Write 4 =:lim4,, and letI, and J, be the images of Iand J i 4,.
Then we have [ =~Ii_mI,,,, J =1limJ,, and I +J =lim({, + J,). (For the last
statement, one needs the fact that 1,,, nJ,.,— {, nJ, is surjective.) Since I, + J,

is closed ({281, 1.5.8), so is [ + J. The remaining properties are obvious. Q.E.D.
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We now identify the commutative o-C*-algebras. We will say thata topological
space X is countably compactly generated if there is a countable family {K,} of
compact subsets of X such that a set C < Xis closed if and only if Cn K, is closed
for all n. Obviously we may require that K; < K, < ... . Thus, X is countably
compactly generated if and only if it is a countable direct limit of compact spaces.
(This is not the same as being o-compact and compactly generated, as we will sce
in Example 5.8.)

5.7. ProPOSITION. The category of commutative unital o-C*-algebras is con-

travariantly equivalent to the category of countably compactly generated Hausdorff
spaces.

Proof. We must prove two things: that a countably compactly generated
Hausdorff space is completely Hausdorff, and that every o-C*-algebra is isomorphic
to C(X) for some countably compactly generated Hausdorff space.

For the first part, observe that X is in fact completely regular. Indeed, given
C < X closed, x¢ C, and X =1imK,, we construct inductively, using the Tietze
extension theorem and normality of the K, a sequence of continuous functions

7, 1 K, = [0,1] such that fi(x) = 1 if x€K,, and f, =0 on Cn K,. Then define
fby fIK, =1,

For the second part, it is by Remark 2.10 sufficient to show that if X is a
topological space with a distinguished family F of compact subsets (Definition 2.5)
which has a countable cofinal subset, then X is countably compactly generated and
F is equal to the set of all compact subsets of X. Let {K, : n € Z*} be an increasing
countable cofinal subset of F. It is immediate that {K, :n€ Z*} determines the
topology on X. If there is a compact set L < X with L ¢ F, then for each n we
can choose x,€ L'\ K,. The set T = {x, :ne€ Z*} is closed because Tn K, is
finite for all n; similarly T\ {x,} is closed for each fixed n. Therefore T is a closed
infinite discrete subset of the compact set L, a contradiction. Q.E.D.

We now give an example of something that looks like a 6-C*-algebra but is not.

5.8. ExampLE. C(Q) is not a o-C*-algebra. (Nete that C(Q) is a pro-C*-alge-
bra, because metric spaces are compactly generated by [43], 1.4.3.) To prove this,
suppose that C(Q) is a o-C*-algebra. By the previous proposition, we then have
C(Q) = C(X), where X is a countably compacily generated space. Both Q and X
are o-compact, hence Lindel6f, hence realcompact by [16], Theorem 8.2. Therefore
[16], Theorem 10.6 implies that Q and X are homeomorphic. So it is enough to prove

that Q, in spite of being both countable and compactly generated, is not countably
compactly generated.

The following argument was suggestcd by Bob Edwards. Let K, < K, < ...
be compact subsets of Q whose union is Q. Each K,, is nowhere dense, so that there
is x, € Q \ K, with 0 < x, < 1/n. Then x, —» 0 in Q, but {x,} does not converge



190 N. CHRISTOPHER PHILLIPS

in the direct limit topology onlim K,,. (The only possible limit would be 0, which is
not in {x,}. But {x,} is closed since K, n {x,} is finite for all m.) Thus C(Q) is
not a ¢-C*-algebra. In fact, it cannot be a g-C*-algebra for any topology on C(Q).

We next specialize some of the results of Sections 3 and 4 to o-C “-algebras.

5.9. PROPOSITION. (1) The tensor product of two o-C#-algebra. In fact,

(lim4,)®(lim B,) = lim(4, ® B,).
- (2) A’countable ;‘;f\'ersc limit of 6-C*-algebras is a 6-C*-algebra.

