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THE IDEAL STRUCTURE OF GRUPOID
CROSSED PRODUCT C*-ALGEBRAS

JEAN RENAULT

1. INTRODUCTION

Motivated by Mackey’s normal subgroup analysis in group representation theory,
much work has been devoted to the study of the ideal structure of crossed product C*-
-algebras. Let us recall the classical settings and give a brief history of the main re-
sults. Assume that G is a'second countable locally compact group acting continuously
on a separable C*-algebra A. In their memoir (5], Effros and Hahn had conJectured
that if G is amenable every primitive ideal of the crossed product C*(G, A) is the
kernel of a representation induced from the isotropy of the action of G on the primitive
ideal space Prim A — in fact their conjecture was set in the case when A is abelian

. An important step was accomplished by Sauvageot who proved in [21] when A
is abehan and in {22] in the general case|that, if G is amenable, every primitive ideal
contains an induced primitive ideal and that, if G is discrete, the reverse inclusion
holds. The final solution was given by Gootman and Rosenberg who showed in [11]
that every primitive ideal is contained in an induced primitive ideal without any as-
sumption on G. Shortly after, Fack and Skandalis observed in [7] that the methods of
[21], [11] could be applied to the C*-algebra of a foliation and obtained similar results
in that case. Moreover they showed that the C*-algebra of a foliation with Hausdorff
graph is simple if and only if the foliation is minimal and pointed out that, due to the
possible presence of holonomy, this result is not directly attainable by the methods
of [21], [11]. The object of the present work is to prove this results in the framework
of groupoid crossed products, not so much to deal with new situations but mainly
because groupoids offer a natural setting where the previous ideas and techniques
become clearer. The main results of this paper are Theorem 3.3, which generalizes
~ the main theorem of [11] and the Corollary 4.6, which generalizes Theorem 2.6 of [7].

. The proof of Theorem' 3.3 is not intrinsically different from that of Gootman and
Rosenberg. The crux is Proposition 1.11 which is the topological version of the local
cross section theorem of [11]. Its idea, due to P. Forrest [9], has been exploited in [8],
[16] to reduce arbitrary groupoids to groupoids with discrete equivalence classes in
the measure-theoretical setting (such a global reduction does not seem to exist in the’
topological setting but in particular cases as foliations). The theorem follows almost
immediately, at least when the isotropy is continuous. Let us sketch how, in the case of
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the C*-algebra C*(G) of a locally compact groupoid G. The continuity of the isotropy
amounts to the existence of a continuous Haar system for the isotropy group bundle
G’ = {y € G:r(7) = s(y)}. Therefore the C*-algebra C*(G’) is well defined, acts on
C*(G) as multipliers and restriction from G to G’ defines a generalized conditional
expectation P, in the sense of [19] from C¢(G) to Cc(G’). The point is that, just as
in Section 2 of the first chapter of [23], where §. Stritild and D. Voiculescu describe
the ideal structure of an AF C*- algebra the expectation P can be approximated by

maps of the form Q(f) = Ze,fe., for f € C.(G), and where the e;’s are functions

defined on the unit space G(%) and (e; fe;)(7) = e; o #(7) f(7)e: o s(y). The local cross
section theorem is precisely what is needed to construct the e;’s. A similar device
has been used, for example in [15], to construct an approximate unit for a groupoid
C*-algebra. Let now I be an ideal of C*(G) and J be its restriction to C*(G').
The ideal induced by J, which consists of the a’s in C*(G) such that P(f*a*af)
is in J for each f in Cc(G) clearly contains I. The framework of groupoid crossed
products also gives a more precise condition under which every ideal of the crossed
product C*(G, A) is an induced ideal. For this, it is necessary and sufficient that
the equivalence relation associated with the action of G on Prim A be measurewise
amenable (Theorem 3.6). This can happen without G being amenable. Let us turn
now to the ideal structure of crossed product C*-algebras. Sauvageot, Gootman and
Rosenberg’s theorem asserts that, in the amenable case, it is sufficient to study the
ideals induced from the isotropy. This is a difficult task when the isotropy is not
trivial. The second main result, Theorem 4.3, deals with the case when the primitive
ideals with trivial isotropy are dense. In fact, we need a stronger hypotesis, which
we call discretely trivial isotropy. Its proof is modelled after Proposition 4.4 of the
second chapter of [17]. It yields as Corollary 4.6 the simplicity of the reduced crossed
product C,,(G, A) when G is Hausdorff and its action on Prim A is minimal and has
points with discretely trivial isotropy.

The definition of the twisted groupoid crossed product C*-algebra C*(G, X, A)
associated with the twisted groupoid dynamical system (G, Z, A) is that of [18]. The
twist X has been included for completeness and further reference but does not play
any role here. Let me simply recall that G is a second countable not necesarily

Hausdorff, locally compact groupoid with Haar system A and that A is a boundle
of separable C*-algebras over the unit space GO on which G acts continuously by
automorphisms. The C*-crossed product C*(G, A) is the completion for the largest
C*-norm continuous for the inductive limit topology of the *-algebra C.(G, A) consist-
ing of “continuous sections with compact support” of the pull-back bundle r*4 over
G. Results and terminology of [18] will be sometimes used without further reference.
Here is a brief description of the content of the paper. The first section contains the
local cross section theorem and auxiliary results on topological groupoids. Although
they will be applied chiefly to the semi-direct product Prim A xG, they are written
in a somewhat broader generality, because it is easier to write v than (z,v). The
second section gives an equivariant version of Effros’ decomposition theory [4] of rep-
resentations over the primitive ideal space. This is a refinement of the disintegration
theorem of [18]. It also contains a definition of induced and restricted representation
which does not use the isotropy subgroups C*-algebra. Section 3 compares arbitrary
ideals and ideals induced from the isotropy of Prim A G, while Section 4 compares
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arbitrary ideals and ideals induced from Prim A, when the action of G on Prim A is
amenable and essentialy free. It also contains further results on the ideals of a crossed
product and counter-examples. In an appendix, G. Skandalis gives an example of a
minimal foliation with non-Hausdorff graph which has a non simple C*-algebra.

1.-CONSTRUCTION OF APPROXIMATE CROSS-SECTION

We collect in this section some topological results about groupoids and actions
of groupoids which will be used in the proof of the Effros-Hahn conjecture. Given
a topological groupoid G, we want to circumvent two difficulties. One of them is
minor: the isotropy usually fails to be continuous. Since it-is Borel, Lusin’s theorem
will provide sets of large measure where it is continuous. The other is more serious:
the quotient map of G(®) onto G(®)/G may fail to have any reasonable section. Just
as in [11), the local compactness of G will be used to get some control of the quotient.

Let us first, spell out the assumptions we make on the topological groupoid G.
They are prompted by the basic example of a topological transformation group (X, G)
where the group G is locally compact. We require the range and source maps r, s
of G onto G(® to be open. We assume that G(%) is Hausdorff but not G. The local
compactness requirement will be as follows. Let us say that a.subset K of G is left
[resp. right] conditionally compact if from every compact subset L of GO, LK =
= K N r~Y(L) [resp. KL = K N s~!(L)] is compact. A subset which is both left and
right conditionally compact will be called conditionally compact (c.c. for short). We
shall assume that each point of G has a conditionally compact neighborhood. A topo-
logical groupoid satisfying all these requirements will be called locally conditionally
compact (l.c.c. for short).

Let G be a topological groupoid. We denote by G' = {y € G r(y) = s(v)} the
isotropy group bundle of G. It is closed in G if G(?) is Hausdorff. We denote by R the
. graph of the equivalence relation on G(°) given by r(7) ~ s(y). We endow it with the
quotient topology from G, which is finer, and usually strictly finer, than the topology
induced by G(® x G(®), which we call the product topology. When G is l.c.c., G’ and
R are usually not l.c.c. groupoids in the above sense. For the bundle map |G’ of G’
may fail to be open and points of the diagonal A of R may not have conditionally
compact neighborhoods. As we shall see, these properties are related to the continuity
of the isotropy. The space 5 of the closed subgroups of G is equipped with the Fell
topology, where basic open sets are of the form

'u(K;Ul,...',Un)={HGZ("):HnK,z(Z), HNU, ¢-®,...,HnUn¢®}

where K,U,,...,U, are subsets of G with, K compact and Uy,...,U, open. It is
Hausdorff and conditionally compact over G(9). The isotropy map S sends z € G(%
into the isotropy subgroup G(z) = zGz € =),

LEMMA 1.1.. Let G be a topological groupmd and z € G, The following
properties are equivalent.
1) The isotropy map is continuous at z.
i1) The restriction to G’ of the range map is open at every v € G(z) (i.e. sends
a neighborhood of ¥ onto a neighborhood of x).
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iii) For every v € G(z) and every neighborhood U of v in G, G'U is a neigbbor—‘
hood of G(z) in G.

Proof. The inverse image by S of the basic open set U(K; Uy, ...,U,) is just
r(KNGYNnr(UynG)N...0r(U. NG").

Suppose that S is continuous at z and let U be a neighborhood of ¥ € G(z). Then
UE@; U) is a neighborhood of G(z) in Z(% and r(U N G’) is a neighborhood of z in
G9. Conversely, suppose that (ii) holds. Let U(K;Ui,...,U,) be a neighborhood
of G(z). Then each U; is a neighborhood of some v; € G(z) and r(U; NG’) is a
neighborhood of z in G(®. Since r(U N G’) = G'U N G(®), the property (iii) implies
(i1). Let us show that (ii) implies (iii). We form the semi-direct product G’ X G where
G’ acts by left multiplication on G and call 75 the projection onto the second factor
and m; the multiplication map (' ,v) — v'~'4. The openness of r|G' on G(z) implies
the openness of ; on G(z)xzG. If U is a neighborhood of vy € G(z) in G, 7] *(U)
is a neighborhood of {(¥',7'y) : ¥ € G(z)} in G’ x G and G'U = ma(a7'(U)) is a

neighborhood of G(z) in G. |

REMARK 1.2. This lemma provides two characterizations of the continuity of the
isotropy: namely the openness of the boundle map of the isotropy group bundle and
the openness of the map (r,s) of G onto R. When G is L.c.c., we shal] see that these
conditions are equivalent to the existence of a continuous Haar system on G’.

