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ONE-PARAMETER AUTOMORPHISM GROUPS OF
THE HYPERFINITE TYPE II, FACTOR

‘YASUYUKI KAWAHIGASHI

0. INTRODUCTION

In this paper we show the uniqueness, up to cocycle conjugacy, of a one-para-
meter autom“orphism group of the hypefﬁnite type II; factor R, which fixes a Cartan
subalgebra of R elementwise and has the Connes spectrum R. This result is valid for
any separable locally compact abelian group G instead of R. As its application, we
also show the uniqueness, up to cocycle conjugacy, of an almost periodic prime action
o of a separable locally compact abelian group on the hyperfinite type II; factor R
with (R®) "R = CI, and the uniqueness, up to cocycle conjugacy, of a quasi-free
one-parameter automorphism group of R arising from the CAR C*-algebra, which has
the Connes spectrum R. The ways of computation of the Connes spectrum in terms
of the asymptotlc range are also given. Several examples are shown to be ldentxcal
up to cocycle or stably conjugacy as an appllcatlon

In this classification problem of group actions on the hyprefinite type II; factor,
non-compact continuous group have not been studied well. Thus we study the classifi-
cation problem for the real number group R. Note that the uniquehess of the injective
type III, factor, which was finally solved by [8], is equivalent to the uniqueness, up to
conjugacy, of the trace scaling one-parameter automorphism group, tro a, = e ‘tr,
of the hyperfinite type Il factor Ro,1 by [23]. The trace preserving cases are still
open. ’

We solved the classification problem for an action a of R up to stable conjugacy
.in the previous paper [13] for the cases I'(a) # R. In Section 1, we will deal with the
case I'(a) = R under'the condition that the action a fixes a Cartan subalgebra of R.
If an action fixes a Cartan subalgebra elementwise, we can write down the explicit
form of this type of action by the works of (7] and [5], and we will classify this type
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of actions. We will use the technique of T-array in [14], and reduce the general cases
to infinite tensor product type actions. The results in-this section are stated for a
general separable locally compact abelian group G. The method in this section can
also be’ applied to the hyperfinite type Il factor:

In Section 2 we show unigeness, up to coéyélé conjugacy,y of an almost periodic
prime action a of a separable locally compact abelian group on the hyperfinite type
I1; factor R with (’R") NR = CI as an application of the result in Section 1. This
type of a,ctlons were studled by [25].

In Section 3 we will use the construction in Section 1 and its modification to
show that all the ergodic flows actually occur as & on Z(M x4 R), which was used
as complete invariants together with the typé of the crossed product algebra for the
classification of an action a of R on the hyperfinite type II; or Il factor M with
I'(a) # Rin [13). We also show a one-parameter automorphism group « has the trivial
relative commutant property R' NR X, R = CI if a fixes a Cartan subalgebra of R
and I'(e) = R. We show examples of a one-parameter automorphism with I'(a) =

at the end of this section.

In Section 4 we use the result in Section 1 for quasi-free actions of B on R, which
are weak extensions of a one-parameter automorphism group on the CAR C*-algebra
coming from the Bogoliubov automorphism given by a one-parameter unitary group
on a separable Hilbert space. We reduce these actions to the above type of actions
by expansionals in [1]. As an example, we can apply this result to “CAR-flow” which
is a type II; factor automorphism group version of the endomorphism semigroup of
L(H) in [21]).

We would like to thank Prof. K. Schmidt for calling our attention to [17], Prof.
R. Powers for raising our interest in the subject of Section 4, and Prof. M. Takesaki

for numerous suggestions and successive encouragement.

1. UNIQUENESS RESULT FOR LOCALLY COMPACT ABELIAN GROUPS

We study actions of a locally compact abelian group G on the hyperfinite type
II; factor R defined as follows. (Though our main interest lies in the case G =R,
the results in this section are vali'd for more general cases.) Let T be an ergodic
measure preservmg transformatlon on a measure space (X, u),u(X) = 1. Then ¢ €
€ Aut(L°°(X ;4)) is defined by a(p)(z) = p(T™'z) for ¢ € L=(X, p) The group
measure space construction L®(X,u)», Z gives us R. Let u be the implementing
unitary for this crossed product algebra. We denote L®(X, 1) by A in the following.
For a separable locally compact abelian group G, take a measurable function A from



ONE-PARAMETER AUTOMORPHISM GROUPS 39

X to G, and we define an action a; of G,t € G by

{ a(p) = o, for p € L (X, )
ar(u) = (t, h(z))u,
where (2, h(z)) denotes the duality pairing of t € G and h(z) € G for z € X. Note
that if o is an action of G which fixes a Cs,rtan subalgebra R elementwise, then « is
of this form. (See Definition 3.1, Theorem 1, Theorem 5 in [7] and Theorem 10 in
[5).) In this section, a will denote this action. Every set in the following is assumed
to be measurable.

