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A TALE OF THREE C*-ALGEBRAS

D. P. ODONOVAN

1. INTRODUCTION

It was the best of C*-algebras, it was the worst of C*-algebras, it contained
both. The three C#-algebras to be discussed here are AF,, a particular approximately
finite C*-algebra introduced by E. G. Effros and C. L. Shen in [5], Irr, the well
known irrational rotation C*-algebra, and a third C*-algebra C, introduced by
J. Cuntz [3]. M. Pimsner and D. Voiculescu showed in [14] that Irr, could be
embedded into AF,. Probably the main use of this embedding has been that allied
with the work of M. Rieffel [15] it enabled one to show that the range of the
unique trace on Ky(Irry) is Z + Z0. A. Kumjian has also shown that AF, can be
embedded in Irr, [9]. The third C*-algebra C,, which contains Irr,, was used with
the six term exaci sequence for the K-groups [13] to give an alternative computation
of the trace on K (Irry). In this paper we detail what we feel is the most natural
relationship between these three C*-algebras. Firstly C, also naturally contains
AF,. Actually it is gotten from it by adjoining the rotation operator U,, while C,
is gotten from Irr, by adjoining certain periodic maps U,, which naturally approxi-
mate the rotation operator. And the closeness of the C*-aigebras, is seen in the,
fact that their spectra are almost the same.

In [12], M. Pimsner gives necessary and sufficient conditions for a covariance
algebra to be embeddable in an AF algebra. Unfortunately, to my knowledge
no omne has yet succeeded in using this for C*#-algebras’that are somehow naturally
related. For this reason we have chosen a route to our results that is not the
shortest. There are other examples of AF algebras and covariance algebras that
are naturally associated {11], but one will in general be given only one of these,
and will want to find the other. So we first start with AF, and show how Irr,
can be naturally associated to it. Since the range of the trace on Xg(Irry) aroused
such interest, we then show how this relationship is sufficient to allow its computa-
tion. Then we proceed from Irr, and find AF,. At this stage it is even easier
to calculate the range of the trace, and in fact one does not actually even explictly
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need AF,. In the course of this we arrive at a dynamical way of describing the
continued fraction expansion for an irrational number. This is presumably well
known to people in number theory, but we know of no explicit reference. It
does immediately give the known results on partitioning the interval, see [15] for
example. But the main thing that it makes absolutely clear is why Irr, must have
associated with it an AF algebra whose K, group is dicyclic. Finally this approach
leads to Denjoy’s theorem on the conjugacy of minimal homeomorphisms of the
unit circle [4], and an alternative definition of rotation number. Since this method
of approaching the theorem is “folklore’, we omit the details. However it is worth
noting that since something more than rotation numbers is necessary in higher
dimensions this sort of approach via AF algebras might be useful there.

One way of interpreting our results is as follows. A UHF algebra may be
considered as a crossed product algebra [18]. An arbitrary AF algebra may be
considered as a representation of a cross product algebra, but clearly the choice
of groups is critical. This is where going from AF, to Irr, (or to C;) is useful.
Essentially a complicated non abelian group is replaced by Z.

The author wishes to thank Norbert Riedel and Mark Rieffel for many
conversations relating to this material.

2. THE APPROXIMATELY FINITE ALGEBRA

As mentioned previously, the particular C*-algebra, AF,, in which we are
interested is the one described by E. G. Effros and C.L. Shen [5]. Briefly we
recall the construction. If @ has [¢,, ¢;, ...] as its continued fraction expansion,
hen 0 is approximated by a sequence of rationals p,/q, where p,.; = c,p, +
+ D1 Gur1 = €9, + gu—1, and the sequencesstart with pg =c¢,,p_, =1, q; = 1,
g-1 = 0. We consider an embedding ¢, of M, @ M,  into M, @ M, as
follows

a@Pb-a®.. 2adbh @ a.

—
¢, times

We then define AF; to be the direct limit of this sequence of C#*-algebras, {2],
AF, = lim &, where &, =M, @& M, .

