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QUANTUM DOOB-MEYER DECOMPOSITIONS

CHRIS BARNETT and IVAN F. WILDE

INTRODUCTION

Doob-Meyer decompositions were discussed in quantum probability theory
113, 5, 6, 9, 10] for the 1td-Clifford theory. This is the fermion analogue of the
stochastic calculus of classical Brownian motion: one observes that Brownian motion
can--be realised via boson quantum fields, and then by replacing these fields by
fermion fields the It6-Clifford theory results. Much of this latter theory is facilitated
by the existence of a faithful normal tracial state which carries with it the nan-
-commutative integration theory developed in [12, 20, 24). Thus, one defines L2-
-martingales and via the martingale representation theorem [3, 22] one shows that
the (modulus) square of any such martingale is the sum, of an L-martingale and
an increasing Ll-process [3, 9, 10]. This allows one to define the random inper
product (or (pointed) bracket-process) between L2-martingales which leads to the
characterisation (as in standard stochastic calculus) of quantum stochastic integrals
whose integrator is itself a quantum L*-martingale [6, 9]

A quantum stochastic calculus for non-Fock bosons and fermions was ﬁrst
developed in [4], where the creation and annihilation operators act independently
as integrators. (The corresponding Fock-spa‘ce calculus ‘was”given in [1] and [14].)
These non-Fock theories inhabit certain quasi-free representation spaces of the
C.C.R. and C.AR., respeutxvely For these ‘there is no tracial state and the non-
-commutative integration theory above is not applicable. However, these represen-
tations do possess cyclic and separating vectors and so one can apply Tomita-
-Takesaki modular theory to reasonable effect. In particular, this gives a correspond-
ence between Hilbert space-valued and operator-valued processes [4, 13, 15, 16,

, 22, 23).

The generalisation of an L2-valued process is a Hilbert space-valued process.
Thus, an L2-martingale in these non-Fock theories is simply a vector-valued marting-
ale. For such martingales one also has martingale representation theorems [13, 15,
16,°17. 22, 23]. The question then arises as to the meaning of the-square of such
a process. The answer is provided by the non-commutative (and. non-tracial)
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Li-space of [19]. (See also [23, 26, 27].) Using this Ll-space. we can formulite 2
Doob-Meyer decomposition for the square of a vector-valued martingale and
establish uniqueness. This leads to a characterisation of stochastic integrals with
non-Fock martingales as “‘quantum times’’.

In Section 1, we set up the non-commutative L-theory for any von Neumann
algebra with cyclic and separating vector and various properties are established.
Conditional expectations arc considered in Section 2 and in Section 3, we consider
filtrations of von Neumann algebras, processes and the notion of naturalness. The
results here extend those of [9] to cover the non-tracial case. (It is clear that other
notions such as mean forward derivatives etc. defined for the tracial case in [9]
can be defined here and will lead to analogous results.)

The Doob-Meyer decomposition (existence and uniqueness) is discussed for
fermions in Section 4, and for bosons in Section 5. As pointed out there, the
statements and methods of proof are identical except a few obvious changes of
notation.

In Section 6, we define the random inner product between L2-valued marting-
ales, and Ll-valued integrals with integrators given by such a random inner product.
We also define integrals where the integrator is a general centred L?-martingale
and obtain a characterisation of these as processes. A version of the Kunita-Watanate
inequality is also obtained.

In Section 7, we consider stopping times in this non-commutative context,
and, using the results of Section 6, characterise stopped L>martingales as processes.
This extends the results of [8].

i. THE NON-COMMUTATIVE L! SPACE

Let .# be a von Neumann algebra on a Hilbert space # and let Q@ be a cyclic
and separating unit vector for .#. Let S = JAY? denote, as usual, the closure
of the conjugate linear operator xQ > x*Q, x €. #. Then JQ = Q, J* =1 and
JAMJ = A, the commutant of .#. To each x € .4 we associate the functional
o, in 4, given by

ofy) =00,IxQ), yed.

The basic properties of this association are given in the following.

PROPOSITION 1.1. The map x - o, is a linear order preserving injection of
M into Al . Moreover, the image of #*is normdense in 4} | the positive part of M.
and the image of M is norm dense in 4 .



QUANTUM DOOB-MEYER DECOMPOSITIONS 135

Proof. Clearly the map x+— w,, x €.4, is linear and, since  is cyclic and
separating for .#, it is easy to see that it is injective. Now let x e.#Z+*. Then
x = z%z for some z € ./ and we have

oy) = (0Q, Jz#2Q) = (yQ, Jz4JJzQ) = (3J:=Q, JzQ)

E

for y e /. Hence w, = 0 and so x — w, is order preserving.

Let @ €% . Then, since .# has a separating vector, there is a vector {
in # such that o(») = (¥{, §), y €.#. By cyclicity, there is a sequence (x,) in &
such that x,Q converges to J{ in 5. But then Jx,Q2 — { and

¢(y) = lim(yJx,2, Jx,2) = im(yQ, Jxix,Q) =limo . (y)

nn

uniformly for y €.#,. Hence the image of .#* is norm dense in .#} . Finally,
we observe that any element of .#, can be written as a linear combination of
elements of .#; and so we deduce that the image, {®, : x €.#}, of ./ is norm
dense in ./, . %

DerFINITION 1.2. Set ||x||; = |jow,]| for x €.4 and let L'(.#/) denote the comple-
tion of ./# with respect to the |-||;-norm.

It follows from Proposition 1.1 that |-, is indeed a norm on .# and that
the map of .4 into .#, given by x> w, extends to an isometric isomorphism
of LX.#) onto .#, which we again denote by x — w,.

~ If Q defines atracial state on ., that is, (xyQ, Q) = (yxQ, Q) for x,y €,
hen one has [12, 20]

Ixll = (X2, Q) = sup (@, Q) =
iyt '

= sup {(yQ; x*Q) = sup .(yQ, JxQ).

fyh <l iyh <l

for x €.#. Thus, the ||-|l,-norm of Definition 1.2 is the generalisation of the
tracial ||-|l;-norm to the non tracial case. Note that since S = J when Q is tracial
we could also write w(x) = (yQ, SxQ) for @ tracial. This, however, does not
appear to yield the appropriate generalisation to the non tracial situation.

With the following operations L(.#) is an .#/ bimodule and the action is
norm contractive. The idea is simply that we regard elements of L'(.#) as functionals
and let . act in the usual way on such objects. So for xe.# and y € L}(.%)
we define xy to be the element of L'(.#) corresponding to the functional xe,
where xoy(z) = w,(zx) for z € 4. Similarly yx is defined by ,x(z) = w,(xz) for
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z €.#. When Q is non tracial the actions of .# on LY.#) defined above are no
Jonger consistent with the multiplication in .#, that is, when Q is tracial o, =
= X0, = o), for x,» €.#%. but. when it is not tracial w,, = (Jx*J)o, and this
will not be the same as xw, for every x, y €.//.