We use a groupoid X xp Z for which the multlphcatlon is defined by (z n)-
(T~ "z,m) = (z,n+m), wherezx € X, n,me€Z.

DEFINITION 1.1. For the above measurable fuglction h and an ergodic transfor-
mation T on X, we denote by r(h,T) the asymptotic range #*(c) (Definition 8.2 in
[6]) for the following cocycle on the groupoid X xr Z.

h(z) + h(T-'z) + - -+ H(T-"*'z), ifn>0,z€ X,
e(z,n) =< 0, ifn=0,z€ X,
h(Tz)+ h(T?z) +---+ H(T™"z), ifn<0,z€X.

The asymptotic range r*(c) is a closed subgroup of G by Proposition 8.5 in [6].

For the Connes spectrum I'(a) (see Définition 2.2.1 in [3]), we get the following,
as expected. (See Proposition 2.11 in [7].)

ProposITION 1.2. For the above action a, I'(a) = r(h,T).

Proof. By IV.5.4. in [24] and Z(R*°) C A C R™ we get

I(a) = [){Sp(e*) | e € Proj(R™)} C [ ){Sp(a®) | e € Proj(A)} €

C [){Sp(a®) | € € Proj(Z(R*))} = ().
(Here the symbol Z means the center.) Thus A € I'(«) if and only if A € Sp(a®) for
every e = x € A, where B C X, u(B) > 0.
Suppose A€ r(h,T). Choose an arbitrary B C X, pu(B) > 0,andset e = xp € A.
We have to show f(A) = 0 if we have an f € L!(G) such that

(*) /f(—t)af(y)dt =0, forevery yeR..
G

Assume f()) # 0, and take an open neighborhood U C G of A so that f # 0 on U.
Now by the definition of the asymptotic range, there exists an integer n such that we
have u(B’) > 0 for

B'={zeB|T "z€B, c(z,n) € U},
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where we used the cocycle ¢ as in Definition 1.1. Take y = eu™e in (x). We have
/ f(~t)xpa(u™)xadt = / (x5 (2)E o, mlxren(2)dt - u™ = 0.
G G

This implies
/f(t)(t,c(z, n))dt =0, for almost all z € B'.
G

This contradicts c(z,n) €U for € B’ and f £0on U.

Conyersely, assume A € Sp(a®) for every e = xp, B C X, pu(B) > 0. Suppose
A¢g r.'(h,.T). Then there exist B C X, pu(B) > 0, and a neighborhood U C G of A
such that

(%) p({zr€B|T"z€B, c(z,n)€U}) =0, for every integer n.

Take an f € L!(G) such that supp(f) C U and f(A) # 0. Then for every integer n
and ¢ € L®(X, u), we have

: ]f(—i)a,(apu"e)dt = /f(t)xggp(t,c(a:,n))jangdt‘u".
G G

But the right hand side of this is 0 because of (#*) and supp(f) C U. Thus by the
definition of Sp(a®), we get f(A) = 0, which contradicts the construction of f.
Q.E.D.

We get following for the Poincaré flow. (See Definition 8.1 in [6].)

PRoPOSITION 1.3. For the above action a, the flow on Z(R %o G) given by the
dual action & of G is the ‘Poincaré flow of the cocycle c.

Proof. By considering the dual action & on Z(L®(X, u) x, Zx, G), it follows
easily from the definition of the Poincaré flow. Q.E.D.

We are intersted in the case r(h, T) = I'(e) = G. Thus in the rest of this section,
we assume this equality. In the following we use the notation [T] for the full group
of T.