We intend to look for a copy of Irr, in AF, in the most naive way possible.
Now, if St is the unit circle, and if p is Haar measure, then Irry is just the C*-
-algebra of operators on L2(S', p), generated by the multiplication operators A,
for f in C(SY), and the unitary operator U, which translates the functions. Now
as Stritild and Voiculescu point out in {17], inside any AF algebra there is a
natural abelian C*-algebra, and a group of unitaries acting on it. So we will
look for a copy of C(SY) inside the abelian algebra, and look for U, in the group
of unitaries.
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Using a maximal abelian self-adjoint subalgebra (m.a.s.a.) to break down
the structure of an AF algebra was successfully employed in [6], to study the
CAR algebra, and was used in [17] to study general AF algebras. Let us recall
how the structures in [17] apply in the case of AFy. We have in Bratteli diagram
form [2],

"dn = Ian @ M",,_

[~ |« X

Apur =My, @ Mg

1

n+1

We can inductively choose a m.a.s.a. 9, in each &, such that &, contains
©,-1(2,-1). Again schematically, if D, is a diagonal subalgebra in M, , we have,

Qn = Dq" @ Dq

-1
l L ' l “n X
@"+1 = Dq"xrilil @ an y

Then & = lim o/, has a diagonal subalgebra 9 =lim 9@,. The usefulness of this
is in the following:

THEOREM [17]. Given any AF algebra 54, then as above one has
" (@) a mas.a. D in A,
(b) a conditional expectation P of of with range 9 and,
(c) a subgroup U of the unitary group of s/, such that
() u*@Qu = @ for all u in U, and
(ii) P(utxu) = u*P(x)u for all x in .
* Further, if & is the Gelfand spectrum of @, and % is the group of homeo-
morphisms of & induced by U, then of = A(%,%), a C*-algebra which is a parti-
cular representation of the cross product C*-algebra C*(C(Z), 9).

Now % can be identified as follows: If X, denotes the spectrum of &, and Y,
~is the spectrum of D, , then ¢, induces a map from X,,, to X,, which we will
‘also denote by (p;,. We have

Xn = yn U Yn-l

- X

.an: wi1 U Ya.
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The spectrum of 2 is easily seen to be & = lim X,. We recall that the projective
limit may be thought of as sequences {x,} with x, in X, and ¢,(x,+,) = x,. In
general this is not a very transparent description of & so we want to try and
map it onto some simpler space. For illustration let us first consider the usual

well known treatment of the CAR algebra. Here &/ = lim M ,n, and the Bratteli
diagrams are just,

M X, = * /*\ *
M2"+1 *X/n+1= * % * * * %

[o%] ) 0
So & = H{O, 1} and we have p: 2 — [0, 1], by p({3,}) = z 32‘: [6]. Another
1

1
way to look at this map is to define p,: X, — [0, 1] inductively as follows:

1 2 3

If p,: X = % % *

n /\ -2n. i 2n~ ’ b >
I 2 3 4
*

-

i

then X = % - - T T
Pn+1:Xppa i’ gnel’ 2”+1, o s

Now define p({x,}) = lim p,(x,). One has p(Z) = [0, 1], and one can easily see that
this gives a representation of & as [0, 1], cut at each dyadic rational point.
For AF,, we proceed in an analogous way. We will construct our maps

so that, _
1 2 1 .

P X, =Y, UY, —»{—~,~——, ...,1} U {—-—, ...,1}.
qn qn qn—l .

We define the p,’s inductively, and the procedure is best illustrated by example.
Suppose. p, has been defined, taking the values below

Pn =
on X, =

-
thenon X, ;=

define p, =
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The key feature here is that the right hand side of X, is distributed among
the left hand side according to order

1 1 1 2 3
— < — < =< <1 =1,
4 3 2 3 4

and this determines the value of p,,; on the preimages in X,,,.
Since ag,-, # bg, for any integers a and b, 0 < b < g,_;, and n > 3, the only
ambiguity arises at 1. The choice of order here is not important at the moment.

