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TRIANGULAR AF ALGEBRAS

J. R. PETERS, Y. T. POON, and B. H. WAGNER

A Banach algebra J is said to be triangular AF, or TAF, if there is a unital
AF C*-algebra  such that  is a norm-closed subalgebra of 2 and the diagonal
D=7 N J*is a maximal abelian self-adjoint subalgebra (masa) in . In addi-s
tion, we require that D be a masa of the type studied by Stratild and Voiculescu
[15]; namely, there exists a nested sequence of finite dimensional unital subalgebras

oo
{0,122, such that A = AL_) A and D, =D n W isa masa in ,. If T is a
et .

TAF algebra, it follows that 7 = | 7, where .7, =7 n A, (Corollary 2.3).
k

Conversely, if 7, < A, k = 1,2, . .., is an increasing sequence of triangular alge-

bras with 'diagonal D, then 9 = (U 7 is TAF (Theorem 2.6).
k

Let M, denote the nx n complex matrices and let {m,}2° , be a sequence of posi-
tive integers, strictly increasing, such that n, divides n,.;. Let A, = M,,k, and
iy fix o WM, <> A, each be unital embeddings which map 7, into Z ., where 7,
is the set of upper triangular matrices in 2. From Glimm’s theorem [5], we know
of course that the UHF algebras U = lim (%, , ;) and # = lim (A, , j,) are isomorphic,
for as Glimm showed, the isomorphism class depcnds only on the dimensions of
the finite dimensional factors, and not on the particular form of the embeddings.
However,if & = lim (7, i)and I = 1im (7, j,) are the respective Banach algebra
inductive limits, then & and & will not in general be isomorphic (i.e:, isometrically
isomorphic as Banach algebras), and they may in fact exhibit startlingly different
qualities. It can happen, for suitable j, j,..that & possesses a nest of invariant pro-
Jjections which generates the diagonal, whereas 7 may have only the. trivial lattice
of invariant projections (Example 1.1). On the other hand, with another choice of
embeddings, & and 7 can fail to be isomorphic yet still have the same lattice of
invariant projections. Thus we introduce another invariant, which is an ordering on
projections in the diagonal.

Let # o be the set of partial isometries w in 2 which satisfy w*Dw = D and
wDw* < D, Then for any TAF algebra 7 < A with -7 n F* = D, or more gene-

6 -c, 1652
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rally for any norm-closed D-bimodule &, we have that J is the closed linear span
of I n#'y.If T is TAF, the set 7 n ¥ g can be used to define a partial ordering
on #(D), the projections in D, as follows : let e, f& 2(D); write ¢ < f in case
there is partial isometry v € 7 n # s such that v*v = fand vv* = ¢. The ordering
thus defined, which is not the usual ordering on (D), is reflexive, antisymmetric.
and transitive. It turns out that this ordering on 2(D) is an isomorphism invariant
(Proposition 3.20). Returning to the algebras & and J above, it is possible to choose
the embeddings i, , j, in sucha way that ¥ and J have the same lattice of invariant
projections (e.g., the trivial lattice), and yet the diagonal orderings defined by &
and Z are not isomorphic — and hence & and 7 are a fortiori not isomorphic
TAF algebras (Example 3.27).

There are still other ways to choose the embeddings i,. j, so that the resulting
TAF algebras fail to be isomorphic in a rather subtle way, which is not completely
understood. It can happen that & and J are both nest algebras, that is, the lattice
of invariant projections is linearly ordered and generates the diagonal, and the dia-
gonal ordering defined by & is isomorphic with the diagonal ordering defined by 7,
and yet & and Z can still fail to be isomorphic (Example 4.4).

There are several notions of maximality for TAF algebras; we mention two
such here, Let 9, U, , D, D, be as in the first paragraph. If 7 is triangular in 2,
with diagornal D, and 7 = Uf;, then J is said to be strongly maximal if .7,

is maximal in W, k > 1, Theo’;em 2.2 implies that 7 is maximal TAF; ie.. 7 is a
maximal element, in the sense of set inclusion, among all TAF subalgebras of 2
with diagonal D. However, there are maximal TAF algebras which are not strongly
maximal (Example 3.25),

Section 1 sets down notation and also shows that certain TAF algebras arisc
“naturally™ as subalgebras of semicrossed products. Section 2 is concerned with
the notion inductivity of D-bimodules and triangular algebras. The main tool deve-
loped in Section 3 is the set ¥ of partial isometries associated witha masa T. One

use of the important technical result %'y = \_J #(D)(# > 0 2,) (Theorem 3.6)
k1

is to show that an arbitrary isomorphism of TAF algebras can be replaced by an
isomorphism that has a particularly tractable form (Corollary 4.2). Another conse-
quence of the isomorphism results of this section is a generalization of the principal
result of R. Baker [1, Theorem 1] (Theorem 3.26). Finally, Section 4 gives some neces-
sary conditions for certain strongly maximal TAF subalgebras of UHF algcbras
to be isomorphic, and exhibits an uncountable collection of strongy maximal.
pairwise nonisomorphic TAF algebras inside the 2 UHF algebra.

While there is no direct connection between our setting and weakly-closed
triangular subalgebras of von Neumann algebras (except in finite dimensions),
the authors looked for analogues of some of the results of [7] for TAF algebras,
The work of Power [11] was directly relevant, though it is restricted to the nest case.
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The classification problem for TAF algebras is far from complete. In fact,
cven restricting to strongly maximal TAF algebras inside a given UHF algebra, the
classification problem is unsolved. Nor do we have a classification of the diagonal
order types.

1. PRELIMINARIES

A C#-algebra W is almost finite dimensional (AF) if A contains a sequence
{‘J[,\.}Z‘,’,,l of finite dimensional subalgebras such that 9, = A, = ... and A =

= A,. Al AF algebras in this paper will be unital, and in this case we require
k.1
that 2, contains the unit 1 of . In the special case that each 2, is a full matrix

algebra, then 9 is called a UHF algebra. The reader is referred to [5] and [3], [4] for
more details on UHF and AF algebras, respectively, If & < 9, then &° will denote
{x € A : xs = sx for all s € £}, the commutant of & in 2A.

The term masa will be used in the sense of [15). Specifically, if 2 is a finite
dimensional C*-algebra, then masa has the usual meaning, i.e., a maximal abelian
selfadjoint subalgebra of ¥I. On the other hand, if 9 is an infinite dimensional AF
algebra, we say that a subalgebra D of 1 is a masa in 9 if there are increasing sequ-
ences {9} and {bk} of finite dimensional C*-algebras such that D, is a masa in

A, for every k, A = (JA,, and D = L) 2. Tt follows that D, = D n A,. Given
% p

any increasing sequence {,} with 90 = {_J 9, a masa D can be constructed as
k&

follows : let D, be a masa in ¥, , and define {D,} inductively by Dy 41 = C*(Dy, G115
where €, is an arbitrary masa in NS n A,.,. 1t then follows that .., = AN
iV D41 . We remark that these masas are referred to as canonical masas in[12], and
arc sometimes called approximately finite Cartan subalgebras.

Given a masa D in 9, it is very useful to define systems of matrix units for 21
which respect the relationship between D and 2 (see [15]). First of all, suppose &
is an r*-dimensional factor with a masa D. By a set of matrix units {e;; : 1 <1,
J < n} Jor F with respect 10 D we mean a set of matrix units in the usual sense with
the additional property that {e;;:1 < i < n} & D. Obviously, such a system of
matrix units is not unique (if dim(#) > 1), for if w is any complex number with
modulus one, then {f;; = w/~¢;;} is another set of matrix units for & with respect
to D. If U is a finite dimensional C*-algebra with minimal central projections {e("? :
I </ < mj. and if D is a given masa in 9, then a set {eP:1 <i,j<n, 1<
< [ < m} is called a set of matrix units Jor Wwith respect to D ifforeach /,1 < 1
< m, {11 < i, j<m} is a set of matrix units for the factor e/ with respect
to D,

Now Ict i: % — B be a unital embedding, with B finite dimensional. Let
DU, Ec B be masas such that € = C*(i(D), €,) for some masa €, = i(W)°.

A
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Then given a set of matrix units {¢{} for A with respect to D, the set of all nonzero
‘preducts of minimal projections of €, with {i(e{?)} form a set of matrix units for
C*3i(2M), €,). Furthermore, one can check directly or apply standard results to sec that
this set of matrix units can be extended to a full set of matrix units for B with
respect to €. Thus, i(e!?) can be expressed as a sum of matrix units for 8 with res-
pect to €.

Finally, given an AF algebra 2 with masa D, then sets of matrix units {el" : 1 <
<lgmy, 1<i, j<m,} for A, with respect to D, can be constructed inductively as
above. We then say that {e(" 11 <k < o0, 1<l<my, 1 <ij < my}is a set of
matrix units for W with respect to . Whenever we use matrix units in 2, we will
always assume that they are contained in a set of matrix uriits for 9 with respect to D.

If & < A, let (&) denote the set of (selfadjoint) projections in &. If Dis a

masa in A, then 2(D) = | Y 2(D,), for if pe P(D), then there is some g €T,
n::1

with ¢ = g% and [jp — g} < 1/2, and by using the functional calculus we can assume
that g is a projection. But then p = ¢ since they commute. It follows that the spec-
trum of D is totally disconnected, ard therefore zero dimensional since it is com-
pact Hausdorff.

Given an AF algebra 9 with masa D, the term D-module will always mecan a
norm-closed unital ®-bimodule, unless otherwise indicated. Subalgebras of A
will be assumed to also be T-modules (i.e., closed and containing D) for some
masa D, usually clear from the context. A D-module & is triangular if ¥ 0 F* = D,
and D is the diagonal of &. 7 < W is a twriangular AF (TAF) algebra if T
is a closed triangular subalgebra of A.

Suppose & is a subset of W with D < &. A projection e € U is jnvariant for
& if se = ese for all s € &. Then e is also invariant for D, so e € D° since D is self-
adjoint. But D is a masa, so ©° = D. Thus, the set of invariant projections of &
lies in D, and therefore is commutative. This set is also a lattice with e v f= e +
+ f-efand e A f = ef, and is denoted Lat .

By choosing matrix units for {“Ik} as indicated above, we can think of T, as
the usual diagonal of Qik, a direct sum of matrix algebras. However, there are still
many ways in which 2, can be embedded into ., with D, embedded into Ty,;.
We will define two such embeddings now for UHF algebras, and discuss others in
Section 4. We will use the notation M, throughout this paper to indicate a fixed
representation of the n°-dimensional factor as nxn matrices, and then use {g{¥ : 1<
< i, j < n} to denote the usual matrix units for M,

Now suppose {p,} is a sequence of positive integers such that p, divides Prits
with ¢, = prs1/pe. Let el®) = (”‘) . The embedding o : M,,k > M,, ., denoted by
0(x) =1, ® x, is defined by

O-k(e(’\)) = y el ll'k,j{'PA
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and will be called the standard embedding of M, into M, _ . Notethat im(M,, ,0,)is
the UHF algebra of type (p,p, .. .), and 6,(2}) € Dy41, Where Dy is the diagonal of
M, .