Let G be al.c.c. groupoid and denote by Ccc(G) the space of continuous functions
on G with conditionally compact support — more exactly, in the non-Hausdorff case,
functions which vanish outside some Hausdorfl open set U and whose restriction
to U is continuous with c.c. support and linear combinations of those. For each
z € G, zG is a Hausdorff locally compact space and the restriction of f € Cec(G)
to G is continuous with compact support. At this point we want to make two more
assumptions on G. The first one is that, for every z € G(9, every function in Cc(zG)
extends to a function in Ce(G). The second one is the existence of F' € Cee(G)
such that 0 < F <1 and F(z) = 1 for every z € G(9). These ptoperties are satisfied
when G is Hausdorfl and normal and also for the semi-direct product X xG of a
transformation groupoid (X, G) with G locally compact, which is our primary interest.
We also note that if G has these properties, so does the isotropy bundle G’. From
now on, they will be included in the definition of a l.c.c. groupoid. A Haar system
for G consists of measures A% on zG, z € G(®, with support G and satisfying the
left invariance property:

Y0 = X that is / Fr )X () = / (7))

for every f € C.o(G). We say that the system is continuous if for every f € Ccc(G),
the function A(f)(z) = /fd/\‘ is continuous.
LeEmMA 1.3. (cf. appendix of [10]). Let G be al.c.c. group bundle. The following

properties are equivalent.
1) Its bundle.map p is open.
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if) It admits a continuous Haar system A.

Proof. (ii) = (i) Let U be an open space set in G, ¥ € U and z = p(y). There
exists f € Cee(G) such that 0 £ <1, f(y) =1 and f vanishes outside U. The set of
y’s such that A(f)(y) # 0 is an open neighborhood of z contained in-r(U).

(1) = (ii) Fix F € Cce(G) such that 0 f< 1 and F(z) = 1 for z € G(©. For
each G(9, choose the (left) Haar measure A* of the locally compact group G(z) =

= p~1(z) such that / F d)® = 1. We will show that this Haar system is continuous.

We first observe that for every compéct subset K of G, the function z +— A*(K)
is bounded. Let U be the open neighborhood of G(®) defined by F(7) > 1/2. We

have 1 = /Fdz\") /FdA’>(1/2)/\’(U), hence A\*(U) < 2. We can cover K by
& ;

finitely many open sets Vi, ...,V such that V;"'V; C U for every i. Then A*(V;) =
= A (yy W) S X (V7 WV) K A®(7U) = A®(U) <2 where ¥ has been chosen in
G(z)NV; (f G(z)NV; = @, A*(V;) = 0). Therefore, A*(K) < 2n. Let (z;)ies be a
net converging to z in GO and w be a generalized limit for I. For every f € Cco(G),
the function ¢ — f(i) = A(f)(z;) is bounded. We set u(f) = w(f). It is a positive
linear functional on C¢c(G). Let us show that it depends only on the restriction on f
to G(z). Suppose that f and g coincide on G(z). Let K be a compact set containing
the restriction to {z;, i € I} U {z} of supp f Usuppg. We then have

|76 -36)] < [ 1) - sl ax=(n <

< sup )If('r)—y(*r)b\"‘(K)-

YEG(x

A compactness argument shows that sup |f(y) — g(¥)| converges to 0. Hence
7€G(:) '

p(f) = p(g). Let us next show that u is left invariant. Fix ¥ € G(z). Because p is

open, there exist a net (;)ier converging to y such that p(y;) = z;. Let f € C.c(G)

and choose g € Ccc(G) such that g(yy') = f(v') for every 7' € G(x). Then

i6) = ) = [owr) = s ax=e)+ [(atrm) = ) ¥,

Therefore there exists a finite constant C such that

lﬁ(i) - f(i)[ < C{ sup |g(%7") —9(v7)l+ sup \ lgtry') - f(*r’)l} :

7' €G(zi) YE€G(x:

A compactness argument shows that the right hand side converges to 0. Hence u(g) =
= u(f). Since F(i) = 1 for every i, u(F) = 1. By uniqueness of the Haar measure
on G(z), we must have g = X*. This implies that A(f)(z;) converges to A(f)(z) for
every f € Cc(G). ‘ [ ]

COROLLARY 1.4. Let G be a l.c.c. group bundle (we do not assume that the
bundle map is open). Let 5(®) be the space of the closed subgroups of G and
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X = {(H, 7): He 2(0),1 € H} be the canonical group-bundle over 2 with the

topology induced from 5% x G. Then
1) Yisle.c.
ii) X admits a continuous Haar system.

Proof. For (i), it suffices to show that 2 is a closed subset of 2 x G. Suppose
that (H;, ;) converges to (H, ) and that v ¢ H. Let K be a compact subset of G(®)
containing p(v;) and p(y). Since HNKL = @, we have eventually H; N KL = @. On
the other hand v; € KL for 1 large enough, hence v; ¢ H;. For (ii), it suffices to show
that the bundle map p: ' — =0 js open. This is the case because

pAU(K; Uy, ..., Un) x V) = WK ; Uy, ..., Un, V)

where K is compact and Uy, ... ,U, are open in G. ]

We shall use this corollary to equip any l.c.c. group bundle G — with bundle
map not necessarily open — with a Haar system. Let S be the map which sends
z € G into G(z) = p~'(z) € £9. Then G is the pull-back of £ via S. Let A
be a continuous Haar system for T, normalized by F' € Cc(G). The pull-back of A

consists of the Haar measures A* on G(z) normalized by | F dA® = 1. Under usual

hypoteses, this Haar system is Borel, in the sense that for every f € Ccc(G), the
function A(f) is Borel on G(9. It suffices to show that S is Borel.

- LEmMA 1.5. Suppose that the l.c.c. group bundle G is second—countable Then
the map-S of G(®) into £(® js Borel.

Proof. Since S~} (U(K; Uy, ..., Un)) = p(K)Op(U1) N ... Np(Un), it suffices to
show that the image by p of an open set in G is a Borel set in G(®°). But, with our
assumptions, every open set in G is a countable union of c.c. sets and the image by
p of a c.c. set is closed. ]

We return to the study of the isotropy group bundle G’ of a l.c.c. groupoid G.
We choose once for all F € Cco(G), with 0 F <1 and F(z) = 1 for z € GO to
normalize a Haar system (%) on G’ and (8¥) on £. Now G acts by conjugation
on the space of closed subgroups 5(® and its canonical group bundle L. We denote
by v~ !8H~ the image of B by the conjugation map ¥ € H v vy~ vy € v~ H7.
The uniqueness of the Haar measure on y~! Hy provides a 1-cocycle 6, defined on the
semi-direct product 5% G, such that

Y 8%y = §(H,y)T B

LEMMA 1.6. With above notation,
i) the l-cocycle é is continuous and
"1i) its continuous cohomology class does not depend on the choice of §.

Proof. Applying the equality defining § to F, we have

6(H,y)™? =/F(7"7’7) dg¥ (v").
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Suppose that the net (H;,v:) converges to (H,vy). Let K be a compact subset of
G containing v;, ¥. We can find a continuous function f on the compact space
K(supp f)K~! x K such that f(y',7) = F(y~'¥'y) when s(v') = r(y). It is then
easy to estimate '

/f(*/’m)dﬂ”"(*/') —/f('r’,*r)dﬂ”(v')

to show that it tends to 0. Another continuous Haar system £’ on X will be of the
form B’ = hfB where h is a continuous positive function on 2. The 1- cocycle ¢
associated with 8’ will be related to 6 through

h(H)8'(H,v) = §(H, v)h(v" Hv).

With a slight abuse of notation, we can call § the modular function for G. It
has the following property: for every H € X9, Su(y') = 6(H,v') (whete ' € H) is
the modular function of the group H. We shall also set 6(y) = 6(G(r(v)),7)- It is a
1-cocycle on G. The following lemma provides the disintegration with respect to the
quotient map of G onto R of a Haar system for G. It can be found in [28] (see also
[1]) in the transitive case. Recall that a Haar system 8 for the isotropy bundle G’ has
been fixed. We set 87 = y8Y where v € zGy. .

LEMMA 1.7. Let G be a second countable l.c.c. groupoid and § = (B;) be as
above. Then there is a 1-1 correspondence between Borel Haar systems A for G and

Borel Haar systems a for R given by A* = /ﬁ; da®(y).

Proof. If a is a Borel Haar system for R, the above formula defines a Borel Haar
system for G. Conversely, suppose that a Borel Haar system for G is given. For a non-

-negative Borel function f on G, define A(f)(z) = / £d>* and B(f)(z,y) = / Fdez.

A straightforward change of variable using the relations 7ﬁ’(7; -l = 6(7),6:((;7)) and

B = 8G(z)B= gives the symmetry property A*(fB(g)) = A*(B(f)g) for every non-
-negative Borel functions f and g. Since zG is locally compact and second countable
and B is bounded on compact sets, we can find a non-negative Borel function F
on G such that B(F)(z,y) = 1 for every. (:c y) € zR. Since § has the conditional
expectation property with respect to the quotient map from G onto R, every nor-
-negative Borel function on zR is of the form B(f) and A*(f) depends only on B(f),
thus we can define the measure a® on zR by a®(8(f)) = A*(f). Since A = (A7) is
left invariant, so is « = (a®). We now have to show that, for every non-negative
function h on R, the function £ — a®(h)}is measurable. It suffices to show that its
restriction to every compact subset L of G(%) is measurable. But this is clear since we
can find a non-negative Borel function f on G such that 8(f) = h on LR and then
a®(h) = A*(f). |

COROLLARY 1.8 (cf. Theorem 4.4. of [13]). Let G be a l.c.c. groupoid as above
and A be a transverse measure for G. Then:

1) There exist a transverse measure A for the equivalence relation R such that_
A=Aocfe.
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ii) The Radon-Nikodym derivative A of A and A of A are related by A(y) =
= 8(1)A(7) ae.

iii) The Radon-Nikodym derivative A of A can be chosen such that it coincides
with 6 on G'.

