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THE BAND METHOD FOR POSITIVE AND CONTRACTIVE
EXTENSION PROBLEMS

1. GOHBERG, M. A. KAASHOEK, H.J. WOERDEMAN

0. INTRODUCTION

This paper develops further a unifying abstract approach to positive definite
and strictly contractive extension problems initiated by [10]. Here we include
in the general framework the description of all extensions via a linear fractional
formula. The main idea is that the coefficients of the linear fractional map which
describes all solutions can be read off from a special extension (the band extension),
more precisely, from its left and right spectral factorizations. For concrete cases
this connection appears in a preliminary form in [1] (where, by the way, the notion
of band extension is not present). Further steps clarifying this connection may be
found successively in [11], [12] and [5]. For contractive extensions of matrix
functions on the unit circle a direct derivation of the linear fractional form using
this idea appears in {13].

The abstract results derived in the present paper are used to review a number
of concrete extension problems (which were solved earlier) and to solve some new
ones, e.g., we solve here the continuous analog of the four block problem on
the line and the contractive extension problem for a class of Fredholm integral
operators. :

The paper consists of two chapters. The first chapter contains the general
scheme and applications to Carathéodory-Toeplitz type of extension problems:
In the second chapter the general scheme is specified further for contractive exten-
sion problems of Nehari type. In both chapters the applications deal with finite
operator matrices, matrix functions on the unit circle or on the line, and Fredholm
integral operators.

CHAPTER I: POSITIVE EXTENSIONS
1.1. THE ABSTRACT SETTING

Let .# be a Banach algebra with a unit ¢ and an involution ¥*. We suppose
that .# admits a direct sum decomposition of the form

a.n M= My - My A Y A,
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where .#y,.#,, .43 and %, are closed linear subspaces of .# and the following
conditions are satisfied:

() e €.y, HF =y, Y = (MY S My, AT < My MY

(i) the following multiplication table describes some additional rules on
the multiplication in J#:

oy dly M5 My

dhldly ity S M
(1.2) .//j/zl /R A L
AN, A, A

AN I R
where
M = gty MY, A = M A

<

(1.3)
M = S A My, My = My b

Gil) A8y © M3 Al < .

Some additional notations are
(1.4 My = M, M =l My, My = My D A

Note that e €.y, My= Ml 35 MY, My = MY+ Ay, Moty <A (J=1,2,3,4).
Mg M) (G =2,3) and Y My © Ay Further, note that .4, (resp. ./,) is a
two-sided ideal of the subalgebra .#, (resp. .#_). Also, if d € 44 is invertible,
then d~! e.tty.

We say that an element b €.# is positive definite if there exists an invertible
element ¢ €.# such that b = c*c. If o is a *subalgebra of %, then b € &/ is
said to be positive definite in o/ if b = c¥c with ¢+ € 7. With respect to positive
clements .# is assumed to satisfy the following three axioms:

(A1) If e — g*g is positive definite and g €.# . , then e — g is invert ble and
(e—g)tedy;

(A2) If |igi| < 1, then e — g*g is positive definite;

(A3) If a is positive definite, then e + a is also positive definite.

Axiom (A3) implies that the sum of two positive definite elements is again positive
definite. If .77 is a B*-algebra, then the conditions (A1), (A2) and (A3) are fulfilled
automatically. Indeed, if .# is a B*-algebra an element e — g*g is positive definite
if and only if |ig|] < 1. So then (A2) is satisfied. For (Al) one notes in addition
that if g e/, and |lg|| < 1, then the element e — g is invertible and the von
Neumann series yields that (e —g)~ €.#. . Axiom (A3), finally, one proves by
using thatan clementin a B*-algebra is positive definite if and only if its spectrum
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is positive. Exampes of Banach algebras with a decomposition (1.1) that satisfies
conditions (i), (ii) (being the multiplication table (1.2)) and (iii), and for which
the axioms (A1)—(A3) hold true, will appear in Sections I.2—1I.5.

Let us introduce the following two types of factorizations for positive ele-
ments. Let b €.# be positive definite. We shall say that b admits a left spectral
factorization (relative to the decomposition (1.1)) if &6 = b,b0* for some b, .4,
with b3 €., . We shall say that b admits a right spectral factorization (relative
to the decomposition (1.1)) if b = b_b* for some b_ €.#4_ with bzt e.#_.
Note that b admits a left spectral factorization if and only if b=’ admits a right
spectral factorization. In all our examples the Banach algebra will be so that any
positive definite elements admits a left and a right spectral factorization.

We shall use the symbols P, (i=1,...,4), P} (i =2,3), P,, P%, P and
P4 to denote the natural projections of .# onto the subspaces of the same index
along their natural complement in .#. Thus, for instance,

P, =P +P,, P.=Py+ P, P, =Py+ P{=P+ P+ P)=P)+ P,.

Let k = k* e /.. An element b € .# is called a positive extension of k if

(i) Pb =k,

(ii) b is positive definite.

A positive extension b of k is called a band extension of Ik if in addition

(i) b e, .

LemMma L1.1. If b, €.#, is invertible with inverse in 4, and b = b bi
belongs to M, then by e M 0 M. .

Proof. Since b, = bb% -1, be.#, and b% 2 e H_, we get that b, .4, +
+ M3 4 #,. But then, since b, €.4,, we obtain that b, €., = M NM., .
The proof of the minus version is analogous.

LemMA 1.1.2. Let x, €., be invertible with x;* e #,.. Then Pyx. is
invertible and (Pyx,)™* = Pyxit.

Proof. Write x, = P,x, + Pix, and xi'=:y, = P4y, + Ply.. Writing
out the products x,y, and y, x,, which are equal to e, and by applying the pro-
jection Py one obtains that Pyx Py, = Pgy.Pgx.. = Pge = e, and the lemma is
proved. %

THEOREM 1.1.3. Let k =k* €/,. The element k has a band extension

b which admits a left and a right spectral factorization if and only if there exists
a pair of solutions x € M, and y € .#3 of the equations

. (1.5) Pykx) = ¢

(1.6) Pyky) = e,
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such that x and y are invertible, x 2 e.#,, y ledi_, and Py;x and Pyy are
positive definite in My Moreover, if such an clement b exists, then b is unique
and given by

1.7 b = x* N Pyx)x~1 = y*~Y(Pyy)y~1.

Proof. Let b be a band extension of &, and let =1 = uu® = vv¥, where
w e, and v*' e 4/ _. Since b™' €./,, Lemma 1.1.1 yields that u €.#, and
v €uly. Put x = u(Pw*) and y = v(P,v*). Then x €.#,, y €., and (by Lemma
11.2) xYed/,, y* € ... Further, Pyx = (Pau)(Psu)* and Pyy = (P40)(Pyv)*
are positive definite in .#/4, and

() Py = (@)t = b = () o7t = () MY
Since P.b = k we havethat b = P,b + k + P.b. So using multiplication table (1.2)
Py(kx) = Py(bx — (P h)x — (Pyb)x) = P,(bx) = Py((x*)"'Pyx) = e,

where for the last equality one uses Lemma I.1.2. In much the same way one
oroves that (1.6) holds.
Conversely, suppose that x and y exist such that all the conditions in the

thcorem are fulfilled. Let b be defined by b =b, + k + bf, where b, =
= — Pkx)x > e€./,. Then bx = — Py(kx) + kx + bfx, and using the multi-
plication table (1.2) we get that Pl(Bx) =0 and Pg(l;x) = P,(kx) = e. So bx €e +
+ 7% . Since P, x is positive definite (in .#Z,), Psx = Pyx*, and hence x*bx € Pyx +
+ 4 . From k = k* it follows that (x*bx)* = x*bx, and hence x*bx € Pyx + Ji/" .
This can only happen when x%hx = Psx. So we get that

(1.9) . b = x*~YPyx)x~L.

Now b1 = x(P,x)~*x* €4, . Further, using that Pyx is positive definite in .#,,
we see from (1.8) that & admits a right spectral factorization. ‘
Analogously, one proves that

b= — G hE@ k) + kb — Pyhy)y~t

is equal to (3*)~(Py)y~L. But then 5 is a band extension of k& which admits
a left spectral factorization.

We finish the proof by proving that if & has a band extension f which admits
a right spectral factorization and a band extension g which admits a left spectral

factorization, then f = g. From this it then follows that b = & =: b and also
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the uniqueness of 5. So let f and g be as above and write [~ = wu®, u € 4,,
uted,,and g7l = vo* v €H;, v e #_ (use Lemma 1.1.1). Put /s :=f"1—
-—g~. Then / belongs to .#, . Since P_f = P.g = k, we have that g—f = z, + z,
forsomez, € #,andz, € #,. Usingthat = f~1(z, + z)g™*, we obtainu~1hv* 1=
= u*(z, + z,)v. Because of the multiplication table (1.2) the left hand side belongs
to . + 43 and hence 0 = P,(u*(z, + z,)v) = u¥*zw. Thus z, = 0. By writing
h = g~Yg —f)f ~! one obtains analogously that z; = 0. But then f = g follows. %

Note that in the last paragraph of the proof of Theorem I.1.3 we actually
proved the following result.

THEOREM 1.1.4. Let k= k* €4, and suppose that k has a band extension f
which admits a right spectral factorization and a band extension g which admits
a left spectral factorization. Then [ = g.

So far we did not use the axioms (A1)—(A3). They will be needed in the proof
of the next theorem. This theorem describes the set of all positive extensions of an
element k €./, for the case that k has a positive extension band which admits
a left and a right spectral factorization.

THEOREM 1.1.5. Let k = k* € 4., and suppose that k has a positive band
extension b whose inverse admits a left and a right spectral factorization:

(1.9) bl = uu* = vv*, wuled,, viedH. .

Then each positive extension of k is of the form

(1.10) T(g) = (g¥v* + u*)Ye —g*g)(vg + u)~%,

where g is an element of i, such that e — g*¥g is positive definite. Furthermore
Sformula (1.10) gives a 1-1 correspondence between all such g and all positive exten-
sions of k. Alternatively, each positive extension of k is of the form

(1.11) S(f) = (f*u* + v¥)"Ue —f*)uf + v)7,

where f is an element of 4, such that e —f*f is positive definite. Furthermore,
Jormula (1.11) gives a 1-1 correspondence between all such f and all positive exten-
sions of k.

In the proof of Theorem I.1.5 we need the following lemma.

LEmMMA 1.1.6. Let z € .4/, be such that z + z* is positive definite. Then z is
invertible and z7 € /.

Proof. Write z + z* = aa* with a invertible. For ¢ > 0 we have
(e — ez*)(e — &2) = e — e[(z + z¥) — e2¥z] = e — ea[e — ea~z%z(a~Y)*]a*.

8§ — 1186
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Choose &> 0 such that 'g/*z(a"1)*{i < 1. Them Axiom (A2) vyields that
e —cea~'z*z(a"1)* = g.g*¥ for some invertible g,. Now

e — (e — ez¥)(e — £2) = cag gta®

is positive definite. Using Axiom (A1) we get that z = ¢~%(e — (¢ — &) is invertible
and its inverse belongs to ./ .. K7

Proof of Theorem 1.1.5. We define the following linear fractional map.
Write b = ¢ + ¢* with ¢ €4, and Psc = (1/2)P4k, and define

T(g) = (

c*rg + cu)(vg + u)™?

for ail g for which 1 + vg is invertible. Then

+ (—gFvte + uter)(vg + w)}(vg + u)™t =
- (g"‘v'*" + u:?)—l{u:::(c$ + c)u—g"u*(c*"" + C)L’g}(vg + u)'1 — T(g).