Consider now the map x> xQ, x €./. This is a linear injection of .#
into a dense subspace of .#. If we set ‘x/, = 'xQ! x €.#, then - 5 is a norm
on.#. Denote by L*(.//) the completion of .# in - 5. Then L¥.#) is isometrically
isomorphic to #. Now each element | € # determines an element w; of .#/,, given
by ¥y > (3Q, J{), » €.#4 and we have the following.

PROPOSITION 1.3. The map (v« is a linear injection of H# into & norw
dense subspace of . .

Proof. 1t is clear that [+~ w; is a linear injection of # into .4/, . Moreover,
{0 (e} contains the set {w, :x €.}, since if { =xQ then w. = ,. The
result now follows by Proposition 1.1. : &3

. " Thus we have injections .# e LYN./7), .&/ — L¥.#) and L¥.i7)« > LN.i7)
with dense ranges. These are consistent in that the injection .# «» LY. i7) is the
composition of the injections A — LA.#7) and LA.#)— LY. #7), as is casily
checked. -
Let L*(.#) denote ./ equipped with its C*-norm. Then, via the identifications
above, we have Lo(.#) < L3.#) < LY. #) and we may regard the first space in cach
of the three inclusions as being dense in the sccond. It is easy to see too that
x" < v/ for x e L¥( #Yyand () < "¢ s when (€ L%.4). This of course, is
the usual case when .# is abelian, or more generally, when G defines  tracial
state on 7. '

DEFINITION 1.4, For (e, let {*e.4, be given by {x) = (xJ{, J),

x ..

PROPOSITION 1.5. For any €3, we have .

(M) g2 = '

(i) If S=xQ. xe.d. then (*=0_, .

giny (Pl ed#) =35,

Proof. (i) (®e€.¥f and so (%Y = I = (JL D) = U2

(i1) This is clear.

(i) If ¢ €. 4% then there is { €.# such that ¢@(x) = (xJJ JO). x &7
that is ¢ = 2. 73

More generally we can define a product hetween clements of 4,
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DermniTION 1.6. For n, { €, let ({n) be the element of .#. given by

({n)(x) = (xJ{, )
for x e.i.

Thus {2 = ({{), and (xQyQ) = W sy for x,y €e.4.

PROPOSITION 1.7. The map # X H — #, given by ({, n)— ({n) is a jointly
nerm continuous sesquilinear mapping (linear on the right) onto 4 .,.

Proof. The map is clearly sesquilinear. Let {, ', n, n" € #. Then, for x € .4,
()X — () = (I, Iy — (WG Tp) <

< (X =0, I+ (LI — 1) <

< IxBIE =Sl + G - all
from which joint norm centinuity follows. To see that the product mapping is
onto .4, , let ¢ €.4,. Then ¢ has a polar decomposition ¢ = wy where u €.
and ¥ €..7%. But then there is ¢ € # such that Y(x) = (x¢&, ), x €.4 and so
o(x) = (vug, £). Setting { = Ju¢ and n = J¢ gives ¢ = ({n). %,

Thus we have L) LY #) = L) and [ L*. #)* = L}(.#)* in egreement
with the case when Q is a tracial state on .#.

2. CONDITIONAL EXPECTATIONS

Let 4 be a von Neumann subalgebra of .#, and let L}(A") denote the
completion of " with respect to i|-il, and L") the completion of .4 with
respect to [+ il Then LY(A7) is a closed subspace of LY.#) & .4/, and L¥A) is a
ciosed subspace of LA(./Z) = A#. Let' P denote the orthogonal prolectxon of #
onto A°Q. Bearing in mind the various identifications, P is nothmg more than
the orthogonal prOJectlon of L(.#) onto L"(/V)

Suppose there is a conditional expectation e :.# —.4" with @ e = , where
()= (/Q, Q). Then PxQ = e(x)Q for x €.#.Indeed,fory 1", B

AP, 30) = (xQ,yQ) = (xQ, Q) = (e(1*¥)Q, Q) = (e(x)Q, yQ) -

giving PxQ = ¢(X)Q. Thus e is umque if it exists and P is the L? extension of
¢ LEL i) - L0 47). We wish to extend ¢ to LY.i7).
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DermxiTioN 2.1. Let 7 be a von Neumann subalgebra of .# and suppose
that there is a normal conditional expectation e :.# — A" with @-e = w. We
define E : LY(.4) —» LN(4/) by Ep = ¢-e, ¢ € L} (.4%).

Note that E is a well-defined contractive projection of LY(.#) into LY. #).
By [21], such an e, and hence E, will exist if and only if .47 is globally invariant
under the modular automorphism group induced by  on .#. Thus if ¢ exists

as above, then J commutes with P the orthogonal projection of # onto .{'Q
We shall need this fact in the next result.

ProrosiTiON 2.2, With the aotation above, we have
(i) E extends both e and P.

(ii)) Ep = ¢ for ¢ € L\(A").

(iii) E(JAAY) = THA).

Proof. (i) For any x,v €.4,
En () = odle(y)) = (e(3)Q2, JxQ) =
= (PyQ, JxQ) = (yQ, JPxQ) = (since J& —= PJ)
= (1R, Je(X)Q) = (1),
i, Ew, = w,,,. Furthermore, for any J €# and x €.#,
Ew(x) = ofe(x) = ((x)Q, J)) =

= (PxQ, JJ) = (xQ, JP]) = wpx),

ie. Ew; = wp,. Thus E L*(#) =e and E } L¥(#) = P.

(i) For given ¢ € LY(A") there is a sequence (),) in A" such that 0y =0
in fj-1, and so Ew, — E¢ in L' norm. But Ew, = W) = ©, for all n which
implies that Eo = ¢.

(iii) Let ¢ € LY(.#). Then there is a sequence (x,) in .# such that ¢ is
the ! limit of (wxn). Of course then Ea),,u — E¢ in ! too. But as above, wan =
= (o) with e(x,) €.47 for all n. It follows that E¢o € L}(A47). Thus E maps L¥.#)
onto LYA") by (it).  #
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We have the following commutative diagram:

M Ve
r
/ L) = sz)-\-
L) ‘ LY
E

The non-horizontal arrows are linear injections with dense ranges. The horizontal
arrows to the right are linear surjections and those to the left are their right inverses,
the inclusion injections.

3. NATURAL PROCESSES

It is convenient to discuss the notion of a natural process in the abstract
and then apply the results obtained to the particular set-up in Section 5. Natural
processes were introduced into non-commutative probability theory in [9] to give
uniqueness of Doob-Meyer decompositions of submartingales as in the classical
theory [18]. The formalism and results of [9], cast within the tracial theory, carry
over with minimal changes to the present possibly non-tracial context.

