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MINIMAL SIGNATURE IN LIFTING OF OPERATORS. I

TIBERIU CONSTANTINESCU and AURELIAN GHEONDEA

he approach, developed in [14], of extrapoiation problems in the theory of
functions by means of lifting of commutants makes natural to consider problems
of lifting of operators with control over the (negative) signatures, in connection
with various generalizations of classical extrapolation problems as formulated in
different papers [1], [12], {6] and many others. In {31 it was formulated a problem of
lifting of operators with one-sided control of the negative signature and it was prov-
cd that, in the case of minimal signature and the underlying spaces of Pontryagin
type, this problem has a solution similar with that in the positive definite case. In
the well-known interplay between lifting of operators and lifting of commutants,
this made the possibility to prove a theorem of lifting of commutants for contrac-

tions on Pontryagin spaces [9].
The aim of this paper is to obtain a variant of the commutants’ lifting theorem

which can be applied to problems of extrapolation of meromorphic functions as
these formulated in [1], [12], [6]. In the first part of the paper, we state a framework
in which such a result can be formulated, but, as Example 3.4 shows, in this case the
nroblem of lifting of commutants has not always & sclution. In Theorem 3.5 there
is considered a situation when there exist solutions, this containing the results in
{9, [11].

In the second part of the paper, which will be published elsewhere, we will
state necessary and sufficient conditions for the existence of lifting of commutants
in indefinite setting.

We have specified in Section ! the notation and terminology concerning linear
operators on Krein spaces. As general references for these we recommend [5] or
[7]. Also. we have stated some auxiliary results concerning indefinite factorizatious,
link operators, etc. (cf. [3]) and unitary dilations (cf. [9]; a different approach was
pointed out in [5], see also [4], [10]).
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1. NOTATION AND PRELIMINARY RESULTS

1.1. KREIX SPACES. A Krein space A is a complex vector space endowed with:
an indefinite inner product [ , -] such that # admits a decomposition " = #"* -
+ A, called a fundamente!l decomposition, with the properties: '+ and 4
are subspaces of 7, orthogonal with respect to [-, -] and (#'*+, [+, -]) and (47",
---[-, -1} are Hilbert spaces. With respect to such a decomposition one asscciaics
2 fundamental symmetry J on X,

(1.1 JxT +xy=xT—x", xEEAL=.

A fundamental symmetry, £.s. for short, J is determined by the following pro-
perties: it is a linear operator on ¥ satisfying J2 = I and such that the relation

{1.2) (v, v), =[x, 1] x,veX

determines a positive inner product (-, -); which torns % into a Hilbert space.
The norm associated to a f.s. is called a wwitary norm. All unitary norms of the
Krein space # arc equivalent. in particular one can speak about the strong! topo-
logy and about linear bounded operators on Krein spaces. The signatures

(.3 w= (1) = dimt/

are independent of the chosen fundamental decomposition. If (#£') = min{x*(#"),
x~(#)} is finite (without restricting the generality we can assume x~(#) < oo)
then . 1s calied a Pentrvagin space.

Let o, and ., be Krein spaces. The direct sum Krein space Ay[+ 17 is deti-
ned as follows: take J; f.s. on .#7;, i = 1, 2, and consider the Hilbert space .#";, 2
@ 5. The symmetry J = J; & J, turns this Hilbert space into the desired Kiein
space [ +14 o). The construction does not depend on the chosen fs. J;.

Let ), and &, be Krein spaces and T € Z(H'y, A 5). Then, its edjoint is
defined by

(1.4) [Tx, v} =[{x. T%y), xeHy,.yeHX,.

If J; and J, are fis. on %7, and respectively 5, and T% is the adjoint of
T with respect to the Hilbert spaces (A7, (-, -)y). i = 1. 2, then

(.5) T# = J,T%J,.

A (possible unbounded) operator T with domain Z(T)c ¥, arnd range
GUT) <, is called isometric if

(1.6) (Tx, T3] = {x, 3], = y e Z(D).
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A surjective isometry T' € Z(A "\, A, is called unitary. A necessary and suffi-
cient condition to exist unitary operators between #; and 4, is that x*(%",) =
= x*(A ;) hold. An operator V € L(A',, A ;) is called a partial isometry if kerV
is a Krein subspace of #°, and with respect to the decomposition /', = ker V[+]%1,
V| %, is an isometry. The operator T € L(H'y, #'s) is called contraction if '

{1.7 [Tx, Tx] < [x, x], xe€H,,
cquivalently
{1.8) [(I—T#D)x, x1 20, xeiy,

i.e. I— T#*Tis positive. T is called doubl) contractive if both 7" and T* are contrac-
tions.