Suppose that g €.#, and e — g*g is positive definite. Since v € /4, we have
that vg €#/,, so u~lvge.//,. Since e— (—ulvg)(—utvg) = e—g¥g is
positive definite, Axiom (A1) implies that e + u~'vg is invertible and its inverse
belongs to .#/, . In particular, 7(g) and T(g) are well defined. Further one sees
that T(g) is positive definite. Using ale + ba)™! == (¢ + ab)™%a and (¢ + ba)™* =
= ¢ - b(e + ab)~'a, we get that

f(g) = —c¥vrglulvg + ) 1 + cu(u™eg + )"l =
=—c*o(gu v + e)"gu~t + cule —u~v(e + gu~v)"Qu"t =
= ¢+ (—c*v—cv)(e + gu ) lgul = ¢ — v*"Xe + gu~lv)"rgul

Since gu~' € 4/, and v €.4#,, the element gu~'v belongs to .#, . Note that ¢ —
~ (— gu ) (— gu~t) = (" w)*(e — g¥g)u~'v is positive definite, and thus
Axiom (Al) yields (e + gu~v)~* €., . Now the multiplication table (1.2) gives
that T(g) € ¢ + .#,. But then T(g) = T(g) + T(g)* €b + M, + .#,. Hence 1(g)
15 a positive extension of k.

Conversely, suppose that ais a positive extension of k. Then write @ = = +
-+ z% with z € .4, and P,z == (1/2)Psk, and put w := z—c €.#,. Since b + a4 is
positive definite (by Axiom (A3)), we get that v¥(b + a@)v = v*(b + b + w +
+ w¥u = 2e + v*wo + v¥w*0 is positive definite. From Lemma 1.1.1 it follows



EXTENSION PROBLEMS 115

that v €.#/_ n.#,, and thus v*wv € #,. Lemma 1.1.6 yields that e + v*wv is
invertible and its inverse belongs to .4, . Put now g := —(e + v*wv) " v¥*wy. By
Lemma 1.1.1 the elements v* and u are in .#,. Since w €./, we get that g € .4, .
Further vg + u = — vle + v*wv) " o*wu + u = (¢ + vo*w) 'u is invertible, and

T(g) = (c*v(e + viwv) 2wy + cu)u~Ye + vo*w) =
= (c* —c*(e + vv*w)™! + c)e + vv*w) = ble + b™Iw) —c¢* = z.

Hence a = T(g) + T(g)* = T(g). Since a is positive definite, it follows that e — g*g
is positive definite. Since the map g — T(g) is one-one we have established the

desired 1-1 correspondence.
In order to prove the alternative representation (1.11) one proceeds in an
analogous way. Let

S(f) = (— cuf + c*o)(v + uf)Y,

and use Axiom (Al) to prove that for f e.#, with e — f*f positive definite the
element S(f) is well defined. Then calculations show that S(f) = S(f) + S(f)* e b+
+ .y + 4 is a positive extension of k. Conversely, let a be a positive extension
of k and write @ = z + z* with z € ./#_ and Pyz=(1/2)P k. One uses Lemma 1.1.6
to show that e + u*(z — ¢*)u is invertible, and one introduces f := —(e + u*(z —
—- ¢Mu)~u*(z — ¢*)v. This f will appear to be in .#,, and to be such that e— f*f
is positive definite and S(f) = z. But then the desired 1-1 correspondence (1.11)
is established. %

Theorem 1.1.3 and Theorem §.1.4 are similar to some results in [10] but
now concern positive extensions in the setting of an algebra with an involution.
Theorem I.1.5 is a new result inspired by earlier concrete versions (see [5]).

1.2. THE OPERATOR MATRIX CASE

In this section we specify the results of Section I.1 for the algebra Qy of
N X N operator matrices. An element of this algebra has the following form:

Ay .. Ay
T = : .
ANI PR ANN

Here A4;;, 1 <1, j < N, is a bounded linear operator from a Hilbert space H;
into a Hilbert space H;, shortly 4;; € Z(H;, H;). Note that T is an operator on
the Hilbert space H; @ ... @ Hy. The symbol T > 0 means that T is positive
definite. We write /; for the identity operator on H;.
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THEOREM L.2.1. For 1 < i, j< N, |j—ii<p, let A;; = Aj; be a given
operator acting from a Hilbert space H; into a Hilbert space H,;, and suppose that

Aii Al',l+p
2.1) ; : ) >0, i=1...,N—p.
Ai+p.i A Ai+p,i+p

For g =1, ..., N, let

I
qu Aqq Amﬂ(e) }‘1 oq
(2.2) : = : : RNk
Yoca.a Appa - Apwpw’  \
and
1 /0
Xv(‘l),q /A','(q),v(q) cee Av(a),q ! / .
(2.3 : = : : Sl
) . . . ;
\ Xq’q Aq’y(,,) oo A I
q

where B(g) = min{N, p + ¢} and y(g9) = max{l, g-—p}. Let the N x N triangular
operator matrices U and V be defined by

LY AR : : .

(2.9) v, = [Tu¥i J<is BU)
0 ., elsewhere;

.. =12 . . .

(2.5) Uij — XUXJJ ) ?(j) 1<y
0 , elsewhere.

Then the N % N operator matrix F given by the following factorizations of its inverse
(2.6) F:=Us-1y-l = ps-1p—2

is the wunique positive definite operator matrix with F;; = A;;, \j—1i! < p, and
(FY; =0, |j—il > p.

Proof. We will obtain this theorem as a special case of Theorem I.1.3. Let
% be the algebra Qy with involution * being the usual adjoint of an operator
between Hilbert spaces. The norm on .# is the usual operator norm. Then .# is
a Bv-algebra. Put

My = {(Fij)'i,,iali Fi;=0,j—i<g p}
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My = {(Fp)ljr! F;=0,j—i>pand j—i<0}
MY = {(F)tjer | Fij=0,j—i>0and j—i<—p},
My ={(F)pj | Fyj=0,j—i>—p}
It is easy to see that
Qy = My - My + M+ M,

and that the above subspaces satisfy the conditions (i), (ii) and (iii) in Section I.1.
In particular, the multiplication table (1.2) holds true. Since Qy is a B*-algebra
Axioms (Al1)-—(A3) are fulfilled automatically.

Let K = (K;)Y;.., where K;; = A;; for |j—i|<p and K;; = 0 otherwise.
A direct computation shows that

PyKX) =1, PJKY)=1,

where X = (X;))Y;_, and Y= (Y ))¥;., are the upper and lower block band matrices
of which the entries in the band {j — i| < pare given by (2.2) and (2.3), respectively,
and which have zero entries outside this band. Since Y,, is the (1,1)-block element
in the left upper corner of the inverse of a positive definite operator matrix, the
element Y, is positive definite. Similarly X,, is positive definite, and hence the
main diagonals of X and Y are positive definite. But then X and Y are invertible
and X' e, and Y~' .4 _ . In this way it follows from Theorem I.1.3 that the
operator matrix F defined in Theorem I.2.1 is precisely the unique band exten-
sion of K. %

We say that an N X N operator matrix Fis a positive extension of the band
{di;, j— il < p} if F is positive definite and F;; = 4;; for |j—i| < p. Note
that condition (2.1) is clearly a necessary condition for the existence of a positive
extension of the band {4;;, |j—i| < p}. By applying Theorem I.1.5 in the setting
described in the proof of Theorem 1.2.1 we obtain the following description for
the set of all positive extensions of a given band.

THEOREM 1.2.2. Let A;; = A, 1 < i, j< N, |j—i| < p be given operators
acting from a Hilbert space H; into a Hilbert space H;. In order that there exists
a positive extension of the band {AU’ F—il < p} it is necessary and sufficient
that

Ay o Ay
@.7) ; : )>0, i=1,...,N—p.
' A

itp,d o Ai+p_i+p
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Assume that the latter conditions hold. Let Uand V be the N X N operator mairices
defined by (2.2)—(2.5). Then each positive extension F of the given band is of
the form -

2.8 F=(G*V* + U™ — G*GYVG + U)-Y,

where G is a strictly contractive N X N operator matrix with G;; =0, j—i < p.
Furthermore, formula (2.8) gives a 1-1 correspondence between all such G and all
positive extensions F.

Let us remark that there is an alternative description for the set of all positive
extensions, which one obtains from (1.11).

For the case of block matrices Theorem 1.2.1 has been proved in [9]. Also
for the matrix case a linear description of all positive extensions of a given band
was obtained in [2] using a finite dimensional version of the Ball-Helton method
(see [3]). Using different methods a linear fractional description was also obtained
by [5, Theorem 10.4], by [17, Theorem 6.1}, and by [4, Theorem 3}. In these
papers the coefficients of the linear fractional map are presented in a form which
is less explicit than the one appearing here.

L3. THE WIENER ALGEBRA ON THE CIRCLE

In this section we apply Theorems I.1.3 and I.1.5 to the Wiener algebra on
the circle. By W;x,(T) we denote the Wiener space of all continuous j x k& matrix
valued function

D=3 £,

j=—o0

defined on the unit circle T = {z €C, |z| = 1} with the constraint

1= 3 W5l < oo.

jem—o

Here ||f;]| is the spectral norm on the matrix f;, i.e., ||f;|| is the largest singular
value of f;. If A is a matrix we write A* for the usual adjoint of 4, and we
write A > 0 if A is positive definite. '

THEOREM 1.3.1. Let y; = y%,, |j| < m, be a given set of N X N matrices,
and suppose that the block Toeplitz matrix

Yo V-1 .- v—m
(3,1) F:= 1 Yo s Peme1

Ym Ym-1--+ Yo
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is positive definite. Let

Xo I Ve 0
32 “lara| 0L | =] i)

M : V-1 0
‘ X 0 . Vo I
and put

m [

(3.3) uz) =Y x5, o(z)= Y yive itz
i j=0 j=—m

Then the function f € Wyyy(T) given by the following factorizations
(3.4 @) 1= u(z)*~u(z)"t = o(z)* ~1o(z)"1

is the unique f € Wy (T such that f(z) > 0, iz} = 1, for |j| <m its j* coefficient f;
is equal to vy;, and for |j| > m the j™ coefficient of its inverse (f~1); is equal to zero.

Proof. We will obtain this theorem as a special case of Theorem I1.1.3. Let
A be the Wiener algebra W, y(T) with unit e(z) = I for |z| = 1 and involution *
given by f*(z) = f(2)*, |z| = 1. Put

My = {feWyxn(T) | f; = 0, j < m},
My = {feWNXN(T)]fj =0, j <0 and j> m},
My = {feWyxn(D)|f; =0, j < —m and j > 0},
My = {feWyxn(D) | f; =0, j>—m}.