Let {#,:5 > 0} be a filtration of von Neumann subalgebras of .#; thus
Moo= M, < A for O € s < t. We shall suppose that for each + > O there is an
o-invariant normal conditional expectation'e,: /# — ., as in Section 2. Furthermore
we will suppose that the filtration is continuous; i.e.

M=\ M, fors >0

t>s

and

M= (U{H s < 1))’
for each ¢ > 0.

DeFixirion 3.1. An L' process is a family {X, :¢ > 0} with X, € LY(.#%)
fort = 0. An L' martingale is an L' process such.that EX, = X, forall0 < 5 < ¢.

Thus, by definition, a process means an “adapted process”. In an analogous
way we define L2 (& ) and L*®( = .#)-valued processes and martingales (using
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P,, the projection of #, onto .#.Q, and ¢,). Continuity of the filtration implics
continuity of the conditional expectations, as the next result shows.

PropasiTioN 3.2, The map s P, is strongly continuous on 3 and the
map s+ E_ is stroagly continvous on LN.#), s = 0.

Proof. The strong continuity of s — P, is proved in [7]. To establish the
strong continuity of s~ E let ¢ € LY(.7) and ¢ > 0. We have

.”E‘(/) - En(p'll < “Ex(p - Es(').\':!l + :'Es(!).\' - Eta).\':?l + j!EtU)x - Et‘.’ ‘1‘<~
< 2:(, - “'")3:.;1 + :E.s(').\' - E!(I).\':l < s+ 'Es‘(’).\ - Eco).\', 1

for suitable x € .#.

Bearing in mind the identifications of L%./#) and L*®(.#) with subspaces.of
L¥(.#Y)and the fact that £  and E, extend P, and P, respectively and that (< (..
for J € L¥.#) we can rcwrite the last term and estimate it by

.‘Es(').\' - -Et('):::bl = Psw:: - P,(l)‘\.‘ 1 S .:‘Ps(’)x - Pc('):f‘IS'

But we already know that P, is strongly continuous in s, so the result follows.
o s =

The following definition of naturalness is the obvious rewording of that given

0 [9]. which in turn was a reformulation of that of [18].
ki

DrriximioNx 3.3, An LY process {A,:7 > 0} is namral if for any ¢t > 0
and any sequence (c,) of finite subdivisions of [0, 1] with mesh ¢, - 0 as 7 — oo
we have

(3.1) VEsdy, — AN > 40)
7 J i+l 7

B

as n — oc for each » €.#. Here ¢, = {s7}.

Clearly the set of natural L* processes forms a linear space. We also cbserve
that, as in [9)]. it fellows that 4, = 0 because if y €.#; then the left hand side
of 3.1 is just (4, — 4,)»). Furthermore it is clear from 3.1 that if {Z,:7 » 0}
is a natural L' martingale then Z, = 0 for all # > 0, and hence, by continuity.
for all ¢ » 0.

For any Borel measure v on R< . by a process in LI (R™ , v, L1(.4)) we meun
an element f of LA (R, v, L).#)) such that f(s) € LY.#,) v-almost evervwhere,
Thus if fis a process in LLAR~, v, L. &)}, then ‘

7

I &f(s) dr(s)

9 - 9, ¢

fdvy

defines an L process.
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THEOREM 3.4. For any process fe€ Ll (R*, v, L\(.#)), the L' process

A, = Sf(s) dv(s), t = 0, is natural.
0
Proof. Let t >0 and o,={s7} with O=sf <s]<...<Sfun=1 be
a sequence of subdivisions of {0, f] with mesh o, - 0 as n — oo. Then for any
ye,
t
n w —ANQ) = n —A ) )= p '
% Egdy, A0 = % Uy, ~Agles001= 09 019
¢
where 2,() = ¥ f() (e itgr 1 (5):
7 J PR ST
Now by Proposition 3.2, we see that z(s) — f(s)e/y)) as # - oo for each
s €(0,1]. But f(s)(e,(») = Ef(s)}y) = fls)(y) v-ae. and so «,-) converges to
JG-)y) v-a.e. on (0,¢t] as n - oco. Furthermore

lo, () < [yl fGs)l
which is v-integrable over (0, ¢] and so we deduce that

t 4 t

lim S 1) dv(s) = Sf(S)(y) dys) = (Sf dv) 0) = 4L). 7
0 0 '

n

This theorem is the direct analogue of Theorem 2.6 in [9], and will be called
upon in Section 5. '

4. DOOB-MEYER DECOMPOSITIONS OVER THE C.AR.

We briefly recall the quasi-free fermion quantum stochastic calculus of [4].
We denote by U the C.A.R. C*-algebra over L2(R*) in the gauge invariant quasi-
-frec representation determined by the state

o]

oG ()b(g)) = Sf(s) 2) p(s)ds
0

where 0 < p < 1 a.e.and f, g € L3(R+). A is realised concretely as operators on 5,
the tensor product of two copies of the antisymmetric Fock space over L3 (R*).
Then Q = Q, ® Q,, where Q, is the Fock vacuum vector, is cyclic and separating
for " on .
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Let 9, be the C#-algebra generated by the operators

{o(f) 1 f € LAR*), suppf < [0,1]}

for t > 0, and let #, = A,Q. Then {A}’ : 7 > 0} is a continuous filtration of on
Neumann subalgebras of %, and {#, : ¢ > 0} is afiltration of Hilbert subspaces
of . These filtrations determine a notion of adaptedness; i.e. the notion of process.
Furthermore, each ;" is globally invariant under the automorphism group induced
by o on A’ . Hence there exist unique normal o-invariant conditional expectations
e, M =, t =0 as in Section 2.

Let b = () and b, = by ), ¢ > 0. Then {bf :1 >0} and {#, :
1t » 0) are W-valued martingales. If 4 = Y K15, -“saﬂhi is a simple 9UQ-valued

i

t ?

process, the stochastic imtegrals!dbﬁ’/z(s) andebbh(s) are defined to be Y, (bﬁ.i_r‘1 -
0 0 . ’

— b’f;i)h,- and Y, (b‘ﬂ, L bgj)h,- respectively. These integrals are orthogonal in

# and satisfy the isometry relations

I3 ’ "t

2
- S WK1 — p)ds

!I S dbEh(s)

and
z

t
“ Sdbéh(s) F o S “hiEpds.
(4]

This allows one to define the corresponding integrals for a wider class of processes;

1 4
Sdb‘:‘;f for & e LR+, (1 — p(s))ds, #)
2

and

4
Sdi)q for € LL(R+, p(s)ds, )
g
where 7 > 0. These spaces of integrands are obtained by completions of the simple

JF-valved processes with respect to the norms determined by the right hand sides
of the isometry relations. The isometry rclations remain valid for such &and 3.
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Moreover, these integrals are centered J#-valued martingales. For further details
see [4). The converse is the martingale representation theorem [22].