1.2, INDEFINITE FACTORIZATIONS. Let 2 be a Hilbert space and 4 € £(F),
A = A*. If sgn denotes the function signum and we put S, = sgn(4) then S, is
the selfadjoint partial isomztry appzaring in the polar dzcomposition of A4,

1.9 A=S8,A, ker(S,)) =ketd, S, # = W
The signature numbers of A are defined as follo.ws;
{1.10) #=(A4) = dimker(I SA),‘ x(A) = dixﬁ ker(S ).
Considering the quadratic form (Ax, x), x €, we notice that 3—(A4) (x*(4))

represents also the number of negative (positive) squares associated with it, equi-

valently the dimension of any subspace which is maximal negatnve (maximal posu—
tive) with respect to this form. :

Denote by o, the Krein space obtained from 77(Aj with the inner product
(.11 [, 1 = (Sax, 3), x, y €4
(here (-, -) denotes the inner product of the Hilbert space 5¢). In particular S, # 4

{which will be denoted simply by S ) is a f.s. of #, ; the corresponding fundamental
decomposition is

(1.12) Sy = HIH

where # ] = ker(I— S,), #7 = ker(/ + S,) and

(1.13) x = (A ) = nF(A) = %*(S .
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The next result can be found in [3]. Its first part was earher obtained in [3}
(for the matrix case see [13]).

1.1. PrROPOSITION. Let o be a Hilbert space, A € L(H), A = A%, and let A’
be a Krein space with J a f.s. Then:
(i) There exists B € L(H, A') such that

(1.14) A = B*JB
if and only if
1.15) wH () > wt(4), %~ (H) > »n(A4).
(i) Suppose (1.15) is fulfilled; then B € L(H, A ) verifies (1.14) if a;ﬂ only if

(1.16) B =[ClA"#, X]

(with respect to H = H# , @ ker.A), where C: R(A|"?) (= # ) — A is isometric
such that C|A|'? & ,9"(./1() H)and X € L(ker A, A') satisfies X*X = 0 and AX) <
c R(C)L.

In the next corollaries the notation is as in Proposition 1.1; the following one
is proved in {3].

1.2. COROLLARY. Assume that either »*(A4) = x* (A )<co or x~(A)=n"(HA)<
< oo. Then the formula

1.17) B = ClA"?

establishes a bijective correspondence between all operators B € L (K, X') satisfying
(1.14) and all isometric operators C € L(H 4, H'). 2

During the second section we will make intensive use of the following.

1.3. COROLLARY. Assume that either x~(A) or x*(A) are finite and there exists
B e P(H, ) with dense range and satisfying (1.14).
Then B is of the form (1.17), where C € L(H 4, ) is unitary.

Proof. Assume that B € #(#, A') satisfies (1.14). Then (1.15) holds and B
is of the form (1.16). It is easy to see that Z(X) is the isotropic part of Z(B), hence
if B has dense range then X = 0.

In particular, the representation (1.17) holds. Now, it is easy to see that,
without restricting the generality, we can assume kerA4 = 0. Further, if, say,
% (A) < co then we claim that

(1.18) x~(A) = x~(X).
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Indeed, if this is not true then from (1.15) it follows that % ~(H#") > %~ (A4)
would hold. An argument of Pontryagin Lemma type ([7, Theorem 1X.1.4]) shows
that there exists a finite dimensional subspace % < #(B) such that dim % > %7(4)
and .Z is negative in &, i.e. [y, y] < 0, y € £\{0}. Then, we consider the subspace
P ={xex,|BxeP} Itiseasy to see that B is injective on 5, and that &’
is a negative subspace in #, (all these follow from (1.14)). Since dim(¥’) =
= dim(Z) > %~(A), this is a contradiction. Finally, taking account of (1.18) and
Corollary 1.2 it follows that C € #(#,, X') and is isometric. Moreover if B has
dense range the same holds for C; hence C is actually unitary.

‘ 1.3. SOME pUALITY RELAﬂbvs Let " be a Krein space and AL (H), A=A*.
If J is an arbitrary f.s. of " then (JAx, ¥); = [4x, y), x, y €4, hence the following
signature numbers are well-defined:

w=[A] = w2 (JA), x%A] = x(A).

Let %, and &, be Krein spaces and T € &(A,y, A ;). Then, by [3, Proposi-
tion 3.1] the following identities hold

(1.19) w2l — T#T) + %2(Hy) = wt[l— TT#] + w=(Hy)
(1.20) WL — T#T] = x%[f — TT*].

1.4. ELEMENTARY ROTATIONS. Let 'y ,'; be Krein spaces and T €L2(Af, A ,).
We fix on the Krein spaces &', and &, the fs. J; and, respectively, J, and define
the following operators:

(1.21) Jr = sgn(Jy — T*LT), Jps = sga(J, — THT%);

(1.22) Dy = |y — T*J,T}?, Dy = |Jy —THT* 2.