Alternatively, let p;, g, , and e!} be the same asabove and define v, : M, =M, |

by

9k

(fe-4-1
n(el) = ¥ elt-nan0-tagte-
1::1

This embedding is denoted by v,(x) = x ® qu, and will be called the nest embed-
ding for reasons explained below. Ii_rE(M,,k, V) is once again the UHF algebra of

type (pyps ...), since the isomorphism class of the inductive limit is determined
by dimensions of the finite dimensional factors, and not the form of the embedding.

Again, note that v, embeds the diagonal of M,, into the diagonal of M, .

ExaMpLE L.1. Let U= Jlim(M;k, o,) be the 2°° UHF algebra with masa D via the
standard embeddings, let B = li_rg(Mzk, v,) be the 2 UHF algebra with masa € via
the nest embeddings, and let {e{%} be the set of matrix units for M ok 35 described,
above. Let &, and 7, both represent the upper triangular subalgebra of Mz,",

and observe that 6(¥}) € &1 and vi(T ) S T g4y Finally, let & = lim(¥,, o)
and I = lim(J,, v). We will show in Section 2 that & and J are TAF alge-
bras, but at this point we want to identify Lat$% and LatZ. The only invariant
projections in & are 0 and 1. For suppose 0 # e is an invariant projection. Then
¢ € D, for some k by remarks given above. In particular, e must be invariant for %,
he upper triangular subalgebra of Mzk. This forces

e=cel) + e + ...+ efy
for some j, 1 < j < 2. But the image of e in &,.,,, namely

(k1) (1) g GRHD )
ou(e) = efi*P + ...+ &Y + Chgak gt e TGk ok

is not invariant for &, unless j = 2% ; that is, valess e = 1. We refer to algebras
whose only invariant projections are trivial as transitive,

On the other hand, let /' be an invariant projection of 4. Then for some j,
and k, f = ¥ + ... + ¢{% is an invariant projection of 77, and

W) = D+ Lt
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is invariant in J . Similarly, v,_, > ... = v(f) is invariant in 7, for every
m > k, so (identifying 77, as a subalgebra of 77,) f is invariant in G T s and
. k
hence for the closure & ; that is, #f = fif for all re.7. In fact, the invariant
projections gencrate the diagonal € = 7 n 7%, and are totally ordered.
In analogy with the terminology used for weakly closed algebras of operators in
Hilbert space, we call such triangular algebras nest TAF algebras, and this justifies
the term nest embedding. As noted above, Wand B are two realizations of the 2> UHF
algebra. However, there is no C*-isomorphism & : 9 — B which maps & onto 7,
for such a map would necessarily be a bijective map of Lat ¥ onto LatZ, which
is impossible as & has no nontrivial invariant projections and 7 has many. In
Section 3 we will prove an even stronger statemtent: viewing % and .7 as Banach
algebras, we will show there is no isometric Banach algebra isomorphism from %
onto 7. Finally, in Section 4 we will use other embeddings to show that therc is an
uncountable family 7 ,,, 0 < « < 1, of nonisomorphic triangular subalgebras of
the 2> UHF algebra such that 7, n Mﬂk is the full upper triangular matrix

algebra.

EXAMPLE 1.2. We give an example of a TAF algebra which ariscs as a non-
selfadjoint subalgebra of a crossed product. Let {e{¥'}, 91, and & be as in the last

fe.e)
example. Consider the “binary odometer™ dynamical system : X = [ {0,1}, and
Ao

T: X - X the homeomorphism 7% =y, where

s if x, =0

yi=x,+1(mod 2), »,= -
! ' ¢ N Xo + L (mod 2) if x, =1,

Yy = etc.

Xy fx =0or x,=0
x3+ 1 (mod 2) if x,

xp =1,

I

Let {i;, ..., 1] be the cylinder set {xe X :x, =4, xy =1l ..., X = i) The
cylinder sets are clopen sets which generate the topology of X. Set X, = (0,0,0,...)e
¢ X, and let € be the C*-subalgebra of the crossed product Z X, C(X) generated by
C(X) and {Uf : f € C(X), f(X,) = 0}. Here U is the unitary satisfying Uf = (f- T)U,
Fe C(X). Let X, be the cylinder set [0,0, ..., 0] (k zeroes), and denote by G, the
linear span of {U'~iy XkoTzk“f :1<i, j< 2%}, One checks that € isin fact a »-algebra,

(o]
and that €, = €. Furthermore, \_J €, is dense in €. Observe that T maps cylinder
kat . : .



TRIANGULAR AF ALGEBRAS 87

. . k.
sets to cylinder sets, and if Xx,° T = b i then

Vim0 T = Uiy =

s il
L A 5 4
— i=i, 77G+27)y=(427) o
=U Kby s i 0) +U ) TR

._. kyy_ s 2 ok 2/\‘4}1’_(._!_2!{
= U/ o T2 U+2%)-G+2%; oT i+27)
lxk+1 +U Ayt :

Thus, the map ¢, : €, — M, < U defined by
i k_, .
(Ui, o TH) = efp,

1 < i,j<?2%,is a #-isomorphism. If €} is the nonselfadjoint subalgebra of €, gene-
rated by {07~y o T¥~/ 11<i<j< 24, then Y (€}) = &,. It follows that if €*
k

is the nonselfadjoint subalgebra of Z x, C(X) generated by C(X)and {Uf : j{Xy) = 0,
J'e C(X)}, then the C*-isomorphism ¢: € ~1im(M, o) = U defined by the se-
quence () satisfies Yy(€+) = &. Thus, the crossed product Z X, C(X) contains a
copy of the triangular algebra &.

€+ can also be characterized as the intersection of € with the semicrossed
product Z* x, C(X).

ExampLE 1.3. TAF subalgebras of semi-crossed products. Let T be a homeo-
morphism of a compact zero dimensional space X. For a closed subset Y < X, let
U, denote the C*-subalgebra of the crossed product Z x,C(X) generated by C(X)
and UC(X'\Y). Here U is a unitary satisfying Uf = (fo T)U, f € C(X),and such that
U and C(X) together generate Z X, C(X). Let #(X, T) be the collection of all closed
subsets Y of X having the following property: for any clopen set W2Y, | T"(W) =

nef
=X. Let Ty = Uy (1 (L+ X C(X)) (the semi-crossed product Z+ X C(X) gener-
ated by C(X) and the non-negative powers of U [9]). Then 7, is TAF iff
Ye (X, T). Forif Y ¢ 2(X, T), then Ny = C¥*(Jy) is not AF by [10, Theorem
2.2]. On the other hand, if Y € 9(X, T') then Uy is AF, and by uniqueness of the
Fourier series expansion of elements of Z* X, C(X), one verifies that Iy N T § =
= C(X). Thus 7, is TAF.

In particular, 7y = Z* X C(X) if Y = O, so it follows from the above that
the semi-crossed product is not TAF if X is zero dimensional. One can also observe
that any TAF algebra has topological stable rank (tsr) one, whereas tst(Z * x, C(X)) =
= 2 by [8]. In fact, since tsr(Z* Xy C(X)) > tsr(C(X)) by [8], the semi crossed pro-
duct is no TAF for any space X,
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2. INDUCTIVE T-MODULES AND TRIANGULARITY

Let A = (YA, be an AF algebra with masa D = {_JD,. In this section

n=:1 n—1
we will prove two important results. Theorem 2.2 and 2.6, which will be necded
later. The first result allows one to reduce many questions about a D-module &%
to its finite dimensional components & n U, and will be used often in the sequel.
In addition, these two results taken together characterize TAF algebras as inductive
limits of finite dimensional triangular algebras. We will also use them to show that
every TAF algebra is contained in a maximal one.

[=+]

DErINITION. We will call a subset & of U inductive if & = |\ J( nA).

n: -1

Note that if & is closed, then the right side is contained in the left, so equality
holds. This is a generalization of the term used in [11}, in which &% was always
assumed to be closed.

We first introduce some notation which will be used throughout this section.
& k
With U, A, , D, D, asabove, express U, = @" M1y Mg,y afactor,and ©, = éCD(,,k) s
k1 k-1

Dy @ Masa in M, . Let e(”Ibe the central projection in 9, onto the factor M, «
Set DG = "D, N Mgy, m > n, and DM = DD AM;,,. Then D =
= D . Let B, be the norm closed algebra generated by U, and ®. Then

"
miiz>n

kx
(*) %n = @I 1\‘I(uk_l ® Q(”k)'
k1

The proofs of these facts are clementary and will be omitted.
LemMAa 21 [11]. Let 1 € n < v and let e, ..., e, be the minimal projections
of NEND,, and define
p
P, x) =Y exe;, xe
i
!

Then P,(x) = lim P, (x) exists and may be written as P(x) = Y vdywhere v isa
r i=1

matrix unit in W, and d; is in the closed span of D, 1, D,40, ... . Thus, P(x) €
€ B, for all x, and if x € B, then x = P,(x) = P, (x), r > n.

Note thatif x & 2, with 7 > n, then P,(x) = lim P, ,(x) = limP,, (P, ,(x)) =
= HmP, (x) = P, ,(x). Also, if x<¥% and & > 0, then there is some y e Ay,

some N, such that {Ix — yi| < ¢ Tt follows that if n > N, then {ix — P,(x){l <
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< Il =yl + [y — Pl < 2¢ since y = P,y) and |IP,[| =1, so P(x)~x.
This lemma was proved in [11, Lemma 1.2]. The proof of the lemma does not
depend on any particular choice of embeddings. The following theorem was also
proved in [I11, Lemma 1.3] for (closed) D-modules. We give a different proof
here, and also prove the result for a slightly more general case. We say
that a D-bimodule & 1is locally closed if for each x € %, the closed D-bimo-
dule generated by x is contained in &. Note that & need not be unital.

THEOREM 2.2. Every locally closed D-module in W is inductive.

Proof. Let & < U be a locally closed D-module. Since P, (S)- S and
P,(S)e SnB, for all n, it follows by Lemma 2.1 that ¥ < (U (¥ nB,). Thus, it

suffices to showthat

(**) y ﬂ %,, < U(SP n 23n n QIm)

m>n

for each a.

Fix n, and choose a system of matrix units {e{?*)} for 2, so that for each &,
{e(™M} spans the factor M,, = %, and {e{/} spans M, N D,. If Se ¥ nB,,
then &{f9Se() = €7 @ D for some D € D" = D by (x). Thus, the result will
follow if we can show that {}) ® D belongs to the right side of (). Now the spectrum
X of D is zero dimensional. Therefore, given ¢ > 0, and viewing D as C(X), ther is

!
acollection {@,, ..., 0,} of clopen sets in X such that {x : \D(x)' > 26} s | 0, =
s=l
€ {x :'D(x)'>c} and such that !D(x) — D(y) < ¢/2 for all x, y € 0,. Pick x,€ 0,
arbitrarily, and let Dy(x) = Y, D(x9x, - Then ||[D — Dyll < 2¢, and D, € D,, for
m sufficiently large. If
I
D(x)™', xe| Yo,

feal

0, otherwise

D'(x) =

then D' € C(X) € D. Thus e{}¥ ® Dy = ({PR®D) 1Q®D') (1®Dy)e(¥ nB)DD <
S ZNnB,. Since &if9 @ Dy F Y, and [ @ Dy — i@ D|| = ||Dy — D||<
< 2¢, the proof is complete.