Then clearly (1.1) holds and this decomposition satisfies the conditions (i), (ii)
and (iii). Note that an element f' € Wy« x(T) is positive definite in this algebra if
and only if f(z) > 0 for |z} = 1. Let us check that the axioms (Al)—(A3) are
fulfilled. Assume that g € .4, and e — g*g is positive definite in Wyxy(T). The
latter property implies that [|g(z)|| < 1 for |z| = 1. Since g .4, , the function g
is analytic on |z| < 1 and continuous on |z} € 1. Thus we can apply the maxi-
mum modulus principle to show that |jg(2)|| < 1 for |z| < 1. Hence e — g has no
zeroes in the closed disk, and by Wiener’s theorem e — g is invertible in .#, . For
g €4 _ one reasons in a similar way. Hence Axiom (Al) is fulfilled. For (A2)
one notes that |jg(z)]] < |lgl| for z € T. So, if lig]| < 1, the matrix I — g(z)*g(2)
is positive definite for z € T. But this means that ¢ — g¥g is positive definite in
Wyx(T). Checking (A3) is a triviality.
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In order to apply Theorem 1.1.3 we let k(z) = i y;2' €4 .. Define x(z) =

f=—=m

m 0
= Yxz/ ey, and y(2) = Y, y;z/ €.y, where the coefficients x; and y; are
J=0 j=-m
given by (3.2). It is straightforward to check that with these choices of &, x and y
the equations (1.5) and (1.6) hold. Furthermore, P;x = x, is positive definite in
Mg = CN*N_ because x, is the (1,1)th block element of the positive definite
matrix I'". Similarly, P,y is positive definite in .#,. The fact that x~! belongs
to ./, and y~* belongs to .#_ is proved in [7, p. 522/3]. Now one can apply
Theorem I.1.3 and the proof is completed. %)

Let y; = y*;, |jl < m, be a given set of N X N matrices. A matrix valued
function f € Wy x(T) is called a positive extension of the given band {y;, |j| < m}
if f'is positive definite and f; = y;, |ji < m. Note that if f is positive definite,
then the Toeplitz matrix (f;_)7j=0 is a positive definite matrix. So if f is a positive
extension of the given band {y;, |j| < m} the matrix (f;_)7j_0 = (3;-.)";0 Should
be positive definite. This remark and Theorems 1.3.1and 1.1.5 add up to the following
theorem, which gives a description of all positive extensions of a given band.

THEOMEM 1.3.2. Let y; = y%;, |j| < m, be a given set of N X N matrices.
In order that there exists a positive extension of the given band it is necessary

and sufficient that the matrix

Yo V-2 cie Ve
I'= Y1 Yo e Peomir
‘ym Vm—l e 7o

Is positive definite. Let this condition hold dnd let u(z) and v(z) be defined by
(3.2)—(3.3). Then each positive extension of the given band is of the form

(3.5 (@) = ((2)g(2) + u(2))* U — g(2)*2())(v(2)g(2) + u(2))~?,

where g is an element in Wyu\(T) such that |jg(z)li< 1, |zl =1, and g; =0,
J < m. Furthermore, formula (3.5) gives a 1-1 correspondence between all such g
and all positive extensions [ of the given band.

Let us remark that there is an alternative description for the set of all positive
extensions, which one obtains from (1.11).

Theorem 1.3.1 was obtained before in [7] (see also [15], [16]). A linear
fractional description of all positive extensions of a given band appears in [5,
Theorem 11.3} without proof. (For the proofs see [6].)
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L4. THE WIENER ALGEBRA ON THE LINE

Let W, (R) denote the Wiener space of continuous # X m matrix functions
[ of the form

4.1) f) =d+ k(h), AeR.

Here d = (d;;)!..,, 7., is a constant n X m matrix and k is the Fourier transform of

an n X m matrix valued function k = (k;})!_, /", € Luxn(R), i.¢., the entries k,; are
integrable on R. The norm in W, (R) is defined by

Wi, ai= ] + S k() ds,

where ||4]| denotes the spectral norm of the matrix 4. Given an feW,,.(R),

the d and k appearing in (4.1) are uniquely determined by f. In fact, by the Rie-

mann-Lebesgue lemma d; := d = lim f(1) and hence ky(s) := k(s) = (f—d;)" (s).
A—00

Here g~ stands for the inverse Fourier transform of g. Given t > 0 we write

Woxm(t) for the set of all f € W, ,(R) such that k,(s) = 0 a.e. on |s] > 7. It is
well known that W, .(R) is a Banach algebra under pointwise matrix multiplication.
In this section we deal with the following extension problem. Let k €

eLf,x,,[—— 7,7]. A matrix valued function I;, with A eL},x,,(R), is called a positive
extension of k (where k is understood to be zero outside the interval [— 1, 1])
if A(s) = k(s), |s] < 7, and the matrix [, — fz(l) is posifive definite for all 1 €R.
The symbol I, stands for the n x n identity matrix.

THEOREM 1.4.1. Let k eLf.x,,[—— 1, 7] be given, and put

4.2) (K.0)t) = S k(t — s)p(s)ds, ¢ <[0,1].

Assume that I — K, is a positive operator on LY0, 1]. Let x and y be the solutions
of the equations

@3) x(r)-—Sk(t~s)x(s)ds k), O<i<r
[

0
4.9 W) — S k(t—s)p(s)ds = k(t), —1<1t<0,

T
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and let x(t) = 0 and y(t) = 0 elsewhere. Then the matrix valued function h giv'eﬁ
by the following equation:

L—h(G) = (@, + 3@, + FO) = I, + YA, + P(A)™L, A €R,

is the unique positive extension h of k with {, ——~};) 1 e W ynl?).

Proof. We will obtain this theorem as a special case of Theorem I.1.3. Let
47 be the Wiener algebra W, «,(R) with unit e(d) = I, for 2 € R and involution *
given by f#(4) = f(A)* (= the usual adjoint of the matrix f(1)), 1 € R. Put

My = {f €W, (R) ! ¢, = 0, ky(s) = 0, 5 < 1},
My = {f €W, x(R) | ke(s) =0, s > 7 and s < 0},
My = {f €W, R ¢, =0, k(s) =0, s < —7 and 5 = 0},
My ={f €W, ,(R) ¢ =0, ke(s) =0, s > —1}.

Then clearly (1.1) holds and this decomposition satisfies the conditions (i), (ii)
and (iii). Note that an element fe W «,(R) is positive definite if f(1) > 0 for
AeRU {oo} Let us check the axioms (Al)—(A3). First remark that e — g*g is
positive definite in W, ,(R) if and only if for 2 € R  {co} it holds that fig(A)i| < 1.
If g . , the function g(4) is analytic in the closed upper half plane including co.
But then the maximum modulus principle gives that |jg(A)]} < 1 for A in the closed
upper half plane including co. Hence e — g has no zeroes in the closed upper half
plane including co, but this gives that e — g is invertible in .#, . For an element
g €.J/_ one can reason in a similar way. Hence Axiom (Al) is fulfilled. Further,
since |ig(A)| < |'gll, one obtains from the assumption that ||g|| < 1 immediately
that e — g¥g is positive definite. This proves (A2). Checking (A3) is a triviality.

In order to apply Theorem I.1.3 one checks that from (4.3) and (4.4) it follows
that

Pyle—k)e + %) = e, Pfle—k)e+ ) =e,

where P, and P, are as in Section {I.1. Further Pyle + X) = e = Pyle + ) is
clearly positive definite in .#, . The fact that (e -+ x)~* belongsto .#, and (e + y)1!
belongs to % - is proved in [8, Theorem 8.1). Now one can apply Theorem IL.1.3
to obtain the theorem. ,

The description for the set of all positive extensions is now a spzacial case
of Theorem 1L.1.5,

THEOREM 1.4.2. Let k eL,l,x,,[—- T, 7] be given. Inn order that there exists a
positive extension kit is necessary and sufficient that the opzrator I — K, is pasitive
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definite. on L0, 1). Here K, is defined in (4.2). Let this condition hold. and let x
and y be the solutions of (4.3) and (4.4), respectively. Then each positive extension

h of the given band is of the form

I, — k(D) = (L, + PAEA) + U, + XA+~

(I, — gW* 2N, + Y(NEA) + (I, + X (DN,

(4.5)

where g is an element in L.z, co) such that ||g(M)|| < 1, A € R, Furthermore,
formula (4.5) gives a 1-1 correspondence between all such g and all positive exten-

sions h of k.

Proof. Note that if his a positive extension of % then the operator I — H
where

(Ho)(t) = S h(t —s)p(s)ds, <R,

is a positive definite operator on L%(R). But then / — H,, where H, is defined in the
spirit of (4.2) with k replaced by &, is a positive definite operator on L2[0, 7).
Since ] — K, = I — H_ we obtain the necessity of the condition “I — K, is positive
definite’” in Theorem I1.4.2. The rest of the theorem is a direct consequence of
Theorems 1.4.1 and I.1.5. %

Theorem 1.4.1 was obtained in [8]. A fractional description as in Theorem
1.4.2 appears in [5, Theorem 11.4].

1.5. FREDHOLM INTEGRAL OPERATORS

In this section we apply the abstract results of Section I.1 to functions f which
may be viewed as kérnels of integral operators. Let & = #Fr.,0 <7 < T < o0,
denote the class of n X » matrix valued functions f(t, s) which are defined in the
square ‘ : : ' ' '
4={ts9:0<t,s<T}

are continuous on each of the open regions
4, ={t,s)€d t +t<s},
4, ={(t,s)ed t<s<t+1}
4, = {(t,s)ed:t—1<s <t}

4y ={(t,s)€ed s <t—1},
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and the restriction f; of f € 4 to 4; extends continuously to the closure 4;. The
set & is an algebra with multiplication defined by

T
(k) s)= S 1(t, u)g(u, s)du.

Also, & has a natural involution *, namely
(5.1) 5@, 8) = f(s, D™

The # in the right hand side of (5.1) is the usual adjoint of a matrix. We shall
say that f € # is regular in F if there exists 2 g € & such that

f+g+fkg=0 g+f+gkf=0.

In that case g is uniquely determined by f and denoted by 1.
Given f e # we shall write F for the integral operator on L0, T] with

kernel 7. Thus

T
(Fo)(t) = Sf(t, Jo(ds, 0<t<T

Similarly, G stands for the integral operator with kernel g. If £ is regular in #,
then f* is precisely the kernel of the integral operator (I— F)~1-—1I; in other
words, fT is the resolvent kernel. Furthermore, F* is the integral operator with

kernel f*.
We shall deal with the following extension problem. Let

keF,:={feF |fit,s) =0, (t,5) €4,0 4.

A matrix valued function g € & is called a positive extension of k if k(t,s) =
= g(1,5), (t,5) € 4,0 4; and I— G is a positive operator on LZ[0, T]. To find
all such g we need some additional notation. For —1 < { < T let J; denote
the interval

Je = {t : max{¢, 0} < ¢t < min{¢ + 7, T}}.

For ke #, and —17 < £ < T let 4, . denote the integral operator on Li(J¢)
which is defined by

(52) Us 00 = ot)— Sk(t, Jols)ds, 1.

Te
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THEOREM [.5.1. Let k € &, be given, and suppose that for every ¢ in the
interval 0 < & < T— 1 the operator A,  in (5.2) is positive definite. Let x and y
be giveri by

(5.3) x(t, 8) — S k@, wx(u, 5)du = k¢, 5),
J -t

forted, ., 0<s< T, and x(t,5) = 0 elsewhere,

(5.9 wt, s) — S k(r, wy(u, s)du = k(t, s),
J

for teJ,, 0<s < T and ¥(t,5) =0, elsewhere. Then x and y are regular in &
and the function f € F given by

(5.5} —f=xt + (xN)* + NFkeat =3+ (N + 1) Kt

is the unique positive extension f € & of k with ft e &7 _.