Then, the following relations hold

(1.23) JtDy = DyJy, JpDps = Dypady ;
(1.24) JiD% = Jy — T*),T, JpaDix = J,— THT*;
(1.25) Th() — T*,T) = (Jy— THTHI,T;

(1.26) Ty Jy — THT®) = (J, — T*J,T)J,T* .
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The operators Dy and D« are the defect operators associated to T. With res-
pect to these, the defect spaces can be introduced: they are the Krein spaces Jp
and 2, constructed from #(D;) and #(D,») with respect to the f.s. J; and, respec-

tively, J .
Then, the following identities hold

1.27) w2 (Dp) = n*{I—T*T), 2%(D,5) = »=[I— TT#].

The following result is proved in [3].

1.4. PropositioN. With previous notation, there exist uniguely detesinined
operators Ly € L(PDp, D =) and Lys € L(Dp, D) such that

(1.28) DLy = ThDr@y, Dyl = T3J,Dzl9 .

Moreover, the following identities hold

(1.29) Lo = JpL) !9 0
(1.30) (g — DpJyDpY @p = LiJ oLy
¢1.31) (/o — DyadyDye) Py = LieJyLs.

In particular, the following operator

R(T): A [ +]1D e — H [ +]D

1.32)

RT) = [ T D ‘é
Dy —JrLge)

is unitary, being called the elementary rotation of T.

1.5. UNITARY/AND ISOMETRIC DILATIONS JLet 5 be a Krein space and Te ¥(5F).
An isometric (unitary) dilation of T] is a pair (U, #) where 5 is a Krein space exten-
sion of & and U € # (o) is an isometry (unitary operator) satisfying 7" = P;‘;U"];/f’,
1720 (P;’g denotes the selfadjoint projection of H onto #). The isometric (unitary)
dilation is called minimal if # = V U (# = n\e/ZUW).

720
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Two isometric (unitary) dilations (U7, .#°') and (U", ") of T are unitary
equivalent if there exists a unitary operator ¥ < ,9’(}%.;’", H#") such that ¥ acts as
the identity on #" and WU' = U"'W.

Let us fix on 5 a f.s. J with respect to which we consider the objects Dy, Jr,

Dy, ... Introduced in subsection 1.4. Define the Hilbert space
(1.33) H=.. @p®G O N CI,S0€ ...

and consider the operator J € £(#)

(1.34) J=... @Jp@J @/ C/rE....

Tisa symmetry on the Hilbert space S, hence, considering the inner product

[x,¥] = x, ¥), x e, (5, [, -]) becomes a Krein space and Jisafs. on 5.
Defining the linear operator

Ui —H
7 0 0 0 ...
0 Dy O 0
(1.35) U=
0 —Jl, Dy 0
0 0. 0o I

it follows from Proposition 1.4 that (U, #) is a minimal unitary dilation of T.
Let us assume now that 7 is doubly contractive, hence J; @r = I\9r
and, J'T-;:'i D=1, G+, in particular

(1.36) A = H([+]."

where (#. [ , -]) is a Hilbert space. Consider tow another minimal unitary dilation
(U’, #'y of T. Then the linear manifolds Z = lin{U"x xe#, ne Z} and 9’ =
- lin{U’"’l' ‘ve A, n e L} are dense in  and respectively, in ', hence nondege-

10 - 1359
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rerate, and the linear mapping ¥ defined by

N

o

2 W Nﬂ
(H.37) Z= Z kak = Z U’kl'k € 9’

It —N1 k»,—-.N1

is correctly defined, isometric and injective. The boundedness of W is now a conse-
cuence of (1.36) (indeed, W acts like the identity on # and on 2 is bounded because

it is isometric). It follows that the unitary dilations (U, H#) and (v’'. 97"’) are unitarily
cquivalent. Summing up the above considerations we have ([5] and [10])
1.4. THEORDM. (2) Any operator T € $(#) has a minimal unitary dilation.
(b) If T is doubly contractive then the minimal unitary dilation (U, #) of T is

uniquely determined up to unitary equivalence and »~(H) = #~(3F).

Let now (U, 77) be the minimal unitary dilation constructed in (1.33)—(1.35).
Consider the subspace # of H

(1.38) A =... 00000 4 DIr®Zr®...;

it follows that .# is a Krein subspace of # (it is invariant for the f.s. 7). A is also
invariant for U and denoting ¥ = U . # it follows that (V, #) is a minimal iso-
metric dilation of T. If, in addition, T is contractive then J; @, =1 Z; hence

(1.39) A = H[+]A

where (£, [- , -]) is a Hilbert space. The uniqueness of the minimal isometric dila-
tion of T follows now as above (see also [11]). Thus we have ([5] and {9])

1.5. COROLLARY. (2) Aiy operator T € ¥ () has a minimal isometric dilation.

(b) If T is contractive ihen the minimal isometric dilation (V, .X') is unique up
to unitary equivalence and x= (') = uw=(K).