N

CoroLLARY 2.3. If 7 <= W is a TAF algebra with diagonal ®, then 9 =

Conversely, we will show that given an increasing sequence of triangular alge-

bras 7, < A, with diagonal ®,, then {_J 7, is 2 TAF algebra in A. Actually,

=1
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this is true in the more general context of modules. We first need a couple of
preliminary results. Suppose {&,: 1 < n <00, &, < U} is a nested sequence
of ®,-modules, and let & ={_J&,. Then it is not true in general that K, =

= Y nA,. However, we will show in Proposition 2.5 below that the sequence
{&,} can be replaced with another which has this property.

LemMa 2.4, Let {&,}22,, € W, , be a nested sequence of D,-modules. Then
there exists a nested sequence {7 },, 1 Ty = N, of D,-modules satisfving

(i) 9”,, €7 for all un;
(“) U 9)" U

n 1
(iil) 7, =T .1 0N, for all n,

and hence T = F .. 0N, for all n, k > 1. Moreover, if each &, is triangular
(L, NS5 =72,), then so is each T ,,.

Piroof. Set T, = (U Sf’k) n A, n=12,.... Then properties (i), (ii) and
k-1
(iii) are obvious. Suppose each &, is triangular. Clearly 7, n 7% 2 &, n F¥=2,.

On the other hand, if Te 9, n 7%, then Te V,,l and I'e &% for some n,,
n, > n. Hence Te &, n 5”,,, for m = max{n,, n,}, so TeD, n A, =D,.

m

We conclude that 7, n 75 = D,. 2

DeriNiTiON. We say that a sequence {&,} is 'in canonical form if it satisfies
Sy = FLpa1 Y, for all n. Thus, the sequence {7} in {the [above lemma is in
canonical form.

ProrosiTiON 2.5. Let {&,}2 , be a nested sequence of D,-modules, &, < N,

and let & = U Lo I {P 321 is in canonical form, then &, = & n A,.
n-1
Proof. Let {¢{%} be a system of matrix units for ¥, so that forfixed &, {{?*)} spans
the factor M,y < 2, and {e{7} spans M, nD,. Since & n A, 2 b,,, % n A, is

generated, as a ©,-module, by the matrix units it contains. Fix 7, j, & such that
e P nA,, and let S =M. Write S =1im S, S,€ ¥, s0 S = P,(S) =

it

limP(S,) = limP, ,(S,). For m > n, set
L7 m
Rm = es’,k)PIl m(Sm)e("k) € 'fnl n (I\/I(ml‘) ® ’Dfl’:k)) & '(/m N %n'
Then [R,} converges to ¢{fSe(s®) = S, and R, = ¢\i” ® D,,, D, € DI, Now

“Rm - Sll = ”es";k) ® Dm - eg'jlk) ® e(nk)“ = “Dm - e(nk)
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so it follows that for m sufficiently large D,, € in,’,”‘)Jsmvertxblem DM and hence
S=0e"=RUuy®D;Y)e &, nA =, Therefore, YA, c&,. Of

course, the reverse inequality is obvious. 2

THEOREM 2.6. Let {&,}2, be a nested sequence of D,-modules with &,

triangular in W,, S NL¥ =D, n=12,... .Then & =\ &, is a triangular

no-1
D-module in WA with diagonal D.

Proof. By Lemma 2.4, we can assume the sequence {&,} is in canonical
form. Let S be self-adjoint in . Since P (S)— .S and D is closed, it suffices
to show that P,(S) € D for all n. Lemma 2.1 implies that P,(S) = Y, w.d;, where

i1
the w;’s are distinct matrix units in 91, and d; € D for all i. Let ¢; and f; be the final
and initial projections of w;, respectively. Then ¢;, f;€D, and ;P (S)f; = w,d,;
for all /.

Suppose w;d; # 0 and w; ¢ D, for some j, 1 <j < r. Then fie; =0 and
fid; # 0. Viewing D as C(X), there is some ¢ > Osuchthat U = {x :(f;d,}(x) > ¢} #
# €). Let ¥ be a clopen subset of U, and let

d(x) = {«f"d")(x))“” xev

0, otherwise.

Then fidid =y, 1s a projection in D, so fid;d € Z(D,) for some m > n, and v =
= wifidid #0.veA,and v = ;P (S);de & n S since ¥ n &*isa D-module
and P,(S) = P(S)*. Thus, veWA N FNF* =L, NSFE=D,<D by Pro-

position 2.5. But then v = of; = fjv = fie;u = 0, a contradiction. It follows that
P (S)ye Dforalln.

DEFINITION. A not necessarily closed triangular subalgeba J of U is maxi-
mal triangular if 7 is not contained in any larger triangular subalgebra. Simple
Zorn’s lemma arguments show that every triangular subalgebra is contained in a
maximal one, and every locally closed triangular subalgebra is contained in a
triangular subalgebra wihch is maximal in the class of locally closed triangular

subalgebras. However it requires a liftle more work to obtain the correspondmg
result for TAF algebras.

CoroLLARY 2.7. Every TAF algebra in W is contained in a maximal TAF
algebra in .

Proof. By Zorn's Lemma, it is enough to show that if {77®: o € 4} is an in-

creasing chain of TAF subalgebras of 9, then 9 ={J 7 ® js also triangular,
a€d
First, choose a set M of matrix units for 2, Since M is countable, and each
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7@ is generated by the matrix units it contzines (by Theorem 2.2), it fol-
lows that {7} has only a countable number of distinct elements. Therefore,

-
{7 ")} contains an increasing sequence {7 ") :1 <m < oo} such that = M) F .
ms 1

Now let Te 7 and choose ¢ > 0. Then there is an R in some F{M}

such that |T — R|| < ¢/2. By Theorem 2.2, ) = _j(7 ™ nY,), so there is an
ne=1

S in some M n Ay such that [R — S|| < ¢ 2. Therefore S € 75 n A, , where

L = max{M, N}, and |T — S| <e¢, so it follows that 7 = | (7" nA,).
n=1

Theorem 2.6 then implies that 4 is triangular. g

Suppose & is a subset of Z(D). As in the theory of commutative subspace lat-
tices in Hilbert space, we define Alg¥ = {ae W :ap = pap for all pe ¥}. Alg &
is 2 norm-closed subalgebra of % which contains D. AlgZ n(AlgL)* = = D,
of Alg¥ is triangular iff ¥° = D iff (¥°)° = D. Note that D 2 (¥ 2 CHY¥).
We record these facts in the following proposition. Also, if Alg & is triangular and &
is linearly ordered, then we say that Alg & is a nest TAF algebra.

ProrosiTiON 2.8. If & = P(D), then Alg & is a triangular algebra iff (F°)F =
= D. Thus, if 7 is a maximal triangulur subalgebra of W such that C*(Lat9) = D,
then I = Alg(LatJ).

The next proposition shows that if in addition U is a UHF algebra, then
lat & is a nest, so .7 is a nest TAF algebra.

PROPOSITION 2.9. If 7 is a maximal TAF subalgebra of a UHF algebra N, ther
Lat g is lineary ordered.

Proof. The proof is a variation of the procfs of [6, Lemmas 2.3.2 and
2.3.3]. In our situation, any two projections in D lic in some factor, and this reduces
to the setting in [6, Lemma 2.3.3]. 2

3. PARTIAL ISOMETRIES ASSOCIATED WITH A MASA

Just as in [5] and [3], the partial isometries of an AF algebra will prove to be
very useful in our study of TAF algebras. Because of the relationship between a
TAF algebra and its diagonal, we will need to restrict our attention to certain par-
tial isometries. We will actually be working in the more general context-of T-modules,
and we will then use these partial isometries to intreduce the notion of a diagonal
orcering induced by a D-module. In this section, 9 will be a fixed AF algebra and ©

a fixed masa in . Thus, ¥ = JWU, and D = |_j ©,, where the N,’s are finite-di-
nensional C*#-algebras and each D, is a masa in'9f,. We will also assume that a sys-
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tem of matrix units for A with respect 1o D have been chosen as described in Section
1. Although this system depends on the sequénces {*2[,,} and {iD,,}, we stress that the
results of this section will actually be independent of these sequences. Finally, Ds,
and (D) will denote the self-adjoint and unitary elements of D, respectively.

DEFINITION. # »(2) = {partial isometries w € A :w*Dw < Dand wdDw* =D},
Tf the AF algebra 9 and the masa D are understood from the context we will simply
write ¥ instead Wp(). If & < A, then #(F) =¥ nS&. If v, we ¥, then
v 1 w means that the initial projections of v and w are orthogonal and the final
projections of v and w are orthogonal.

~ Note that (D) = W and # = #*, and if w e # then w¥w, ww* € 2(D)
{ince 1€ D.

Lemma 3.1. (@) If we W and e, fe P(D), then ewfe W
© . (b) W is muitiplicative. : . A
) 4DV UD) < W.

Proof : (a) Let p = ww* and g = w*w, so pwg = w. Then ew is a partial isometry
since (ew)(ew)*(ew) = eww¥ew = epew = epw = ew. Also, if d €D, then (ew)*s
-d(ew) = w*(ede)w € D and (ew)d(ew)* = e(wdw*)e € eDe = D. Therefore, ew € ",
Tt now follows that w¥e € ¥, so f(w¥e) € ¥~ by the same argument, and this implies
that ewfe ¥, thus proving (a).

For (b), suppose v, w € ¥, and let ¢ = ww*, = v¥v. Then vww*v*vw = vefw=
= pfew = vo*oww*w = vw, so vw is a partial isometry. Also, if de D, then
wirtdpw € w¥Dw < D, and similarly owdw*v* < D. The proof of (¢) is similar. 74

It will be convenient later to use the following alternate characterization of 7"
LeEmMMA 3.2. #~ = {partial isometries w in U : wDg, = Dyw}.

Proof. Suppose that w is a partial isometry in 9 such that w®,, = D w, and
suppose s € D,,. Then sw = wt and ws = ¢'w for somet, ¢’ € D,,, and therefore
wEes = w¥t'w = sw¥w. It follows that w*nw e =D, so wisw = w*wre D.
Similarly, wsw* e D, and thus we ¥

Conversely, if w € # and e € (D), then we € #” by Lemma 3.1. Now wew* =f
for some self-adjoint f€ D. Thus, we = ww*we = wew*w = fu, and it follows that
wD, € D,w since Dy, is gencrated by #(D). Similarly, Dyw € wD,,.