Proof. We fix the Haar systems A on G, 8 on G’ and & on R as in the previous
proposition. Then the transverse measure A is given by a measure y on G such that
podand poA~! are equivalent to A as a version of the Radon-Nikodym derivative
poA/pmoA~1. Since they are pseudo-images of equivalent measures, poa and poa™?
are also equivalent and thus define a transverse measure A on R which depends only
on A and 8. Let A be the Radon-Nikodym derivative of A. Using the disintegration
of A%, the relation poa = Apoa~! and the quasi-invariance of 8 with respect to the
action of G by conjugation, one obtains that

| /f(v)df\”(ﬂdﬂ(f) =/f(*r'l)&(‘r‘l)é(?‘l)d/\’('r)dﬂ(r)
for every non-negative Borel function f on G and therefore that

A(7) = 6(MA(Y) forpodae. 7.

Since both sides are homomorphisms, the equality holds on the reduction of G to a
saturated conull subset of G(®). We obtain (iii) by replacing A by §4 o (r, s). ]

We turn now to the second point, which is to get some control of the quotient
space G(9/G. Given a subset K of the topological groupoid G, we introduce the

relation on Gz X yiff (z,y) € R|K = (r,s)(K). We shall see that for K symmetric

and conditionally compact and when suitably restricted, it becomes an equivalence
relation. A similar equivalence relation has already been used by P. Forrest in [9] to
construct countable sections for group actions. It is also related to the partition of a
distinguished open subset of a foliated manifold into plaques.

LEMMA 1.9. Let K be a conditionally compact subset of G. Then
i) R|K is a closed subset of G(®) x G(®),
ii) the quotient and the product topologies coincide on R |K .

Proof. Let (v;) be a net in K such that (#(7:), s(7:)) converges to (z,y) in GO x
xG(®). Because K is conditionally compact, there exists a subnet (7;) converging to
v € K. By continuity of r, s and uniqueness of the limit in GO, (z,y) = (r(7),s(7)) €
€ R|K . Moreover (r(7;),s(7i)) converges to (z,y) in the quotient topology and this
still holds for the whole net. |

LEMMA 1.10. Let K be a conditionally compact subset of G,  a point in el
and N be a neighborhood of G(z) in G. Then there exists a neighborhood V of z in
GO such that VKV is contained in N.

Proof. Suppose no such V exists. Then there exists a net (y;) in K N N°€ such
that (r(y:)) and (s(7:)) converge to z. Let () be a subnet converging to y¥. Then
v € G(z), which is impossible. : ]

PropPosSITION 1.11 (cf. Theorem 1.4 of [11]). Let z be a point of continuity of
the isotropy, K be a symmetric conditionally compact neighborhood of  in G and
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M bea heigh»bforhood of the diagonal in R. Then there exists a neighborhood V of z
in G such that the relation yfvz becomes on V an open equivalence relation with

a closed graph contained in M.

Proof. We know from Lemma 1.1.(iii) that G'K is a neighborhood of G(z) in
G. Therefore there exists an open neighborhood N of G(z) in G such that N2 C
C G'KnN(r,s)~'(M). By Lemma 1.10 there exists an open neighborhood V of z in
GO such that VKV C N and V C N. Then for y,z € V,

K N N? K
Y~ D Y~Z D Y~ Z = Yz,

Therefore, the relation yﬁz restricted to V is:

reflexive, because V C N;
symmetric, because K is symmetric;
transitive, because the saturation of an open set U contained in V is just
r(NU)NV, which is open.
Its graph, which is RIK NV x V is closed by Lemma 1.9. It is contained in M
by construction.

This proposition will be used to solve the equation:

(o) [ etv)do*(s) = b(2)
RIK

where e is the unknown function. In order to apply it, we shall reduce G to a subset
C of G(® such that the restriction to it of the isotropy is continuous. The next lemma
ensures that the restrictions of the orbital measures a* are non-zero.

LEMMAL1.12. ‘Let R be a topological principal groupoid such that for each z in
the unit space X, =R is a second countable locally compact space, a = (a*) a Borel
Haar system and C' a compact subset of X. Then,

1) For each z € X, let C® denote the support of the restriction of o® to RC.

Then the union of the C*’s is of the form RC’ where C’ is a Borel subset of C

which we call the support of a|C.

ii) C\ ' is a null-set for every measure p on X quasi-invariant with respect

to o.

Proof. The first assertion results from the equivariance of the subsets C*: for
(z,y) € R, C* = (z,y)CY. The set C' can be defined as C' = {z € C:(z,z) € C*}.
Let u be a measure on X quasi-invariant with respect to a. By definition, R(C \ C’)
is a null-set for every measure o, hence a null-set for u o . By quasi-invariance,
(C\ C")R is also a null-set for p o a and this implies that (C'\ C’) is a null-set for p.

a

We are going to apply the preceding results to crossed product C*-algebras.
Let G be a locally compact groupoid and A a G-bundle of C*-algebras, that is,
a bundle of C*-algebras over G(°) on which G acts continuously — on the left —
by automorphisms. Then G also acts on the primitive ideal space Prim A of the
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C*-algebra Cy(G(?, A) of continuous sections of A vanishing at infinity. We shall
write it as a right action: for ¥ € G and z € Prim A,(,), we write zy = y~!(z). The
projection map of Prim A onto G(9) will be denoted by p. Since the Jacobson topology
on Prim A is not necessarily Hausdorff, we use instead, as in [11], the regularized
topology. We recall that it is the coarsest topology making continuous the functions
z + |la + z||, for each a € Co(G®, A) It is Hausdorff, and Polish when A is separable
and G(® second countable. Just as in [11, Proposition 1.6] we have:

ProprosITION 1.14. Suppose that G acts continuously on the C*-algebra bundle
A, then it acts continuously on Prim A endowed with the regularized topology.

Proof. Since the regularized topology is finer than the Jacobson topology, the
projection map p of Prim A onto G is continuous — but it may fail to be open —.
Let (z:,¥:) be a net converging to (z, y) in the space Prim A X G of composable pairs
in the product Prim A x G. For each a in Co(G(o), A), we have

lla+ 2exll = lla + 29| = [lla o s(3:) + 2l — IIra o () + 2]l
We can find b € Co(G(®), A) such that bor(y) = vao s(y) and majorize the above by
[Ihia o () + 2ll = 180 r() + 2l + Il o r(3) + 2all = b0 () + 2l <

< lhao s(w) = bo r(w)ll + I+ =l = Il + ]|
Both terms tend to zero and (z;, ;) converges to z7v in Prim A. ]

The semi-direct product PrimAXG = {(z,y) € PrimA x G:p(z) = r(v)},
where the groupoid structure is defined by

r(z,y) =z, s(z,y)=zv and (z,7)(z7,7)=(z,7Y")

and the topology is induced from Prim Ax G, is al.c.c. groupoid in the sense defined at
the beginning of the section. We shall assume from now on that G is second countable
and has a continuous Haar system ) and that A is separable. Then (A* = g, x AP(¥)),
where €, is the point mass at z, is a continuous Haar system for the semi-direct
product. Moreover, all the separablhty assumptions which were needed in this section
are satisfied.

2. HOMOGENOUS DISINTEGRATION OF REPRESENTATIONS

Recall from [18] the definition of a twisted C*-dynamical system, or dynamical
system in short. It is a triplet (G, X, A) consisting of :

a) a locally compact groupoid G admitting a Haar system A,

b) an extension X of G by a G-bundle S of locally compact abelian groups
admitting a G-invariant Haar system dt,

¢) a Zbundle A of C*-algebras such that S is unitarily implemented. That
is, there exists a homomorphism z of S into the unitary elements of the multiplier
algebra bundle M(A) with the following properties:
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i) the map (s,a) — x(s)a is continuous from S*A into A,
ii) for every (s,a) € SxA, sa = x(s)ax(s)™!,

iii) for every (o,s) € ZxS, x(sso™!) = ox(s).

When G is a group, this is N. Dang Ngoc [3] and P. Green [12]’s definition of a
twisted covariant system in the particular case when the normal subgroup is abelian.
We are mostly interested in the case when S is the trivial G-bundle G(®) x S (the
circle group) (see {14]).

Given a dynamical system (G, X, A) and a Haar system A for G, fixed through-
out this paper, one can construct in the usual way (see [18]) the crossed-product
C*-algebra C*(G, £, A). The main result of [18] is the disintegration of an arbitrary
representation of C*(G, Z, A) over the unit space G(°). We shall need a finer result,
namely the disintegration over the primitive ideal space Prim A, which uses the ho-
mogenous disintegtation theorem of E. Effros [4]. The techniques are the same as in
[18]. A direct proof would be possible but we find more convenient to start from the
disintegration theorem of [18].

We first recall that the homogeneous disintegration theorem of Effros [4]. A
representation M of a C*-algebra A in a Hilbert space X is called homogeneous if, for
every non-zero projection e € M(A), the representations M and M, have the same
kernel. Let M be an arbitrary representation of A in H. Each (closed two-sided) ideal
I of A defines a unique projection e(I) in the centre of M (A)"” namely the central cover
of M(I). This extends to a representation of the *-algebra B(Prim A) of bounded
Borel functlons on PrimA. When A ls‘sepa.rable it defines a measure class v on -

Prim A and a measurable field of Hilbert spaces z — H such that # = / H;dv(z)

&
and M = / M, dv(z). Then for v-almost every z, M, is homogeneous with kernel

z. We are now looking for an equivariant version of the disintegration. Suppose that
(G, %, A) is a dynamical system. As we have seen before, X acts continuously on
Prim A. Since S acts trivially, G also acts continuously on Prim A and we can form
the semi-direct product G = PrimA xG. We shall denote by A = p* A the pull back
of A to PrlmA and set L = PrimAxZX.

DEFINITION 2.1 (cf. 3.4 of [18]). A representation over Prim A of the dynamical
system (G, Z, A) is a pair (v, H) consisting of a transverse measure class v for G and-a
measurable Hilbert bundle H defined on a Borel subset U of Prim A, of v-conegligible
saturation; endowed with measurable actions L and M of &;; and A;; such that

i) L(z;0)Mz,(a)L(z,0)"! = My(0a) for (z,0,a) € Zy*A, | '

i) L{z,s) = Ma(x(5)) for (2,9) € Sy,

iit) For every « € U, the representation M, of A, on H, is homogeneous with
kernel z.