The idea of the above is that if ¢,(x,,,) = x, then the value of p,,,(x,,1)
should stay as close as possible to p,(x,). Then if x = {x,} is in &, p(x) =
= limp,(x,) should exist. This seems like it should be true for general reasons,
yet in proving it we found ourselves drawn into the details of the continued fraction
expansion for 0. This gives more than the desired convergence, and it would be
nice if it could be dispensed with at this juncture. We need the following facts
from the theory of continued fractions [71,

Gy | 2n — !’1&1{ -1 . and
9, qu+1 § Indn+1
(ii) 0 lies between 2™ and Pn*1
qn dn+1

Now let X, = Y, u Y,_; = {a;}/», U {b;}/=;* and suppose x = {x,} is such that
x, = a;, and p(a;) = iq,. In X,,, there are c, elements in Y, ,;, and one element
in Y,, which are mapped to a;. Consider those in Y,,, first. On the last of these,

P.+1 takes the value
i + 1 i I, +1
Gl t o here e <lcntl
qu+1 q"_,l qn qn—l

In X, ,, on the last element in Y, ., that gets mapped to a;, p,., takes the value

[+ 1 I}
cn+1(cnl + n) + n+1 Where
Dn+2 UM Tn+1 9n

oy Gt h bt ]

We claim that /,,; =i — 1. First

s qn+1

i’_"'_l. < _(:‘."i + l"

In+1qn+1 < icnqn -+ qnln = i(qn+1 - qn-—l) + qnln = iqn‘-l-l + qnln - iqn—l‘
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Thus /,,, < i since g,l, — ig,_, < 0. Also

l,,+1 +1 > C"i + /"
4, In+1

qn+1(1n+l + 1) > iC"qn + Inqn =

= i(qn+1 - qn—l) + luqn = iqn+1 + Inqn - iqn—l >

. . i I
> ius1 — Gy > since — < —*L

UM qn-z
> (i — 1)gps1-
Thus /,., > i — 2, giving the claim.

Now taking /,,, =i — 1, we see that the numerator of the appropriate p,
on each last element referred to above, appears on the left hand side of the pairs

Ty rh—a
i I+ 1
ci+1, i

CoprlCi + 1) +i—1 i+ 1,.

The pattern is 7,4, = ¢ty + rpey — L.
Now consider {x,} such that x, = a,_, . Here we obtain the pairs

i—1 I+ 1orl,
ei—D+1, (orl,—1) i—1.
The pattern is ¢,,, = ¢,r;, + r,_; — 1. Thus

Fut1 ~_'rr’t+1 = cn(rn - rr:) + Fpe1 rrlz-l'
Let .
d,=r,—r,.
The pairs (d,,d,_,) start as

1,0 or 1, 1.
So solve

{1 =ap, + Bg L {1 = ap, + B4y,
0=op,—y + Bq,-1 1 =ap,_y + Bgu-1
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noting that the first of the continued fraction properties guarantees an integer
solution, then

dysy = c,opy + Bq,) + oapy_y + Bg,—1 = 0Puiq + PGyia
and
ysre = WPpsi + Pni-
Thus

lim D o0 4 p.
koo In+x

Starting at any Y,, only two lengths are possible. The number of each is g, — ¢,_;

or q,_,. Hence the lengths of these intervals goes to zero. _
Now if x,,, is in Y,, then p,,,(x,+1) = pu(x,) =i/g,. And on the list of

the elements in Y, that get mapped to a;, we saw that the value of p,,, was

ci + 1, I, i I, +1
= , where —7"- << ‘
In+1 In-1 9 In-1
cpi + M-t .
I _
qn+1 qn

On the last of the ¢, elements in Y, +1 that get mapped to a;,,, the value of p,,,

is
[+ 1 h, h i + 1 h 1
= M_ s where . < Lj-.._ < n +
In+1 o du-1 9n Gn-1

i+ 1)+ G+ D=1
> z > ——l—.
qn+1 qn

So p, .+ of the point that we are interested in, will liec between p,,, of these points,
and consequently within one of the intervals above. Thus p(x) = limp,(x,) exists
for all x. The construction ensures that p is continuous on %