THEOREM 4.1. Every #-valued martingale {{, : t > 0} can be written uniquely
as :

} t t
[, = a0 + Sdb*;-‘ + Sdlm
)

0

for o € C, and processes ¢ € LL, (R*, (1 — p(s))ds, H) and n € LL (R, p(s)ds, #).

We wish to discuss the formulation of a Doob-Meyer decomposition for the
“square of {,”’. We have seen, in Section 1, that for { € #°, |{|* defines an element
of LY{(N'"), in analogy whit the tracial theory of non-commutative integration.

It is within this framework that the Doob-Meyer decomposition can be satisfactorily
formulated.

THEOREM 4.2. For any H#-valued martingale {{,:t > 0} there is an L}
martingale {Z, :t > 0} and a positive increasing L* process {A,:t > 0} null at
t = 0 such that '

102 = Z; + A4,

for t = 0. Moreover this decomposition is unique.

Proof. Existence. By Theorem 4.1, we can write {, uniquely as
1 t
{,=al + Sdb*é + Sdbn
0 ]

fort > 0. Fix¢ » 0 and let (#,) and (g,) be sequences of simple U-valued processes
such that 7,Q — £ in L}, (R+, (1 — p(s))ds, #) and g,2 — 5 in Li(R*, p(s)ds, o).
Then, it follows from the isometry relations, that

t t

¢, = lim( w0 + gdb*h,,Q + Sdbg,,Q).
0 0
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Write the right hand side as xQ + H,Q + G,Qand observe that i, G, &,
By Proposition 1.7,

(% = L:-limaQ + HQ + G, Q% =
= [Mim(zl + H, + G 21 + H, + Q)Q =
= Lllim(z*al + 2 A + GHQ + 9°(H, + G,)Q + H¥G,Q + GIH,OQ +
+ HYH.Q + GG, Q).

By [15, 16] we can write

t
HEH,Q = F1Q + S/'l.’f/rn(l — o(s))ds
4]

and

¢ .
GIG,2 = Fya + Sg:g,,p(s)dssz
¢
where F,;Q and F'Q are stochastic integrals. Thus, we can write (x1 + H, + ,)*(a1 +

+ H, + G)Q as Z, + A, where Z, is equal to «,2Q plus an 5#-valued stochastic
integral, and

t t
A, = Sh,*:h.,sz(n — p()ds + Sg:gnszp(s)ds.
14} O

Clearly 4, €9,0Q.
Now as an element of LYA"), A4, is given by

I3 £
Ax) = S (@, Th3h, Q)1 — p)ds + S @@, Jeiz,Q)pds =
0

0

t 4
- S(.\'JIIWQ, Jh )1 — p)ds + S(th_.,Q, Jg,0)pds
[4] 1)

for x €.



QUANTUM DOOB-MEYER DECOMPOSITIONS 145

But then it is easily verified, by repeated application of Schwarz, inequality,
that

t t
L\im A, = S(-Jf, JE(1 — p)ds + S(-Ji}, Jnpds = A4,.
0 b

We note that 4, € L}(]").

It follows that Z, converges in L}(U'') to Z, = [{,)* — 4,. Now, for0 < 5 < t,
EZ, is obtained from Z, by replacing the approximating sequences (/,) and (g,)
by (to »it,) and (xp »8), Tespectively. Thus, repeating the argument above, we
obtain L™-limE,Z, = [{|* — A,. Since E; is LY() continuous, we deduce that
EZ, ={J*— A,;ie. {Z, :t > 0} is an L' martingale. Clearly A4, is positive
foreach 1 > 0, A, = 0, and 4, > A, in LYA"") for 0 < 5 < ¢. This establishes the
existence of a Doob-Meyer decomposition for {{{,*:¢ > 0}.

We note immediately that, since

t
A, =\ (-JE, IO — p)ds + S(-Jn,'Jn)pds
(V]

S ™ ) o

then, by Theorem 3.4, {A, :t > 0} is natural. Subject to being natural, the increasing
process in the Doob-Meyer decomposition of {{,*>:¢ > 0} has to be unique (see
the proof of uniqueness in Theorem 5.2 below). However something stronger holds
in this context; subject to being null at 0, the increasing process in the Doob-Meyer
decomposition has to be unique. '

Unigueness. The proof of the uniqueness of the decomposition proceeds as
for that in [9]. We begin by noting that there is a o-strongly dense set of elements
3 €9’ such that s~ ey) is continuous as a map from R+ into L*(A""). Indeed
such a set is furnished by the polynomial algebra generated by {6*(f), b(g) :
:f, g € LA(R*)}. We claim that for such y and any increasing L' process {4, :
;¢ > 0} null at 7 = 0 we have

)
@ Y, (A, = Aple i) = A

as n — 0o, where 0 =5, <53 < ... < Sgmy+: = F 18 a subdivision, ¢,, of [0, 1]
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with mesh 6, > 0 as ® — co. We have, for ¢ > 0 and sufficiently large # € N,

i () o
’ A — 2,1 (AS;’+1 — A *i,;')(esf'{'l‘)) i =

‘ NG} Ie(n) ]
= A — 430) — A — A )e ()= since Ay = 0
i eZ]. ( Sta1 -‘jj)(}) EZ‘ ( si+1 5 X -","(})) l 9
l k() |
Q . N o 4o . E
i ’z?l (A \1; AS;I)(es;]-i-l(J) CD.;.‘\}A))I < since E‘i’lA'\i-f N A"E -1
and E\ Av = A.\‘~5
i} 13 13
;(l7) . . ; '’
<Y g —Aallen (1) — e <
i1 Si+1 °f i+1 '
<¥ 4, L Au'lye = by the uniform continuity
A i+ e

of s+ ey)on [0, 1],
o= 8 N " —_— " =
=4 §il uAS'!?_H As:_lhl

=& E (AA;.'+1 - A‘,;z)(l) = since A"§'+1 e .43,‘_, i$ positive.

= hAx(l) = 8 41 ds

and we have proved the claim.

To prove the theorem, suppose that [[* =Z/ + 4, =2, + A,, t > 0 are
Doob-Meyer decompositions of ({, 2. Then, by linearity, A — A, =2Z,- - Z/]
satisfies Equation 4.1. But for all i, (ZS‘__;1 - Zsi)(es‘,(y)) =0, for all y e A", for
any L* martingale {Z,:s > 0}. Hence (Z — Z)(») =0, for ¢ > 0. Since this
holds for a ¢-strongly dense set of 3 € %", we deduce that Z, = Z/, ¢ > 0. The
result follows. e

In the terminology of {9], we would say that (A", &, (A;")) is tempered, and
the process {4, :¢ > 0} is nearly natural.