Two representations (v, H) and (v/, H') are said to be equivalent if » = v’ and
there exists a Borel subset U of Prim A of v-conegligible saturation and an isomor-
phism V of Hy onto H{, intertwining the actions. '

A representation (v, H) over Prim A of (G, X, A) can be integrated to yield a non-
(]
degenerate representation L of C*(G, X, A) in the Hilbert space H = / H;dv(z)
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according to the formula

(€, L(f)n) = /(ﬁ(f), Mz (f(0))L(=, 0)n(z0)): A% (z,6) dX" () dv(z)

for ,7 € H and f € C.(G, Z, A). In the formula, we have written A* instead of
M(*) and we have identified the transverse measure class v with the quasi-invaziant
measure it provides in presence of the Haar system A. The Radon-Nikodym derivative

-1
ﬂﬁ\—x— has been denoted by A. From the definition of Cc(G, X, A), the function

vo
under the integrand depends only on (z,d), where ¢ is the image of o in G. One

can check as in [18]) that equivalent representations of C.(G, X, A) yield equivalent
representations of C*(G, £, A). Under the usual separability assumptions, every non-
degenerate representation of Cc(G, Z, A) is so obtained:

THEOREM 2.2 (cf. §4 of [18]). Let (G, X, A) be a dynamical system with £
second countable and A separable and A be a Haar system for G. Then every non-
-degenerate representation of C*(G,Z, A) in a separable Hilbert space is equivalent
to a representation obtained by integration.

Proof. Let L be a non-degenerate representation of C.(G, Z, A) in a separable
Hilbert space H. From [18, Lemma 4.6] there exist unique non-degenerate representa-
tion of C*(X) and Co(G(®, A), denoted respectively by L and M, such that for every
f € CAG, Z, A), 7

L(p+f) = L(p)L(f) for ¢ € Cc(Z)

L(hf) = M(h)L(f) for h € Co(G®), A).

They can be disintegrated to yield a representation of (G, Z, A) in the sense of [18,
Definition 3.4]: a pair (u, K) consisting of a quasi-invariant measure p for G and
a Hilbert bundle K defined over a Borel subset. V of G(°), which can be chosen -
-negligible, endowed with measurable actions L and M of Zy and Ay such that

1) L(o)Myo)(a)L(o)™" = M,(s)(ca) for (o,a) € Zy*A

i) L(s) = M,(,)(x(z)) for se€ Sv.

& @
Identifying H with / Kydu(u), M decomposes as/ M, dpu(u). As we have seen

before, M defines a representation M’ of B(Prim A) and a measure class ¢ on Prim A.
Similarly, for every u € V, M, defines a representation M" of BQPrim Ay) and a

. @ .

measure class v* on Prim A,. Since M" decomposes as / M dp(u), v decomposes

@ ) '
as / vy dp(u). The covariance relation (i) holds also for M"': we have

) L(e)M,y(R)L(0)™" = M/, (oh) for ¢ € Ty and h € B(Prim A), where
oh(z) = h(zo).

This shows that v*(My~1 ~ ") for ¥ € Gy . Together with the quasi-invariance
of i, this implies the quasi-invariance of v. We choose Radon-Nikodym derivatives

_ pol _ vol _ _u’(")'y‘l
T poA-lT T T poa-t and p(-,7) = vr()
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They are related by p(z,y)A(z,y) = é(y) for almost every (z,y).

The next task is the construction of the Hilbert bundle £ — H, over Prim A
and the operators L(z,0) and M.(a). This can be done by using the groupoid
Z =Prim A x X. Let B(Z) denote the space of bounded Borel functions on £ which
vanish outside a rectangle Prim A x K, where K is compact in X. For f € B(L) and
o € I, f(o) will denote the function f(-,o) defined on Prim A,(,). The space B(X) is
made into a *-algebra with the usual convolution and involution. The representation
L of C*(G, Z, A) defines a non-degenerate representation, still denoted by L, of B(Z)
through the formula

& L()m) = / (E(u), M2 [£(0)] L(o)n o 5(0))ub™2(6) do dp(u)

®
where f € B(X),{andneH = / K, dp(z) and do is the Haar system dtdA on Z.

The construction of the G-Hilbert bundle H given in the proof of Proposition 4.2 of
[18] uses only the standard Borel structure of G, hence applles to X. Therefore there

exist a representation (v, H) of £ and an isometry V of H onto H = / Hdv(z)

which lntertwlnes L and the integrated representation L given by

€L = [(€@), 12,01, 0)n(z0) 4722, ) do du(z)
where f € Z, € and 7 € H. Since for h € B(PrimA) and f € B(Z), M"(h)L(h) =
= L(hf), V intertwines M'"(h) and the operator of multiplication by h." In par-

@ - @ -
ticular, if we decompose H as_/A Ky dp(u) and K as / Ky dp(u) with K, =

@ @
= / H, dv¥(u), then V decomposes as / Vudu(u). Let us define L(a) Vi)

-L(a)VJEal) for o € Ly and My(a) = Vyu My(a)V! for (u,a) € V+A. Comparirig both

formulas for the coefficients of L, we see that, up to a null-set in Xy

L(0)é(z) = p**(z,6)L(z,0)é(z0) for every & € H.

L ]
Because B(PrimA,) acts by multiplication operators, M, decomposes as / M,

-dv*(z). The covariance relation (i), which also holds for the representations L and
M of Zyv and Ay on K, and a standard argument on null-sets of Z give the existence
of a conull-set U in an A such that

L(z,0)Mzo(a) = My(ca)L(z,0) for (z,0,a) € Ly*A.
Because of the relation (ii), we can choose U to have also
L(z,s) = M;(x(s)) for (z,5)€Sy.

Since from its construction, for almost every u in G and v* almost every z, M, i3
a homogeneous representation of A, with kernel z, we can choose U to have also M,
homogeneous with kernel z for z € U.
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We have thus obtained a representation (v, H) over Prim A of the dynamical
system (G, Z, A). It remains to check that-V intertwines L and the representation L
obtained by integration. This is straightforward: for f € C(G, X, A) and &, n€ X,

(€ L) = [{6), M S0 Lo o s(o)ub12(6) 41*(6) d(w) =

= [ @), M. (@) Liz, )iz, o))
(2, 6)6712(6) dv¥ (z) AN (6) dps(u) =
- /(E(r), M. [f(o)] L(z, 0)ii(z, o)) A/ *(z,6) dN(6) dv(z) =

= (£, L(f)7), where € = V¢ andij= V.
]

The rest of this section will deal with restricting and inducing representations.
Let (G, Z, A) be adynamical system. Asbefore, weform G =Prim A xG, £ =Prim A x
x X and A =Prim A*A = p*A. To a closed subgroupoid G’ of G one can associate
the dynamical system (G’, &', A’) where £’ is the pull-back of £ to G’ and A’ is
the reduction of A to G'(9). Definition 2.1 of a representation of a dynamical system
applies as well to (G’, ', A’). From now on we shall assume that G’ is a closed
subbundle of a isotropy bundle of G, equipped with the Borel Haar system § inherited
from the space of closed subgroups of G and that G is equipped with a fixed Haar
system A.

Then a representation L = (v, H) of (G, X, A) defines by restriction a represeh-
tation L' = (v, H') of (G’, X', A"). Here we view v as a measure on Prim A and v’
‘1s 1ts restriction to G’(O) The Hllbert bundle is the reduction of H to G'(®) endowed
with the actions of 2 and A};. We shall sometimes write L' = ResG,L

Conversely, suppose that we are given a representatlon L'=(v',H") of (G', X', A").
To define the induced representation L = IndG, L' of (G, %, A), one can proceed in
two steps. First L, viewed as a principal left Z'-space, establishes an equivalence (see
(18, Definition 5.3])) between (G’, L', A’) and (ExZ/S'x 2/, X/ 5", 5% A’/ L") and
therefore carries L’ into arepresentation L” = (v”, H") of (Z+Z/S'x E', 22/ 2,
ZxA')E"). Explicitly the measure v" on £/X' = G/G’ can be defined as in 1.10 by

: —_—~—
/ @ )6™ (2, 7) dN® () dv/(z) = / f(z.77) 4B () dv" (2, 7) -

The Hilbert bundle H” is ZxH'/ X', where (g,€') ~ (do'g, L'(0")¢’) for o’ € =
, ) ) ,
The action of ZxZ/ L' is given by L"(g,1)(1,¢') = (a,€’) and that of £xA'/Z' by

f——N'—_\
M"(g,) a)(e,€') = (¢, M;,y(a)’).
In the second step, we write Y = Z/X’ = G/G’ and we identify (Z%Z/S' x X,

. ——
Zx X/ Ex A'/E") with (Y XG, Y x £, Y+A). The identification maps are (¢,1) €
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€ Z+X/E2 — (¢,07'1) € Y x £ and (g,a) € Z*xA'/E' +— (g,07'a) € Y=
*A. Let us review how a representation L” = (v", H") of the semi-direct product
(Y ©G,Y %X, Y*A) induces a representation L = (v, H) of (G, £, A). We choose for
v a pseudo-image of v"" by the map s:Y +» Prim A and disintegrate v with respect

tos: v’ = [ 7, dv(z). Since v” is quasi-invariant, so is ¥ and the measure system

{7z} quasi-invariant under G. Let A and 6" denote respectively the modules of v and
4()

-1
Tooy -
5.7)° Then we have —”—TI——(y) = p(y,7y) for ae. (y,7),

V" and set p(y,7) =

where 7 =(z,7).

The Hilbert bundle H is defined by its fibres H, = L%(Y, 73, H") and the mea-
surable sections given by measurable sections of H”. The action of £ on H is given
by

[L(o)€)(v) = p(v,8)"/°L" (y,0)¢(y, @)

and that of A by
[M:(a)é)(y) = M"(y,a){(y) for £ € H..