The second part of the structure of an AF algebra is the group of unitaries %,
or the group. of homeomorphisms %. So it is natural to look here for U,. Since

Px
q"

-—= 0 we do the following:

First note that the functions p, have put an order on each of the bases that
determine @, inside My, @ M, . Ineffectasystem of matrix units has been chosen.
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Let Us, be that element in qu ® M, that shifts these bases forward through
2, and p,_; elements respectively. Then Ugn acts on 2, by D - UBHDU;'" and
[ J %(Uon) acts similarly on 2,,,,. In this way we get an action on £ given by
an operator in o, call it U,,n also, 9 — UOHQU};’”. This in turn defines a homeo-

morphism of & which will be denoted by 0,.

Next we want to calculate p(0,(x)). For simplicity of notation we may
consider the functions p, defined on %, by p.({x,}) = p,(x,). Now p,(0,(x) is
directly seen to be p,(0,(x)) + Poldn (Pu-1/q,-1) if m,(x) is in Y, (¥,_,) respectively.
To calculate p,,1(6,(x)) we need:

LemmaA. If | # i/q,, then between any ilq,, and ilq, + p,lq, there lie exactly
Pt (Paes) terms of the form jgyey (ilda-r) respectively.

Note. Here i/q, + p,/q, is to be taken mod 1. And this applies to all that
follows also.

Proof. The proof is identical, mutatis mutandi, for n + 1 or n — 1. We
do n + 1. Suppose

d—1 i d

<<
qn+1 qn q,|+1

_,,d_u + Pnsa = (_fi____ ‘IA) + (J + F") + (gﬂﬁl__. [)",)_
: qn+I q,,+1 Fni1 Yn In 4, Gns1 G

We know

then

!,)"*'l_ _ __p_n — :i: 1
9n+1 qn: 9un+1

and clearly

d i 1
———— — =
Yorr q, 9x9.+1
SO
;f"._i_g’_'iil > ,i,_*_ﬁ"__
qn+1 qn+1 qn qn
Similarly, ‘
d +pn+1"1=d—1+_p‘nv+_1_<
Gn+1 UPES T /PES] 9+
i ! + Puxa < __l_ + 143 .

qn qnqn +1 In+1 qn 9n

Thus p,,.; terms of the form j/g,,,; lie between i/g, + P,/49,-
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Since the end point i/g, + p,/g, may be equal to 1 and thus to one of the
Jld.+1, We cannot in this case say that this number of terms lies strictly between.
This is important because of the ambiguity that remained in the definition of the
p.’s. We can remove this by completing the order. For this if p,_,/q,_1 > P,/q,,
let p, take the values 1~ on Y, ;, and 1* on Y,, with 1~ < 1* of course. If
Pu-1/Gy-1 < Pu/q,, then we let p, take 1* on ¥,_, and 1~ on Y,. This alternation

may seem strange, but it is exactly the fact that P is alternately greater than
n

and Jess than 271

qn+1
that once we have distinguished, in any way, between the 1’s, we have for any

X1, Xg, I X,

, that causes the lemma to fail at the end point. Notice

Xy = XZ hnd pu(xl) = pn(‘XZ)’ Vn‘
Returning to the calculation of p,,(0,(x)), we must consider various cases. Suppose

first

vpn—l > _A_D__n_.

qn -1 qn
Case 1.

p"()() = I/qn # 1+

and

pn+1(x) = k/qn+1 .
Then

2.0,(x) = pu(x) + P,/qn-

Schematically, using the lemma, we have

Ou = L e e e e e e e e e e L + P,
qll qn q’l
(_J.__(_ _,_J__+£";1)
qn—l qn—l qn—l
I 0, VA SN A AN
k
Pn+1r = ?
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Thus
k cupn + pn—
R
qn+1 qn+1
p"
= pn+1(x) + +1"
qn+1
Case 2.
pu(x) = ilq,
and
pn+](x) = i/qn'
Then

pn+l(0n(x)) = pn('x) + pn/!/n
is immediate.