LeMMa 3.3, If w is a matrix unit of A, then we .

n

Proof. Let e € (D). Then e e D,, for some m. If m < n, then ew = w or 0,
which implies that w¥ew € D, and we = w or 0, so wew®* € D. If m > n, then we
can write w = wy + ...+ w,, where the w,’s are distinct matrix units of 9,,. Because
of the way that 2, embeds into 9, the initial projections {f;} of {w;} are distinct
and thus orthogonal) minimal projections in D,,, and the same is true of the final
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projections {e;}. For instance, suppose f; = f; forsome; # 1. Let £ = {i : f; = f;}
and note that e; # ¢, for all i € E since the w,'s are distinct. Then

Lo T eafilE = | S fovcenfil =

= I| ¥ wiHw,ll = card(E)!f, = card(E),
-

i

a contradiction. The other cases are similar. Now w@ew = Y #fied,
i1

where

&

a; =0 or 1, and wew® = ¥ we; € D. The result follows since D is gencrated
i1

by Z(D). 2

LEMMA 3.4. Suppose w € %" and u € W, such that lw — uil < 1/5. Let {e]7

be the minimal projections in ®,. Then
(2) if e;g # 0 = e;g for some central projection g € U, then epwe; = ejwe; = 0,
(b) for each i, j, either ewe; = 0, or clse e;w*epe; = e; and epwew*e; =
e;(ie.. ¢ we; s a partml isometry with initial projection ¢ an(l final projection e;)

(c) foreach j, e;we; O for at most one i,

(d) for each i, ejwe; # O for at most one |j.

wewepl = Lor0.1f e;g = e; and e;g = 0, then eue;

Proof. By Lemma 3.1,
he; Hé‘ !, which nnplle

= ¢;gue; = eue;g = 0. Therefore, 1/5 > llegwe; — cue; | =
‘hat eywe; = 0. The same argument shows that e;w®e; = 0, and (a) is proved.
We can now assume that ¢;g = e; and e;g = ¢; for some minimal centrals

projection g € 9. Let e;; be a matrix unit of %, g Much that ¢;¢;5¢; = ¢;;, and sup-

pose eywe; # 0. Then
1

-> Jepwe; — eue; ] = jepwe; — peni, some e G,

which implies that 'l — ;1" < 1/5. Also,

1 o . b2 i [ {
Lewrewe; — euteue; < Wt —

1 ( 1y1 1
< + 1+ ) <,
5 5)5 2

wi fwi + L —wl <

|<

and thus 'f'— ‘u;;i%;1,<1/2, where f'= ejw*ewe; . Now I f — ¢l < 1since "1 —'ju;;. )
< 172,50 f = ¢; because fand ¢; are commuting projections. S)mnlarly, epwewe; =

~-¢;, and (b) is proved.
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Now suppose epve; £ 0 and ewe; # 0, [ # k. Then (e; + e)we; € # by
Lemma 3.1, so |(e; + ¢)we;|| = 1 or 0. But then

le; + ewe;l = llewe; + ewe;|* =

= [(ejw*e; + e;wre)ewe; + ewe))l =

llew*epwe; + e;wrewe;l| = 2lle;l| = 2

by part (b), a contradiction. Therefore, (c) is proved, and (d) follows by symmetry. [

LEMMA 3.5. Suppose that v, we # with v — w|| < 1. Then

@) for each e, fe P(D), the initial projections of evf and ewf are the same,
(b) for each e, fe P(D), the final projections of evf and ewf are the same,
(c) w = vu = u'v for some u, u' € U(D).

Proof. Let ¢, fe (D), g = fv*erf, and h = fwewf. g, i € (D) by Lemma
3.1. If g # I, then either g — gl # OGor /1 — gh # 0. In the first case, let g’ = g —
— gh. Then g'g = ¢’ and g'h = 0. Now

1> fleof — ewf* > [evfg’ — ewfg'|[* == [levfgg’ — ewfhg'|* =
= llevfgg’|I* = lig'efvevfze’ll = lg'eg’li = lg'll = 1,

a contradiction. The second case is similar. Therefore, g = /1, and (a) is proved. (b)
follows by taking adjoints.

Now let fe (D), and let ¢ = wfw*. Then vfv* = e by (b), and simple calcu-
Jations show that vf = ev and wf = ew. Then v*wf = v*ew = fo*w, s0 v com-
mutes with 1. Since f'is arbitrary, it follows that v*w e D° = D. Define u = v*w +
+ (1 — w*nw). (a) implies that w*w = v*v, so v(l — w*w) = v — vv*v = 0, and
easy calculations now yield that v is a unitary in ® and w = vu. The other equatility
follows by considering w* and v*. %

(o] o]
THEOREM 3.6. ¥ = | n W) U(TD) = \JUD)YH n A,).
n—1 n 1
Proof. Let we %", p = ww*, and q = w*w. Choose n large enough so that
p. 7€ D, and so that there is some u & 9, such that jjw — v]| < 1/5. By replacing

N m nt
u with pug, we can assume that pug = v. By Lemma 3.4, p = Y e and ¢ =} s
; F

i1
where the ¢;’s and f;’s are minimal projections in ®,, and therc is a permutation =

m
of {1, ..., m} such that w = ¥ e/} with each e,;wf;#0. Also, e ywfjiw*e.;y =
i1

= eqy and fiw*e;ywf; = f; for all j.
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Since e;)wf; # 0, it follows by Lemma 3.4 that e,;,g = e;, and f;g = f; for

some¢ minimal central projection g in A, . Therefore, e, uf; = KX, where p;e C
and x; is @ matrix unit of U,g such that xfx; = f; and x;x} = e,;,. Then

1 - .
‘5‘ > |le.gynf; — egufill = Ll — mix;il

implies that |1 — imit 1 < 1/5, and thus

j .
eniyWfi — ! lexwfy — wixili + #, -4 Gl <

i I#jl H U

1 . 1 . 2
<--+ ;tj—;&—‘ = -+l —li<—.

5 125y 5 5

‘ .

Let v; = I-ﬂ . Then v}v; = f; and v,vF = e, leyf; — vjll < 2/5,and v; e #°

since x; € #  (by Lemma 3.3).
By Lemma 3.5, for each j there is some unitary ; in D such that e g uf; =

wn

-y Letu=1-¢q + 2, fu;. Simple caiculations show that # € (D) and
that w = Y exgnf; = Y, vju = ( Z vju. Finally, ¥ v, = wa*e # 2%(D) = W
and therefore %~ = G(“/V n W )%(D). The other equality follows by taking

n 1
adjoints. 7

A related result appears in [12, Lemma 6.3].
CORCLLARY 3.7. If & < ¥ such that PU(D) < &, then # 0N & = U (70

nLaUYUD). If UDVF < F, then " n & = U%(D)("// ngn A
n=1
Psoof. Suppose we W™ 0 &. Then w = vu for some ve (D) and ve
& #° nA,. Therefore, wu* = v. But wu® € &,so vre &. The other statement is proved
sirnilarly. Z]

We will now use #” to make a more detailed study of ®-modules. 1f
< ¥, let .Z/(¥") denote the (closed) D-module generated by ¥”. We first note that
it & is a D-module, then & is generated by #°(¥) = #" n .

ProrosiTioN 3.8. Let & be a D-module in N. Then /(W (F)) =&

Proof. #($) = & implies that #(#(¥)) € &. For the opposite inclusion,
suppose s € &. By Theorem 2.2, there is a sequence {s,} eU(S” n 92A,) such
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that s5,-+s. Now 5, = Y ae;, where « € C and the ¢;s are matrix units of %,
some m. [fa; # 0, then ¢; € # (&) by Lemma 3.3 and the fact that ¥ is a D-module.
It follows that s, € #Z(#(&)), and therefore s € (W (F)). %

Next, note that #°(¥) has the following properties:
i) 2(D) = (&),
(i) if we #(&) and e, fe P(D), then ewfe #(F),
(i) 2(DYW (P)YUD) € ¥W(¥),

4y

(iv) if v, we #(¥) and v L w, then v + we #(¥).

(1) and (iii) follow directly from the definition of #'(¥), and (ii) follows from
Lemma 3.1. (iv) follows from the definition and the fact that the initial and final
projections of v and w are in (D). As the following proposition shows, properties
(1) completely characterize those subsets of #” which are of the form #' (&) for
some D-module &.

PROPOSITION 3.9. Suppose ¥~ < W has properties (T). Then W (M (V) = ¥

Proof. We must show that #'(.#(¥)) < ¥ . Let 4, be the ®,-module generated
by ¥ n ,. By properties (), this is the same as the linear span of ¥" 0 U,,. By

Corollary 3.7, #(¥") =\ #,. Also, once we know that the sequence {./,} is

n

in canonical form, it will follow by Proposition 2.5 that /4, = J(¥)n,.
To show that {.#,} is in canonical form, it suffices to show that if x is'a matrix

unit in (U ///,,,) n A,, then xe .#,. Now x e .4, for some m. The result is

m. .1
k

trivial if m < n, so we can assume m >n. Thus, x = ¥, o,v, for some o, € C
i1
and v, € ¥ n9A,. Using property (i) of (f), x can be rewritten as x =
. .
= Y, Bixi, where f,e C, B, # 0, and the x’s are matrix units in?" n 2A,,. In
il

this decomposition, f;x; = exf for some minimal projections e¢,f€D,,. Therefore,
since x € #" by Lemma 3.3, it follows from Lemma 3.4 that f,x; L B;x; for all
i # j. Now apply property (ii) again to get that each #,x;€¥%", so x€¥ by pro-
erty (iv). Thus, xe ¥ nN, < 4,.

Let w € #'(A(¥)). Then w = uv for some u € %(®D) and v e ¥ n.Z(¥)n
nYA,, some n, by Corollary 3.7. A(¥)nU, == 4, by the above, so ve¥# n
0 ., . Now we can replace x with v and repeat the argument in the last paragraph
to get that v € ¥ It follows that w = uv € ¥ by property (iii) of (). Z]

Thus, we have a correspondence between D-modules in 2 and subsets
of ¥ which satisfy properties (f). The previous two theorems can be thought of

7 —c. 1652
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as reflexivity results for this correspondence, and they show that the correspon-
dence is bijective.

DEriNITION. Let & be a D-module in U. Define a relation <, on Z(D)
by e <4 f if there is some w € ¥ ($) such that ww* = ¢ and w¥w = f. We say
that < is the diagonal ordering induced by &. In general, this relation is not neces-
sarily a partial ordering, i.c., reflexive, anti-symmetric, and fransitive. However,
we are primarily interested in the case in which & is a triangular algebra, and we will
show later (Theorem 3.13) that in this case the relation is a partial ordering. Given
a diagonal ordering <., define # (&) = {w e ¥ 1 wfv* < fwtuf for all
feP(D)).

LEMMA 3.10. ¥, (&) saiisfies properties (T).

Proof. (i) and (iii) of {¥) clearly hold since (D)= ¥ (¥). Nowlet we ¥, .(F)
and e, fe Z(D). Let ¢ be the initial projection of ew. Then ew = we’, so ewf =
= we'fe ¥ ..(¥) by definition. Therefore property (ii) holds.