Proof. We will obtain this theorem as a special case of Theorem I.1.3. We
let .4 be the linear span of {&, I}, where 1, denotes the n X r identity matrix.
The multiplication on .# is defined by :

(L, + Nl + g) := 2ul, + ig + pf + [k g.

The unit in # is [, and the involution * is defined by (i, + f)* := AL+ f*.
The norm on .# is defined by

(5.6) AL, + fil := AU+ sup [{f(t, $)1.

(ts)ea

Note that the norm of the operator A7 + F is majorized by the number ||, + f1].
Let

Ay = {fed; f1d; =0, =234},

My =M, +fedl; [ 4;=0,j=1,3,4},

|
r
oY
Nt

A0

Il

{fed; fi4;,=0,)=

)
—
-
I
-
(98]
——t

r//14

{fed; fid;,=C, =

Then clearly (1.1) holds and this decomposition satisfics the conditions (i), (/i)
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and (iii). Note that 2J, + f ../ is positive definite if A7 + F is a positive definite
integral operator on L0, 7). Let us check ihe axioms (A1)—(A3). Let g = Al +
+ f €., such that e-— g¥g is positive definite. Then, in particular, A} < 1 and
the integral operator F is of Volterra type. But then (1 -— 2)[— F is invertible
and the inverse 1s also of Volterra type. Use now Theorem 3.2 in [10] to conciude,
that (¢-—g)~* belongs to .7, . if g €.#/_ one reasons in the same way. Thus
Axiom (A1) holds. For Axiom (A2) note that if g = 2f, + / has norm less than
one, then the integral operator AI + F hasnorm less than one. But then the positive
definiteness of ¢ — g*g follows immediately. Axiom (A3) is a triviality.

In order to apply Theorem [.1.3 onc notes that Equations (5.3) and (5.4)
imply that

Pﬁ((ln - k)(In + ,\')) = Ina P!:((In —}")([n + y)) = In:

where P, and P, are as in Section I.1. Further, Py(f, + x) = I, == Py(I, + v) is
clearly positive definite in .#,. The fact that » and y are regular, x¥ belongsto.# . .
and )7 belongs to .#_. is proved in [10, Theorems 5.2 and 5.4]. Apply now
Theorem 1.3.1 and one obtains the desired result. iz

The description for the set of all positive extensions is now a special case
of Theorem 1.1.5.

THEOREM 1.5.2. Let k € & be given. In order that there exists a positive
extension of k it is necessary and sufficient that for every & in the interval 0 € & <
< T— < the operator A, ., which is defired in (5.2}, is positive definite. Let this
condition hold and let x and v be given via (5.3) and (5.4), respectively. Then each
positive extension [ of k is of the form

S=—(g" + g K y* +x%) k(g +rkg+ 2+

+ (g% + g5k y" + XY kgikgk(g+rXxg+ )T+ (g4 ykg + x)F—

(5.7
—gikegk(g + kg + )N+ (g% + gt KpF + xH —

— (g% + ¥k y* + x¥) kgt kg + g,

where g is an element of & such that g(t,s) = 0,(1,s) e d, U d; U dy. and jig- < 1.
Furthermore, Equation (5.7) gives a 1-1 correspondence between all such g and all
positive extensions [ of k.

Proof. Note that if f is a positive extension of k, the integral operator I.— F
is positive definitc. But then restrictions of 1-- F from LY(J;) into LXJ:) are also
positive definite. From this one sees immediately that the positive definiteness of
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the operators 4 . in Theorem I.5.2 is indeed a nccessary condition for the existence
of a positive extension. The rest of the theorem is a direct consequence of Theo-
rems 1.1.5 and 1.5.1. 7

Note that (5.7) is equivalent with
I—F=G*+ YY)+ T+ XM —GCG*G)NUI + V)G + I+ X)),

where X and Y denote the integral operators on LZ[0, T] with kernel x and y,
respectively.

Theorem 1.5.1 is already proved in [10). Theorem I.5.2 seems to be a new
result.

CHAPTER 1i: CONTRACTIVE EXTENSIONS
1I.1. THE ABSTRACT SETTING

Let % be a Banach space, and suppose that # admits a direct sum decom-
position
. B =H_ _i" ‘@4- b}

where #Z_ and £, are closed subspaces of #. We are interested in the following
problem: given ¢ € #_ , when does there exist an element Y € # such that |[yj] < 1
(for some specified norm) and ¥y — ¢ € £, 7 Such an element ¥ is called a strictly
contractive extension of ¢. Furthermore, if a strictly contractive extension of ¢
exists, we want to describe all strictly contractive extensions of ¢. In order to give
a solution of this problem we need some more structure on %. In what follows
we shall assume that & can be embedded in a2 Banach algebra of 2 x 2 matrices
with a unit and an involution.

We shall assume that the Banach space 4 appears as the space of (1,2)-
-clements of the following Banach algebra of 2 x 2 block matrices:

b )
M= 1f= (a ) raed, beB, ce?t, de D .

¢ d
Here o/ and 2 are Banach algebras with identities ¢, and ey, respectively, and
involutions *, and ¥ is a Banach space which is isomorphic to & via an operator *

whose inverse is also denoted by *, such that for every choice of a e &, b € 4,
ce¥ and d € P:

beest, (bo)* = c*b*; abe®, (ab)* = b*a*:
(1.1) bd e B, (bd)* = d*b*; ca€%, (ca)* = a“c*;

dc €%, (do)* = c*d*; c¢beD, (cb)* = b*c*.
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It is easy to see that .# is an algebra (with respect to the natural rules for matrix
multiplication and addition) with unit

¢ = (e“" 0).
0 €y

We define an involution * on .# by setting

(a ,’)-)x‘: . (a“ C*)
¢ dj  \b* av)’
On .# there will be a norm given, which is assumed to be submultiplicative and
such that the natural embeddings from 7, 4, %, Z and into .# are norm preserv-
ing. With such a norm ./# is a Banach slgebra. We will assume some additional

structure within each of the four Banach spaces &/ — &. The algebras o/ and ¥
are assumed to admit direct sum decompositions

(1.2) : A = sl L, U= Gy 49
in which all six of the newly indicated spaces are closed subalgebras and are such
that '

ey €8y, () = 0%, ()" = oy,
(1.3)

eo €2y, (V) =G%, (D) = Dy,
and the inclusions
(1.4 Ay <ol S\t A, G0 < DY, DD, < DY,

ate in force. it is then readily checked that
A= Ay, 2= 32° + 9y
arc algebras. Moreover, if ¢ € o7, (resp. d € Z,) and is invertible, then a~! € o/,
(resp. d=1 € 2,). Finally, we suppose that 4 and ¢ admit decompositions
(1.5) B=hB_ B, C=%_4C,,

where 4, < ¥ and %, — % are closed subspaces satisfying

C_ = A, G, =A*,

‘)ﬁigi < .ﬂf s ’”Zt-'%)ﬁ < e‘%i N
(1.6)
G < O, By < A,

(g't'd-t « ,(()}.4: ” @f%i < {{)"i -
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Now Jlet us introduce the following subspaces of #:

a=(o 5){G oeead:
=% 2016 2)

0
.//l§=(d_ 0): (a O)I(IEMQ,CGg+, de2? :’
%, 2" ¢ dj]

“=(e o) ={( o)

and introduce .#, , 4, etc. as in Section I.1. Note that .#4 consists of all matrices

(5 2

with @ € &4 and d € 9. 1t is easily checked that ./ satisfies the conditions (i),
(ii) and (iii) in Section I.1. In particular, ./# satisfies the rules laid down in the

multiplication table (I.1.2). In fact, the following more stricter multiplication table
holds:

aed,,,\be@_, de@+},

ce%_},

|ty s M My
ALY 7
.7 MM, M M, MO
MY M, A M,
Mg, M My O

With respect to positive elements ‘we assume that the Banach algebra .# satisfies
the following axiom

(A0) If (a d) is positive definite in 4, then g is positive definite in o and
c

d is positive definite in 9.

Furthermore, we also assume that the axioms (A1)—(A3) in Section I.1 are satisfied.
Note that Axiom (AQ) implies that for b € 4 the element e, + b*b is positive
definite in 2 and the element e, + bb* is positive definite in 7. This follows imme-
diately from the observation that

(eﬂ b (c&, 0\ (ed 0 )(ed b)
0 eg) b* eg,)’ b* egy 0 ey

9 .. 1186
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are positive definite elements in .#. Further, from the equations

eq h\ (ed 0 (ed 0 )(ed h )_
(h* eg)_ h* eg )~0 eyg— NN jJ\0 eg4

N (PR (edwhh* 0 )(ed 0 )
(0 eg) 0 eqxI\h* ey

kY. . L .
one obtains that for h € # the element ( :d l )15 positive [definite in .# if and
% (47

only if e, — h*h is positive definite in @, or equivalently, e, — hh* is positive
definite in .«7. Finally, note that when a and d are invertible elements of &/ and
92, respectively, we have that

(a b)‘l_ (a“l —-a~thd =1t (a 0 ‘1_( a1 0
0 d 0 d=? )’ ¢ (I) —d *ca™?! d‘l)'

But then it is easy to see that in order to prove that ./ satisfies! Axiom (Al) it
suffices to prove that o/ and & satisfy Axiom (Al).

Let ¢ € #_ be given. An element y € 4 will be called a strictly contractive
extension of ¢ if e, — Y*y is positive definite in £ and Yy — ¢ € # ., . Using Axiom
(A0) one easily checks that ¥ is a strictly contractive extension of ¢ if and only

if (e“f 4 )is a positive extension of ( e”f @

T eg ¢ eg
gives sufficient conditions for the existence of a special strictly contractive extension
of an element ¢ € #_ . With this special strictly contractive extension we shall
be able to give a description of the set of all strictly contractive extensions of ¢.
In the examples treated in Sections I.2—I1.7 below this sufficient condition will
also prove to be necessary for the existence of a stricly contractive extension.
To state the conditions we need some additional notation. If &, is a subspace
of the Banach space &, we let Pg, denote the projection in & on &, along a natural

) €.,. The following theorem

complement. So, for instance, P, is the projection on &/, along 2. If 0 €4,
we let H:= P&,_(cho«+ denote the operator from ¥, into o/_ defined by the
following action:

H(e) = (Py_pPy )() i= Py (pc), ce€¥,.

We shall employ this notation also for other subspaces.
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TheoreM 11L1.1. Let ¢ € #B_ be given. Introduce the following operators
Hi=Py@Py @, > ; Hyi=Py ¢*Py :sd_—E,;
(1.8) i
H:= Py ¢Pg,: D >B_; Hy:= PQ+¢*"PQ_: B. -9, .