Case 3.
pu(x) =ilg,y # 17
and
pn+l(x) = k/qu+l -
Then '
_ pu+1
pn+1(0n(x)) - pn-H(-x) + -
' qn+1

follows as in Case 1, using the lemma.

The effect of ordering 1~ and 1+ above was to make p,(x) =1 — p,/g, in
Case 1 and p,(x) =1 —p,_1/q,-, in Case 2, compute correctly. If p,_,/g,., <
< p./a., as happens on alternate terms, an exactly similar analysis holds: Let E, =
= {x :p(x) =1*,17}. Then the three cases show

Pr+1(0,() = pp1(@,11(x) if x ¢E,.
The same argument shows, since E,>E,,;> ..., that

Pn+k(0x(X)) = pysr(0,44(x)) i x ¢ E,.
It follows hence that for all m,

pm(en(x)) = p111(011+1(x)) ]f X ¢ En
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so by the previous remark, about the p,’s separating points,
On(x) = 0,,+1(X) if x ¢ En'
[t is easy to check that (M E, = {x,} where p,(x,) = 1+, all n. For x not in E,

we know 0,,,(x) = 0,(x) for all p. Thus for x # x,, we can define 6(x) = 0,(x)
if x ¢ E,. It is clear that

0.(E,) = {x 1pux) =1+ Pn or =1+ f?:{}
qn Gu-1

so that the intersection of all these sets consists of just the two points x;, and x,,
Pn Pu-1

n In-1
for all powers of the @, applied to E,. To complete the definition of 6 we have
a choice of 0(xq) = x; or = x,. In either case, from the above we see that

where p.(x,) =1 + and p,(x;) =1+ . We have a similar pair of points

p(O(x)) = p(x) + 0 all x,

If we had chosen a different system of ordering 1* and 1~ we could have arrived
at worse E_’s but unfortunately not at (M) E, = @. If the exact behaviour of the 0,’s,
and of @ itself on & is not transparent at the moment, we can assure the reader
that the next section will clarify things.

Actually the cases considered above show more than was stated so far. Recall
that ¢, denoted the embedding of M, @ M, into M, @ M, . Now a part
of the diagonal of M‘?,.ﬂ ®M, corresponds to E,, and it follows from the above
that ?.(Us) = U,,’Hl except on those columns. In the abstract setting there is no
operator U, corresponding to 0 for the Ugn to converge to. They certainly do not
converge in norm, for, among other reasons if they did converge to a unitary oper-
ator, this would induce a homeomorphism of %, and we know that 0 is not
one. But we have succeeded in associating two different covariance algebras with
AF,. It seems worthwhile to consider what happens in the concrete setting of a
representation of AF,, but we shall postpone this until the final section.

One place to see the interplay between the 0,’s and @ is to consider traces. If
T is any faithful finite trace on AF,, then for any 4 in &, one has 1(4) = 7P(4),
where P is the conditional expectation referred to earlier [17). Identifying 2
and C(%), we will write D, for fin C(%). Now any trace 7 is a positive linear
functional on C(Z), and so there is a finite measure x on %, such that if A4 is

in o, then t(4) = SP(A) du. Now r(U’ngngk) = 7(D,) for all f, means that u
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is invariant for all ,. This implies that u has no atoms since p isfinite. Now y
is also invariant for 0 since if 4 < %, write 4 = {_J 4; U {x,}, where 4, = 4 n
i

N(ENE; ;). Then

pO)) = 3, u(O0(A)) = X, p(0i(4)) = 3, w(A) = p(4).