If p = 1/2, then « is a tracial state on A"’ and A"’ is the hyperfinite II;
factor {11]. Let ¥(f) = 5%(f) + b(f), f € L3R*), f real, and let ¥ and %,,t = O,
be the von Neumann algebras generated respectively, by the operators {¥(f):
:f € LA(R*), freal) and {¥(f):feL¥R~) f real, suppf = {0,1]} restricted to0
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the, cyclic subspace .# generated by Q. Then 4 is naturally isomorphic to the
antisymmetric Fock space over L%R*). Moreover, under this isomorphism, ¢,
‘W,, > 0, are unitarily equivalent to the corresponding algebras of [3], and
one¢ can see that the Ito- Chfford theory of [3] is subsumed by the analysxs given
here. '

5. DOOB-MEYER DECOMPOSITIONS OVER THE C.C.R.

We consider the representation of the C.C.R, over L*R+) given by the gauge
invariant quasi-free state o with two point function

(@ (Na(g)) = Sf(s)E(T)r(s)ds
0

where t € L2 (R*), T > 0 a.c. and f and g belong to the domain of 12 as a
multiplication operator on LR+).

The creation and annihilation operators are given concretely as unbounded
operators on #, the tensor product of two copies of the symmetric Fock space
over L} (R+).

For f € D(z"/?), we define the Weyl operator W(f) = exp(a*(f) — a(f))~. Then
W(f) is unitary and satisfies W(/)W(g) = e*W(f + g) with

o0

= Im S f(9)g(s)ds, f. g e D(r'/2).

[}

Denote by ¥ the linear span of {W(f):f e L*R+), suppf compact} and let o/
be the C*-algebra generated by ¥ while &, is that C*-subalgebra of o generated
by {W(f):f e L*R*), suppf < [0,7]}, £ > 0. Then {«': t > 0} is a continuous
filtration of von Neumann- subalgebras of &/'’. Moreover Q = Q, ® Q,, where
Q, is the Fock vacuum vector, is cyclic and separating for &/’* on 3. We also note
that because of the'Weyl C.C.R., ¥ is a »-subalgebra strongly dense in &'’ . Further-
more, ' Q is dense in .
14
Just as before, one can define stochastic integrals S da*& and Sdan for any
1]
processes & EL,Z‘,C(R+ (I + (s))ds, ) and i € LI (R*, 7(s)ds, 5#). These are
centred #°-valued martingales and satisfy the isometry relation

4

1
oot
(4] ¢

- S lElR(L + ©)ds + SHHH% ds
0 0
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for any ¢ > 0. See [4] for further details. The following representation thcorem
i1s given in [23].

THEOREM 5.1. For any #- valued martingale {l,: t = 0} there exist unigue
a.cC and processes Ee L, (R, (1 + t(s))ds, #) and n < L,o_ R+ , T($)ds, H#) such that

2
& =3 + Sda“g-r- dan
0

[SLE TN

forallt >0

We can now state and prove the main result of this section.

THEOREM 5.2. Let {l, 1t > 0} be an #-valued martingale. Then t/iere is
an L* martingale {Z,:t = 0} and a natural increasing L* process {4, :t 2 0}
mdl at t =0 such that ", = Z, + A,, t > 0. Moreover, such a deu,nwmu ion
is unigue.

¢t 4
Proof. Existence. Write S =3 + Sd &+ gdm] as given by Theorom S.1.
0 i

Then, as in [23], we approximate ¢ and 4 by simple #7°Q valued processes (£,2)
and (g,Q), respectively, where 1,2 — ¢ in L (R, (1 + t(s)ds, #) and g 82—y
in L} (R*, 1(s)ds, #). Then

. ? t
: _ "
oot = Ltlim | 2@ + Sda’:‘ 2+ Sda 3’,10;
' l
Q0 i}

as 'in Section 4.
Write the right hand side as [xQ + H,Q + G,Q2. This is the functional

"2 x> Q2 + I{uQ -+ GHQ-E(\‘) =

= (WJ@Q + HQ + G,0), JaQ + HQ + G,Q) =

= (@R + H,Q + G,Q), JxJxQ + HQ + G,O)
= (@1 + Hf + G¥x1 + H, + G,)Q. JxJQ) =

(note that these manipulations with the unbounded operators H,, G, wie justifiod)

):

b

I4 4
= (az’-’o:Q + FQ+ F.0 + S WL Q(1 + t)ds + Sg;{ Q1 ds, JxJQ2

[V} Y
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by {16], where F, and F, are stochastic integrals,

t 1
- (\9 J(oc*aQ,.r«-l—_ F.Q + FIQ.+ S.lz:}‘lz,,Q(l +1)ds S.g,’,"g,,Q‘c ds)).
; : 0

0
Thus|eQ + H,Q + G,2> = Z, + A,,whéreZ, = a*2Q + F,Q + F,Q and

1 2
A, = Sh;‘fh,,Q(l 4+ 1)ds + Sg:‘g,,glt ds.
v

0

s
o

We see, as in Section 4, that

4 t
L-lim A, = S(-J&_‘, JEM1 +:1)ds + S'(E'Jn, Jprds = A,,

0 0

and that Z, = |(,|®* — A, determines an L' martingale.

Evidently, A, is an L! process, increasing, and with 4, = 0. Furthermore
by Theorem 3.4, it follows that {4, :z > 0} is natural, and the existence part of
the proof is complete.

Uniqueness. Suppose that {{,? = Z, + A4, = Z] + A; are two possible Doob-
-Meyer decompositions with each increasing process natural. Then Z, — Z; being
the difference of two natural processes will itself be natural. But it is also a martihgale
and as we remarked in Section 3 a natural L! martingale is identically zéro. So
A, = A; and the uniqueness of the decomposition follows.

As an example of Theorem 5.2, consider the exponential martingales discussed
in [13, 16, 23). For t > 0, and f € L{,((R*), put M, = x()W(f) where f; = fi 4

t

and (1) = exp (%S(l + 21(s))[f(s)12ds). Then {M, :t > 0} isa ¥ -valued martin-
0

gale with M*M, = »(t)*1 forallz > 0. Thus

MM, =1 + Gt — 11

gives an L®-valued Doob-Meyer decomposition. To see that this agrees with that
constructed in Theorem 5.2, we observe that M, and M,Q agree as elements of L%, and
M}*M,and |\ M, Q| agrec as elements of L1 .
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Now, M Q has the representation

t t
MQ =Q +\da*(s)MQ — Sdaﬂs‘) MQ
@

]
for t > 0. Hence, according to Theorem 5.2,

MQE=Z +4,

where

]
Sl ™

GIFOMQ, JAHMO( + t(s))ds + ((-Jf(s")MSQ, JS)M Q)x(s)ds =
J

¢ t
= S(Q Q) £l + t)ds + S(-Q, Q) [fitdr ds =
[H]

0

- Sff.‘-‘xﬂ(l + 20 ds @yt =

0
= Ge(1) — 1)(Qi%, =0

But also {M,Q* = x(t)*Q? and so Z, =M, Q% — A, = iQ}®.
Thus, the L-decomposition given by Theorem 5.2 is

IM.Q2 = Q2 + ((1)* - 1)iQ, ¢ >{0.