DEFINITION 1.4. For S € [T] and a measurable function h from X to G, we

define :
h(z) + (T~ 'z)+ - -+ (T~ "+1z), ifn>0,

F(h;z,5)=1¢ 0, ifn=0
h(Tz) + h(T?z) + -- -+ K(T~"z), ifn<O,
on the set {z € X | Sz = T"""z}.
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LeEMMA 1.5. For every A, BC X, u(A) = u(B) >0, A € G and a neighborhood
W C G of A, there exists S € [T] such that S(A) = B, F(h;z,S) € W for almost all
z €A

Proof. Because T is ergodic, there exist Ay € A, B; C B, p(A1) = u(B1) >0
and an integer n such that T"A4; = B;. By considering c¢(z,n) on A;, there exists
Az C Ay, By C By, p(A2) = u(Bp) > 0,‘ X € G, an open neighborhood W’ C G of
X, and an open neighborhood W” C G of A — X such that c(z,n) € W’ for almost all
z €Az and W' 4+ W" C W because G is second countable. Then by the definition of
the asymptotic range, there exist Bs, Bs C Bs, p(Bs) = p(B4) > 0, and an integer m
such that T-™ B3 = B4 and ¢(z, m) € W” for almost all z € B;. Now set A3 = T" B3.
Then we have c¢(z,n +m) € W for almost all z € Aj. '

Now let F be the set of families {A;, B;}ies, where p(A;) = p(B;) > 0, A;’s are
mutually disjoint subsets of A, B;’s are mutually disjoint subsets of B, and for each
i € I there exists an integer n; such that T~"'A; = B; and ¢(z,n;) € W for almost
all z € A;. Consider the usual order on F, then it is inductively ordered. Thus take a
maximal {4, B;}ies in F, then p(UA;) = p(UB;). If p(A — UA;) = p(B —UB;) > 0,
then we can find another A’ and B’ by applying the above argument to A — UA;,
B — UB;, which contradicts the maximality of {A;, Bi}ier. Now A = UA;, and B =
= UB;, thus we are done. (The transformation S is defined to be T-™ on 4;.)

- Q.ED.

While this Lemma 1.5 is similar to Lemma 2.7 in [14], the important difference
is that A is arbitrary here.

Take an action ,3 of G on R of the forrn Be = ® diag((t,13), ..., {t, V};,J,)), where

diag((t,¥2), ..., (t, V) )) stands for the (N; + l) x (N + 1) diagonal matrix with
diagonal entries (¢, 1/0), N 8 V,’v }, and u’ s are in G. We say this action is of the
infinite tensor product type. In this expression, we may assume z/" = 0 for all j, hence
we assume this in this section, and fix 8. We will prove the following theorem on the
uniqueness of actions up to cocycle conjug_‘écy. (See p.215 of [10] for the definition of -
cocycle conjugacy.)

THEOREM 1.6. If an action a of a locally compact separable abelian group G on
the hyperfinite typeIl, factor R fixes a Cartan subalgebra elementwise and I' (&) = G,
and another action f is of the infinite tensor product type, then « is cocycle conjugate
to an action of the infinite tensor product type, and a ® 3 is cocycle conjugate to a.

Note that the infinite tensor product; type actions are particular cases of the
actions in this theorem.

We néed some lemmas for the proof of this theorem. We will use the technique -
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of T-array of Krieger. (See p.166 in [14] and V.5 in [24] for definitions and notations.)
In our convention here, we assume U(e, b)Z(a) = Z(b), the index set A is finite, and

U Z(a) = X for a T-array A = {Z(a),U(a,d) | a,b € A}. We use the notation
aEA
Ok(z) = k(z) ~ k(T~'z) for a measurable function k from X to G.

LEMMA 1.7. Suppose a T-array A, = {Z,(a),U:r(a,b) | a,b € A1},B1,...,Bm C
C X, a measurable function hy from X to G, € > 0, and an open neighborhood
W C G of 0 are given. Moreover, we assume that F(hy;z,Uy(a,b)) is an almost
everywhere constant function on Z,(b). Then there exists an integer ng such that for
every integer n 2 ng, and Ag,...,An—1 € G, where Mg = 0, there exist an extension
T-array of A,
' Az = {Z2(a),Uz(a,d) | a,b € Az = A; x Z,,}

and a measurable function hy from X to G such that
ha(z) € W, for almost all z € X,
Bi € B{Z;(a) | a € A;}, foreveryl<k<gm,
F(hy;z,U1(a, b)) = F(hy + 0Hy;2,Uy(a,b)), for almost all z € X,
F(hy + 0hy; 2, Us((a, ), (,0)) = A;, a€ Ay, for almost all z € Zy(a, 0).