The converse is also true. Suppose u is invariant for §. For any k we may write
X = ;_’5 B, u q’f C;, where Y] denotes disjoint union and B; (C;) are those points
x= {x;;}or whiclg:'k is a particular point in Y, (¥, _,) respectively. On B,, ..., Bg,-1,
Cys e .,qu_l-l we know 0 = 0, so if A4 is contained in these u(6,(4)) = u(4). Iy
A < By, , then p(0,(4)) = 10" 6,(4)) = (07(4)) = p(4). Similarly if A < Cq,_, -

So part of the relationship between the {6,} and 6, is that they have the same
invariant measures.

—1

So any trace T on AF,, gives a measure u, on %, and this can be used
to get a trace on Irr,. We had p : 24 — [0, 1], and identifying 0 and 1 we may
take p as mapping onto S*. Any element T of Irry may be represented by its Fourier

(o]
series §3 JuUs . Defining «(7) = S Jo » pdpu gives a faithful trace on Irr,. It is well

- 0o

known that there is a unique one, namely «(7) = g fodm where m is Haar measure

on 8'. We want to consider the range of this trace. Suppose, for the moment, that
there is a trace v on AF,.
Let £ =Y f,U} be in Irry. Writing out the condition that E? = E, we see
n

that E is an idempotent if and only if certain conditions hold among {f,-0™}.
Now p(0.(x)) = p(0(x)) except on E,, and diam(E,) — 0. For any »n, since f;, is
continuous, if k is chosen large enough then f, is nearly constant on p{(@,(E),)) =

= p(0(E))) and || f, 0000, — f, o p<0lis small. Notice that the actual effect of 6,
k

and ¢ within E, is irrelevant. Let 4, =}, Dfnch(;'k , an element in AF,. We may
.y .

approximate E by a finite sum of its terms, and let 4, just involve those terms,
If k is large enough then [[4} — A, will be small. Thus if B, = (1/2){4, + 43),
for large k, we certainly have ||Bf — B,|| < 1/4. This is enough to ensure that the
spectrum is disconnected at 1/2. Let p be the characteristic function of {1/2, 2],
then p is continuous on the spectrum of By, so p(B,) is an indempotent in C*(B).
We had (B} — B[ small so |[B, — p(B,)|| is small also. Then, ©(p(B,)) is close to

(B,) = SP‘(Bk)d,u = S foo pdp = 1(E). Hence 1(p(B,)) - 1(E). Recall that U,, agrees
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with U, except on certain columns corresponding to E,. On finite

dimensional spaces the unitary group is connected, thus we can connect
U"k and U(,H1 via a path of unitaries U, which all agree with U"k and U 0,4, EXCEPL

on those pieces. But as noted previously then []U,”‘Df" opU,— Dy op o || is small.

. k
Thus if A, =Y. Dy opU; and B, = (1/2)(4, + AY) we have ||B? — B,|| < 1/4. Now
Zk

1 .
which goes to zero

By =8, and B,— By = Dy U\ + Dr, ,Us'T
as k — co. Thus, if k is large enough, p(B,) gives a path of idempotents connecting
p(B,) and an idempotent equivalent to p(B, ). Thus ©(p(B,)) = 1(p(By41)) = 1(E).

This shows that the range of the trace on the idempotents in Irr, is contained
in the range of any trace on AF,. Pimsner and Voiculescu [14] give a direct proof
of the existence and uniqueness of a trace on AF, whose value on idempotents
is contained in Z + Z#. With Rieffel’s work [15], this shows that ©(K(Irry)) =

= Z + Z0. We shall see an even more direct approach in the next section.

3. THE COVARIANCE ALGEBRA

In this section we want to see how starting with the covariance algebra Irr,,
one is naturally led to AF,. In the last section it was expressing AF, in terms of
the diagonal algebra £ and the Uy,’s that led to 8. So given € on [0, 1) we want

to approximate it by 0,’s. Recall here that the #,’s were homeomorphisms on %,
but not on [0, 1], and so we should not lock for that.