Tn the following we describe a construction which will be used in the third

section. Let T e £(#) be arbitrary and, for any integer n > 0, define the Krein

spaces
#, n =0,

: o =
(1.40) # H1Do[+] .. [+]1Drs > 1.

~
i copies

A s naturally embedded into ¢, the Krein space defined by (1.38), and this
yields also the natural embedding of £ into.#"+* for all integers n > 0. {A "} ,5
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is a non-decreasing chain of subspaces such that

(1.41) H =N A,

nz0

Now, with respect to this chain of subspaces, the minimal isometric
dilation V = U|.#', where U is defined in (1.35), produces a sequence {T%},0>
T™e LA ™) of dilations of 7,

(1.42) T® =PIy VIA™, 50
If we identify T with its trivial extension to an operator in £(#’) then

(1.43) V = so-lim T,

A= o0

For any integer n > 0, J® = J | '™ where J is given at (1.34), is a f.s. on
A, with respect to which we will consider defect operators, defect subspaces etc.
on A,

1.6. LEMMA. (a) For any integer n > 1, T™ is a partial isometry and 2 .,
is naturally identified with D5 as Krein spaces.
(b) For any integer n > 1, D+ can be embedded into G as Krein spaces.

If 9., is separable (respectively, Pontryagin space) then it can be (naturally) iden-
tifl‘ed with @T(nyk.

Proof. (2) is obvious. For (b), we compute:

D_«
T
(1=44) JW — OO T - « J:(":‘[DT’3 —JT"‘LT]
'—L;,JTea:

where we used Proposition 1.4. From here, via Proposition 1.2, it follows that
‘@T(l)* can be embedded into Z,«. Let us observe that the row operator

(145) [@T* _"JT*LT] € g(-[['i‘].@T, ;CZ'T*)

bas dense range. Assuming that D ,+ is separable, an argument of Pontryagin Lemma .

type (as in the proof of Corollary 1.3) shows that the ranks of negativity and positi-

vity of &+ and MT(,)* are the same, hence they are vnitary equivalent. On the other
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hand, if 7. is a Pontryagin space, then application of Corollary 1.3 to the factori-

zation (1.44) yields the natural identification of & » and & The case n 22

]I"li*'

reduces to # = 1. ¢

2. A LIFTING THEOREM

Let %", and ¥, be Krein spaces and T= L(A), ;). We assume that the siz-
nature numbers ¥, = x[I— T+%T] and s, = »~[I— TT#] are both finite. From
(1.19) we have the following identity

@2.n sy () = uo + 2 (),

in particular, x~(#7) and x~{Jf",) are simultancously finite or not. Let also %7
and '} be Krein spaces and denote 2, = H# [+ ]#7 and #, = A J+]1x7%.
Given two natural numbers 2, and i, the lifting problem that we consider in this
section is the following:

Determine all operators T (f(j 19 :Z"g) such that

)

t

PET A, = T, w[[—T*T) = 2, and %~ (I —TT+] = 7..

The approach adopted here requires o consider first the particular problems
corresponding to rows (i.e. ¥z = 0):

) {Determine all operators T < 3(7/ 1. A'o) such that

B

Ed 3 B ~ ~
T Ay =T, w (I—TFT) =, and 2 (I —T,TF} = u,

and columns (i.e. £ = 0):

Determine all operators T,e L(# s, A o) Such that
() ~
PyT, =T, v (I —TET,]= %, and % [I—T.TF] = z,.

)
-
-2
=
=

In the following we fix fis. J;, J; on &, and, respectively, "%, i = 1
respect to these we will consider defect operators, defect spaces, cic.
2.1, LemmaA. (i) If problem (=), has at least one solution then tie following
relations hold :
;le “+ %_(%-g) = ;f'g + 1{—(57f1) + X—(.;’ff;),
2.2

%y = sy, et T(HD 2 .
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(1) Assume x=(A'}) < oo and #, = ny— n~(H}) > 0. Then the problem (+)
has solutions if and only if %, = »,. In this case, the formula

(2.3) T, = [T DyT]

establishes a bijective correspondence between the set of solutions of problem (%),
and the set of contractions I € (A}, D y»).

Moreover, in this situation, the operators U(T,) and U (T,) defined by
ur): Dr, - DA+)2,

.4) Dy —JgLaT
U(Tr)DTr =
0 D,

U‘*(Tt): QT::‘ hd gr’f

U(T r)D T* = D I,aDT’*
are unitary.
Proof. In the following we denote J, = J; @ Jy the f.s. which is fixed on A .
(i) Let us assume that the problem (s), has solutions.