Suppose that for each 0 < & <1 the operators I —e*HH, and I ——szif*il are
invertible, and that the elements

(1.9) Py [(I—&HHy) ), Pg [([— e2H.H) ]
are positive definite in sy and 2, respectively. Let r € o, and s € 9, be such that

P, U — HH)T = ro, Pg [(I— F i) 1) = s%,

and put

«:=(({—HHy)er 2, y:i= Py (),
(1.10)
d = ({— HgH) "e)s™%, f:= Py (¢d).
Then
ey Y. (oz'““ —y"\7Y o« 0\
(g* e.«z)'_ 0 eq ) ("“7 "9) N
(1.11)

() )

e, @
0* eg
is the unique strictly contractive extension of @ with the property that gle, — g%g)"1 e
eB._.

is the unigue band extension of ( ) €. In particular, g = B6~ = ¥ ~1y*

Proof. We will use the notations of Section I.1. For 0 <e<1put
a,:=({I—¢eHHy) e, c¢,:= Py (c¢p%ay),

de = (I—‘—' Bzﬁ*ﬁ)-le’ be = P-@_(S(pdf)’

x .‘_(ed —~b£) v ___( a, 0\
¢ 0 d, e —C, e@}'
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Note that x, € #, and y, €.//_ for 0 < ¢ < 1. Clearly, the elements introduced
above are analytic in the real variable ¢. For k, = (e“ , 8<P) we have that
Ep¥  eg

a,— EPC, &
P3(k¢ya)=P3( e* e ¢)=ey
£pTa,—¢; eg

since Py (co¥a.—c;) =0 and
Pd_(a —&pc,) = Pd_(ae - £¢P‘6’+ (e9p¥a)) = (I— e HHy)a, = e.

Analogously, one calculates that P,(k,x,) = e. If ¢ is small enough, 0 < ¢ < ¢
(< 1), say, then the elements a, and d, are invertible in «/_ and 2, , respecti-
vely. Further, by assumption, for 0 < ¢ < 1 the elements Pdd(a,;) and Py, (d) are
positive definite in o7y and 2, respectively. But then for 0 < ¢ < 1 the elements
Py(x,) and P,(y,) are positive definite in .#,. Now Theorem I.1.1 yields that for
0e<eo

xf‘-l(deu)xefl = '2:_1(den)ys—1
is the unique band extension of k. It follows that
(112) xa(dee)—lx? = .‘sz(l>n:lyz:)_1.)")8ic

holds for 0 < & < o, and by analyticity (1.12) also holds for 0 € & < 1. By calcu-
lating the (1, 1) element of (1.12) we get that

a(Pya)7%a} = e + b(Py d;)'b}.

Axiom (A0) implies that the right hand side is positive definite, which gives that a,
is invertible for 0 < & < 1. Indeed,

o 1= (P4 @) 'ak(e + b(Pg,d) 1Y)
is a right inverse of a4,. Further, ¢ — 4} is analytic. Consider
afa,—e.

For 0 < ¢ < o this equals zero. But then aja, —e is zero for ¢ €[0, 1], proving
the invertibility of a,. Further, since P & a;* =0 for 0 < ¢ < g, we get by analy-

ticity that this also holds for ¢ = 1. So g, is, in fact, invertible in o/ _ . Analogously,
d, is invertible in 2, . But then we have shown that P,(k,x,) = e = Py(k,3),
xiteu ., y7* €4 and Pyx, and Pyy, are positive definite in 4. Letr € o7
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and s € 9, be as in the theorem, i.e., such that r*r = Py and s*s = P_@ddl..
Theorem 1.1.3 gives that

P e ) )
S \o 4, 0 s —b¥ d¥

_( a 0 )(r*r 0 )-1(a;" —c’f)
—C, €9 0 €qg 0 ()

N . . , e

is the unique band extension of k,. Clearly f has to be of the form ( ‘: & ) ,
g €y

with g €4 such that g— @ e B, . Nowput a :=ar L y:=cr, B:=bs"),

d:=ds™?, and g = B0~ = a*~1y* Then the first statement in the theorem is

proved.

To prove the second statement it suffices to note that

(ed 8 )_1___(* gleg —g*g)™?

) €M,
g% eg

* *

N\

if and only if gleg —g*g) 2 eZ_ .

I'4
The matrix (a g ) is called (e'“’
b

G ool — ) ) - )
Ny o —e  \p+ 6% 0 —ey)
THEOREM J1.1.2. Let ¢ € 4_ , and suppose that

(1.13) (“ ﬂ)
y o
is a (e‘“

g:=P5"1 = a*"YW* e + B,. Then each strictly contractive extension € B
of ¢ is of the form

)-unitary if

0y . . ' ,
)-umtary matrix with e¥ e o/, fePB_,y€%,, 6** €D, and

(1.14) ¥ = (@h + Py + 8)1,

where h is an element in B, such that ey, — h*h is positive definite in @. Further-
more, Equation (1.14) gives a 1-1 correspondence between all such h and all strictly
contractive extensions y of . Alternatively, each strictly contractive extension
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vV eB of ¢ is of the form
(115) ll’ = (aiz +fﬂ*)_1(“/'* +f5;;:),

where f is an element in 4, such that e, — ff* is positive definite in of. Further-
more, Equation (1.15) gives a 1-1 correspondence between all such f and all strictly
contractive extensions Y of ¢.

It is easy to see thit the elements « — & in Theorem 1I.1.1 satisfy the require-
ments in Theorem I1.1.2. Thus Theorem II.1.1 gives sufficient conditions on <p
for the éxistence of a matrix (1.13) satisfying these requirements. '

Proof. Put

<l n) G ) G
Q% ey T 0 )’ —y eg)

Using the assumptions on the matrix (1.13) it is straightforward to check that with
these choices of k, iz and v the conditions of Theorem I.1.5 are met. Choose
h e #, such that

(ed 0 )__ (0 0 £ (ed 0 )
0 eo W 0)(0 0) 0 e; —h*h

is positive definite in .#. Note that by Axiom (A0) this is equivalent to choosing
h e, such that e, — h*h is positive definite in 9. Apply now Theorem 1.1.5

to Obtain that
((0 }1)) (9 w:&)'
: j ,

6 = + yh)*(a + yh)*(a + yh) + e —h*h}(6 + yi)~3,

where

is a positive extension of k. Then clearly ¢ must be equal to ey . (The ig;entity

o = ey can also be computed directly by using the (e” -)-unitary of the

__—e9
matrix (1.13).) Furthermore, Theorem 1.1.5 yields that by considering all such 4
we get all positive extensions of k, and, moreover, the correspondence is 1-1. Since

e . .. . . oy s . .
(!; 4 )15 a positive extension of & if and only if ¥ is a strictly contractive
B L’Q . |

¢xtension of ¢, the theorem follows.
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The alternative description (1.15) one proves in the same way, but now with
the usage of the description (1.11) in Theorem I.1.5. %

The approach used in this section is the same as the abstract approach
in [13], except that here the algebra is enriched with an involution. Both Theo-
rems 1L.1.1 and IL1.2 are new, but they are inspired by earlier concrete versions
in [12}, [13] (see also [5]).

IL.2. THE OPERATOR MATRIX CASE

In this scction we specify the results of Section II.1 for the space Qyyy of
N X M operator matrices. An element of this space has the following form

Y1 .- Ping
(M)
P - Pam
Here ¢;;, 1 < N 1<j<s M, 1s a bounded linear operator from a Hilbert

space H; into a Hilbert space I-I,, shortly ¢;; eﬁ!’(Hj,H) -We' let ||Tj| denote
the usual operator norm of T : H’1 O . ® HM — H1 .. B HN

Fix—N<p<M.Forl i< N1<j<M,j—i< p,letzp,leg(H,,H)
An operator matrix 7 € Qpx,, 18 called a .strtctly contractive extension of the given
lower triangular part {;;, j—i < p} if [T} < 1 and for j—i < p the (5, /) th

element of T is equal to ¢;;. Let r(;) = max{l, j — p} and s(j) = min{M, j + p}.
Clearly a necessary condition for the existence of a strictly contractive extension
is the following: ‘ '

@1 o) e 9 <1, k=r(l), ..., N
Forj=1,...,N let ‘

(pjl .. (pj,s(j) 5(J)
: : @ H, — @ Hk\

Py - Py s
ifj+p< M, and

N o
k-=j

ifj+p>M Forj=1,...,M let

Pep1 - Pripy,i

P - Pnp 7
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if j—p < N, and

J

R, = c+) - (0),

if j— p > N.Obviously, (2.1)implies that ||S;}j < 1,1 < j <

1 € j € M. The converse statement holds trivial]y.
THEOREM I1.2.1. For 1< i< N, 1<

that (2.1) holds. Put

<M, j—i<g
operator acting from a Hilbert space H; into a Hilbert space H,-, and suppose

1. GOHBERG, M. A. KAASHOEK and H. J. WOERDEMAN

, A&“ : Iy,
2.2) Yirne ) S;S¥)1 9 , i=1,...,N,
ﬂr(j),j\ 0 \
(2.3) B'- 1 =RU—RJR)™ 6 , j=1,..., M,
N-1,j
\ Bu; J IHj
?11 1 Ifll
Yoi | _ o w-1] 0 =
2.9 . = SF(I— S;S) .l, i=1,..,N,
?s(i),.iJ 0
ng ) 0
(25) . = (I""R;‘R])-l : » J= 13 ’ Ms
61:1.1 0 )
6;; In,/-
and let
a;aTM iz
2.6 G jers X = T
2.6) = @on { KA
27 idie s i = ﬂu _u ’ ’> i‘(]);
@7 Bi= B)Y M By { o 12
) —1’“ é S(J').
2.8 = My oy = (TS ’
(( ) 'y ()}u) =.1,f =1 'Y J { 0 , l > SO),‘
(29) (5”), 1 ‘Su {5,-1-6'.‘1,1/2, I gj; .
L0, i

N, and also |l

p, let @;; be a given
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Then the operator matrix G defined by
G := fo1 = q¥~Iy*

is the unique strictly contractive extension of the given lower triangular part
{o:j, J—i < p} with (GU— G*G)™Y);; = 0 for j— i > p.

Proof. We will obtain this theorem as a special case of Theorem IJ 1.1
Let @, \(Zy, ..., Z,; Y1, ..., Y,) denote the set of operator matrices

{(Alj)l 1,1 1]/4 Zj—’Yi: Aij=oaj—'i<‘c},
Q _(Zy,....Z,; Y\, ..., Y,) denote the set of operator matrices
{(Au)ll_[ 1[’4 Z_’Y ALJ=03j—i>T}7
and let Q, o(Z,, ..., Z,; Y1, ..., Y,) denote the set of operator matrices
{41 d-1 | 45 1 Zj~> Y, Ay =0,j—i= t}.
We make the following choices of spaces:
ABy = ‘Qp_+(H17f D) I{M; i:lla NI I;N),
B =y (Hys -0 B B s H),
A = Qo o (Hy, ..., Hyi Hy\ o Hy),
‘Md = 90’0(1}1, .. .,.I‘;N; Iil, ...,];N),
91 = QO,i(Hlls MR HM; Hla B HM)’
Qd =QOO(H1 . HM H]s---:HM)>
and let %, o/ and @ be given via (1.2) and (1.5). On these spaces we define the
operations * as the usual adjoint of an operator between Hilbert spaces. We
endow the spaces &, B, ¢ := #*, @ and ./ with the usual operator norm. It
is easy to see that the conditions (1.1), (1.3), (1.4) and (1.6) are satisfied. Further,
the norm on .# is submultiplicative and the natural embeddings of 7, 4, ¥
and @ into ./ are clearly norm preserving. Let us check the axioms (A0)—(A3).