One can check that this is indeed a representation of (G,‘E, A) in the sense of 2.1
and that its equivalence class is independent of the choises we made. We call L the
representation induced by L” — or by L’ in our case — and write L = IndS, L'
Let us just quote the theorem on induction by stages: for G' C G" C G, we have
IndS, L' = IndS. o Indgj’ L'. We recall that the regular representations of (G, Z, A)
are the representations induced by G(®) — or more exactly from Prim A with our
notation —. '

We conclude this section by writing down the coefficients of an induced repre-
sentation. Let L = (v, H) be the representation of (G, Z, A) induced from a repre-
sentation L' = (v", H"”) of (Y G, Y xZ, Y*A). The Hilbert space of the integrated

@b
representation is M = / H/dv"(y). For§,n € H and f € C(G, L, A),

(& L(f)n) = / (), M"(y, F(o))L" (3, &In(ye))6"~*(y, &) dN¥ (o) dv"(5)

where, as before, ¢ = (s(y),0). Moreover, if the representation L” arises from a
representation L’ = (v, H') as above, the Hilbert space H may be viewed as the
space of measurable sections £&: £ +— H' such that £(¢) € H;(g), &(o'a)-= L'(d")¢(e)

for o' € &' and €11 = /||§(_t1)||2 dv"(0) < co. The coeflicients of L are given by

€ L(m) = / (€2, 7), ML [ £(0)] 1(z, 70)) o612 (27, 6) dX=" (6) du" (2, 7)

As it is well known, the construction of the induced representation can be viewed
as a change-of-ring operation. This is summarized in the next lemma.

LEMMA 2.3. Let L' = (v, H') be a representation of the subsystem (G’, L', A")
as above and L the induced representation of the Hilbert space H.
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€ H; and f®&(z,0'0) = L'(0’) f®&(z, ). Moreover, since

JEAN RENAULT
i) There exists a unique map of Cc(G, £, A) ® LZ(G’(O) V', H') into 'H sending
[ ®¢& onto f@&(z,0) = /M' [0f(o7" ")) 6'/%(z, o)L (z,0')¢(z) dBE (6 )

and it has dense range.

ii) For f; € Cc(G, £, A).and & € L2(G'®), V', H'), i = 1,2

(h@hm%ﬁ=/@@MWUHhWHH%fm&»

§~Y2%(z,0')dB7 (¢ ") dv'(z).
iii) For f,g € C(G, £, A) and &€ € L3(G'®), v/, H"),

L(f)g®¢ = frg&¢.

Proof. i) The function f&®¢ of £ into H' is measurable and satisfies fQ¢(z, o) €

&€z, o) < /”f(a'l V@) 62z, o' o) dB=(6")

- —_—— —_~
the integral /Hf@{ (z,0)||>dv" (z, o) is less than

/"f(a-la')" "f(o-—la”)" lE@? 6Y%(2, o'~ o)-

8%z, 6" 6)dB7 (¢’) 4B (¢") dv" (2, 0) =
:/Ilf(a—lo,l)ll ”f(o-l ' u ” ”6(17)” 61/2(1‘ o~ 10_)'

8%z, 0" o' 1a) dB7 (0") A% (o') dv" (2, 0) =

(by the change of variable ¢" — ¢'0")

= [1r @l se's™ o) @I 8z, o'
—_—
671%(z,0") dB" (0") dB:(0’) dv" (z,0) =
(by definition of 5;)
=/llf‘(v)ll £ o) HiE@I* 67/%(2, 6”) dB" (") dA*(0) dv'(z) =
(by definition of v”)

B /(Ilf’ll * AN NE@I 87/%(2,0") d 7(c") d/ (=) <
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<sup ( Jar e dﬂ’”(v”)) el
This shows that f&¢ belongs to H. Since f&¢ is linear in each of the variables, there
is a unique linear map of Cc(G, Z, A) ® L*(G(®,v', H') into M sending f ® £ onto

J®E. Suppose next that n € H is orthogonal to every f®E, where f € C.(G, Z, A)
and £ € LG, v/, H'). Then

(. = [(18€(z,0),n(z,0)) dv" z,0) =
= [ 071 )] L@, 00, (2, 0))
8%(z,6' " 0) db”(a') dv” (:,?) =
= [tz [oro om0 ™) €(e) (. 0Nz, ') dBal) 0 o, ) =
= (M2 [o£e™)] €@), (@, N6~/ 7(z,0) X7 (8) dv'(2) = 0.
This implies that for every f € C.(G, Z, A) and ¢ € L*(G, v, H')

(M. [f(0)]€(z), p(z,0)) =0 v’ o X-almost everywhere.

The separability assumptions and the nondegeneracy of the representation M,

- then imply that n(z,0) =0 ' o A-almost everywhere and therefore that 7 = 0 in H.
ii) The computation of (fi®¢1, fo®€2) is similar to — and justified by — the

computations done in i).

iti) This is a straightforward computation. On one hand, we have seen in (i)

that

(n(f+g)®E = / (n(z, ), M; [o(f+g)(e™")] &(z))87 /% (2, 6) dA*(¢) dv'(2)

for every 1 € H. On the other hand, by definition of the induced representatlon L,
the coefficient (1, L(f)g®¢) is equal to

[tat@,), M2 [0£(r)) 488(2, 067 2(2, 0, N (7). o) =
= / (1(z,0), M1 [0 (7)) M, [org(r~'a0")] L'(z,0)E(a)):

_ )
613 (z, U’—IT)5_1/2(:L'0’, 7)dB%(6") AN (7) dv" (z,0) =

= [(n(e. a0t [o'o s (g1 )] (o))
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§7%(zg,07 16" dN(9)(7) d B, (") dV"f::) =
- / (n(z,0), M. [0 f(r)rg(r~"0~1)] €(2))-
§7Y2%(20,671)671(z,0) dA7)() AN ()dv/(2) =

- / (n(z, o), M, [o(frg)(o™)] E(2))6~2(, 5) dN* (6) dv/(x).

The next lemma relates the representation of the twisted crossed product
C.(G, X, A) and those of the ordinary crossed product C*(X, A). As in [18], one
defines

x(F)(o) = / F(to)x(t)dt for F € Co(Z, £xA).

LEMMA 2.4. Let (G, X, A) be a dynamical system and G' be a closed subbundle
of the isotropy bundle of Prim A.

i) The map x extends to a *-homorphism from C*(X, A) onto C* (G, X, A).
1) If L is the representation of C*(G, Z, A) obtained by integrating a

representation of (G, L, A), then Lo x is the representation of C*( X, A) obtained
by integrating the same representation, viewed as a representation of (X, A).

(ii1) If L is the representation of C*(G, L, A) induced from a representation of

(G, X', A"), then Lo is the representation of C*( %, A) induced from the same
representation, viewed as a representation of (', A').

Proof. i) This results from {18, lemme 3.3].

ii) and iii) These result from the definitions and straightforward calculations. B
3. PROOF OF THE MAIN THEOREM

Let (G, Z, A) be a dynamical system in the sense of the previous section and
let L be a (non-degenerate) representation of C*(G, X, A} in a separable Hilbert

space H. As we have seen, it can be disintegrated over Prim A. Identifying H with
L?(Prim A, v, H), the coefficients of L are given by

(€ L(f)) = /(E(x),Mz(f(a))L(w,U)C(l‘,0))z4'”2(1¢,ff)df\’(f'f)d'/(w)

where f € C.(G, X, A) and £,( € H. Replacing M.(f(¢)) by Mz(f(x,0)) in this
formula, one can define a bounded operator L(f) when f is in L'(G, £, A), the space
of Borel functions of I into A such that f(z,0) € Aps), f(z,s0)x(s™') and

11l = max (sup [ 115z, o)l 436, sup [ | 7(aono™)] a30))
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is finite. Then the norm of L(f) is bounded by ||f}|, ,. The space LY(G, £, A) is made
into a normed #*-algebra with the following operations

frag(z,0) = /f(z,'r) [rg(:cr, T'la)] dA"(7)

f*(z,0) = o [f(zo, 0’1)]* .

Let G’ be the isotropy group bundle of G =Prim A x G equipped with its Borel
Haar system 3 as in Section 1. We define in a similar fashion the normed %-algebra
LY(G', 2', A’) by using B. There are two pieces of structure relating LYG, £ A) and
LG, £, A"). First LY(G', Z', A') acts on L'(G, £, A) by left and right multipliers
according to

g*pf(z,0) :'/g(x,r) [ff(x‘r, T_IO')] dp=(r) =
= /g(:c,ar) [arf(:ca‘r, 'r'l)] d48z° (1)
fxpg(z,0) = /f(z',ar) [arg(:cor, T_l)] dg*e(7) =

= [ 16,7 [roam, o) a9

where g € LI(G’,E’,A’) and f € Ll(_G_,g,_fl). Second the restriction map P of
Ll(_G_, X, A) into LI(G', X', A") is a (not everywhere defined) conditional expectation
in the sense that

P(g*sf) = gxp P(f) and P(fxpg) = f*sP(g)

wheriever these expressions are defined. Note that C.(G, L, A) is the domain of P.
Finally we define the restriction L’ of L to L'(G’, £’, A’) by its coefficients:

(€ L)) = [(€@). Melo(e,0))Liz, 0)o())2672(2,6) 46°(5) dve)

where g € Ll(G', XK', A"), € and ¢ € H and 6 is the modular function of G’. The norm
of L'(g) is bounded by [lg]l, 4-

LEMMA 3.1. i) The *-algebra L' (G’, £', A') acts on L*(G, £, A) by multipliers.
i1) The representation L and its restriction L' are related by

L(g#sf) = L'(9)L(f) forge€ LI(G', L' A" and f in Ll'(_G_, 2, A).

Proof. i) We have to check the relations
(9% f)" = f**pg” where g € L(G',£', A’) and f € L'(G, Z, A)

fixa(g%sf2) = (fixpg)*rf2 where g € LY(G’, &', A") and fi,fa € LYNG, Z A).