To prove that (iv) holds, let wy, w, € % .(¥) withw; 1 w,, and let fe 2(D).
Then there are vy, v,€ %W (9) such that fiwkw,f = t¥e; and w;fuf = vl for
i = 1, 2. Note that v, | ¢, since wif 1 w,f, so v, + v,€ #(¥). It follows that
Wy + Wy € Wmax(&) becauvse f(wf + wilwy + wo)f = (oF + v¥)(v, + v;) and
Wy 4 wo) fwf + wi) = (v, + 2)(vF + 0%). Z|

THEOREM 3.11. Given u diagonal ordering <, induced by &, let Q be the collec-
vion of all D-modules T~ such that <g = <y, 1., e <sf iff e <4 f Then
€& has a largest elemont, namely (W o)), A 0max(F)) is called the unique
maximal module induced by &, and will also be densted Al oy ().

Proof. AW pax(F)) € @ since W (AW L0l FN) = VW ax(F) by Theorem 3.9.
Now suppose 7 € @ and T & (W max(F)). Since T is generated by I n ¥, thers
is some we& .7 N withw ¢ (Y () N = 57 0 (&) Therefore, there is some
Fe P(D) such that wfv® < 4 fwinf. But this contradicts the fact that <, = <,
since wf € I n ¥ implies that wfiv® <, fwsnf, fd

W max(S) can also be characterized by the following proposition. The proof
is straight forward and is oritted.

PROPOSITION 3.12. W (&) = U {¥ & ¥ : ¥ satisfies properties (1), and
vi* < o V¥ for all ve ¥}

In general, as Theorem 3.11 suggests, a diagenal ordering may be induced by
rrore than one D-module. We wili show in Example 3.17 that this can indeed cccur.
However, the theorem docs gssociate a unigque cbiect with each diagonal erdering.
Since this is a maximal objcct, it is natural to ask whether two different maximal
TAF zlgebras can induce the same diagonal ordering, {i.e., are these two notions
of maximality the same for triangular algebras? We can answer this question by



TRIANGULAR AF ALGEBRAS ' 99

investigating the relationship between the properties of the diagonal ordering <,
and the algebraic properties of &.

THEOREM 3.13. Let & be a D-module in U, and let < » be the diagonal order-
ing on P(D) induced by & .

(a) <y is reflexive.

(b) & is an.algebra iff W (S) is multiplicative.

(c) If & is an algebra, then < . is transitive.

(@) < is transitive iff M () is an algebra.

() L n&* =Diff W(L)NW (L) €D iff W(&L)nH (L) = P(DYUD).

(6) If <y is antisymmetric, then & n F* = D.

(8 If ¥ nP* =Dand & is an algebra, then < 4 is antisymmetric.

Prouf. (a) is clear since (D) = ¥ (¥).

(h) If & is an algebra, then ¥ (&) is multiplicative by Lemma 3.1. Conversely,
suppose W () is multiplicative and s, t € &. By Theorem 2.2, there are sequences
{s.), {t.} € U (¢ n A,) such that s, — s and t, - £. Now for fixed n, there is

some m such that Spy t, €U,. Then s, = 2 ae; and £, = E B.e; where o, B; €

€ C and the e;’s are matrix units in 2, . uuppose o; % 0. Let e, f € 2(D)be the final
and initial projections, respectively, of ¢;. Then e; = aj 'es,f,soe; € # (&) by Lemma

3.3 and the fact that & is a D-module. Similarly, for each / with B, # 0 we have
k

e; € W (). Finally, s, = ), «,B;ee;,and eachnonzero termis in & because #(¥)
ij=1

is multiplicative. Therefore, 5.1, € &, and it follows that st € . Thus, & isan algerba.

(c) Let e, f, g€ #(D) such that e <, f <, g. By definition there are v, w e
e W (&) such that vv* = ¢, v*v = f = ww*, and w*w = g. Then vw € ¥ (&) by
(b), and (ow)*(vw) = w¥v*ow = w*fw = wHww*w = wiw = g and (vw)(vw)* =
= vww*v* = vfv* = vv¥ov* = vo* = ¢, 50 e <, g

(d) The ‘if” implication follows from (¢). Now suppose that < is transitive.
From (b), it is enough to show that ¥ (.#,,,(¥)) is multiplicative, and note that
W (M () = W (W (L)) =W, . (L) by Theorem 3.9. Let v, w € ¥, (F).
To see that owe W p,,,(&), we must show that vwew™o* <, ewv*v* we for all ee 2(D).
Let p = v*v and f = pwew*p. f <, ew*pwe since pwe € W', (F). Also, fo*vf =
= fpf = pff = f and of € # (%) imply that vfv* <, f. Therefore, vfv™ <,
< 4 ew*pwe by transitivity, and it follows that

wew*v* = pfoFvwew T ov¥ =

= vpwew pr* = vfv* <, ew*pwe = ew v¥vwe.

@I LnF* =D, then #(AINH(FLPY=WnsnF*=%ndc D
Counversely, if #(P)n#(F)* <D, then FnF*nw <D and therefore,
FNL*2D=dD) 2 MINF*NW)=LnNF* by Proposition 3.8. Fi-
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nally, suppose w € W (&) n ¥ (£)* < D. Then ww = wu*, sou = (I — w¥w) +
4 w is a unitary in D and w = (w¥w)u.

(f) Suppose <, is antisymmetric and w e # (FYNH#(F)*. Let ¢ = ww*
and f= w¥w. Then ¢ <4 fand f <, e, so ¢ = f and w and w* commute. Now
if d € 2(D), then wd, dw* € # (&) and thus wd € #°(¥) n #°(¥)*. Therefore, the
above argument applied to wd implies that dw = dew = dfw = dfdw = dw¥wdw ==
e= wddw*w = wdf = wfd = wd. Hence, w € Z2(D)° = T° = D, and the result fol-
lows from (e).

(2) Letp, g € Z(D), such that p <, gand g <, p. Then there are v, we #(¥)
such that v*v = ww* = ¢ and vv* = w*w = p. By Corollary 3.7 there is an » such
that ¢ = wv, and w = v'wy for some u, ' € #(D) and ¢,, w, € #(¥) N A,. Now
otf = wtortu = wipu = putuy = p and v¥r, = v*uutv = v¥v = ¢, and similarly
wiwy = gand w¥w, = p. Therefore, by replacing v and w with w, and w, respectively,
we can assume that ¢, w € ¥ (£)n A, and p, g € D,,.

k m
e; and g = Y f;, where the ¢;’s and f's are minimal projec-
e i1

Write p =

i-1
tions in D,. These representations define a fixed ordering on {¢;} and {f.}. ‘Also,
for each / and j, Ict x; ; be a matrix unit of ¥, with initial projection f; and final pro-
jection ¢;. Now Lemmas 3.1 and 3.4 show that &k = m and that there is a permuta-
tion © of {1, ..., k} defined as follows : n(i) is the unique integer such that uf; =
ez 0 nf; = gy # 0. Likewise, there is a permutation 7 of {l, . A} defined by
we; = fuiywe; == fiyw # 0. Therefore, 7= m is a permutation of {I, ..., k} such that
0 # fizuipwuf;, and similarly 0 # f(m)'(z)(”'”)tfi for every positive integer f. Let s
be the smallest positive integer such that (rom)" = id. Then 0 # fi_ . (w0)7; =
= fiw0)* “twenyuf; . Therefore, fi(wo) ~tweny = €x; oy and epntf; = BiXpe,: for
some nonzero a;, f; € C. Since & is an algebra, it follows that x,;, ; and x; . are
both in &, and thus x,;y; € & 0 F*. If e,y # f; for some i, this contradicts the
fact that & n &% = D. Therefore ¢,;, = f; for all /, and it follows that p = g.

We will give an example shortly of a ©-module &% which is triangular but
< s IS not antisymmetric, and also an examplic in which <, is transitive but & is
not an algebra.

COROLLARY 3.14. If & is a TAF algebra, then sois A o (). Thus, if & is a
maximal TAF algebra, then & = 7 ().

Proof. Theorem 3.13 implies that <, is transitive and antisymmetric, and

therefore %, (&) is a closed algebra which is triangular since < o = <w by
<>/max

Theorem 3.11. %

CORCLLARY 3.15. & is a maximal TAF algebra if and only if #7(%) is a maxi-

mal subset of " with respect to satisfying properties () and <, being veflexive, tran-
sitive, and antisymmetric.
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REMARK. Parts (f) and (g) of Theorem 3.13 can be used to give a simple proof
of the special case of Theorem 2.6 in which cach 7, is a triangular aigebra in ¥,
(note that Theorem 2.6 played no role in the proof of Theorem 3.13 or any of the
results used in the proof). First, if 7 is not triangular, then < 5 is not antisymmetric
by 3.13 (f). Therefore, there are p, g € 2(D), p # ¢q, and v, w € W (J) such that
vv* = p = w*w and v*v = ¢ = ww*. As in the first part of the proof of 3.13 (g),
we can assume that p, d, v, w € 2, for some ». It follows that <z, is not antisym-
metric. Since .7, is an algebra, 3.13 (g) implies that 7, n 7 ¥ # D, a contradiction.
Thus,  is triangular.

EXAMPLE 3.16. As indicated in Section 1, we let {g(")} denote the usual matrix

units for M, . Let %, = M,, %, = M, and Jet A = U A, = A,, using the stan-
k-1

2
dard embedding o, : N, < U, (see Section 1). Define & = U S = %5, where

&y =span{gP i <j} < A, and &, = span({gP:j— 1 < j} n{gPhH = A,.
Then & n &#* = D, the diagonal of My, but <, is not antlsymmemc since g <,

<y g viagiPand gi2 <, g{? via g + gib. Thus, the converse of 3.13 () does not
hoid.

ExAMPLE. 3.17. Let {¢!%) = g,(}.'zk)} be matrix units for A, = M, .k, k =0,1,2,...,
and let A = | JA, via the standard embeddings o, : W, — Ay, Let ¥ =
k

=J ¥, where &, = span{e:j — 1 <i<j} €Ay and for k 2 0, Ly is
k

R (k1)
the Dy ,-module generated by o(¥,) U {e;. 2K 4301y 41,37 0 63(1._1)“’3_21(_,’.3]} A= AU

Then < is transitive, but e{Del® = (P ¢ .#, so & is notanalgebra. It follows that
the converse of 3.13(c) is not true. To see that e{P ¢ &, notice that otherwise there
would be some u € ¥, such that ||e{9 — || < 1/2, and therefore [le{ uelD|| > 1/2.
But this contradicts the fact that e{{uels) = 0 for all k and all u € &,.

Note that this is also a concrete example of a module & for which & #
# M), since <y = < 4 (4 implies that .7,,,,(¥) is an algebra by Theorem
3.13(d).

We now turn to the study of isomorphisms of modules, and especially trian-
gular algebras. For the remainder of this section, 20 and B will be AF algebras with
masas D and €, respectively, & will te a ®-mcdule in A, ard J will be a
¢-module in B. As usual, all other mcdules and sutalgebras of % and B men-
tionedwill be assumed to be closed. We first prove the following key lemma.