Since 122 = 1 in L', we recover the formula for M*M, given above.

6. RANDOM INNER PRODUCTS

The existence of a unique increasing process in the Doob-Meyer decompo-
sition of {{{,?:¢ > O} allows us to define the random inner product between L2
martingales, and leads to a characterisation of stochastic integrals.

The analysis here can be carried out for both the fermion (C.A.R.) and the
boson (C.C.R.) theories, but we will only prescnt the details for the former case
and simply comment on the minor modifications required to give the analogous
results for the boson case.
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DEFINITION 6.1. Denote by 93 the collection of centered L® martingales;
i.e. those L* martingales {{,} for which ({,, Q) = 0.

Thus, an L:-martingale {{,} belongs to Mj if and only if Py, = {, =0.
It will be convenient to sometimes denote a martingale {{, : ¢ > 0} simply by {.

DEFINITION 6.2. The random inner product of ¢’ and ¢’ in M is the L1-process

l_ t
(6.1) SYOR S(-J&'. JENL — p)ds + S('J'-’" " ds
0 0
for t = 0, where

t
{ = Sdb*é' + dby’, for t >0,
0

and (/' is defined similarly.

Evidently (., -) is sesquilinear (linear in the second position). By Schwarz’
inequality and the isometry relations, it is easy to see that if ({;) and ({;)) are se-
quences in MWE such that (L)), — ¢/ and (¢))), = ¢’ in L2 for a given >0, then
s Cde =L, 7 in LY as n,m — oo.

If we denote by {{) the unique (natural) increasing process in the Doob-
-Meyer decomposition of {2, {{,} € M3, then clearly <¢> = (¢, ). The random
inner product {{’, {"’)> can thus be expressed in terms of the quadratic variation
process <-» by polarisation. In [6, 9], the random inner product was called the
bracket process. '

Given ', (" € M3, ', ¢’> defines a c-additive Ll-valued Borel measure
on any bounded interval of R+ by

62  Ev (U, Us() = S(-Jé’ L JE1 — p)ds + &(-Jn', Ji"yp ds
£

E

for any Borel set E < [0, t]. To see that this is o-additive note that it is clearly
additive because the right hand side of Equation 6.2 is additive. Moreover it is
clearly weakly countably additive. The result follows from a theorem of Pettis.

It is clear from Equation 6.2 that this measure is absolutely continuous with
respect to Lebesgue measure. We also observe that this measure has finite variation
on any bounded interval [0, t]. Indeed, if {{{', {'"D|(E) denotes the variation of a
Borel set E < [0, ¢] then, by definition, we have, for { € M2

K& OIE) = sup Y IKE Oglh
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where the supremum is taken over all finite partitions {E;} of E, each E; a Borel
set. Since (¢, O is LM.#)~-valued and the norm is additive on L}(.#)* then,

L& DUE) = KL D

which is finite. The result for {{', {'">'(E) follows by polarisation.

" One can now construct Ll-valued integrals for suitable L®-valued integrands
via the bilinear mapping L® X L' —» [! given by (x, y) — x), where the juxta-
positioning denotes the :module action of . on LY.#) discussed in Section 1.
The admissible in‘tegrands are given as suitable limits of L*-valued step functions.
We are only interested here in adapted integrands and because of the particular
structure we have, we will be able to define the integral for certain strong limits
of step-functions.

Fix ¢t > 0, and let »(5) be an elementary L®-valued process on [0, r]: thus »
has the form y(s) = zy, N,)((s), forO0<e<d<grand ze¥N) . Thenforl , [ M;,

we define
/
Sy(s) AL L) = KL D o) =
b )
d d
={{,I(.2) = S(-ZJ;“', JEN(1 — p)ds -f- S(-z]n', Ji')pds =
;’. I3
=\ I = s S(-yfri',ﬁi”)p s
(1} 3]
where

¢ =S db=¢ + dby’, for t 2 0,
0
'
and (" is defined similarly. By linearity, S y(s)d<{’, "), is similarly defined for

[
any simple L®-valued process y on [0, t]; i.e. any finite sum of elementary processcs.
The class of integrands to which we wish to extend the integral are given by the
following definition.

DerFiNtTION 6.3. Let 2[0, t] denote the linear space of processes y : [0, ] —
~» L such that there is a sequence of simpic L*-valued processes (y,) satisfying
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I¥e( Il € M (Lebesgue)a.e. on {0, 11, for all », for some M > 0, and y,(-) converges
strongly to 3(-) (Lebesgue) a.e. on [0, t] as n — co. . We say that () defines y.

Evidently, if y € 2[0, t], then there is M > 0 such that [|y(-)]] € M Lebesgue
a.e. on [0, 1].

LEMMA 6.4. Let ¢ € L¥[0, 1], (I — p)ds, #) and y € LX(0, 1], pds, #). Then
for any y € Z[0, t] we have y¢ € LX([0, t], (1 — p)ds, ) and yn € L*¥({0, t], pds, J).

Proof. Let (y,) be a defining sequence for y in £[0,t]. Then y¢ = lxm),,f
(Lebesgue) almost everywhere in 2 atid'so 1< is a measurable process Furthermorc,
for some M > 0, |;y,¢l| < M||¢]land M¢é € LX{0, 1], (1 — p)ds, #). By the dominated
convergence theorem we deduce that y& € L¥([0, 1], (1 — p)ds, #) and 3.& — 3¢
in L¥([0, 11, (1 — p)ds, #). The argument for yx is virtually identical. %,

PROPOSITION 6.5, Let ¥ GJ[O 1] and let ( 1)) be a defining sequcnce for y
Then for any (', (" € ME -

vavr ot e U PR . g AT .
Lim Sy,,(s) &L, U5 = S(-yJ'-",J;:"'xl — p)ds + S(m’ , I,

0 0 Lo 0

Proof. First we note that, by Lemma 6.4, the integrals on the right hand
side are well defined for any y € Z[0, 1]. -
Now for any x € L* with |jx]] € 1, we have

I Sy,.cv) AT, U7 ) — S (e, I = pyds — S(nyn’ , Jn")pds ] -
[1] 0 0
- S (0 — WIE, JEYL — p)ds + S(x(y,, — W), Inpds | <
0 0
< S 1w — WIEN ITE — p)ds + S 10w — )| Wi lods,
[} © 0

But, by the remark made in the proof of Lemma 6.4, y,J& — yJE' in L¥([0, 1],
Q - p)ds, #) and y,Jn’ = yJy' in L¥([0, t], pds, #) and so by an application of
Schwarz’ inequality we see that the expression above is arbitrarily small for all suffi-
ciently large n. %
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e 1

DeriNITION 6.6. Let y € Z{0, t] with defining sequence (y,) and let ', ("' &
€M%, We define the integral ‘

s
Sy(s) &L, 0,
0

t
to be L’-limS y) d{{', €'Y, . Thus by Proposition 6.5, we have

0

? ? 4
S)‘(S) &<, " = S (- 3JE, JENL - p)ds + S(’)’Jn’ , Iy’ )pds.
) ) ®

We now wish to construct stochastic integrals with respect to any martin-
gale in M3 .