Since the irrational translation is ergodic, it is not possible to approximate
it by periodic transformations that only disagree on diminishing pieces of [0, 1).
But we can use pairs of such transformations. In what follows each 8, is to be
a rigid translation. Define H; = [0, 0), H, = 08(H,), and suppose §(H,) is not disjoint
from H, y H,, then put G; = [0, D\ | H;, as below:

H, H, G,
— PR N

0 9 0 20 20 1

Define
0\(H,) = Hy, 0,(H,) = H,, and 0.(Gy) = G, .

Then 6, = 0 except on H, and G,.

For the next step, define Hp, = Gy, and H, ;,, = 0(H, ), as long as they
are disjoint. Continuing the above example, this works for j = 1, 4. Then put Gy =
= H\\NUH,; and Gy, = Hy\\UH, ;, as below :

Hl Hz Gl
v e,
0 I [V 6 6 {1 11 20 20 1.
e R S —— STV et e ot —
02,1 H2,4 HZ,Z 02,2 ‘"2,5 H:,R ‘Hc,l
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Define
02(H2,j) = Hz,j+1mod5 and Oz(Gz,j) = G2,j+1 mod2 -

Then 0, = 6 except on H.5 and on Gy

For the next step, let Hy1 = G,,. Define H,;,, = 0(H,;), again until one
can go no further. Now one will have a piece left over in each of the H, ;, 1 <i <
< 5. 0; will be a cycle on these and 6; = 0 except on the last Hj . and Gs,5. No tice
that we have pairs of cycles of periods

2 1.
224+1 2
25+2 5

This looks like a continued fraction expansion and in fact the numbers 2, 2, ?,
are the expansion for 0. This can be established by induction. The first step can
be seen by inspection. At stage n, we have g, pieces of length «,_, and ¢,_, pieces
of length «, say. This is one of the partitioning results [16]. (Notice that the new
smaller length was always for the right hand smaller cycle.) Then g,2,_; + q,_12, =
= 1. Assume that a,_,/«, = r,, then the continued fraction expansion is generated

by putting r, = integer + ——1-—. Clearly the same ¢, is obtained at this stage.

Fys1
Write
o,
_n-2 _— c" + _— e
xy Tyt
oy
Op—1 = &€, +
Fpya
So

1= 4up-1 + Gu—18y = Gp2,Cp + qnan/rn-f-l + In— 1% = qn+lan + qnan/rn*i'l °

But 1 = gui10, + ¢%41- SO 0y =a/ryyy O rppq = &,(a,4,; taking
us to the next stage.

Notice that this is a very dynamic method of generating the continued frac-
tion expansion for 0. Take any point (here 0) and follow its orbit under translation,
counting as we go. This decomposition of [0,1) will work for any ergodic homeo-
morphism and this can be used as an alternative definition of the rotation number [8].

The fundamental role of these 0,’s is underlined by the way iin which we can
use them to calculate the range of the trace on K,(Irr,) without explicitly mentioning
AF,.
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We may suppose Irr, faithfully represented on L2(St, p), where p is arc length

by the translation operator U, and the multiplication operators M, f € C(S'). The
r :
unique faithful trace is easily seen to be 7( ), M U = 3 Sodu. If we allow f € L*(SY)

we still obtain a trace on the larger C*-algebra by the same formula. Corresponding
to 0, we have unitary translation operators U"k' We can write

ng == Ung

*
+ U M + U M,
) o'k ka,qk 0%+ Ok,q

SIN(H, G,
ki k,qk_l k1

So the ng’s are all in the larger C*-algebra. As in the last section given any idempo-
tent P in Irry we can find P, = Yy MUy, with the same trace. Now 6, is not a ho-

meorphism on S!', but it is continuous except at the end points of the intervals.
Thus P, is seen to lie in a copy of qu(Hk'l) ® qu_l(G",l)' (M (X) denotes
M, ® C(X).) Hy, (Gi,) have lengths a, _, () respectively, which arein Z + Z0 by
construction. But any trace on the above matrix algebra must give 7(P}) = ao_, +
+ bo, for some integers a, b. Hence the desired result.