Axiom (AO0) is trivially fulfilled. Further, since .# is a B*-algebra, Axioms (Al)—
—(A3) are fulfilled automatically.
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Let ¢ = (@;)¥ 1.1 where ¢;; = 0 for j-—i > p. Let us consider the operator
I--&*HH, , where H and H, are defined in (1.8). Applying this operator on an
element 4 € &/_ gives an element in .&/_ whose columns are described by the
following equations:

(-~ eHH A j = U—S;SPHA)Y ;, j=1,..., N.

[t is not hard to see that /—e*HH,, is invertible for all 0 < ¢ < 1 if and only
if ;S;it < 1,j=1,...,N. Analogously, one shows that the operators I~~s‘-’i{,;j{.
0 < ¢ £ 1, are all invertible if and only if condition (2.1) holds. Assume that (2.1)
holds. Then for 0 < ¢ < 1the first element appearingin (1.9) is the diagonal oper-
ator matrix with as (7,/)th element the (1,1) element of the positive operator
matrix (I-— ¢2S;S¥)L. So, clearly this diagonal operator matrix is positive definite
in o7, . Analogously, one proves that the second elementin (1.9) is positive definite
in 4. Applying now Theorem II.1.1 one obtains (using the above calculations )
the operator matrices z, f, -y, and 6 given in Theorem Ili.2.1. . B

For the description for the set of all strictly contractive extensions of a given
lower triangular part one now simply applies Theorem II.1.2. Since condition (2.1)
is necessary for the existence of a strictly contractive extension, we obtain the
following result. ' ' -

THEOREM 1022, For | S i N1 <j< M, j—i<p, let ¢;; be a given
operator acting from a Hilbert space H; into a Hilbert space I;Q. Then the lower
triangular part {@,;, j—1i < p} has a strictly contractive *extension if and only
if (2.1) holds. Suppose that (2.1) holds, and let x, 3, v, and O be defined by (2.2)-—
~42.9). Then each strictly contractive extension F of the given lower triangular
purt is of the form

(2.10) F = (2E + B)yE + )7,

where E = (E;)Y . M yisastrictly contractive operator matrix with E;; = 0, j— i < p.
Furthermore, (2.10) gives a 1-1 correspondence between all such E and all strictly
contractive extensions F.

Let us remark that there is an alternative description for the set of all
positive extensions, which one obtains from (1.15). ‘

For the block matrix case a linear fractional description of all strictly con-
tractive extensions was obtained earlierin [2]. Formulas for the coeflicients appearing
in the linear fractional map are derived in [17] by using a generalized version of
the Schur algorithm. In the fatter paper the final formulas are less explicit than
the ones given here.
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IL3. THE WIENER SPACE ON THE CIRCLE

We use the notations of Section I.3.

THEOREM T1.3.1. Let ¢;, j <0, be given N x M matrices, and suppose
that the Hankel operator B

Po . Py (/)—z'---

(3.1 A= P-1 P2 P_5... M Y
Poo Q.3 P_4...

has norm less than one. Put

A I o ay
(&—1J = (I—AA*)-l 0 )1 ({/1 ).-: A*(&-l)7

-’50 : (1 /}o : 5'0
(3.3) t\al ): (l——A*A).'-.l(O- , /;’—1) = /1(31 5

and let

(3.2)

’ 0 ’ ' ' 20
w(z) = Y- i, 9@ = Y Fbe,
Joo —co R

(3.4)
o o ..
Bz) = Y, Biow'z!, O(2) =Y 0,0,V

Jj - . Ji

=

Then the function g given by
g(2) 1= f(2)0(2) " = a(z)* "y(2)*, zeT,

is the unique function g € Wy (T) such that g; = ¢;, j <0, llg@)|l <1, |z| =1,
and (g(I—g*g)™); =0, j> 0.

Proof. We will obtain this theorem as a special case of Theorem [I.1.1.
Make the following choices of spaces:

By = @) = {feWnn(D|f; =0,j <0}
B = (6, = {feWpaD|f; =0, > 0};
o = () = ([ WD) [ f; =0, j < 0} oy = CV<N;

@‘_"_ — (9'1_)* I== {/e ”/A'I)(M(T) ifl - O, / < 0}’ —@d — CAW;(.H"
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andlet# = ¢*, &/ and 2 be given via (1.2) and (1.5). The conditions (1.1), (1.3),
(1.4) and (1.6) are clearly satisfied. The above introduced spaces as well as the space
A =W nianyxv+a (T) we endow with the usual norm on Wiener spaces. Checking
the axioms (A0)—(A3) is here simple: Axiom (AO) evidently holds true. In order
to prove (A1) it suffices to prove the axiom for & and %. For this proof as
well as for the proofs of Axioms (A2) and (A3) we refer to Section 1.3.

o
Let us apply Theorem I1.1.1 for a given o(z) = Y, ¢;z/ e 4...If a(z) =

j -
0
= Y a;z' € o the element @ = (I — e2HHy)a € &, where H and H, are

jo—c0
defined in (1.8), is given by

a, !/ dy
(a_,) = (1-82/1/1*)( a_,

Lo

Note that since (Jlo_;I)® is an element of /; c£,, the operator A is compact as
an operator between ¢, spaces as well as between £, spaces. Suppose now that
I —- ¢2AA* is invertible as an operator on /. Then its kernel is empty, and thus
also the kernel of the operator I — £244* viewed as an operator on /7. But then,
using that it concerns a Fredholm operator with index zero, it is invertibic.
Using this it is not hard to see that the invertibility of al! operators (I — e*HH,),
0 < ¢ €1, is equivalent to the condition [|4]] < 1. Analogously, the operators
I— c“"f{*f{ are treated. The two elements appearing in (1.9) are the (1, 1) element
of (I—e244*)1 and the (1, 1) element of (J -— g24%4)~L, respectively. So when
14}l < 1 and 0 <€ ¢ < 1 these elements are positive definite in &/, and &, respecti-
vely. Now one finds, as expected, that the «, f, y, and 3, appearing in Theorem

11.3.1 coincide with the ones appearing in Theorem JI.1.1. %2
Let ¢;, j < 0, be a given set of N X M matrices. A matrix valued function
)]
Y € Wy, (T) is called a strictly contractive extension of ¢, where 0(z) = ¥ ¢ 2/,
j-—o0

if y; = @;forj < O0and |lY(2)] < 1forz e T. Note that the definition of a strictly
contractive. extension coincides with the one given in Section 1I.I. Further, note

that if Y(z) = § ;z’ is a strictly contractive cxtension of ¢, the doubly infinite
j=—oo

matrix (§;_;){%=-0 has norm less than one. Since A appears as a submatrix
{up to reversing the order of the columns) of this doubly infinite matrix, this implies
that Al < 1. Thus the condition ji4}] < 1 is clearly a necessary condition for
the existence of a strictly contractive extension of ¢. The description of the set
of all strictly contractive extensions of a given function ¢ is a direct corollary
of Theorem [1.1.2. B ‘
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THEOREM JL.3.2. Let ¢;, j < 0 be given N X M matnces In order that

0
there exists a strictly contractive extenswn of the given function ¢(z) = Y (pjz’

j=—o0
it is necessary and sufficient that the Hankel operator A, defined in (3.1), has norm
less than one. Assume that this condition holds, and let «(z), f(z), y(z) and 6(z)

be defined by (3.2)—(3.4). Then each strictly contractive extension Y of ¢ is of
the form

3.5 ¥(2) = @(2)h(2) + BENH(EDAE) + 4(2)) 7,

where N is an element in Wyx,(T) such that h@ <1, |zl =1, and h; = 0,
J € 0. Furthermore, formula (3.5) gives a 1-1 correspondence between all such h
and all strictly contractive extensions Y of f.

Let us remark that there is an alternative description for the set of all
positive extensions, which one obtains from (1.15).

Formula (3.5) appeared earlierin [1], [11] and [12] (see also [5, Theorem 9.2]).

I1.4. THE WIENER SPACE ON THE CIRCLE: THE FOUR BOCK CASE

We use the notations of Section I.3. In this section we view an element f
of the Wiener space on the circle Wy, (T) divided into four subblocks, ie.,

f( ) — (.fll(z) .le(z)
fu@ fu@)
with f, € erx ,‘S(T), where 1, it, are positive integers such that u, + gy = M

and v, ¥, are positive integers such that v, + v, = N. The space Wyy(T) admits
the following decomposition

WNXM(T) = Wﬁ XM(T) + Wzt'xm(T),
where :

Wy xm(T) = {f = (frdrs=1 € Wyxm(T) : (f2;j =0,/ < 0},
and

Wit = {f = (£r)8se1 € WD) [ frs = 0, (19) # (1,2); (fi); = 0, j > O}.

We are interested in the following completion problem. Let ¢ € Wy (T)
be given. An element g € Wy« (T) is called a strictly contractive extension of ¢
if g— ¢ eWyxu(T) and |g@)|| < 1, z€T.

Before we state the results of this section we first introduce some notations.
Let p and ¢ denote the projectors which are defined by the rules

o §0¢) - 5 o §a) = %0

{=—00 1= -00 ir:—00



142 I. GOHBERG, M. A. KAASHOEK and H. J. WOERDEMAN

These projectors will be applied on the Hilbert space L(T) of j X 1 vector valued
functions on the circle with square summable entries. Let ¢ € W5 ,,(T) be given,

and introduce the following Hankel like operators which act from Lfl(T) @ L;';(T)
to Ly (T) @ L, (T):

4.1) Fo:=@g@0), I, =(p&I1)0, &q), Ih:=0p?,

where @ denotes the operator of multiplication with ¢.

THEOREM 11.4.1. Let ¢ € W« y(T) de given, and suppose that the Hankel like
operators I'; | i = 0, 1, 2, have norm Yess than one. Put

a 1 0 0
4.2 Y g rrnoiiag, = ([— IL[H)™ :
( ) (azl) ( ) ( 0 ) (azg) ( ) h) (II‘Q)
(4.3). (C“) = T3 ”“) ““) —-—r*( 0)
oy 021 Coo day ’
diy 0
(4.9) (0) (I — T3y ( ) ( ) (I —I3r)- 1(,%),

@ ()=~

and put

(4.6) a = ("111011(0)_”2 0 ) y = (Cnau(o)_l/:5 012022(0)_1/2)

@ (0) V2 apaany(0) M , 01011(0) 1% C55a,5(0) V2

@7 é = (d“dll(o)_m dyodpp(0) /2 ) _ ( Byydy5(0) =12 bmdgz(O)“”'“’)

0 dyodao(0) 12 boydy (0)7Y2  boydyy(0) 32 :

Qa7 a2

Then the k x k block matrix valued function g defined by

g(@) = 2o 1= a2)*(2)*, zeT,

is the unique strictly contractive extension of the given lower triangular part @ with
(g —g%g)™) € Wixu(T).