22 JEAN RENAULT

The first relation presents no difficulty. To obtain the second relation, we use the
disintegration 1.7 of A:

fin(ars e = [ £ ) s f)lam, v )} () =
= [ 51@n) [+ loterron] riop [fa(eop,p™)] 4822 (H N (H) =
= [ @7 later ™ on) op [1ateop, )] 4622 (5) 4B (1) da(4) =
= [ i@, n)rloter, 7™ o0)] op [fa(eop, 7)) 4B2,,(7) 482 (5) da (o) =

-/ { [ 1@ nr lotar,mop) dﬁ:,,,(a}-
op [fa(zop, p71)] dB;°(p) da*(y) =
= /fx*;ay(T,UP)UP [fz(f"P,P_l)] dA*?(p) =

= (frxgg)*r fo(z, 0).
i) It suffices to check the equality of the coefficients

({a L(g*ﬁf)C) = (67 Ll(g)L(f)C)

By Corollary 1.8, we can choose the module A of v so that it coincides with § on G'.
The computation then consists of a change of order of integration. |

v

We construct a family of (not everywhere defined) linear maps Q of Ll(g_ LA A)
into itself in the following fashion. The family is indexed by (K, M,CY’s where K is
a symmetric c.c. neighborhood of G(® in G, M is a neighborhood of the diagonal
in the graph R of the equivalence relation with the quotient topology and C is a
compact subset of Prim .4 such that the restriction to C of the isotropy is continuous.
Let (K,M,C) be such an index. By Proposition 1.11, there exists a finite cover

V1, ..., Vi of C such that the relation z X y becomes on each V; an open equivalence

relation with a closed graph contained in M. Let by, ..., b, be a continuous partition
of unity subordinate to it. We define the functions ey, ... ,e, on Prim A by

1/2
ei(z) _ bi(z) / / b;(y) daz(y) if z c C' and b,‘(z) >0

RIK

0. otherwise,

where C' is the support of a|C as defined in Lemma 1.12. Then it holds that

ei(z) / ei(y) de® (y) = bi(z)

RIK
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for every z € C'. We define the lincar map Q = Q(K, M,C) by

n

Q)(z,0) = D eilx)f(z,0)ei(z0).

i=1
It depends in fact on the choice of the cover and the partition of unity but this does
not matter for our purpose. Note also that Cc(G, Z, A) is in its domain.

LEmMMA 3.2. With above notation:
1) for f € C(G, X, A) with support modulo S contained in K,

1 <sup { [ W 48500 = (2, € b1}

i1) let L be a non-degenerate representation of C.(G, X, A) in a separable Hil-
bert space M and L' be its restriction to L(G', £', A'). Then for each f € C(G,
L, A), L' o P(f) is in the weak closure of the L o Q(f)’s.

Proof. i) This is a straightforward estimate:

J1ew@ ol e @) < Y [ a@eeo) el @) <

<X / es(@)ei() (o)l 462 (5) da®(y) <

<su [ 117 455) Y [ et@etndar)<

i:lRlK

(where (z,y) runs over M)
< { [ W1 45) @y e,

il) Let f be given in Co(G, X, A). We fix a c.c. neighborhood K of GO in G
containing suppf. Given &;,{1, ... ,&m, Cn in H and ¢ > 0, we have to find @ such
that

[(&, Lo Q(f)G) — (&, L o P(f)i)l e forj=1,...,m.
Since L is non-degenerate and the family (L o Q(f)) is bounded, we may assume that
¢; is of the form L(g;)¢;, where g; is in C(G, L, A) for j = 1, ..., m. By Lusin’s
theorem, we can find a compact subset C of Primn A such that the restriction to C of
the i1sotropy is continuous and

& (@)1 duv(zy<e? forj=1,...,m.
Prim A\C
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Because of the continuity of the isotropy, the function i, defined by
b o) = [ o) lay( ™ N dg5()

on the set of (z,y,0)’s in R x X such that 2 € C and r(s) = p(c), is continu-
ous. Therefore, there exists a neighborhood Af of the diagonal in R such that for
Jj=1,...,m the conditions £ & C,o € suppf o suppg; and (z,y) € M imply that
Hhj(z,y,0) — hj(z, 2,0} <e. Let @ be Q(K,M.C). Then

(&, Lo Q(f)L(9;)S;) - (€5, L' o P(f)L(g; )Y == (&, LIQ(f*ag; — P(fpu;1¢5)

is the sum of an integral over C and an integral over its complement. The integral
over the complement is in absolute value less than

1/2

IL@Umg; - PIsillGl | [ N6 @IF )

Prim A\C

This is less than a constant times €, where the constant depends only on the data
f.9;,¢;. The integral over C can be replaced, because of Lemma 1.12, by an integral
over the support C’ of o|C and is in abso.ute value less than

lichar(C") [QUA)*ag; — P()xsg;liiy €I IS

where char(C'’) is the characteristic function of C’. Since the supports modulo S
of Q(f)*ag; and P(f)*3g; are contained in a fix compact set suppf osupp g;. the
lI-i1, x-norm is less thar:, up to a multiplicative constant, the sup-norm. Now

n

A0 =Y [ al@a@hE,0)dem(y)

i:lR'K
and
P(f)*p9i{z,0) = hj(z,=,0).
Hence if 2 is in (", the norm of Q(f)*ag;(z,0) — P(f)*pg;(z, ) is less than

> | eyt ) - btz o)l da(y).

i:lRlK

Since (z,y) € Vi(R|K)V; implies that (z, y) € A, this is less than ¢. |

THEOREM 3.3. Let I be a non-degencrate representation of C*(G, 3, A) in a
separable Hilbert space H and L' its restriction to the isotropy GG' on Primn A. Then
the representation L of (7 (0, X, A) induced from L' is weakly contained in ..
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Proof. By Lemma 2.3, the space H of the induced representation L is the Hilbert
space completion of the algebraic tensor product C.(G, ¥, A) @ H with respect to the
scalar product defined on elementary tensors by

(f1®C1, f28C2) = (€1, L' o P(f1*2f2)E2)

where L' is viewed as a representation of B(G', L', A") and fi*1f2 as an element of
B(G, X, A). The induced representation acts on elementary tensors by

L(£)g®€ = (f*g)&E.
For given f1, fo, f € C(G, X, A) and &;,&, € H, the coefficient
(1861, L(f) f2862) = (€1, L o P(fxfxf2)62)

is a limit, by Lemma 3.2, of terms of the form

(€1, Lo Q(ff+f+f2)€2) = Y (&1, L(f)Eh)

M:

H

1]
—

n

where Q(f) = Ze,-feg as above and ¢}

I

L(f;)M(e;)¢; for j = 1,2, Since

i=1
Z ”E.; ”2 = (&, Lo Q(f]*f;)€;) is bounded, by Lemma 3.2.(i), the convergence still
i=1

holds when f is replaced by an arbitrary element a of C¢(G, Z, A). Thus the coeffi-
cients of L are limits of linear combinations of coeflicients of L. ]

The reverse inclusion holds under an amenability assumption. This is a straight-
forward generalization of [17, Proposition 3.2, page 87]. Let us first recall a definition
of [17, page 86].

DEFINITION 3.4. Let G be a Borel groupoid endowed with a Borel Haar system
A. A quasi-invariant measure z on G(® is called amenable if there exists a net (f;) of
complex-valued functions on G such that

i) The functions z / Ifi(v)|? dA%(7) are essentially bounded and this family
is bounded in L®(G(9, p).

ii) The functions v — fixf}(v) = /fi('y’)‘ﬁ('y_l-y’) d A" (y') converge to 1 in
the weak *-topology of L®(G, it ¢ A).

REMARK 3.5. This is in fact a property of the transverse measure class defined
by s and A.

THEOREM 3.6. Let L be a representation of C*(G, L, A) and L' be its restriction
to the isotropy G’ of the action of G on Prim A. Assume that the quasi-invariant
measure v on Prim A provided by the disintegration of L is amenable with respect to
the equivalence relation R. Then the representation L of C* (G, 2, A) induced from
L' is weakly equivalent to L.
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Proof. Tt suffices to show that L weakly contains L. Realize the space H of the
induced representation L as. the space of measurable sections £: PrimA x ' — H

such that {(z,0) € H, {(o'a) = L(a')é(g) for o’ € 2 and ¢ = (z,0), and || =
= /||£(:c,a)||2 da®(z0) dv(z) < 0o. The coefficient (¢, L(f)u) is given by

/({(:c, ), Mx [rf(a)] 7](1;, ‘ra))xé‘l/z(z:r, 6)dA*"()do"(zT) dv(z).

We want to approximate the vector state L defined by £ € L?(Prim A, v, H). Let (f:)
be a net provided by the amenability of v with respect to R and the Haar system a.
Define then :

ti(z,0) = A~ (2, z0) fi(zo, 2) L(z, 0)E(20)

where 4 is the module of v as a quasi-invariant measure with respect to R. Recall
from Corollary 1.11 that A and 4 are related by

Az,y) = 6(z,7)A(z,zy) ae.

We first check that & € H. The first two conditions are immediate. Moreover

6P = [ leita, ) do=(eo) du(z) = [ NI ( JIEY dar(w) du(c)

is uniformly bounded. A routine computation gives that for f € C.(G, X, A),
61061 = [ ([ Ao iz d0%()) (62), Mo (0N Lz, o)e(a0)

A2 (2, 0)dA (o) du(z).
By condition (ii) of 3.4, this tends to (£, L(f)¢). Because of the boundedness of (;),
the convergence still holds for f € C*(G, Z, A). [ ]

REMARK 3.7. The amenability of R, that is, the existence of a net (f;) of Borel
complex-valued functions on R such that

(i) / |fi(z; y)|? da®(y) is bounded uniformly in z and in i,

.(ii) the net of functions fi*a f7, where fixa fi (z,y) = /f,‘(l’, 2)f:(y, 2) de®(2),

converges to the function 1 against every finite measure on R,
will ensure the weak equivalence of L and L for every representation L. A stronger
condition is the amenability of Prim A x G. In fact, this condition is equivalent to
the amenability of R and of G'. A still stronger condition is the amenability of G.