Then the identity from (2.2) is a direct consequence of (1.19) written for T,.
Also, if we denote

2.6) T. =T A
then
Q.7 I, — T,T = PR, —TALT) |

hence the first inequality In (2.2) follows from Proposition 1.1(i).
On the other hand, the identity

2.8) Jy— T,ler* = Jp— THT* — AJLA®
can be written in the form

(2.9) Jy— THT* = [A Dyl i @ /] [A Dpal®

whence, also using Proposition 1.1(), the second inequality in (2.2) follows.
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(i) Assuming x~(#]) < oo and %, = %, — x~(A}) > 0, let T, be a solution
to problem (x),. Then (2.9) holds and we can apply Corollary 2.6 in [3] and get
a uniquely determined isometric operator A € L(2,+, #'[+]P,+) such that

A*

(2.10) = AD,¢
DT>::

hence

for a certain I' € #(A'y, Z ). Now, we observe that the following factorizations
hold:

(2.12) DyadwDys = Jy— TLTT = Dou(Jys — TIT)D e = DywDpad #D D

and
D, 0 1{Jr 071 [Dr —JeLlpl
(2.13) DTfJTrDT\T = X
—Lydy D || O Jpf (O D,

Since the operators D s+D «: %3 — &« and

{ Dy = Jplpsd Xy Zr
(+]1—[+]
0 D, A1 Yr

have dense ranges, applicaiion of Corollary 1.3 to these factorizations is possible
and one gets the unitary operators U(T,) and U,(T,) defined by (2.4) and (2.5). In
particular, the following ideatities hold: .

(2.14) %= + %~ {J; — I'#JsI)
and
(2.15) 3y = 34— (M) = (e — IJ{re.

Writing the duality relation (1.19) for I we have
(2.16) # (I —T*Tal) + %y = = (Jpo — TIC) + (A7),

and then using (2.15) in (2.16) we obtain u~(Jy—T*J ) = 0,ie. I' is contractive,
and now (2.14) gives %, = 3,.
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Conversely, assuming %, = %, it is easy to see that there exist contractions
I'e L(A1, D,»). Taking T, as in (2.6) with 4 given by (2.11) for some contraction

I'e &(A'7, D) the factorizations (2.12) and (2.13) still hold. Since I' being con-
traction implies (by (2.16)) %~ (/& — I'J{I'™*) = %, — %~ (A7), the application of

Corollary 1.3 to (2.12) and (2.13) gives'x‘(J‘3 — T,:IIT;")=§E2 and 2‘(J:—Tf’JgT,)=
= %,, hence T, is a solution for problem (),. A
The fact that the correspondence given in (2.3) is a bijection is clear. :

The corresponding result for the problem («), can be obtained by duality from
Lemma 2.1. This is contained in the following.

2.2, LEMMA. (i) If problem (=), has at least one solution then the following
relations hold :

1+ 2 ( o) + 5 (A8 = %y + % (A7),
@17

y+ % (A3 2, %y %

(i) Assume %~ (A'3) < 00 and %, = %, —x~(H3) = 0. Then the problem (%),
has solutions if and only if %y = x,. In this case, the formula '

T
2.18 T =
@19 ¢ [FDT]

establishes a bijective correspondence between the set of solutions of problem (%),
and the set of operators I' € L (D, H'3) such that T'* is contractive. Moreover, in

this situation, the operators U(T,) and U(T.) defined by

UT): 9y — @,

2.19)
U(Tc)DT: = DI'DT
and
U*(Tc) : QT:‘ - QT*['*-]@[.%
(220) ‘DTﬂ —_— JTLTI":Z:
U(T.)D,» =
0 D

are unitary.
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We can now prove a result concerning problem ().

2.3. THEOREM. (i) If problem (=) has solutions then the following relations hold
#y + % (H ) + w (K = #y + x(HY) + (A7)
(2.21)

i+ (HFY) 2y, HoF xAHY) = %o,

(ii) Assurte %~ (A7), w (H3) < oo, ¥y ==, —n"(H3) =0 and %, = #y —
— 2 {(H]) = 0. Then the formula

T DTy

=)
i

(2.22)
IDy — LT T + Dl'D,
2 1

establishes a bijective correspondence between the set of solutions T of problem (%)
and the set of triplets {I'y, I'y. I'} where I' € (A}, D»). TS € L(H2, Zy) and
re ﬁf(ff}"rl, @ rﬁ) are contractions. Moreover, in this situation the operators U(T)
and U (T) defined by

VUTY: 25 - 2r[+12
(2.23) Dr Dy —(Dr Lyt + Jr LT IDr)
L 0 DI.DI-R
and

U:s(f) : @5‘3 o Qr;["}-]@r:z
(2.24)

ULT) = UT™)

ar e unitary operators.