DeriNITION 6.7. For any elementary process on [0, 1] say 3 = e, ay? and
t

{ e M we define the stochastic integral S ydS by

0

S 4L = =Ly — 2.

0

S
If{ = S(db"é + dby), then by the construction of these integrals, we have
h

¢ d d
Sydc - :S (db%E + dbr) = S (@bBE)E + bR =

since = € W,’, and where § is the parity automorphism,

- S(db*ﬁ()’)é + dbB(y)n).
0
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t

The stochastic integrals yd{ for any simple process y on [0, t] is defined
[

by linearity and, as above; obeys

t

t
Sydc - S @BB)E + dbBO).
Q 1]
PROPOSITION 6.8. Let y € P[0, t] with defining sequence (y,) and let { € M3
with

e

S(db*‘!f + dbyp).

Then

L‘-’-limSyndc - S @b*BO)E + dbB(Y)n).
0 0 .

Proof. Since f is spatial and commutes with the conditional expectations e,
s = 0 (see [3]), it is clear that B(y) € 2[0, ] with defining sequence B(y,). Thus
P(WE and B(y)n are processes and by Lemma 6.4, B(3,)E — B(¥)¢ in L3O, ¢], (1 —

— p)ds, #) and B(y,)n — By in LX(O, t], pds, #°). Hence by the isometry relations
we have
t t

SJ'.,dC - S(db*ﬁ(y.,)é + dbB(y,)n) —

0 [}

= S (@b*B0)E + dbBG)

in # as n — oo.

S .

This result allows us to make the following definition.
t
DEFINITION 6.9. For { € M2 and y € 20, t], the stochastic integrals yd{
(]

is defined to be

t

4
S yd{ = L2lim S yndé

0
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where (3,) is any defining sequence for y. Proposition 6.8 gives us an explicit expres-
sion for this limit.

Recall that for any vector € #, there is x € C and processes < in L (R*
(1 — p)ds, #) and 5 = L%R*, pds, #) such that™” '

!fﬂ

= 50+ Sdb dbn' '
[

moreover x, ¢, and # are Unique [22).

DerINITION 6.10. With the notation as above, define the map ~: # — % by
ot
el =F 4 S (db*JE + dbJi).
Q

We note that since J commutes with the projections P, s > 0, both JZ and
Ji are processes. and since J is a bounded (conjugate-linear) operator J¢ o
e LYR* (1 — p)ds. "} and Jy € L3R+, pds, #) and hence ¢ is wel-defined.
Using the isometry relations, it is easy to see that ~-is a conjugate-linear isometry
on # . Obviously (7)™ = { for ali { e#. Thus ~ is a conjugation on %'

I { =20+ Sdb""é -+ Sdb% t > 0, 1s an L*-martingale then {2 20

Q 4]
< oz . .
is an L2 martingale given by 5Q + S(db’*]é + dbJy), t > 0. Since {{,} e MG > « ==
[Y

= 0 it is clear that [ e Mj < T e M.

DEFINITION 6.11. Let 2 denote the linear space of processes v : R+ — L
such that y | [0, t] € #{0, ¢] for all ¢+ = 0.

THEOREM 6.12. For any y € # and wartingales {', " e M and t 3 0,

we have
6/0) SN & =<(Syd¢’) g>
t

14
where Syd'{’ denotes the L:-martingale { S ydl' :t > 0}.
]
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Piroof. Since y € 2, it follows from Proposition 6.8 that for any r > 0,

Syd&'=8 @b B0)E + bR
0

which defines an L? martingale in 9

. Thus by definition of the random inne
product, Equation 6.1,

t

(Vo) ey r=feame s —pds e\ Coommpas
¢ P . - .

)

-

" On the other hand, by Proposition 6.5, we have

H { t

S/ﬁ(.v)(s) AT, () = S('- B, JEXL — p)ds + S B0, I )p ds.
¢

0 0

N

t
The following result gives a characterisation of the process {SydC itz 0}
: 6

THI OREM 6.13. Let ye 9’ andC emz(, T/ien{ vd{" o O} is the bzmique

Ok_,‘\ -

element {, sav, of MG which satisfies

P

(6.3) NP &8 0, = G

0
for all t = 0 and for every ("' € M.

Proof. By Theorem 6.12, ¢ satisfies the equation. Convarsely, suppose that y

in M; also satisfies Equation 6.3 for all ¢ > 0 and I € M. Then we get

K&, o, = Y, §'

for all ¢ = 0 and all {'" e M}. In particular, we may take " = (J — y)” to obtain
L= €—=17">e=0 for all £>0. Thus <({— )7, ({— )7 >,1) =0 for.
all ¢ = 0, and it follows that this can only be true if (5 — )"

is the zero martingale .
Hence ¢ = y and the proot is complete.
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t
THEOREM 6.14. For given ' € M5 and y c Z, {S y(s)dii: t =0 } is the
[}

unique element {, say, of MG satisfying

t

(6.4) (0. 8 = Sm)(s) &7, 51

§
Jor all 1 = 0O and for eny " e M.
Proof. For any (" e MZ and 7 > 0,
&0 =M = by Definition 1.6
=Z1) + " O,(0) =
where {Z, :7 > 0} is an L" martingale, by (polarising) Theorem 4.2,
= Z1) + <L, D) = O = since Zy = 0

12

= Yse a0 = py s + | o spomseds
[ 8

t

by definition of the random inner product, since {, = R (@80 + ABB(MY)

=S

for r = 0. Hence

14

(G ) = S(ﬂ(’y)i:", 1 — p)ds - S(ﬂ(y)n', §"ypds =
i)

]

Sﬁ(l s) A<, 73 01)
3]

for all.z = 0.
if y € M3 also satisfies Equation 6.9, then {(, — 7,. {;") = 0 for every (" & Wi}
and every t > 0. Taking "' = { — 7 gives { = 7 and the uniqueness is proved. 7

Suppose that . (" € M3 . Then trivial modifications to the proof cf Prope-
sition 6.5 vield the existence of
2

Sm) A, Ty

1]
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H
for t+ > 0, for any x,y € 2 (as the L limit of Sx,,(s) KT, U8 as n - oo,

. [}
k = oo, where (x,) and (y,) are defining sequences for x and y respectively).
Moreover, we have

13

Sxm &, U5y = S(y(s)* X(STE(S), JE S — p(s))ds +

(]

+ \ () - x(5)In'(s), In""(s))p(s)ds =

S

t !
- S (-2, 3IEY(L = p) ds + S( X, v )pds
0 0
~forallz>0.
We use this in proving a version of the Kunita-Watanabe Inequality.