4. SIMPLICITY OF SOME REDUCED CROSSED PRODUCT C*-ALGEBRAS

In the last section, we have compared an arbitrary representation of the crossed
product C*-algebra C*(G, Z, A) with a representation induced from the isotropy.
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We want now to compare arbitrary representations and regular representations, in
the case when the isotropy is small, in a sense that we shall make precise. The
idea is that induction preserves weak containment and that it suffices therefore to
compare arbitrary representations of the isotropy group bundle with certain regular
representations of this group bundle.

DEFINITION 4.1. Let G be a topological groupoid with a non necessarily Haus-
dorff unit space and z be a unit. The isotropy will be said to be discretely trivial at
z if for each compact set K in G, there exists a neighborhood V of z in G(® such
that for each z in V, G(z) N K contains at most .

REMARK 4.2. Let us say that the isotropy is discrete at z if there exists a
neighborhood V of z in G(®) and. a neighborhood U of V in G such that for each z
in V, G(z) N U is reduced to {z}. Assume that G is locally conditionally compact.
If the isotropy is discrete trivial at z, then it is discrete at z. Suppose conversely
that the isotropy-is discrete at z and that G(z) = {z}, then the isotropy is discretely
trivial at z provided that for each z # z, there is a neighborhood of z which does not
contain z. In particular, for a groupoid which is r-discrete in the sense of [17] or the
graph of a foliation, the isotropy is discretely trivial at z iff G(z) = {z}.

As before, (G, Z, A) denotes a groupoid dynamical system. In this section, Prim A
is equipped with the null-kernel topology.

THEOREM 4.3. Let (G, X, A) be a dynamical system, L a representation of
C*(G, X, A) and zo a point of Prim A where the isotropy is discretely trivial. ‘Then
the regular representations induced from o are weakly contained in L if and only if
zo belongs to the support of the restriction of L to CO(G(O), A).

Proof. By Lemma 2.4 it is sufficient to consider the untwisted crossed product
C*(G, A). The only if part is clear, because restriction to Co(G(®), A) preserves weak
containment. 'Let us suppose that xo belongs to the support of the restriction M of L
to Co(G(®), A). Because of Theorem 3.3, we may assume that L is the representation
induced from the representation L' = (v, H) of the isotropy dynamical system (G’, A").
The Hilbert space H of the representation L consists of measurable sections ¢ of
G = PrimAxG into H such that &(z,v) € Hg, &(z,v'y) = L'(z,v")é(z,v) for

v € G(z) and ||¢])® = /”5(1},7)”2 do”(zv)dv(z) is finite. The coefficients of L

are given by

(€, L(F)E) = / (€2, 7), Ma [y (ra)] € m))-

52 (zy,71) AN (11) da® (z0) u(z).

Since the isotropy is discrete in a neighborhood of zg and we shall choose £ supported
in the reduction of G to this neighborhood, the modulus function é will take the value
1. Moreover, after a change of variable, we obtain

(€, L) = / (€(z,7), Me [7£(r™191)] €(2, 1)) 4% (1) do® (20) dv(a).

On the other hand, the regular representation R induced from the homogeneous
representation My of Co(G(o),A) with kernel zo on the Hilbert space Hy acts on
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the Hilbert space L?([zo],a"°, Ho), where [zo] is the orbit of zo on PrimA. The
coefficients of R are given by o

(n, R(f)n) = /(n(rov), Mo [Y£(v~ 1)) n(zon)) de®°(11) da®*(z07).

We want to approximate coefficients of R by sums of. coefficients of L. It suffices to
consider a coefficient (1, R(f)n) where 7 is of the form n(z) = ¢(x)no where ¢ is a

continuous function on Prim A such that [ |p(z)]* da®*(z) = 1and 1 is a unit vector

in Hy. Since M is weakly contained in M, there exist vectors §/; in L}(Prim A, u, H)
such that, for each i, }: ll&:; "2 = 1 and the net of states wi(a) = 2(&]’, M (a)¢;;)

i i
converges weakly to the vector state wo(a) = (no, Mo(a)no). In other words, for each
a€ Co(G( ), A), we have

(+) lim 3 (€5(2), Me(@)€i(2).} du(z) = (10, Mo(a)o).

The convergence still holds for a in the multiplier algebra of Co(G(®, A). In
particular, the probability measure Z ||££j (z)"2 dv(z) converge vaguely to the point
I
mass at To.
We choose an increasing sequence (K,) of conditionally compact symmetric
o
neighborhoods of G in G such that UK, = G and a decreasing fundamental se-

quence (V,) of neighborhoods of z¢ in Prim A such that for each n and each z in V,,,
G(z)N K3 = {z}. The existence of such neighborhoods comes from the discrete triv-

iality of the isotropy at zo. Since for each n, the net Z / € (1:)” dv(z) converges
i

Va

to 1, there exists a subnet (i,.) such that Z/ "Efn]-(z)" dv(z) converges to 1 (**).
We associate to each n the linear function;l :::,, on C*(G, A) defined by
w(£) = D (Enss Lfns)
3 A
where &,; is defined by

L'(z,¥)p(zy)¢l ;(z) ifz€Vy, v €G(z)and y€ K,

nj T, ! =
&ni (= 7) {0 if not.

This is well defined because, for £ € V,,, the elements of G(z2) K, are uniquely written

in the form v'y with v’ in G(z) and ¥ € K,, because G(z) N K2 = {z}. Moreover, it
is easily checked that £,; is a vector in H and that

S ensl = 3 [ ons M do(e9) (o) =
J J
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= &a@N | [ e’ d/\”.(‘r)) dv(z).
Feer (]

Let us show that this converges to 1. Because of the continuity of A, we can find,
given € > 0, ng such that for = € V,,, and every n > ny,

t-e< [ lolan)l de(m<i+e
Kn

Because of the choice of (in), we can find n; > ng such that for every n>n,,

1-26< ) Jlenjll” <1+ 2.
j

We want to show that for each f € C*(G, A), the sequence (wn(f)) converges to the
coefficient (n, R(f)n). Because of the boundedness of (w,), it suffices to check the
convergence for f € C.(G, A). Let us choose n such that K, contains suppf. A
straightforward computation taking into account the fact that G(z)N K32 = {z} gives

D=3 [ [ [oametan)ie. @), e m] €.,

J V. K.Ka

AN (1) dN*(9) dv(z) =
= / (€. 5(2), Mz [Fa(2))€; () du(a)
where we have set

Fa(z) = / / Pz )y f (v~ 1) dA(71) dAF (7).
nKn

We do not alter the convergence by replacing F,(z) by F(z), where

F(z) = / / S een)ri(m ) dA® (71) dA%(v)

because of the estimate, obtained by Cauchy-Schwarz inequality

I1Fa() = F@I <Al [ letenl? ax(a)

G\K.

where as before

l1£ll, = max (Sﬂp/llf(‘/)ll dx¥(y), Sgp/ 71| dr\“(‘r)) :
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The proof will be complete after we show:
i) F is a continuous section of the pull-back bundle p* A over Prim A.
i1) For every continuous section F of p*A,

3 [ €65 (2), Me [FNEL () dv() = o, Mol ()] ).

It suffices to check (ii) for F of the form F(z) = Fi(z)a o p(z), where F} is scalar
valued and @ € Co(G(®), A). Then the result follows from (*) and (*#). The assertion
(1) follows from the following lemma.

LEMMA 44. Let m be a continuous and open map from the locally compact
space Y onto the locally compact Hausdorff space Z, A a continuous m-system and E
a Banach bundle over Z. Then for every continuous map p from a topological space
X onto Z, every open Hausdorff subset U of Y, every compact subset K of U and
every section f of the pull-back of E over the fibered product X*zY such that

i) for every z in X, the function f(x,-) has its support contained in K,
i1) the restriction of f to X+zU iIs continuous,

the section z — /f(:c, Y) d/\”(”)(y) Is continuous.

Proof. Let zo be a point in X. The section f can be uniformly approximated
by linear combinations of sections of the form fi(z,y)e o p(z) where f, is scalar and
satisfies (i) and (ii) and e is a continuous section of E. This reduces the problem to the
scalar case. By normality of U, there exists g € Cc(U) such that f(zo,y) = g(y) for

every y € U N7~ 1(p(z0)). The difference /f(x;y) dAP@)(y) — /f(:co,\y) dXP(Eo) ()

can be decomposed as the sum of two terms A and B where

A= / (f(z,v) - 9(y) AN (y)

B= / o) AN (y) - / 9(y) AN ().

Because of the continuity of A and p, the term B tends to 0 when z tends to zg. Let
us show that the term A also tends to 0. It suffices to show that for every £ > 0, there
exists a neighborhood V of zg such that for every z in V and every y € UNw~!(p(z)),
we have |f(z,y) — g(y)| < €. Suppose this is not true. Then there exists ¢ > 0 and
(zn), (yn) such that z, tends to zo, yn € UN71(p(zn)) and |f(zn,ya) — 9(yn)| 2 €.
Each y, belongs to the compact set K Usupp g. Passing to a subnet converging to yo,
one obtains |f(zo, yo) — 9(¥0)| = €. This is impossible because of the choice of g. W

REMAI{K 4.5. Under the sole hypothesis that zo is a point with trivial 1sotropy,
the conclusion of the theorem does not hold. Let G be the unit disk {z € C: |z| <1}.
It is a group-bundle over [0,1] with bundle map z + |z| and multiplication (ae')-

. . d
(ae®) = ae'(®*¥). We provide it with the Haar system /fd/\" = %/f(az) ;

The regular representation R induced from 0 is given by R(f) = f(0). It is not weakly
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contained in the representation L on L?[0,1] given by L(f)¢{(a)= /f(az) dz

{(a).

As a corollary to their solution of the generalized Effros-Hahn conjecture, Goot-
man and Rosenberg obtain the simplicity of the reduced crossed-product Cra4(G,A)
when the action of G on Prim A is free and -minimal. By using Theorem 4.3 one can
slightly relax the assumption of freeness. Among a number of results on the sim-
plicity of crossed product C*-algebras, the following corollary was motivated by [17,
Chapter II, Section 4] which was used to prove the simplicity of the Cuntz algebras
and by (7, théoréme 26], where it is shown that the C*-algebra of a minimal foliation
(with Hausdorff holonomy groupoid) is simple. A related result of G. Elliot [6] on the
simplicity of a crossed product by a discrete group should also be mentioned here.