(3) The multiplier algebra of a 6-C*-algebra is a 6-C*-algebra is a 6-C*-algebra.
In fact, M(limA,) = limM(4,). (Recall that A,., > A, is assumed surjective.
However, M ZA,, 1) = Ji’f(A;z) need not be surjective.)

(4) If A is a 0-C*-algebra and E is a Hilbert A-module, then K(E) and L(E) are
o-C*-algebras.

The proofs are trivial and are omitted. An uncountable inverse limit of o-C*-
-algebras obviously need not be a ¢-C*-algebra. And, as we now show, evena count-
able direct limit of o-C*-algebras need not be a o-C*-algebra.

5.10. ExampLe. Let A be any ¢-C*-algebra which is not a C*-algzbra, and
write 4 = lim 4, with maps %, : A — A, and seminorms given by p,(a) = lx,(a)!.
We can clearly arrange to have p, < p,, for n < m. Let B, be the direct sum of m
copies of A, and define ¢, : B,, = B,.1 by o4, ...,a,) = (a1, ...,a,,0). From
the discussion following Proposition 3.8, we see that limB, can be identified with

[+o)
the set B of all elements @ € JJ A4 such that, for every function s : Z+ — Z*, we

m--1

have lim py,.(a,) = 0. The topology on B is given by the C*-seminorms ¢,(a) =

m->00

= Sup{pym(a,) : me€ Z*}. To show that B is not a o-C*-algebra, it is enough to
show that there is no countable cofinal subset of the set of seminorms ¢, . Notice that
4. < q,if and only if s < ¢. So suppose we had a cofinal subset {s,} of the set of all
functions s : Z*+ — Z*. Defining t(m) = 1 + s,,(m), we immediately obtain a con-
tradiction. Thus lim B, is not a o-C*#-algebra.

We close this section by proving two results for g-C*-algebras for which we
have been unable to prove analogous results for general pro-C*-algebras. Note that
the multiplier algebra of a ¢-C*-algebra is again a ¢-C*-algebra. We also point out
that, by the corollary to Theorem 14 of {44], multipliers (double centralizers) of a
o-C*-algebra are automatically continuous.

5.11. THEOREM. Let ¢ : A — B be a surjective homomorphism of ¢-C*-alge-
bras, and assume that A has a countable approximate identity. Then the map M(A) —
— M(B) is surjective.
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Proof. 1f A and B are C*-algebras, this is Theorem 10 of [45]. In the general
asz, let 1 = Kzr(p). Using Proposition 5.3 (2), write the exact sequence

0145 B0

cas the inverse limit of exact sequences of C*-algebras

01, -4, 8, -0,

with, of course, all the maps in the inverse systems being surjective. Let u, : I, ., —
-I,n,:A,,,—>A,, and o, :B,., = B, be the maps of the inverse systems. Let

n?

J,, be the kernel of the obvious map ¢, : M(A4,) - M(B,). Since A has a countable
approximate identity, so does each A4, and each B,. Therefore o, is surjective, as
are the maps 7@, : M(A4,,,) = M(A,) and &, : M(B,.,) - M(B,). We thus have an
inverse system of exact sequences

(+) 0 > J, — M(A4,) 5 M(B,) -0,

¥

in which the maps of the systems {M(4,)} and {M(B,)} are all surjective. Let ji
be the map from J, ., to J,.
Consider the commutative diagram with exact rows and surjective vertical

maps:

Ppay
0—1,,—> 4,11 — B,.1—0

O
¢II
0—1, —A4, —B, —0.
Set Q = {(a,b)€ A, ® B, : ¢,(a) = 0,(b)}. Then there is a homomorphism
l/j : An+1 - Q
given Y(a) = (n,(a), ¢,+.(@)). A diagram chase shows that ¥ is surjective. Therefore
W 1 M(A,.,) — M(Q) is surjective (since 4,,, has a countable approximate identity).