Proof. We will obtain this theorem as a special case of Theorem IL.1.1. Make
the following choices of spaces: Let & = €% = Wyuy,(T), & = Wyxy(T) and
D = Wy «u(T), and we view the elements of these spaces divided in subblocks of
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sizes v, Xp,, v,x v, and p,.xu,, respectively. Further, let
B = (6 = Winw(T); B, = (€. = Wiixn(T)
A= {f = (51 €Wnen(D [f2 = 0; (), = 0,7 <0 (r = 1,2},
P = {f = (fo)rsea €Waen(D) | i = 05 (1); = 0, j <0 (r = 1,2)},
Y = (), DY = (D), Ay =CV" @ CN, G, = CT @ CRY

Then clearly (1.1)—(1.6) are satisfied. The above introduced spaces as well as the
space A = W nimyxv+m{T) we endow with the usual norm on Wiener spaces.
Let us check the Axioms (AQ)—(A3). For Axioms (A0), (A2) and (A3) we can refer
to Section II.4 since the specific decomposition does not play a role in these axioms.
So we are left with Axiom (A1). Let f = (f,)fs—1 € -# , be such that ||f(z)|] < 1 for
all z € T. In order to see that e — f'is invertible in .#, it suffices to show that its
diagonal elements are invertible, and that their inverses have positive Fourier coeffi-
cients equal to zero. Since we have that ||f,, )] < 1. r=1,...,4, forallzeT
one can simply reason in the same way as was done in Section I.3 when checking
(A1). A similar reasoning holds if f € .#_. So the spaces & — 2 and ./ satisfy all
the conditions given in Section II.1. We will not write down the exact workout of
the application of Theorem II.1.1 for this setting, since this was already done in
{13] in the more general n X n setting. (By the way, the 4+ spaces in [13} correspond
to the — spaces here, and vice versa.) %

a

We obtain the following description of the set of all strictly contractive exten-
sions of a given function ¢.

THEOREM 11.4.2. Let @ € Wyyu(T) be given. In order that there 'exists a
strictly contractive extension of the given function ¢ it is necessary and sufficient that
the operators I';, i = 0, 1, 2, defined in (4.1), have norm less than one. Let this con-

dition holds and let «(z), p(z), y(2) and 6(2) be defined by (4.2)—(4.7). Then each
strictly contractive extension Y of ¢ is of the form

4.8) Y(2) = (2)h(z) + BE)EAE) + 3(z) 7,

where h is an element in Wy xu(T) such that |h(z))| < 1, \z} = 1. Furthermore, for-
mula (4.8) gives a 1-1 correspondence between all such h and all strictly contractive
extensions Y of ¢.

Theorem 11.4.2 is a direct consequence of Theorems II.1.2 and W.4.1. The
observation that the condition mentioned in Theorem 1.4.2 is indeed a necessary
condition for the existence of a strictly contractive extension is straightforward.
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The solution of the more general n*-block problem, which already appears in 13,
Theorem 4.2], may also be derived from the abstract setting derived in Section I11.1.
1I.5. THE WIENER SPACE ON THE LINE

We use the notations of Section I.4. In this section we will apply the results.
of Section II.1 on the following extension problem. Let ¢ € L}, ,, (—oco, 0] be given.

A matrix valued function g&, with ¢ € L ,.(T) is called a strictly contractive extension
of ¢ if Y(s) = @(s), a.e. on (—oo, 0], and || (})|| < 1 forall A eR.

THEOREM I1.5.1. Let ¢ € L}y, (—o0, O] be given, and suppose that the integral
operator ®: L2[0, co) — L(—o0, 0], defined by

ER)) {®N)(1) = S et —u)f(w)du, t <0,
0
has norm less than one. Put
0
oft,s) = g ot — (s —u)*du, t,s€R

and

wy(1,8) = S ou—t)y*o(u —s)du, t,seR.
0

Let « EL}X,,(—OO, 0}, B GL;’;XM(—-‘OO, 0L y ELllnx"[Os co) and de L}nxmlos 00) be
given by the following equations

{5.2) oc(t)—S o(t, Hu(s)ds = (¢, 0), ¢t <0,
0
0
(5.3) (@) = p(—1)* + S o(s — t)y*as)ds, t>0,
0
(5.9 o) — S w..(1,5)0(8)ds = w.(#,0), ¢ >0,

-

(5.5 B() = olt) + % ot — 5)o(s)ds, < O.
0
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Then the matrix valued function g € (L}« (R))" given by

DB = BN + S = (I, + &AM, AeR,

is the unique strictly contractive extension of § such that (8(I— g*g) ") &
€ (L:,l,x,,,(—oo, OJ)A' . . : © .

Proof. We will obtain this theorem as a special case of Theorem II.1.1. ‘Puf
b= (L) 1= (L0, 00))", Ay = C7,
L = (9)F 1= (Lhxald, 00))", Pg = €5,
B =(¢) = (Lnxm[o’oo))"’ B =(¢.)" = (Lux ,,.( %0, 0]‘)3

and let Z = €%, o/, and 2 be given via (1.2) and (1.5). The conditions (1.1), (1.3),
(1.4) and (1.6) are clearly satisfied. The above introduced spaces as well as the 'Space
«/ we endow with the norm || |j,,»xa, defined in Section 1.4, for all the applicant

combinations of p and ¢. Checking the axioms (A0)-—(A3) again consists of poin-
ting out the triviality of Axiom (A0) and the reference to Section 1.4 for the others,
where it is noted that for (A1) it suffices to prove this axiom for &/ and 2.

- Let ¢ €L}, ,(—oc0,0] and suppose that |[®l< 1. Let 0 <e< 1. Then
the operator I — g2dd* is invertible as an operator on L%,(—oo 0] n Lj(—o0, 0],
since its kernel is trivial and @ is compact. Using that disa compact as an operator
acting from LL[0, oo), we have that  — e2®®* is a Fredholm operator with index
zero on Li(—oco, 0]. Since the dense set Li(—oo, 0] n Li(—oo0, 0] & Li(—oo, 0] is
in the image of this operator, I — 2@ @* is surjective. But then invertibility follows
Using this it is not hard to see that the condition “J— g?HH. is invertible for
0 < &< 1”7, where H and H, are defined in (1.8), is equivalent to the condition
@] < 1. Analogously, 7 — e2H,H is treated. Since the elements in (1.9) are for
this case both equal to the identity, they are evidently positive definite in o4 and Dy,
respectively. Hence we can apply Theorem II.1.1 in this setting, and obtain Theo-
rem 11.5.1. A

.Theorem II.1.2 gives now the following description of the set of all strictly
contractive extensions of a given function ¢ € (L%, ,.(—o0, 0])".

THEOREM I1.5.2. Let & € L}, ,(—o00, 0] be given. In order that there exists a
strictly contractive extension of the function § it is necesary and sufficient that the inte-
gral operator ®: L},[0,—o0) — Li(—c0, 0, defined by (5.1), has norm less than one. Let -
this condition hold and let a € L}, (—o0, 0], B € L}, ,.,(—00, 0], 7 € L},.[0, o0) and
O€ L}, m(—00, 0] be given via the equations (5.2)—(5.5). Thent each strictly contractive

10 — 1186
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extension y of ¢ is of the form
(5.6) YD = (, + )h() + BODGWRG) + I, + 5() Y, 4 eR,

where h € L}, [0, —oo) is such that |ﬁz().)[| < 1, 1 €R. Furthermore, formula (5.6)
gives a 1-1 correspondence between all such h and all strictly contractive exten-
sions i of .

The above theorem is a direct consequence of Theorem II.1.2. The observa-
tion that the condition ||®}] < 1 is a necessary condition for the existence of a strictly

contractive extension is straightforward. A linear fractional description as in (5.6)
was obtained in [5, Theorem 9.4).

11.6. THE WIENER SPACE ON THE LINE: THE FOUR BLOCK CASE

We use the notations of Section L.6. In this section we view an element f of
the Wiener space on the line W, ,(R) divided into four subblocks, i.e.,

Tu(d) S12(4)
4 = DA E
7 (fm(}") .fzz(?~))

with f,, €W, u(R), where p, , j, are positive integers such that p; + p, = mand

v, , ¥, are positive integers such that v, + v, = n. We consider the subset W s m o R)
of W, m(R) of elements f with constant term d, equal to zero. The space W, ,, o(R)
admits the following decomposition

"anm,o(R) = W;x:n.o(R) + W:Txm,o(R)
where
Wi oR) = {f = (/, R0e2 €W n(R) £33 € (L3 5, [0, 00)) 7},

and
W;z‘x m,O(R) = {f= (frs)g,scle an m,O(R) ' /rs =07 (r’s);é (1 ’2)’ﬁ2 € (Lilx,,z(——oo, OD i }

We are interested in the following completion problem. Let ¢ € W, o(R)
be given. An element g € W,x,, o(R) is called a strictly contractive extension of
o if g— o €Wy, oR)and jlgD)li <1, ieR.

Before we state the results of this section we first introduce some notations.
Let y, and x_ denote the characteristic function of R of the interval [0, co) and
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(—o0, 0], respectively. With D; @ D, we indicate the diagonal matrix with diagonal
entries Dy and D,. Let ¢ € Wy, o(R) be given, and introduce the following

Hankel like operators which act from Lfl(R) @ sz(R) to L,z,l(R)@ Lﬁz(R):

0

( (t) S ‘(s())fl(s) )ds, 1 ER,

— 00

61 (51(2))‘(’t)=(m)@1) §°¢(r—s>,( e )8 (eR

X 6)fils)
'(Ez{f;:z))m — 0 ® 1.0) §<p<r— )(22))@ reR.

THeEOREM 11.6.1. Let ¢ € Wik, o(R) be given, and suppose that the Hankel
like operators E,, i = 0, 1, 2, have norm less than one. Put

Wlt, 1) = S (- (1) @ 0)p(s — 1)*p(s — w)(x () @ 0)dis,
Ya(t, u) = S U@ 71- (D)l — "1+ () ® Dols — u)I ® 1 ()ds,

Uy (0, ) = S (1 (1) ® Dot — YT @ 1 ()@ — (1 () @ 1) dis,

Yo all, u) = s © ® 241Nt — o — (0 @ x+ (W)ds.

Let :
4 = (arx f,s= 1> ﬁ (ﬁn): 5=10 ‘/ = ('yrs)zr,SLls 5 = (érs)r §=1

be givén by a5 = 0, 9y = 0,

6.2) (““(’)) — OSO Yo alt, ) (““E“;)du — Y141, 0) (g ) teR,

oy, (1) ooy (1
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[+l

©3) (a:(t)) —_ §¢2_*(1, ) (%Zu)) dut = Yy (1, 0) (‘;) >0,

—

(6.9)

ooy (8)

— I ® x-(t) S o(s — 1)* (au(s)) ds, teR,

(o) e () Tl o ren

(6.6) (51:)(‘)) S Wolt, l)( 11(”))du = ¥,(t, 0) (; ) t<o0,

-0

6 (30)— | wen () a—pieo ). ren

Oan(t) PG
(6.8) (?ig) (p(t)( ) S(p(r——s)(()‘l:)(t))ds“ f eR,
Bu®Y . W N RO
69 | ﬁm(t))— () ® D) (X+(t)®1)_s ot "(am(s))‘”’ reR.

Then the kxk block matrix valued function g defined by
80 = BAYUL, + 30N = U, + &()* ()%, A eR,

is the unique strictly contractive extension of the lower triangular pait © with
(BU— 8%8)7") € W} mo(R).

Proof. We will obtain this theorem as a special case of Theorem I1.1.1. Make
the following choices of spaces: Let # = ¥* = W,.,, o(R), o =W, (R) and
Y o W, n(R), and we view the elements of these spaces divided in subblocks
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of sizes v, Xy, v, xv, and pu, Xy, respectively. Further, let

= (%)-f-)* i= lTXm,O(R); By = (%—)‘k = nXm O(R)

0\, -
o=ty = (00 ey, con =12,

Qy; Ay

P = (25%)* {(j 0)i"f-e@uir-:uilo’“))*"=1’2}’

21 22

dd — Cnxn gd — me m
= s = .