CoOROLLARY 4.6. Let (G, Z, A) be a dynamical system such that G is Hausdorff,
the action of G on Prim A is minimal and there exists a point in Prim A with discretely
trivial isotropy. Then the reduced crossed product C}(G, X, A) is simple.

Proof. Because G is Hausdorff, the restriction map p from C.(G, X, A) onto
C.(G®, A) is well defined. It is a generalized conditional expectation in the sense
of [19, Definition 4.12] and the regular representations of C*(G, X, A) are exactly
the representations induced via P. Let L be a representation of C*(G, X, A). By
minimality of the action of G on Prim A, the support of its restriction to CO(G(O), A)
is Prim A. By Theorem 4.3, L weakly contains the regular representations induced
from a point with trivial isotropy. Because these points are dense and induction via
P preserves weak containment, L weakly contains every regular representatxons In
particular, if L is a representation of C}4(G, Z, A), it is faithful.

REMARK 4.7. This result does not necessarily hold when G is not Hausdorff.
G. Skandalis gives a counterexample in the appendix.

The next result on the ideal structure of the crossed product when the action
of the primitive ideal space is no longer minimal will require two hypothesis. One of
them is the amenability of this action as defined in 3.7. More precisely, this mens
that each 1sotropy subgroup is amenable and each quasi-invariant measure on Prim A
is amenable with respect to the equivalence relation R. The other is the essential
freeness of this action as defined below.

DEFINITION 4.8. A continuous action of a topological groupoid on a topological
space X will be said to be essentialy free if for every invariant closed subset F' of X,
the subset of points of F' with discretely trivial isotropy is dense in F.

-

COROLLARY 4.9. IJJet (G, %, A) be a dynamical system such that G is Haus-
dorff and its action on Prim A is amenable and essentially free. Then restriction to
C’o(G(o), A) yields an isomorphism between the lattice of ideals of the crossed product
C*(G, L, A) and the lattice of invariant open subsets of Prim A.

Proof. Let L be a representation of C*(G, X, A), L' its restriction to the isotropy
G’ of the action of G on Prim A and Ly its restriction to Co(G(®), A). The support
of Lo is a closed invariant subset F' of Prim A which depends only on the kernel
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of L. By Theorem 4.3, L weakly contains the regular representations induced from
points of F which have discretely trivial isotropy. Since these points are dense in F
and induction via the generalized conditional expectation P from C¢(G, Z, A) onto
Cc(G®, A) preserves weak containment, L weakly contains the representation Ind Lo
induced from Ly. On the other hand, since the isotropy subgroups are amenable,
the regular representation of the isotropy subgroup G(z) weakly contains L'|G(z) for
almost every z and therefore Ind Ly weakly contains the representation L induced
from L'. Furthermore, because the equivalence relation R is amenable, L and L are
weakly equivalent by Theorem 3.6. Hence L and Ind Lg are also weakly equivalent
and induction via P provides an inverse to the restriction map. u

REMARK 4.10. Does this result hold without the assumption of amenability for
the reduced crossed product C},4(G, £, A)? The answer is likely to be no, due to the
bad behaviour of the reduced crossed product with respect to exact sequences. Let us
illustrate this by an example which was given to me by G. Skandalis. It is well known
(see for example [25, Lemma 1)), and easily shown by using the disintegration theorem
for representation that, given a locally compact groupoid G with Haar system, an
invariant open subset U of G(9) yields an exact sequence

0 — C*(Gy) - C*(G) & C*(GF) — 0,

where F is the complement of U in (G(%). Defined on functions, the map j is the
extension by 0 while the map p is the restriction map. If Gg is amenable, then the
sequence

0 — Crea(Gu) — Creg(G) — Crea(Gr) — 0

is also exact. This is an immediate consequence of the previous exact sequence and
‘has been noticed and extensively used in {27]. If Gr is not amenable, the sequence
is not always exact. Let I' be a countable discrete group acting on the right by
diffeomorphisms on a manifold M. Connes’ construction of the tangent groupoid of
M can be modified to incorporate I'. It yields the normal groupoid, in the sense of
[26; Remark 3.19] of the injective embedding of M xI' into M x M. This groupoid
G is the disjoint union of groupoids G; where t runs over [0,1]. For t # 0, G is the
groupoid M x M (the trivial equivalence relation on M) and Gy is the semi-direct
product TM % I', where the tangent bundle TM is viewed as a group bundle and the
multiplication is given by (z, X,¥)(z,Y,71) = (z, X + Yy}, 971) where Yy~ ! is the
image of Y by ¥'(2)~!. These groupoids are glued together according to the following
rules: for t # 0, (tn,Zn,yn) — (t,z,y) if and only if t, — ¢, , 2, — z,y, — y and
d yn')'—l —Zn R
. t"

— X (this last condition does not depend on the local chart around). This makes G
into a locally compact Hausdorff groupoid. A choice of a non-vanishing density p on
M fixes a Haar system for G: for f € Cc(G) and £ € M, one defines for t £ 0 -

Jraxes) [ fe.e, e o)y

(tn,Zn,yn) — (0,2, X, ) ifand only ift, =0, ,z, — z,y, — z72an

and

/fd,\(o") = Z/f(O,z,X,'y)p(ic‘y)h'(:c)l dX ift=0.
i
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The continuity of the Haar system results from the change of variable formula. -We
let U be ]0,1] x M and F be {0} x M. Then Gy is isomotphic to ]0,1] x M' x M
and Gr = TM xT. Consider the family {L,,t € [0,1]} of representations of C*(G)
on the Hilbert space L2(M, p): for t # 0

(€ LHm = [ 1t,2,0E@) pl)oly) de dy

and

(€ Lo(f)m) = / 50,2, X; )E@(z)o(z7)p(z) 17 ()] dX da.

Since (€, Lo(f)n) tends to (€, Lo(f)n) as ¢ tends to 0, Lo is weakly contained in
{L:,t €]0,1]}. But for t # 0, L, is weakly equivalent to the regular representation
of Gt and factors through C}4(G). Moreover Lo vanishes on C%,(Gy). However
Lo 1s not necessarily a representation of C},4(Gr). Suppose indeed that I' is a non-
-amenable group preserving a density p of finite volume. Then the restriction of Lg
to C*(I') has a fixed vector, hence cannot factor through Crea(T'). Therefore Lo
itself cannot factor C} 4(TM % I'). Examples are provided by [24], where it is shown
that an odd-dimensional sphere $?**!(n > 1) admits a non-commutative free- group
of isometries which acts freely.
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Added in proof. A result similar to Theorem 4.3 on the primitive ideal space of

C*(G, A), but in a more general setting of an algebraic C*-bundle A over G, is announced
in [29].
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APPENDICE

UN EXAMPLE DE FEUILLETAGE MINIMAL DONT
LA C*-ALGEBRE N’EST PAS SIMPLE

GEORGES SKANDALIS

Nous construisons -un feuilletage (V, F). minimal pour lequel la C*-algébre
C* (V,F) de Connes (cf. [1]) n’est pas simple. Cet exemple n’est pas en contra-
diction avec le theoreme 2.1 de [3], comme le graphe du feuilletage considéré n’est pas
separé.

Soit M une variété, M son revétement universel et I' = m(M) son groupe
fondamental. Si I' agit dans une .variété T, V = M x T est muni-d’un feuilletage
horizontal F dont les feuilles sont les images de M x {z} dans V. (z:€ T). Le graphe de
ce feuilletage restreint a la transversale fidéle T, noté G7., est le quotient du groupoide
T % I par larelation d’équivalence R ou T X I' est la variété T'x I’ munie de la structure
de groupoide r(z,9) = z, s(z,9) = g~ 'z et (z,9)0(97 'z, ¢") = (z,9¢’), et R est défini
par (z,9)R(z’,¢') ssi z = =’ et les germes de g~! et ¢'~! en z coincident. -

Notons que (V, F) est minimal si et seulement si I’action de I" dans T est mini-
male. De plus C*(V, F) et C7,4(GF) sont équivalentes au sens de Morita ([5], [2],
[4]) ou C:.,(G¥) désigne la C*-algebre réduite du grouponde étale GT.*(on a en fait
C*(V,F) = C!,4(GF) ® X [4]). Mais C% (GF) est le.séparé complete de C(TxT)
pour les representatlons naturelles 7. dans (GT),z €T (cf.[2],5§6). .

Posons T = §' et soient g, et g, deux difféomorphismes de T de points fixes
respectlvement les segments orientés [a, b] et [b, a] ol a et b sont deux points distincts
de T'='S". Soit go une rotation irrationelle. Comme g, et g, commuitent entre eux, les
dlﬁeomorphlsmes g1, 92 et go déterminent une action du produit libre (Z x Z)«Z = I
dans T'. Soit M une.variét¢ avec-m (M) = I' et (V, F) le feuilletage associé. Comme
go €', (V, F)\est minimal. .

Soit f € CC(TXI‘) donnée par

1 sig=1ouggs,
f(l‘,‘g): —1 ‘(.‘Si g = g3 ou gz,
0  sinon.

Soit z € T. Notons (e;),ee2(cT) la base canonique de £2(GT). On a

7rx(vf)(c(.'w,.y)) = €Gr9) T inaargiseg)  Caisres)  (e297.929)

ousi(y,h) € Tx T, (y, h) désigne sa classe dans GT.. Sigz € Ja,b[,on a’ (glg:z: glg)

= (g2,9) ot (41920, 91929) R (3292, 929) (car g2g € Ja, 8]) et done 7o (f)(eq ) T
De méme si g(z) € ]b a[ w,(f)(e(y: g)) =0. Donc 72(f) est différent de zéro si et
seulement si :L' appartlent 3 Porbite de a ou’a celle dé b. Comme 7ra( f) # 0 I'image
de f dans (G¥) # 0, et donc 7, n’est:pas fidele si z n’est pas dans 1’orbite de a
ou de b.

red
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