Let us return to the §,. These are not homeomorphisms on [0,1), but we can
make them into homeomorphisms by simply adjoining the end points of all the
intervals, and extending the definition of 6, in the obvious way. Now 6 can be defined
on this by mapping the point —0 to either the point 0 or to the point 1, and then
mapping left hand end points to left hand end points, and similarly for the right
hand end points. It is now clear what was happening in the last section. The point
x, there, is now the point —8, while the points x;, and x, there, are now 0 and 1.
As we saw there, 0 is not a homeomorphism on this cut interval. To make it into
one we simply have to further cut the interval at the backward translates of 8, and
extend 0 in the obvious way. This brings us to the third of the C*-algebras.

4. CUNTZ’S C+*-ALGEBRA

The third C*-algebra, C, was introduced in [3]. It is the covariance algebra
C*(C(é" ), Z) gotten from Irr, = C*(C(SY), Z) by cutting S* at all the translates of
a given point. Let &’ be S' = [0,1) cut at just the forward translates. We saw in
the last section how 2" decomposed into successive collections of pieces H, ; and
G, ;- Itis easy to see that we can inductively defire p,, continuous, sending each
H, ; and G, ; to a point in X, (X, as in Section 2), so as to make the following dia-

gram commute
X, «— &'

2 — 2129
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Every point in ', is completely determined by its images p,(x), so it is easy to see
that this space has the universal attracting property in the correct cateogory. Thus
by the uniqueness of projective limits we have that £’ = £ the spectrum of the dia-
gonal C*-algebra in AF,. Also, from the last section we know that translation by
has a matrix decomposition with respect to the Hj ;’s and the G, ;’s of the form

00 .

%
10 T KOO,..*
) 10 .. . =

01 % .

o1 .. . =
* | @ N
S R I

006 . .1 =

except for extra entries in the columns with the *’s in them. Applying the correct
idempotent we find that

00...0
10 "ol (00.. .0
01 "ol f1o. ..o
ol01. . .0
- .0
. ...00 -
00..10/ 00 --10

is in C,. But this operator together with all diagonals generates M,,k ® qu_l as

a C¥-algebra. In this way we see that Cuntz’s algebra contains AF,.

Thus the three C*-algebras are C*(C(SY), 6), a representation of C*(C(Z), {6,}),
and C*(C(ﬂ?‘), 6). Let us briefly consider representations of these algebras. Stan-
dard arguments {10], [17], tell us that any irreducible representation of AF,, is on
a space LA &, u, H), where u is quasiinvariant with respect to the 8, . If the measure
is non transitive, or is atomic but none of the points — 0, 0 or 1, are in the orbit
of atoms, then the operators U, converge weakly to an operator U,. In this way

we get irreducible representations of the other two algebras. If we start with an
irreducible representation of Irry, which is not based on the orbit of 0, then we
can define operators Uy, , and get an irreducible representation of AF,. In all of

these cases, we may express the relationship between the (representations of
the) three C*-algebras as

AF, Irry
Ny
adjoin U, adjoin {U,,}
N Y
C,.

If the representation of AF, is on the orbit of —0, then the weak limit of the Uy is a
unilateral backward shift. From the orbit of 0, and that of 1, one gets a forward
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shift. The representation of Irrg, on the orbit of 0, corresponds to the direct sum
of the former and the first of the latter pair. C, also has representations based on
the orbit of 1, and these correspond to a direct sum of the former and the second
of the latter. In all of the cases, the correspondence between irreducible repre-
sentations preserves unitary equivalence. So we see that the spectra of these three
C*-algebras are the same, except for a couple of points, and it is no wonder that
one can use one of them to deduce properties of the others.

10.

11.
12.

13.

14,

15,

16.

17.

18.
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