The projections from Q to 4, and to B, ., are aso surjective (since 7, and ¢, are),
and it is then easy to show that

M(Q) = {(a, b) € M(4,) @ M(B,.1) : ¢,(a) = T7,(b)}.
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In the commutative diagram

Yhel

00— Jrz+1 — M(vAn+1)‘ B fW(Bn-u) —>0

l”n Ty Jﬂn
¥

(;’Ii
0.—_9‘K1 _—9JWTAW) ___>A4QBJ -_—90

with exact rows and in which 7, and @, are surjective, the surjectivity of
¥ M(A, 2) > M(©)

now implies that ji, is surjective. Therefore we can use Proposition 5.3 (2) to take
inverse limits in (+). In particular, lim 3(4.) — lim A(B,) is surjective. By Theorem
3.14 (1), this is the same as saying that M(4) — A(B) is surjective. Q.E.D.

For applications of this theorem, it should be pointed out that any separable
o-C*-algebra A has a countadle approximate identity: if {e,} is an approximate
identity for b(4) and {a,} is a countable dense subset of 4, choose an increzsing
subsequence {x,} of {¢;} such that, with {p,} being a cofinal sequence in S{4), we
have p (v, — ap) + pleps, — @) < 1fr for 1 < & < ». Note that the separability
of / is cquivalent to A4 being the countable inverse limit of separable C™-algebras.
However, b(4) can fail to be separable when 4 is separable: consider 4 = C(R).

Cur final resuit is the stabilization theorem promised at the end of the previous
section.

5.12. THEOREM. Let A be a o-C*-algebra with a countable approximate identity,
and let E be a countably generated (in the topological sense) Hilbert A-module. Thei
E @A) =2 £2(4).

Proof. Write A = lim 4, (with surjective maps =, : 4,41 — 4,), and corres-
pondingly write E = @Eﬁ with (r,).(E,+1) = E,. Then each A4, has a countable
approximate identity, and each E, is countably generated.

We will construct, by induction on n, isomorphisms u, : E, @ £3(4,)" —(2(4,)"
such that (7,).{u,+1) = u, @ | as maps from E, @ ¢2(4,)"+* to £%(4,)*+1. We obtuin
#; from the stabilization theorem for Hilbert modules over C*-algebras, [18], Ticc-
rem 2.

Given u,, construct u,,, as follows. First, use the stabilization thecrem to
choose an isomorphism ¢ 134, 4,)" - E, 11 ® ¢*(4,+,)" Then u(n,).(¢) is a uni-
tary element of L(£3(4,)"), which we ideatify with M(K(H Y®A,), where K +: (¥C).

Since H =~ @ H", we sec from Proposition 2.2 of [27] that u,(r,).(v) @ 1 is in the
k=1
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connected component of the identity in the unitary group of M(K(H"*H)® 4,).
Since K(H"*))®A, ., has a countable approximate identity, the map

M(K(H" )®A, 1) —~ M(K(H"*) @ 4,)

is surjective by Theorem 10 of [45]. By Proposition 4.8 of [40], there is therefore an
invertible element w of M(K(H")®A,+,) whose image in M(K(H"**)® A4,) is
u,(m,).(v) @ 1. Replacing w by w(w*w)~/2, we may assume that w is unitary. Now
regard w as an element of L(/*(4,.,)"*') and set u,,; = w(v @ 1)~L. Then
(m,). (1, 41) = u, @ 1, as desired.

We now let x, be the direct sum of u, and the identity on @ £3%(4,). Writing
k=n+1

[ee]
YA,y for the direct sum @ £%(4,), we see that {x,} is a coherent sequence of iso-
k21

morphisms in L(E, @ £%(4,)®, ¢*(A4,)*®). Therefore {x,} defines an isomorphism
x 1 E @® £HA)° - £2(A)>. Since £2(A)® = £%(4), this completes the proof. Q.E.D.

This work was partially supported by an NSF Postdoctoral Fellowship.
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Added in proofs. Since this paper was submitted, two relevant items from [47] have
been brought to my attention. They are that adjointable morphisms of Hilbert modules are
necessarily continuous ([47], Lemma 1.9), and that quotients of pro-C*-algebras by closed
ideals can in fact fail to be complete ([47], page 83).
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