Proof. (i) Let T be a solution to problem (=). The identity in (2.21) foilows
from (1.19) written for T instcad of T. Regarding T as a row extension of i1« left-
-hand column, the inequalities from (2.21) can be immediately obtained by ke cor-
responding inequalities from Lemma 2.1 and Lemma 2.2,

(i) Let us assume now that (X}, x~(#s) < oo and

(2.25) Ky = — 2 A =20, Ho=sty—x(A]) 20

<
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hold. Also, assuming that problem (+) has a sclution, let ' be one of them. We
represent T with respect to A, = 4 ;[+]4) by

- T 4
2.26 =
(2.26) T [B X]

and let 7, and T, denote its upper row and respectively left-hand column. Regard-
ing T as a row extension of T, from the second identity in (2.25) and Lemma 2.1
we obtain

(2.27) x (I —TFT) =% = u,—n(A3)
and
(2.28) T=I[T, DTZA]

for a certain contraction 4 € #(4'y, Z.»). Further, from (2.27) and Lemma 2.2
we obtain x~[I— T.TF} = x, and

T
2.29) T, = [FQDT ]

for a certain contraction I'¥ : Ay — 9.

Similarly, regarding T' as a column extension of 7T,, from the first identity in
(2.25) and Lemma 2.2 it follows

(2.30) | 2 — T.TF) = 5y = sy — 2~ (A}
and then, by Lemma 2.1, we obtain »[I— T.*T,] = x, and
(2.31) | T, = [T DI
for a certain contraction I'y € L(#{, 9D »).
The rest of the proof follows as in [3, Theorem 5.31.

2.4. REMARKS. (a) If 7, and X, are Pontryagin spaces the -above Theorem
2.3 coincides with [3, Theorem 5.3]. Also, if %~ {#]) = 2~ (H'g) = 3y = %3 = %, =
= 3, = 0, the fact that formula (2.22) gives all the solutions of problem (2) is
proved in [11].

(b) Assuming that the hypothesis in Theorem 2.3 (ii) hold, we definc

2.32) Fi=Ien, Ih=I9n, F=00r

o
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and the formula (2.22) can be written as follows
(2.33) T = [oR(T)F; + DypsIDy .

(c) Using the above Theorem 2.3, one can say, in some cases, when a given
operator T can be lifted to operators in certain classes (e.g. contractive, doubly con-
tractive, isometric, unitary etc.) and to describe (some of) them in terms of the
parameters I';, I', and T

2.5. COROLLARY. Assume (A1) = % (H3) =2, = #1 = s = %o = 0. Then
the set of solutions of problem (+) is uniformiy bounded, more precisely for any solu-

tion T of problem (%) it holds
[Th < [R(DE + 1.

Proof. We consider the unitary norms .| associated to fs. J=J,61
on ‘77 , i = 1,2. Then, observe that in this case, the operators f“l, T , and I from
{2.32) are Hilbert space contractions hence the representation (2.33) yields imme-
diately the estimation for !'T'|l. - 7

3. STRICTLY INTERTWINING DILATIONS

Let #"; be Krein spaces and let 7; € £ (5#;) be contractions, { = 1, 2.

We fix a fis. J; on 3#; with respect to which will be considered defect spaces,
defect operators etc. Denote by (¥, #";) the minimal isometric dilation of 7' in
the representation given in (1.38) and consider the chain of subspaces {Ji”}")},m)
introduced in (1.40) and the sequence of partialisometries {T{"},»; defined in (1.42)

Let A € (', , 5#3) be an operator which intertwines T; and Ty, i.c.

G.1) AT, = T,A.

We define the set of strictly intertwining dilations of order n > 0, by

(n)

@(")(A Tu T2)= ,eg(&i’g"), )) P"’n An - AP’“

AT = TWA,, w-[[— AFA] = %~ U A% A, 2 [I— A,A¥] = - [[— A A*1).

It is convenient to remark that an operator 4, € LA, # ) satisfics the
first two conditions in the definition of (4 ; 7;, T,) if and only if, with respect to
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the decompositions (1.40) of #{", it has a lower triangular matrix 4, = (X;,), where
Xoo =4, X;;€ _?(@Tl, 972), 1 g<i<a 1</j<i+1, and satisfy the relations

(3.2) XuT; + Xi3Dr, = Dr A,
(3.3) XaTl, + ngDTl =X 11, 2k < n,
(3'4) . /‘{F{[: = X’:-l,p—-ly 2 < k <n, 3 < P < k + L.

Let m > n > 0 be given. For any A, € GY"Y4; T,, T,) denote

"

(™

(35) (pnm(Am) = P;(/‘E")Am l'%/‘;.n}.