Then clearly (1.1)—(1.6) are satisfied. The above introduced spaces as well as the
space .# we endow with the norm || {| ,.» x9(R) defined in Section 1.4, for all the appli-

cant combinations of p and ¢. Let us check the axioms (A0)—(A3). For (A0), (A2),
and (A3) we refer to Section I1.5, since the specific decomposition of the space is
irrelevant when checking these axioms. Let us check Axiom (A1) for the space 7.
Let a = (an 0

sy gy
in particular, that [la;; ()| < 1,7 = 1,2, for all 2 € R. As in Section 1.4 one proves
that the function /— a;;(%) is invertible and its inverse belongs to C'i™"i +
+ (L.,‘,xVi [0,00))",i = 1,2. Butthen (e, —a)~* € &/ _ . Fora € &/, one can reason

analogously. Doing the same for & gives that Axiom (A1) holds in 4.
Let Z,,i = 0,1, 2, have norm less than one. Let us first show that the operators

11— HH, and I — szfl,,fl (0 < € < 1) are invertible. Relative to the decomposi-
tion o/ = ofy -L % the operator I — e2HH, is of the form

10

* ® '
Soin order to show that I — e*HH, is invertible it suffices to prove that this operator
is invertible on &% . An analogous reasoning shows that for the invertibility of

I azH,,,H it suffices to prove that it is invertible as an operator on 9" fa=

= (cf“ 9 ) e’ and d = ("“ dm) € 2%, then
Ay dgp 0 dy

) € & _ and suppose that e —a*a is positive definite. This means,

{U—2HHe}Y = (U —ezEn () a—ezep ( )

and

u—sfina = ((—sszy() a—rzz())
AS
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Let us show that the invertibility of the operators

(6.10) ( ) i=0,1,2,
eZF I .

seen as an operator on L. m)x (»--m) Space implies invertibility when seen as an oper-
ator on L, myx .+my Space. For this consider these operators acting on the inter-
section of Liy4myxntmy a0d LE,4myx memy - On this intersection these operators are
invertible. If on L+ myyx (+m) the operators in (6.10) are Fredholm with index zero,
we are done: indeed, since the. operators acting on the intersection have full images,
the operators will have a full image when considered as operators working on the
L? space. In order to show that the operators are Fredholm with index zero :one can
reason in the same way as was done in the proof of Theorem 3.1 in [13] for the
case of the Wiener algebra on the cjrcle. The main idea there is that the operators
are compact perturbations of operators that contain only identities and Toeplitz-
-like blocks. Using the results in [14] these operators.are readily seen to be Fred-
holm operators with index zero, and thus also all their compact perturbations.
This establishes the irivertibilify of the opérators I —¢e:HH, and I — s‘sz*l? . We
can now apply Theorem II.1.1. Straightforward computations show that %---¢
in Theorem 11.1.1 coincide with I, + &, f, ¥ and I, + d here. )

From Theorem II.1.2 we obtain the following description of the set of all
strictly contractive extensions of a given function ¢.

THEOREM I1.6.2. Let ¢ € Wik, o(R) be given. In order that there exists a strictly
contractive extension of the given function ¢ it is ne'cessary‘_and sufficient that the
operators ;i = 0,1, 2, defined in (6.1), have norm less than one. Let this condition
hold and let (%), B(A), y(1) and 6(3) be defined by (6.2)—(6.9). Then each strictly
contractive extension \ of ¢ is of the form

(6.11) Y(2) = @A) + BONG@ARC) + 6N, L eR,

where h is an element in Waxmo(R) such that |h(A)|| < 1, |zi = 1. Furthermore, for-
mula (6.11) gives a 1-1 correspondence between all such h and all strictly contrac-
tive extensions \ of o. ‘

Theorem IL.6.2, is a direct consequence of Theorems II.1.2 and]IL.6.1. The
observation that the condition mentioned in Theorem I1.6.2 is indeed a necessary
condition for the existenice of a strictly contractive extensxon] is of a simple nature.
Indeed, if  is a contractive extension of ¢, then if we replace ¢ by y the operators
in (6.1) will stay the same, and since ¥(2) has norm less, than one for all. A the oper-
ators are easily Tecognized as stnct contractions.
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The solution of the more general p X g-block version of the present pro-
blem may also be derived from the abstract setting derived in Section II1.

I1.7. FREDHOLM INTEGRAL OPERATORS

We use the notations of Section I.5. In this section we"abﬁly the abstract
results of Section IL.1 to functions f € # = #r , which may be viewed as kernels of
integral operators. Thus we consider nXn matrix valued functlons deﬁned 1n the
square 4 which are continuous in the open’regions

4, ={(ts)ed |t <s},
={(t,s)ed|t>s}

and the restnctlons frof fto 4y extends contmuously to the closure Ai Put Fy =
={feF|fit,s) =0, (t,5) €4=}. _

We shall deal with the following problem. Let ¢ € & _ . A matrix valued func-
tion ¥ € & is called a strietly contractive extension of ¢ if Y(t, 5) = @(t,5), {t,5) €
€ 4_, and the integral operator ¥ with kernel i has norm less than one. Before we
state the theorem we need some additional notation. Forp e #_and 0 < E < T
let K,, ; denote the integral operator actmg from L5[0; {] to LE[¢, T] which is defined by

5
@ & gf)cr)—sqw, fs)ds, E<t<T
0

THEOREM IL.7.1. Let ¢ eF_ be given, and suppose that for every & in the
interval [0, T the operator K, . has norm-less than one. Put

r T .
o(t, 3) =S"’(” Dls, 0y*do, w4, s>=S<p<u,- Dre(v, v, (s, 1) € 4.
0 " N . ) . .

0

LetoeF_,peF_,ye€F, andd € F . be given via
(7.2) «(z, 5) L—Sw('t,- wyalu, s)du = w(t,s), 0<s<t<T,

0

T
(7.3) e, 8) = (s, £)* + S(p(u, Hra(u, sydu, 0<t<s<T,
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(7.9) (1, ) -—S Wyt )o(u, s)du = wylt, s), 0<t<s<T,
o

3

(7.5) B, s) = o(t, s) + Scp(t, wyo(u, s)ds, 0<s<t<T

0

Then the matrix valued function g € & defined by
g = B__ﬁ*é? = 9% __(a::;)?*,y:;:

is the unique strictly contractive extension of ¢ such that g + g% (g" % g) e 7_.

Proof. We will obtain this theorem as a special case of Theorem IL.1.1. Put
ﬂ&:.@&:tﬁi:g&i;:fi, &Id::@d:={)"lns /H»ECI,

and let o — 2 be given via (1.2) and (1.5). The conditions (1.1), (1.3), (1.4) and
(1.6) are clearly satisfied. The norm on .# is given by

|)Jzn+ (j 3) (a(t, 5) b(, s))

c(t, 8) d(@, )
Checking Axiom (AO) is a triviality. For Axioms (Al) (for & and %), (A2) and
(A3) we refer to Section I.5.
Let ¢ € #_, and suppose that ||K, ;|| < 1 for £ €[0, T]. We have to show
that 7— e?HH, , where H and H,, are defined in (1.8), is invertible for 0 < ¢ < 1.
Fix ¢ €[0,1], and let g € #_ be given. First note that the kernel of the operator
X(,,',:Kj;‘,g: L3[¢&, T — Li[E, T)is the matrix valued function

:= Al + sup
(r,s)ed

'3 .
Velt, ) = S o(t, Yo, sy°ds, t,u €[E, T).

[V}

Since for each ¢ € [0, T] the operator 1— e°K, K7 . on L{*7¢, T] (columnwise
defined) is invertible, there exists a unique f; € Ly*”[¢, T'] such that

(I— &K, K5 ) = g(t, &), E<t< T, ae. .

Since

j::(t) = (8?' ¢_§K$‘§f:§)(t) + g(t: 5)9 . & <I< Ts a.c.,
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and the right hand side is continuous in ¢, we have that f; € Cox,[¢, T]. Put now

Ji, O i=ft), 0<E<1<T,
and let us show that f is continuous.

Let 2 be a positive number, and let ¢, be a continuous function on 4 such
that ¢, = @ on 4_ . Put

4
Vet u) = Scpe(t, 9., 9*ds, & t,uel0, ).
[4]

Then ¢, is jointly continuous in &, 7 and u, and moreover Y, (¢, u) = Y,(¢, u) if
t,u > & Fix & €[0, T]. Consider the following two equations:

T

(1.6) ﬁ(t)—sﬂsnpe,q(t, Viods = gt m), 13 &
0

(1.7) .fT,(f)——eZSw;;(t, O(s)ds = g(t, &), 13 &

Ifnis close to ¢ then the kernels ¢, , and . are close, and, furthermore, the right
hand sides are close. Thus for 5 in a neighbourhood of ¢ we have that

~ 1
sup {if () —£,0l < - -2
{<tgT 3
Compare now (7.7) with the equation

T
flt) — & S""“(” Dis)ds = g, &), E<t<T.
¢

Since by Theorem 3.3 in [10] the resolvents of both integral operators are close if #
and £ are, we have that for # in a neighbourhood of £ it holds that

sup [[fi—AOl < 1.
&g18T 3 .
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Further, if ' and ¢ are close; then

VB — £, < ; -/1.
But then
L) — f,,(t <2,

proving the continuity of f on 4_
The above reasonings show that if {iK, .l < 1forall0 < ¢ < T the operator

I-—-¢*HH, is invertible (0 < ¢ < 1). The converse is easy: if & is in the null space of
I — e2HH, then its nonzero columns are elgenvectors of I — &K, (K ., and thus
¢~* is a singular value of K,, .. But then ||K,, .| > > 1. Analogously, one treates

-— e2H,H Since both eiements in (1.9) both equal the identity, they are posmve
dehmte in &/, and &, , respectlvely Going through straightforward calculatlons one
sees that the elements « - & in Theorem IL1.1 coincide with the I, + o, B, 7and
I, + ¢ in Theorem II.7.1. . #Z]

The description for the set of all strictly contractive extensions of a given
¢ € F _ is now a special case of Theorem I1.1.2.

THEOREM I1.7.2. Let 0 € & _ be given. In order that ¢ has a strictly conirac-
tive extension it is necessary and surﬁcient that

(7.8) K t”<1 0<5<T,

where K,, ; is defined in (7.1). Suppose that (1.8) holds. Let o — & be given via (7.2)—
—(7.5). Ther. every contractive extension  of @-is of the form * '

(7.9) l!/=(g+oz*g+li)—(g+oz*g+B)(5+v*g)’,

where g is an element in & , such that its corresponding integral operator G has norm
less than one. Furthermore, (71.9) gives a 1-1 correspondence between all such g
and all strictly contractive extension \ of .

Theorem II.7.2 is a direct consequence of Theorem IL.1.2. Condition (7.8)
is obviously a necessary condition for the existence of a strictly contractive exten-
sion of ¢. The above results are new. :

It is easy to deduce similar results for the Banach space of nxm matrix kernels
defined on a rectangle [0, 7,]x [0, T;) with 4_ = {(1,5)  t > s— 1} forsome 7 € R.
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