THEOREM 6.15. Let (', (" e MG, and let x,y € P. Then, for any u,v € L™
and t 2 0,

4

Sx(s) AL, 07> () (o)

0

2
<

< S X6 &0, O ) Sy(s) & EO 0 ).
Proof. By the remarks above

t

S X6) 4T T ()

2

t N1
2
= S(_ux].ﬁ', opJENL — p)ds + S(ux.h;’, typJpV)pds| <
0 ) 0

t ! .
< (S lxJE || ey & (1 — p)ds + S huxJn' | 1ch;;"iipds)“ <
[}

0
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r

‘ ) Ve , L2 4
< {( g 2 = pids) (S e p)ds)
(1]

o
4 ' . ¢
) ] 172 ) L2y2
+ (S »M.n‘Jl;’_des) (S ey’ _des) } <
0 1]
! 14
< (S e JENEA — puds + S .;u.\'Ji]'“?pds) b4
0 0

¢ s
e (S wJE A1 - pyds + S hz:y];i”“‘-’pds) =
(1] £
using (ab + edy < (¢* + *)b* + d°) for a,b.¢,d =R
= (S x(s) d{, -:'>S.\‘(s)=3’(u*u))(

[t

1(s) &L, -:”>s.v(s')*(l:’:“")' . &z

Sl )

In analogy with classical probability thebry, we define the mean or expectation
of xe L™ by o(x). This can be written as o(x) = (x2, Q) = o (1). Similariy,
the expectation of { € L2 is defined as (. Q). This can be written as (I, Q) = (Q, J )=
= wy(1). Furthermore, w,(1) = o 1) if { = xQ2. The expectation is thus simply
evaluation at 1 via the embeddings of L™ and L? into L = LP. It is therefore
natural to define the expectation of an element x € L! to be w(1). As we saw st
the begining of the proof of Theorem 6.14, for ', {'" € L2, the expectation of the
product ({'C) is given by ({'I)(1) = (JI, J7) = (£, ). Thus Theorem 6.14
can be considered to be an equality of expectations, and, by setting ¥ = ¢ =1
in Theorem 6.15 we obtain an inequality involving expectations. :

The next result is along similar lines.

vr o wrs

CORCLLARY 6.16. For any ', " e MG and x,y & P,

i( Sxf‘s)d:; S;»-(s) d:g')a,) "<
i (]

¢

<( \ o e, 7 >,ﬁ<.\-)r,s>=r=<1>) ( s ac Z‘”>J%y)mfm)
0

o
2]

Jor all v > 0.
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Proof. Exactly as in the proof of Theorem 6.14, we see that

(Sx(s)dc; S y(s)dc;')a) - Sﬁ(x)(S) &, T3 BOYS Q).
The result now follows from Theorem 6.15.

The changes to be made for the boson case are quite trivial; b*, b are replaced
by a* and a, while 1 — p, p are replaced by 1 4+ 7 and 7, W by &/ and f, the
parity automorphism, is simply left out, i.e. is replaced by the identity automorphism.
Apart from the obvious changes the definitions and results are identical to those
presented above.

7. STOPPING

We will use the results of the last section to obtain a characterisation of stopped
martingales. First we require the following observation.

LeEMMA 7.1. 2 contains the set of bounded L™-valued increasing processes.
Proof. Let y : R+ - L™ be a bounded increasing process. Clearly we may
assume that 3(0) = 0. Fort > 0,let z, = inf y(s) — sup y(s). Then
s> P
7, 202 £ 0 :PQ 20«
since Q is separating

= (z1°Q, z}°Q) = (2,2, Q) = inf y(s) — sup 7(s) # 0
s>t st

where y(s) = (3(5)Q, 2) for s € R+. But y is a bounded increasing function and
so it follows that z, = 0 except possibly for at most a countable number of values
of s € R+. Hence s — y(s) is Lebesgue a.e. strongly continuous on R+.

n-1
Now for any ¢t > 0, put y, = Yy y(s,.)z[s sy where s; = it/n. Then (y,) is
b i i
a defining sequence for y 1[0, ] and so y € 2.

DermiTION 7.2. A stopping time T is a projection-valued increasing process
{p,:1 >0} with p,=0 and sup p, = 1.
t

For any martingale { in M3, the corresponding stopped martingale is the

t
process {S gdl, ¢t > 0} which we denote by {,.., where ¢, =1 —p,,s eR*.
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For ', eWt), the stopped L'-process <{'.('">... is the process
4

{Sq,d(g,, Dot 0}.
Y

The motivation for these definitions is given in [2, 8]. By Lemma 7.1, 5 &> g,
belongs to & and so the integrals above are well detined according to the discussion
of Section 6. Furthermore, we can write these explicitly: (with the obvious notation)

Sdb*/x(q) () + Sdm/:(qgn(s).
0

0

t >0, and

O ek ) = S(-qs (s), FES)A — p)ds +

o
4
x S( - g 0/(S), T (Dp(e)ds.
1]
Evidently J... €9;.
As in Section & we will only write out the fermion theory. The usual obvious
changes immediately give the corresponding boson formulae.
The following symmetry follows directly from the definition of the random
inner product as an integral.

Proeosrriox 7.3. Let ', (" e ME. Then for any stopping time r, we have
LG 0D =L 000 =XT, 000
Proof. Note that
(- IB(q,)<'(5), JE'(5)) = (- IB(GIIP(g.)e"(5), IE'(5)) =
= (- JB(g)E'(s), TB(gIE"(5)) = (- JE'(s5), JB(g.)<""(s))
with a similar equation for n replacing &. The result follows.
A characterisation of the stopped martingale £, ... is given in the next theorem.
THEOREM 7.4. Let (' €M and let T = {p,:t > 0} be a stopping time.
Then {... is the unique element of M3 satisfying
an e =G D
Jor all " e MG, where B(z) is the stopping time {f(p,) : t > 0.
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Proof. The left hand side of 7.1 is given by

< 0 pg i) = S('B(qs)ﬁ’(S), JE(sHA — pls))ds +
0

+ S (- B (s), J(s))p(s)ds
0

for ¢ > 0. But the right hand side of this equation is precisely that of Equation 7.1

at

t. Thus {’.. does indeed satisfy Equation 7.1.
If y € M also satisfies Equation 7.1 forall {”” e MZ, then (/.. — )™, "> =0

forall{’" e M; and as in the proof of Theorem 6.13, we deduce that y = (...

[

10.

11.

13.

14.
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