A direct application of the above remark shows that ¢,,,(4,,) satisfies the first
two conditions in the definition of @"(4 ; T,, T5). Moreover, since SZ’Tl and 7 are

Hilbert spaces, from Theorem 2.3(i) we have

(3'6) Z_[I——*— A 42A] < %—[I_ (an(Am)#(romn(:A m)] < X—[[— Afl*lAm]
{(3'7) %-[1_ AA#] < %—[['—_‘ (pmn(‘Am)Qnm(Am)ﬁ] < Z_[[— AmAiﬁE

hence the mapping ¢, takes values in G4 ; T;, Ty). It is now easy to see that
{€YNA4 ; Ty, Ty)}.>0 with the canonical mappings {@,.}m»nx0 verifies the axioms of
a projective system of sets, and let us consider its projective limit

(38) éi—nle(")(/i 5 Tl E] TZ) = {(An)n?»o]i An € 3(")(/4 5 Tl: Tz), An =

n>0

= ‘pn%-l,n(An-i-])}-

Let us observe that up to now, nothing enables us to say that this projective
iimit is non-void. This is our first problem. The second one is to find a labelling of
the objects of the projective limit from (3.8) in case when it is non-void.

In order to relate these problems with other results we introduce the set
of strictly intertwining dilations of A, by

S(A; Ty, Ty) = {Ae L(Hy, H3)| P;,';Acc = AP;;i, AV, = Vady,,
s [I-— ALAL) = w~[[— A* 4],

w0 [l — AnA¥] = %~ [[— AA*]}.
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3.1. LemMa. The set S(A ; Ty, To) is natwrally embedded into lim ZVNA:
Ty, Ty), more precisely, each operator Ao, € S(A; Ty, T,) can be identified with the
seguence (A,)nsq, where

Ky [
3.9 A, = ‘7[@;“\’400 1'}{1(&”)9 nz 0.

With respect to this embedding, 3(A ; T,. T,) coincides with the set of those
seguences (A ns0€ ﬁm SUHA Ty, T,y which are uniformly bounded, and in this case

>0

(3.10) A = so-lim 4,

n—Co

wherve for each n 2 0, A, is identified with its trivial extension 1o an operator i
LAy HH).

The proof of this lemma is straightforward and we omit it.
3.2. LemMA. If the operator A is doubly contractive, then

(3.11) S(4; T,. T, = gz%e<"></z; Ti, T)).

R

Proof. In view of Lemma 3.1, we have to prove that any sequence (A4 )ns0=
e Im&W(4 : T, T.) is uniformlv bounded, which is a direct consequence of Coro:-
nzQ

lary 2.5, 1

We present now a criterion which ensures that ‘IEE U4 ; T, T,) is non-void.
Let us denote C = AT, (=T,4). Then .

by — A%0C = Dy, TID S TPy, TIDF

hence by Proposition 2.1 in {3]., it follows that
(3.12) #[I— C+C] < u~[1-— A* AL

Similarly,

Jo— CHC* = (D /ﬁD.j_;}] Vp® J}ﬂ D AD.I,;]*

and this yields

(3.13) w{F— CC*} <~ [I— AA*] + % [[— T,T#).
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In the following we denote ¢, = ¢,.1,, for any integer n > 0.

3.3. LEMMA. Assume that x~[I— A*Al, «~{— AA*] and %~ [I— T\ T¥] are
all finite and also that (3.12) and (3.13) both hold with equality. Then the canonical
mapping @, (= @) is surjective, equivalently S A ; Ty, T,) is non-void.

Piroof. We search for an operator 4; € Z(A(\V . V) of the form

(3.14) A1=[ 40 ]
11 Xli’;

such that (3.2) holds. Considering the operatoer B; = A;R(Ty) & L(H[+]17+,
1
Jf’g[+]fﬁrg) we get

3.15) B, =

where S, = X,IDTeszmJTlLT,::. Sincz the clementary rotation R(7,) is unitary,
1 1

we have also

¥ [l— BB =n[I—AF A, «[[— BB} = u~[[— 4,4f]

hence 4, would be in @W(4 ; T,, T,) if we can siiow the existence of an operator
B, as in (3.15)such that x~[[— Bff B)] = s~ [[— A* A}, x~[I— B, Bf} = » [I— AA*].
But,
Jo—I[AT, AD,d] [, @ J 4] [AT, AD " = Jy— AJA*
1 1 1

and taking account that, by assumption, in (3.13) equality holds, application of
Lemma 2.1 yields a unique contraction X; € L(7 .=, 7 ooy suchthat AD « =D+ X .
1 1

Similarly, since
J—[A*T# A*Dr] Uy @ Jr] [A°TE AZDr ) = J, — A%T,A
and taking account that, by assumption, in (3.12} equality holds, application of

Lemma 2.2 yields a unique operatct X, € (2., & r ) such that X§F is contractive
and Dy A = X,D.. Finally, application of Theorem 2.3 shows that we can choose

S = — XQL?JC*"AG + DXZ:FDXl

with I'e #(Zx , 7 ») contraction. 7

o
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The next example shows that in order that SW(4 ; Ty, T,) be non-void, the
assumption in Lemma 3.3 concerning equality in (3.12) and (3.13) is not of tech-
nical nature.