LeMMA 3.18. Suppose ¢ : & — T is an isometric module isomorphism (so in
particular (D) =€ and ¢ is mulupl:catue on ®) and veWs(F) Then

P(0)*0(t) = 9(v*0) and P)P(o)* = P(vo*).
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Proof. ¢ 1D : D — Eis an isomorphism of abelian C*-algebras, so it is a C*-iso-
morphism. Therefore, p(2(D)) = P(€). Now since v*v € (D), o(v¥v) is defined-
and represents a projection in &. To show that ¢(v)“o(v) € €, we show it commutes
with 2(€). Let f € 2(€), f = ¢(e), e € 2(D). Then '

So)*o(¥) = o(e)p(v)*e(v) = o) (v) p(v) =

= [p(v)p{e)] o(v) = o(ve)o(v).

By Lemma 3.1, ve € % (). Leiting ¢’ € #(D) be the final projection of ve, it fol-
iows that ve = e'v, so

Jo) o) = p(c'v)*o() = [ple)e®) () =
= p(v)"pe)p(¥) = e(v)*ple'v) =
= (o) @(re) = ey o(v)f.

Next, let s = @(v)*¢(v) € E. Viewing s as a function on X, the specirum of €,
we have 0 < s < 1. X is zero dimensicnal, so if s assumes some value strictly bet-
ween O and 1, ther therc is a projection (i.e., characteristic furction cf a
clopen set) /i € 2(€) such that 0 s As and ||As|| < 1. Setting /i = @(g), hs = hsh =
=: [0 (0)p(@)]" [e(v)e(g)] = e(tg) ¢(vg). Now either tg = 0, or else vg is a partial
isometry with initial projection v*ug. Since vg = Qimplies/is = 0, rg must be & partial
isometry. Hence ¢(vg) has norm one, so 1 = |\o(xg)¢(vg)!, contradicting s}, < 1.

To finish the proof of the claim, let p = v*v and g = ¢(p). Then o(&)*p(r)g =
= @) p(vv*v) = e)*p(v), so @) e(v) < g. Suppose ¢ < g is such that
¢(0)p(v)g" = 0. Set ¢' = ¢(p') and note that @(v)*e(v)g = ¢'¢(t)e(r)q =
= @(up ) e(tp’), so that vp’ = 0. But p’ < p, the initial projection of v. Hence
gp’ =0 impliecs p’ = 0, and so ¢’ = 0. We conciude that @(v%0) = o(v)*@(v).
Similarly, @(vv*) = o(v)e(v*). 2

1t now follows that the diagonal orderirg induced by a module is an isomor-
phism invariant.

DermNiTioN. Two diagonal orderings (D, <) and (€, <) are order isomor-
phic if there is a C*-isomorphism i of D onto € suchthate <, fiff Y(e) < Y (f). In
this case we say that ¢ is an order isomorphism of (D, <) onto (&, < 7).

THECREM 3.19. If ¢ : & — T is an isometric module isoimoirphisim, then ¢ is an
ovder isomorphism of (D, <,) onto (€, <j). Moreover, ¢(# () = W(F)
and if e <, fvia ve W (F), then ple) <, o(f) via o(v).

Proof. ¢ "D : D — € is 2 C*-isomorphism onto € Now if ¢ < f, then there is
some v € ¥ () such that vvo® = e and v¥¢ = £ By Lemma 3.2, D, = Do,
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so @(v)€;, = €, ,0(v). Lemma 3.18 shows that ¢(v) is a partial isometry, and thus
o(v) € W&(7). Lemma 3.18 also implies that ¢(e) = ¢(vv*) = ¢®)e(v*) and p(f) =
= @(v*v) = p(v*)p(v), s0 p(e) <7 ¢(f).

If & and 7 are triangular algebras, then we only need to assume that ¢ is an
algebra isomorphism.

ProposiTION 3.20. Suppose that & and T are triangular algebras. If ¢ : ¥ - 9
is an isometric algebra isomorphism, ihen ¢ | D is a C*-isomorphism onto €. Thus,
¢ is an order isomorphism of (D, <) onto (€, < 7).

Proof. First we observe that ¢ | D maps D into €. Let d = d* € D. Since
exp(}/--1td) is unitary (¢ e R) and ¢ is isometric, [@(exp(}J—I1sd))| = 1. But
o(exp(f -=1td)) = exp(/ <11p(d)), € R, so |lexp(}/ — 1p(d))|| = 1and it follows that
¢(d) is hermitian in the sense of [2, Corollary 13, p. 55]. As a hermitian element of
a C*-algebra is self-adjoint [2, Proposition 20, p. 671, ¢(d) = ¢(d)*. It now follows
that (D) = € and ¢ |Dis a C”‘-isomorphism. The same argument, applied to
@1 | €, shows that (D) = €, and the resuit follows by Theorem 3.19. Zi

REMARK. Another proof can be based on the fact that if p is a state on C*(7),
then p o ¢ is a linear functional on D of norm 1 such that (0o @)(1) = 1, and hence
poo is a state on D. It follows that ¢(/) is self-adjoint if 1 € D is self-adjoint. Note
also that the proof of the proposition does not use the fact that %, B are AF alge -
bras, and the only reason for the assumption is that triangular algebras have only
been defined in the context of AF algebras in this paper.

We now consider the question of whether the diagonal crdering is a complete
isomorphism invariart. This seems unlikely, since we know by Example 3.17 that
t wo different modules can have the same diagonal crdering. However, there is a
unique maximal module with a particular ordering. More generally, if (D, <)
and (€, <) are order isomorphic, are %, () and A ,,,(7) isomorphic?

ProrposiTioN 3.21. Let & be a D-module in N and T an &-module in B. Suppose

© 1D — € is an order isomorphism of (D, <g4) onto (€, <) which extends to a
C*-isomorphism of WU onto B. Then G(Mpg(F)) = M 0 T).

Proof. Itisclear that (% () = # ¢(B). Nowif v€W 2 max(-F) =W (M ., (L)),
then wvev® <, ev*ve for each e € (D). Thus @(v)fe(v)* <, fo(v)*e(v)f for
cach f'e Z(€), since f = ¢(e) for some e € P(D). Therefore, P(v) € VW (M mx(F)) by
definition, and Proposition 3.8 implies that @(Hpa(F)) S M max(F). The result
follows by considering ¢ ~*.

However, we will later show (Example 4.4) that not all order isomorphisms of
diagonai orderings extend, and they may not even extend to algebra isomorphisms
in the case that the maximal modules are algebras. In fact this is true even if we
impose a rather strong condition, that the modules be strongly maximal TAF algebras
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(defined below). However, it is not known if order isomorphisms cxtend to module
isomorphisms.

The lattice of invariant projections is also an isomorphism invariant, since
if ¢: % - J is an isometric module isomorphism and e € Lat %, then ¢(e¢) €
€ #(€) by Theorem 3.19 and, for 5s € &, se = ese iff p(s)p(e) = (e)p(s)p(e). The-
refore, p(Lat &) = Lat7. Of course the same is true for an isometric algebra iso-
morphism of triangular algebras by Proposition 3.20. Actually, though, the diago-
nal ordering <, alone is enough to determine Lat &.

LEMMA 3.22. A projection p € D is invariant for & if and only if for any two
projections e, fe & such that e <4 f < p, we have e < p.

Proof. Suppose p is an invariant projection and v € % (%) such that ¢ = ro*
and v¥*v = f < p. Then

—=—pp=0=0—-puof=0=>(1—plv=0=
=0 —=prv* =0=(1l —ple =0 =e = pe.
Conversely, suppose p is a projection satisfying the stated condition. Then for
every v € #(%¥), we have

(1 — p)opll(1 — p)vp]* <5 po*(1 — p)vp < p.
Hence, :

[ ~ p)opll(1 — p)opl¥ = pl(1 — p)rp)(1 — p)op)* =0,

so (1 — p)p = 0. Since linear combinations of elements of ¥/ (&) are dense in &, we
conclude that (1 — p)sp = 0 for all s € &, and thus p is an invariant projection. %

COROLLARY 3.23. If ¢ is an order isomorphism of (D, <) onto (€, <), thea
p(Lat &#) = Lat g .

DEFINITION. We will say that two lattices Lat & and Lat 9 are isomorphic if
there isa C *-isomorphism ¢ of D onto € such that ¢(Lat &) = LatJ, and we then
say that ¢ is a lattice isomorphism. Thus, isometric module isomorphisms are orderiso-
rnorphisms, which in turn are lattice isomorphisms. However, we will show in
Example 3.27 that the converse of Corollary 3.23 is false, i.e., there may be no order
isomorphism of (D, <) and (€, <) even though Lat & and Lat 9" are isomorphic.

In the context of a TAF algebra 7, we have several notions of maximality:

(1) 7 is maximal with respect to <, = <, for a given reflexive, transitive,
and antisymmetric partial ordering <, i.e., 7 = HnalT).

(2) #°(9) is a maximal subset of ¥ with respect to satisfying properties ()
and < being reflexive, transitive, and antisymmetric.

(3) Z is a maximal TAF algebra.

Corollary 3.15 implies that (2) and (3) are equivalent, and Corollary 3.14
shows that (3) implies (1). However, (1) is strictly weaker than (3) since the masa ®
satisfies (1) but not (3). We will now introduce 2 fourth type of maximality.



TRIANGULAR AF ALGEBRAS 105

DerNITION. A TAF algebra 7 < U is strongly maximal if there is a sequence
{2}, of finite dimensional C*-algebras such that % = | J U, and 7 n A, isa

n

maximal triangular algebra in 91,.

PRO‘POSITION 3.24. A4 strongly maximal TAF algebra is a maximal TAF

algebra.
Proof. If & is a TAF algebra which stnctly contains 7, then £ N, is a

triangular algebra in A, and (¥ nW,)2(7 nA,) for some n by Theorem 2.2.
But this contradicts the maximality of  n¥,.
ExAMPLE 3.25. We will show that maximal TAF algebras need not be strongly

maximal. It suffices to find a maximal TAF algebra 7 such that & + 7% # U, for
equality clearly holds if 7 is strongly maximal. This example will in addition have

the property 7 + I % # CHJT) # .
Let AWy = M,, Ay = Mok, k> 1, and A = |_J U, viathe standard embeddings

k0
o Let {g(”)} be the usual matrix units for M,,, e =g, 1 </, j<2,and elp =
= 8‘2'3k) l <23, k>21.1f 2 <N, let (%) denote the D,-module

generated by Z. Now define ﬂ'o = ).0, the diagonal of ‘JIO, L= Jll(ao(/ o), 21 b]o

® Uy, g1y ® Ay, e%})’ e, , T, = M(o(T 1), gD ® Yy, g ® Uy, &84

® Wy, g5 ® Ay, €?, ePy;) = Ay, and then define T, < QI,‘ inductively by 9,4, =
= Ml 1(0(T 1), g(l'p @, g OU, g QU4 g 98 '@ Uy, g1;q)° ® W_,,
g4 ® A, s, egl‘;klzl 235425 e;lf;ki-)lrltz,z.3k+1‘l ). Observe that each J, is a tri-
angular algebra in 9,. For example, the embedding o, : 7, <> 7, looks like

6’2 4 | B
0 Si 0 * *
S o
O(OIglz
al a * .
OblA’B 0bh B
T ed | cd
0 g 0 — 0 0 |gel * 0
f0 SO
0 ]0 lg/z O__ 0 gh N
Th| 4| B
0 0 cd
0 |geo| ©
so
0 ® < h
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Subsequent embeddings map nine blocks into twenty-seven blocks. Finally, let

<‘7]-=U9_k.
k

First of all, note that 9 is maximal TAF. For if there were some TAF

algebra & i g, then & n ¥, 2 I n U, for some k by Theorem 2.2. But then
(& n A would not be triangular in ¥, ., because of the way we have defined the
seguence {7 ,}.