3.4. ExaMPLE. We consider the Hilbert space C® and the operators

0 12 o Vi Vi7/a o

1 0 afiz o L o 1

Then 7, and 7T, are contractions, # (I— A%A) =1 = x~(/— A4¥) and
0 178
C= , in particular C is also a contraction hence in (3.12) strict
1 0
inequality holds. On the other hand, in view of the proof of Lemma 3.3,
&4 ; Ty, T,) is non-void if and only if there exist complex numbers x and f§ such
that (see (3.15)) for

0 V17,8 Y51/8
10 0
1/4 0 x
o Yaiis g |

the matrix 7-— BB, bas only one negative eigenvalue. Performing elementary oper-
ations in this matrix it follows that for any choice of complex numbers z and ff
it always has two negative eigenvalues, hence E3A4 ; 7y, T,) = O in this case. "3

3.5. THLOREM. Assume that x~[I— A% A}, x~[I— AA*} and =~ [I—-- T\ TF]
are all finite, end in addition »~{{— T\TF¥) = »~[I— T,T¥].

If (3.12) and (3.13) both hold with equality then for any mzn =0 the canonical
wappings ¢, are surjective, in particular the set lﬂ SNA4 Ty, T is non-void.

nz0

Proof. Since {<p,,h.,,},,l>,,>(, IS a projective system it 1s sufficient to prove that for
any i = 0 the mappings ¢, = @,.,, are surjective.

The case n = 0 is contained in Lemma 3.3 so that assume n > 1 and take
A,e SU(A Ty, T;). A, has a lower triangular matrix (X};), X, = A and such that
(3.2) and (3.3) hold. Consider the operator C, = A,T{" = TMA, € LA, #'")
and we will show that

(3.16) w[[—CHC

i@

] = X—[]——'— AF?AB]
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and

(3.17) #-[[— C,C¥] = %~ [[— A, AF] + %~ [I— TMTM#],

To this end we compute the matrix of C, and observe that after multiplica-
tion on the left with the unitary operator

LT, J,Dr,

@I
DTZJZ -—JT;LT2
we obtain the matrix
A 0
0 0
X Xz 0
._,Xn-l,l .Y,,__I’Z P . e e Xn_]’" 0.

which, at its turn, after a rearrangement of rows, i.e. a multiplication on the left
with a unitary operator, becomes A,_; @ 0, where A,_; = @,_1(4,) € "4 ; Ty,
T3). From here, and taking account of the identifications of the defect spaces which
follow from Lemma 1.6, the identities (3.16) and (3.17) can be immediately
obtained.

Now, these identitics enable us to apply Lemma 3.3 to the operators 4,,, T
and 7§, instead of A, T, and respectively T,, and obtain an operator 4, €
e B4, ; T{, T$7). But, with the identifications of defect subspaces which follow
from Lemma 1.6, we can prove the inclusion SUNA, ; T, T = S +(A4 ; Ty, T,)
and finally remark that ¢,(4,.,) = 4,. %

3.6. REmMARK. In view of Lemma 3.2, Theorem 3.5 contains the following
particular cases:

(a) If 5", and #, are Hilbert spaces and A is contractive, this is the classical
theorem of lifting of commutants [15], [16].

(b) If o#, and #°, are Pontryagin spaccs and A is contractive, this is Theo-
rem 6.1 in [10].

(c) If 4. T, and T, are doubly contractive then this is the result obtained in [11].

Finally, let us note a variant of Theorem 3.5 in the form of dilation of commu-
ting doubly contractive operators (i.e. generalizing the dilation theorem in [2]).
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3.7. COROLLARY. Let 5 be a Kizin space and Ty, Ty € LK) be two comimit.
double contractions. Then, there exist a Krein space 3~ containing #', with 2Ty =
= %"(H ). and two commuting isometric operators Vy, V, = F(H") such that

(@) V¥ and V§ are ulso contractive.

(b) TYTy = PRVEVE S for aay m, i 3 0.
(& V VIviw = 4.
an>0

Proof. First, we remark that if T4 = AT, where T is a doubie contraction, 4

1s isometric and A* is contraction, then therc exists A, € (4 ; T, 7) which is also

an isometry. Indeed, in this case['fl ] is also an isometry and by Lemma 2.2,
A

DyA = XDy, with an isometric operator X. Now, we can follow the proof of Lommma

3.3 and use Theorem 2.3 in order to find an operator B, (with the notation in the

proof of Lemma 3.3) which is an isometry. Qur claim now foliows by Corcliazy 2.5.

1

Returning to the proof of the Coroliary, we use Theorem 3.5 in order to obtain
a double contraction S, z £(.#7,)) such that PjSz// = T,and S,L% = U,S,, whewe
(U, . #,) is the minimal isometric dilation of 7;. Using the above claim, we get an

isometry V€ ¥L(#) such that Pin.lp’l Ky =L and V¥, = V.V, where (J,.5)

93
is the minimal isometric dilation of S,. The rest is plain. %
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