Now C¥(J,) = CH{F 41) 0 ¥, for each k, so the sequence {C*(7 )} of
D,-modules is in canonical form. Thus C*(F7,) = C*(F) n N, by Proposition 2.5

(note that CH(J) = G?:Tﬁ‘(iéi)). But C#(7,) = U, since ) ¢ CH(T ), 50 CH(T) #
# . Therefore, 7 is not stmrgly maximal.

Finaily, to see that 5~ + ;é C*(J), observe that the matrix unit &2 lies

in C%(7). However, elD ¢ 9 + 7%, forotherwise there would be a sequence {t =
< l,_j (7. + 7§) such that ¢; — ¢l . By passing to a subsequence of {77, -+ T}},

i5
B Y
= v,

we can assume that ;€5 + Z5. Thus, there is some 7; such that il --
—#;i< 1. Butihen0Q = l‘em(a“ — tpeldl] < 1, a contradiction s1nc°)‘,e§’q)i e“—, i

We close this section with a strenger resuit for isomorphisms of strongly
maximal TAF algebras, and 2s a consequence ¢biain a generalization of [1, Theorem 1].

TiroreM 3.26. Let ¥ <« U and T € B be strongly maximal TAF algebras
vith diogonals © ond &, respectively. If & 1 & — F is an isomeiric algebra isomor-

phism, then @ extends to a C*-isomorphisin G: 9 - B.

Proof. Let A = | A, and B = |J B, such that & n A, , 7 n B, are maximal
triangular subzlgebras of ¢, and B,, respective“y By Proposition 3.20, @ D is a
C*-isomorphism onto €. If F < U, (n fixed) is a fuctor, then a set of matrix units
{e;}1cijen can be chosen for Z such that D n & =spanfe;:1 < i< N}
and ¥ NF = spanfe;;:1 <i<j< N} Define y: F - B by yle;) = ("(a
if i < Jj, and yYle,;) = D(e;,)* 1fz > j, and extend by linearity to & . We claim that
{fij =) 1 <i,j< N}forms a system of matrix units for (), and hencc
Y{F) is a finite dimensional factor in B. We nced to show

fi jfm = 5_,'1;fu

~~
o

foralli,j, k,l€{l,..., N}, and that f;i = f};. The second fact follows immediately
from the definition of  and the fact that the f,’s are projections. By Lem-
rne 3.18, the f;'s are partial isometries with initial projections f7if;; = f;; and final
projections f;;fi; = fi;. (=) will be proved by cases:

(1) i <jand k& < I (¢) holds since @ is multiplicative.

(2) i > jand k > I. Take adjoints of both sides and use (1).
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(3) i >jand k < [Ifj # k, fi; 1 = C since the initial projection f}; of f;; is or-
thogonal to the final projection f, of f;,. So we suppose j = k. If i < /, then f;; =
= fufu, and thus fi; i = fi;f;ifu = fufu = fu. I i > [ thenf;; = f,,f;;. Multiplying
on the left by f; , we have f;f;;= fi,fiifu = fufu = fi;- By takingadjoints, f;;f;; = fu.

(4) i € jand k > . This proof is similar to (3).

Thus, y(#) = B is a finite dimensional factor and ¥: F - Y(F) is a C*-iso-
morphism. By construction, ¥ is the unique C*-morphism of & which extends
P(F n ). Since F < A, was an arbitrary factor, there is a C*-isomorphism
¥, A, - (A) = B which extends ¢ | (¥, n ), and ¢, is unique with these
propertics. Furthermore, by uniqueness, ,,, must extend ¥,. Thus the map
@ U - B defined by & A, = ¥, is a C*isomorphism which extends @. Since
DA := C*(7) = B, & is onto, and this finishes the procf. %

Remark. Thus, strongly maximal TAF subalgebras of nonisomorphic AF
algebras can never be isomorphic.} Theorem 3.26 generalizes {1, Theorem 1I]
in two directions: it is valid for all AF algebras, and for any embeddings which
generate strongly maximal TAF algebras. Note afso that this theorem uses very
little of the theory presented so far. The only results used are Lemma 3.18 (which
in turn dependcd only on Lemma 3.1) and Proposition 3.20.

In view of Theorem 3.26, it makes sense now to investigate the case of two
strongly maximal triangular subalgebras of the same AF algebra, or even the sim-
pler case of a UHF algebra. This will be the subject of the next section. However,
we can immediately show that even in this setting the converse of Corollary 3.23
is falsc.

ExampPLE 3.27. W will exhibit two transifive triangular subalgebras of the
2% UHF algebra 2% whose diagonal orderings are not order isecmorphic (and, a
fortiori, the algebras themselves are not isomorphic).

Let 9, = M,» with matrix units {e(P}, .. .n, 0, U, — A, the standard

embedding, and j, : U, A, ., defined by

. I, ® x, neven
Julx) =

x ®1I,, nodd.
‘Thus, j, coincides with the standard embecdingif # is even, and with the nest embedding
if nis odd. Let 7, be the upper triangular algebra in 2, and set & = 1im(7,, 5,)
and 7 == lim(7,, j,). Further, let D, = span{e{:1 < i < n}, D = lim(D,, 5,),
and € = 1im(9,, j,). It was shown in Example 1.1 that & is transitive, and the
same argument in fact shows that J is transitive as well.
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Suppose that ¢ : (D, <,) - (€, <) is an order isomorphism. Then there
exist integers | </ < /+ | <m < n such that the diagram

6 c.ma
31 n=1 1 ) Dn
$.31 I w,:‘m
Y
commutes, where ¥ = @ ~1. Note that the orderings -< ,, and -<yon the minimal pro-
jections of D, coincide; indeed, e <elf) < . <e k ok k =1,2, ... . Wearrive

at a contradiction through the followmg observatlons.
(i) e-0,_10 .. .20:(efP) # O.

(i) @(eP)el? = 0. This is an immediate consequence of the fact ¢ is an order
isomorphism.

(i) jpo1 2 ... ofi(€Nel =0, i =1, 2, 2 < j < 2'. This follows from the
fact that m — 1 > 2, so that at least onc of the embeddings j,,...,j,_1 is the
nest embedding.

GV) Y for s oo fi(@felP =0, i=1,2,2<j< 2. This follows from (iii)
and the facts that e‘”) + 8 < Y™ + &™) and ¥ is an order isomorphism.

(V) Y pogo - ojolei)elP =0, i = 1,'2. From (ii), ¢(efP) is a sum of
‘{e(j’}} for j in some subset of {j:2 < j < 2'}. Thus, (v) follows frcm (iv) and (ii).
But (i) contradicts (v), so we conclude that (D, <) and (€, <) are not order
isomorphic.

Note that the “identity’” map 1 : (D) — P(E) defined by 1(¢!%?) = ¢!} is a bijec-
tion which is order-preserving: e <, fiff 1(e) < 5 1(f). Of course, 1 is not a C*-iso-
morphism, so this example also shows that our definition of an order isomorphism
is not equivalent to this weaker notion. In fact, it can be shown in general that if ¢
is an order-preserving bijection from 2(D) onto #(€) which also preserves order in
the usual sense (e < fiff 1(e) < ©(f)), then 7 can be extended to an order isomorphism
of (D, <) onto (€, < ). Thus, an order isomorphism is determined by the diagonal
ordering and the usual ordering.

4. ISOMORPHISMS OF TRIANGULAR UHF ALGEBRAS

It is well known that a unital embedding of one finite dimensional factor into
another 15 the composition of an ampliation with a spatial isomorphism. Recall
that M, denotes a fixed representation of the n*-dimensional factor as nxn complex
matriccs with the usual matrix units {g?}1<;jcn. Thus if A =M, and B =

M, ® M,,, any unital cmbedding ¢ : % — B has the form ¢(x) = (AdW)(x ®
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I,) for some unitary W in B. ¢ is said to be orthographic if W is also a permuta-
tion matrix.

Let {m,}?., be a sequence of positive integers, let n, € Z*, and define {nJe
inductively by #n;,, = mn,. Define U; = M, and W,y =W @M, k > 1.
Also, define ¢ = gg;fk) - Letv, : Ay — Ay, be the nest embedding vi(x) = x ® 1, |
and sct v, ; = v,_jov,_y0...0v for I > k.

A UHF algebra ¥ = lim(2,, ¢,) is said to be given in orthographic form if
cach embedding ¢, : 2, — A, ., is orthographic, i.e., ¢, = Ad P, 0V, for some
permutation matrix Py, in ,,,. Since each 9, is canonically assciated with a
subalgebra of ¥ [13], we will also say that the sequence of subalgebras {%(,}%.,
is in orthographic form if the inclusion 2f, < 9, ., is orthographic.

With no loss of generality we may assume that every UHF algebra 9 is given
in orthographic form; indeed as Glimm showed [5], the isomorphism class of A

[eel
depends only on the generalized integer [ #:and noton the particular form of the
’ k-1

embeddings. However, as we have already seen, the isomorphism class of a triangular
algebra given by 7 = lim(7,, ¢,) does depend on the form of the embeddings ¢, .

With notation as above, suppose 2 = |_J ‘2[,; is in orthographic form, and let
k

D, be the masa in 9, generated by {e{® : 1 <7< n}. If &, isa maximal triangular
subalgebra of 2, with diagonal D, & > 1, then there is a permutation matrix Q,
such that Q,%,0F = 7, the upper triangular matrices in 2, . For each k, suppose
that the inclusion 9, — A, given by Ad P, ¢ v, also maps &, into &, ,,. Then
the following diagram commutes:

Ad Py oy
—_— 0 LWy —

Ad le Ad Oy "1

> LWy
Ad Ry qovk

whcre Rir = Qrs1P 41V (QF). Thus the triangular algebra U &\ 1s isomorphic to
U7, «» where the inclusion 7, — Z,,, given by Ad R,,;cv, is in orthographic
form. Hence we will assume that all strongly maximal TAF subalgebras of UHF
algebras in this section are given in this form, i.e., as the closure of the union of
upper triangular matrix algebras with orthographic embeddings.

LeMMmA 4.1, Let ¢ : W > W14, k = 1,2, be orthographic embeddings, with
¢p = Ad Py 0w, and suppose @ (T ) © T 141, where T is the algebra of upper
.tnangula; matrices in W,.

@) If @001 Dy = Voovy | Dy, then ¢ | Dy = v | D,
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() If @001 | Ty = Voo vy | Ty, then ¢y = vy,

Proof. Let {& : 1 < i,j < n,} be the matrix units of %, as above, and let
1 €j<j <€ m. @, is order-preserving tecause ¢ (7,) & F41. Therefore, since
@50 @, = Vyov, is the nest embedding, there exist no nonzero subprojeciions p <

< e, q<<p1(e(1) ), for which ¢ <5 p. Hence @4(elY) = }.4 e(,._x)m +IG—Dm,
11

= v)(e%¥) where 1y = no/n,. This proves (), and also implies that for every 1 <j <
< j < m, there exists a permutation =7 of {1, ..., 7} such that oY) =

m
1 2 - . .
= Z e((;)_l)ml.}.I_(j’__l)ml..g.n(l). Now given the hypothesis of (b), it suffices to prove
§=1
that n is the identity permutation.
For simpiicity of notation, we may assume that », = 2 and therefore j = 1
and j/ = 2. The general case follows from part (a) by restricting to (e§9+e$3)2,(e$) +

+ ¢1))). For each 1 <igmy, let g (efP) = Y, (P, where A(7)isa subset of {1,...,m,}.
lea(i)

Define 4; = max{l ;e A()}. Tken the followirg are equivalent:

i 1< J < ng,
(i) 3 P <7, 3, &P,
ch(:) 8 1AL
(iii) A <
Let 1 € i< my. Ar,x = i3/2 by part (a), and (i)—(ili) then implies that 4; < n, |2,
Observe that "m iy, 1 ) = 190, (e{)]*[ePp, ()], from which

PoE) s sy, m-sy) = PelEPPED) 0o(efPr(e)) =

= 920 0(e)? 0o (EP)py o gr(efP) =

n:t?2 i (
T efn AN )]
( Z e, i+n»/°) k W& )) ( Y e/zuns/u) 3 elPuminys -

led(iy
Thus Ao +rny = (73/2) + 72;, and therefore n(i) =4, 1 < i < . iz

DEFINITION. Let U = (%, and B = (J %, be UHF algebras given in ortho-
graphic form, with masas D and €, respectively. A C*homomorphism @ : % — B
is said to be orthograpkic if {or every k there exists some (k) such that ®(U,)
3 By, and ¢ | A, is orthographic. If @, P: A —B are C¥-isomorphisims such that
@(D) = ¥(D) = € we will say that @ and ¥ are orthograplicclly equivalent if
(el € U(€)D(el?)) for each of the matrix units {9 of %, .

Now suppose @ : ¥ - B is a C* -xsomoAfphusm which satisfies ®(D) = €
erce (W) = ¥ . For each &, let {e® 11 <4, j < i} and {fP:1<40, J<m}
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be the fixed matrix units of A, and B, respectively. Since P(el¥)) € # ¢ by Theorem
3.3, then Theorem 3.6 implies that there is some [/ such that $(e{%) = u{® Y}, f ,(f},’

(', jyea
where ) € %(€) and A = A(i, j, k) = {(i’,j"): 1<i’,j" < m;}. Thus, we can define
5((-:5.’}’) = Y 9., The proof of Theorem 3.6 shows that 4 is uniquely determi-

G, Jyedw)
ned, and since the sequence {®B,} is given in orthographic form, the definition of
®(e®)does not depend on /. One then checks directly that @ extends to an ortho-
graphic C*-isomorphism between U and B. We thus have the following result.

COROLLARY 4.2. Any C*-isomorphism @ : W —» B with ¢(D) = € is ortho-
graphically equivalent to a C*-isomorphism & U > B such that 5(33) =Cand @
is orthographic. Moreover, if &, and T, are the upper triangular matrices of W, and
B, (with diagonals D, and €,), respectively, and if ®(\J F,) = UT,, then
(U ) =U 7w

Let A = lim(Y,, v,) and B = lim(¥,, j,) be UHF algebras in orthographic
form, where v, is the nest embedding and j, = Ad P, o v, for some permutation matrix
P,. Let &, = 7, be the upper triangular matrix algebra in U, & = lim(¥,, v,),
and J = Iim(7,, j,). Let D and € be the diagonals of & and 7, respectively, and
note that D, = D N Y, and €, = € n A, coincide with the diagonal of A, (with
respect to the fixed set of matrix units of 2,). Of course, U and B are isomorphic
UHF algebras. Howevever, the following theorem shows that & and J are not in
general isomorphic, and in fact their diagonal orderings may not even be order
isomorphic.

THEOREM 4.3. With notation as above,
0) If (D, <y) and (€, <) are order isomorphic, then for every k there exists

nk
an I(k) such that for | > I(k), Py = @ P(l, i), where P(l, ) is a permutation matrix
i==1

of size ny.q/ny.
(i) If & is isomorphic to T, then, in addition to the conclusion in (1), P{l, i) =
= P(,i") foreach I, 1 < i,i’ < n. .

Proof, Let ¢ be an order isomorphism from (D, <,) onto (€, <5). For
each k, therc exists an I(k) > k such that ¢(D) < €,,y. Then for each ! > I(k),
there is some m > [ such that ¢ Y€)= D,,. Sincc ¢ and ¢~! are order isomor-
phisms, the proof of Lemma 4.1(a) applics in this case as well to showthat ¢ | D, :
: D - € equals v, , | D,. Since the diagram

Dy

e
[ \k
v '-

€ ——— €4,y
Ad l"luvl
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e

commutes, it follows that v, = AdP,o»',;.,+1. This forces P, = @ P(/, i),
i1

where P(/, i) is a permutation matrix of size n,,,/n, (recall that dimA; = n3).

To prove (ii), let @ be an isomorphism from & onto 7. By Theorem 3.26,
& is the restriction of a C*-automorphism of . By-Corollary 4.2, we may assume
@ is orthographic. Therefore, for cach k there exists some (k) such that ¢(%)) <
€ T . Viewing & : & -» F, (I = l(k)), we then have from Lemma 4.1 (b) that
P is glven by vy, and hence v ;41 = Ad P>, 4. Therefore P,vk',.u(e,(-f)) =
= Yy 151(€$)P,, and this implies that P(l, i) = P(l, i’). 7

EXAMPLE 4.4. Let &, = &, be the full upper triangular matrix algebra in 9,

ol
where n, = 2%, Set P, = é_) Q(l, i), where Q(/, i) = [(1) (1)] forl < i <2/, and
1

i

ou, 2 = [(]) (l)] As in the [ast theorem, & = | J &, T = U T, D = ¥ nF*%,

and € = 7 nZ*. One verifies directly that the “identity’’ map 1 on the diagonal
D, of 7, yields an order isomorphism between (D, <) and (€, <;). On the
other hand, & and .7 are not isomorphic by part (ii) of the above theorem. Thus,
the diagonal ordering is not a complete isomorphism invariant for strongly maximal
TAF algebras, even in the UHF case. Also, & = # (&) and T = [ T)
by Prdposition 3.24 and Corollary 3.14, so this example also shows that the diagonal
ordering is not a complete isomorphism invariant for maximal modules, at least in
regard to algebra isomorphisms.

Now 1(Lat ") = Lat g by Corollary3.23,and C¥(Lat &) = D,so C*(Lat 7) -
= € and it follows by Propositions 2.8 and 2.9 that & and J are both nest TAF
algebras. Thus, nest TAF subalgebras of a UHF algebra need not be isomorphic.

Let 9 be a UHF algebra and 9 < U a strongly maximal TAF algebra (of
the type considered in this sectnon) with diagonal D. Set ©(9) = ftepipe
elatg) and p(7) =sup{ret(7):t+# 1}, where tr is the unique normalized
srace on Y. Then by Proposition 3.20 and Corollary 3.23, «(7) and p(7) are
isomorphism invariants of (D, <) and . Example 3.27 shows that neither of
these invariants is complete for either (D, < ) or 7, but they are still quite useful.
We will use p(7) to show that there is an uncountable family of nonisomorphic
lattices; in fact, for each 2 €[0,1] we will associate a strongly maximal TAF
algebra I (,y with p(J () = 2. This will imply, of course, that the correspond-
ing diagonal orderings and the triangular algebras themselves are pairwise noni-
somorphic.

THEOREM 4.5. Let W be a UHF algebra and v €0, 1). Then there exists astrong-
Iy maximal triangular subalgebra 7,y < N such that p(T ) = .

Proof. We will carry out the constructicn for the 2° UHF algebra; the con-
stvuction is similar in the general case. Let matrix units 10‘"‘}1 o1 jeqn fOr U, = Mynbe
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given. For every positive integer N, let Q(N) be a permutation matrix Q in Moy
such that

Qdiag(a, aV, a®, o, ..., a™, o) 0T =
= diag(a{®, a?, ..., aM, aV, o, ..., a™),

where diag(b,, ..., b;) denotes the diagonal matrix in M, with diagonal entries
by,..., b,. For each nand 1 < m< 2", let R(n,m) = L, ® Q2" — m). Observe
that Ad R(n, myov(T,) & T 1, where I, < U, is the upper triangular algebra,
and v, : A, — A, ., is the nest embedding, v,(x) = x ® I,.

Define 7 to be the nest algebra 7y = lim(7,, v,), and I (o, = lim(7,, 6,),
where o, is the standard embedding 9, — U,,;, 0,(x) = I, ® x. It follows imme-
diately from Example 1.1 that p(,) = 0 and p(Jy) = 1,

For 0 < a < 1, choose a sequence {k,}2.,, 0 <k, < 2", such that « =

= Z k,/2". If o = m/2" for some positive integers m and n, choose k; = 0 for al
n.o:1

i>nLetM, =Y 2"'k;, and define 7y =\J7,, where the embedding 7, —

i=1
> T 4118 given by R(n, M,)ov,. For each n, let p, = Z &P . Then the following
i==1
hold:

. 2M (n F) Mat1 (n+1)
(l) pn < Dusr < .. because Pn = 2 €ii = Pn41-
== =1
(ii) Every p, is an invariant projection of 7 (. Indeed, since the embedding p,

k
kar,
into 7 ., is via the nest embedding, then p, = Y e("”‘), which is an invariant
i-:1

projection of ... Hence, p, is an invariant projection of U T wit = T @y

(i) Let g be a projection in J, with p, < g < 1. We w1ll show that 7., is

M

not invarant under ¢. Write ¢ = ¥ € for some M, < M < 2". From the way
i=1

the embedding , — 7., was defined, ¢ embeds into 9., as

M, +M " M
— al +
a= 3 oy .
i=1 2" pM, A

Thus,

(1) (it
(- q)(eMn+M+1,2”+M)q = iMo12" M # 0.

Therefore, ¢ is not an invariant projection for 7 ;.

8 — 1652
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. M, »k; . . . .
Finally, let p, = oS =Y —2;: and s = p(T¢,). Since p, is an invariant
i=:1
projection for J,, and trp, = p,, clearly s > supp, = «. However if s> z,
there must be some 7 and an invariant projection g € 4, for 7,y such that p, < ¢ <
< 1. But we just showed that no such ¢ can exist. It follows that s = a, and J,, has

73

the required property. 7

COROLLARY 4.6, Every UHF algebra N contains an uncountable muanber of
pairwise nonisomorphic strongly maximal triangular subalgebras whose diagonal order-
ings are also not order isomorphic.
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