Proof. Take ng as in Lemma V.5.7 in [24], and for n > ng, take Zy(a,j) for
(a,j) € A1 xZ, as in the proof of Lemma V.5.7 in [24] so that B € B{Z(a) | a € A2}
where the right hand side means the o-algebra generated by Z;(a), a € A;. Fix
ag € A. Now take Uz((a2, j), (a0, 0)) € [T] by Lemma 1.5 so that

F(hy; z,Uz((ao, 7), (a0,0))) € Aj + W, for almost all z € Z>(ao, 0).
(For j = 0, take Us((ao, 0), (a,0)) = id.) Now define
Uz((ao,1), (a0, 7)) = Ua((a0, ), (a0, 0))U2((a0, 5), (a0,0)) ~*,
and extend this as usual. (See V.5.6 in [24].) We define
ha(z) = F(h1;Uz((a,0),(a, 7))z, Uz((a,j)» (a,0))) = A

on Z3(a,j), (a,7) € Ay x Z,,. Then ha(z) € W for almost all z € X. For almost all
z € Z(a,0), we have

F(hy + Oha; z,Uz((a, ), (a,0))) =
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= hl(z') + hl(T_I:L‘) + -+ hl(T—"+ll') + hz(:ﬂ) - hz(T_n:L‘) =
= hi(z) + (T 2) + - + by (T z) — F(hy;2,U2((a, ), (a, 0))) + Xj = A,

where n is given by Uz((a, ), (a, 0))1: = T~"z. Thus by construction of hy, we have

the desired equalities.

We use the notation Orby(z) = {U(a., b)x | a,b € A} for a T-array A = {Z(a),
U(a,b) | a,b€ A} and z € X.

LEMMA 1.8. For a given T-array Ay = {Z1(a),U(a,b) | a,b € A1}, € > 0, an
open neighborhood W C G of 0, and a measurable function h; from X to G such
that F(hy; Ui(a,b),z) is an almost everywhere constant function on Z;(b), there exist
an integer n, an extension T-array Ay = {Z2(a),Us(a,d) | a,b € Ay = A; x Z,.}, a
measurable function hy from X to G, and pg,...,pp-1 € G such_ that

p({z € X | Tz ¢ Orby,(z)}) < ¢,
p({z € X | ha(z) e W}) > 1-¢,
F(hi;2,Ui(a, b)) = F(hy + dhy;2,Uy(a,b)), for almost all z € Z,(b),
F(hy + 8hy; z, Uz(a,j)l, (a,0)) = pj, a€ A, for almost all z.€ Z,(a,0).

Proof. First, take an extension T-array A, = {Z!(a),U!(a,b) | a,b € A} =
= A; x Z,,} for some integer m by Lemma V.5.8 in [24] such that

n({z € X | Tz ¢ Orby:(2)}) <ee.

We make an extension of this by technique on p.168 in [14]. Fix ap € A;. Then
there exist E C Z{(ao,0), an open neighborhood W’ C G of0,and p3,...,p%_, €G
such that p(E) >0, W/ 4+ W' C W, and

F(hy; z,U{(ao, j),(a0,0))) € p}) + W', 0<j<m-1, for almost all z € E.

By maximality argument, we can find a family of mutually disjoint sets {E!}ien
in Zl(ao,O) and elements {p} ; }ien,0¢jgm—1 of G such that Pio = 0, /A(E’) > 0,
u(Z{(ao,0) — U F!) =0 and ‘

F(hy;z, Ul’((ao,j), (a0,0))) € p; ; + W', for all j and almost all z € E}-

Take lo € N such that p( | E;) < ep(Zl(ao,O))/2 By approximating |J E{ and £!’s
12 0 I>Io
(0 £ i< ly—1) by unions of sma.ller sets, we get integers {;,1, a family {E; }o<,<1 1
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of mutualy disjoint sets in Z}(ao,0) and elements {i,jYogigi-1, ogjgm—1 of G such
that '

pio =0,
K(E;) = p(Ev),

] (Zi(ao,O)— U Ei) = 0:

0gigi-1

,,( U E;)Seu(Zi(ao,O)),

1 gigi-1
F(hy;z,U{((ao,j),(ac,0))) € pij + W', 0<i<li—1 for almost all z € E;.
We define Z,(ao, j,1) = U{((@o, j), (a0, 0)) E;, choose Uz((ao, 0, 1), (a, 0, 0)) € [T] such
that ' :
Uz((ao, 0, i), (ao, 0, 0))Z2(ao, 0, 0) = Zz(ao, 0, i),
UZ((aO) 0) 0)) (0'0) 0: 0)) = ld:
F(h1;z,Us((a0,0,1),(ao,0,0))) € W', for almost all z € Z2(ao,0,0),

by Lemma 1.5. Now we can define

Uz((ao,j, i), (ao, 0,0)) = U{((ao,j), (ao, 0))U2((a0, 0, i), (ao, 0, 0)),

and extend this as usual. Now we define
hZ(z) = F(hl) UZ((GO) 0) O)v (a0) jy i)):l}, Uz((aox j) l), (GO) 0) 0))) - Pij

on Za(ag,j,1). Thus this hy(z) is defined on Z1(ap). We extend this to the entire
set X by ha(z) = ha(Ui(ao, a)z) on Z;(a). Then we know that p({z € X | ha(z) €
€ W}) > 1 —¢. Set n = Im. Because two equalities for F are proved as in the proof
of Lemma 1.7, Ay = {Z2(a),Uz(a,b) | a¢,b € Ay = Ay x Z,}, p’s and h; satisfy the
desired properties. Q.E.D.

Now we can prove Theorem 1.6.

Proof of Theorem 1.6. Let (3 be the infinite tensor product of copies of 3. Because
B is also of the infinite tensor product type, we represent this as
. o0

B = EPAd(diag((t, M), - -, (£, A],)), Xed.

=0
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Let {Bp}nen be a sequence of Borel sets which generates the o-algebra of X.

o0
Choose a sequence {W;};en of open neighborhoods of 0 in G such that Z’\i al-
j=0
ways converges for an arbitrary sequence {A;}jen, Aj-€ W;. We can construct a
sequence of T-arrays, A, Ag, Al, A2,..., a sequence of measurable functions from

X to G, {h},h?}jen, a sequence of integers {nj,n?

{p} 1> P2 1 }ieN, ogkgns—1 of G, (plo= p}o =0), and a strictly increasing sequence of

}ien, a sequence of elements

integers {m;};jeN, (mo = 0), by applying Lemma 1.7 and Lemma 1.8 alternately so
that the following conditions are satisfied:

(1) Aj = {Z}(a),Uj(a,b) | a,b€ A}, i=1,2, j€N,
(2) .Af is an extension of A},

(3) .A}“ is an extension of .A?,

(4) Aj =2, x Z,2 x - x L,

(5) A=A} x 1,3,

(6) BkIIEZjB{Z;(a) la€ A}, k<,

) #({z € X | Tz € Orby3(2)}) > 1~ 1/2,

(8) hi(z) € W;, for almost all z € X,

(9) u{z € X | Ki(z) eW;}) 2 1-1/2,

(10)  F(h+0(hy +h3+ 1 + k2 + -+ hl);z,UN(a, k), (a,0))) = pls,

fora€ A?_,,0 < k < n} — 1, and almost all z € Z}(a,0),

(11) F(h+08(hy +h3 + ki + h} + -+ h2);2,U}((a, k), (a,0))) = p2,,
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fora € A}, 0 < k < n?—1, and almost all z € Z}(q,0),

mj41—1

12 diag((t,p;,o),_...,(t,p;,n;))= Q@ diag((t,A3), - -, (&, AR))-

n=mj;

o0
Note that there exists a measurable function b’ = X:(hJ1 + h¥) on X by (8) and
j=0 -
(9)- By (2), (3), (4), (5), (6) and (7), L>(X, ) ¥4 Z is isomorphic’to L°°(H(Z,,;,x
- . j=0
x_Z,,f),u) x@(ln; ® Z,,?), where the action is given by the natural addition, and
j=0
1

the measure v is the product measure of v; on Z,: and uf on Z,2, yjl(pt) = 1/n11-,
J 7

Vf(pt) = l/nJ?. Under this isomorphism, Ad({t, h'))e; is conjugate to

®(Ad(diag(<t1 P},o)» ] (tw p},n}))) ® Ad(d]ag((t» Pf,o)» ct (t) P]?’ﬂ?))));

j=0

by (10) and (11). Setting
o0
af = (QAd(diag((t, 3o, - - -+ (£, £} n2)),
j=0

we know by (12) that « is cocycle conjugate to B ® o, which is of the infinite tensor
product type. We also know o ® 3 is cocycle conjugate to fRF®a = B® o, which
is cocycle conjugate to a. Q.E.D.

COROLLARY 1.9. If an action a of a separable locally compact abelian group G
on the hyperfinite type I1; factor R fixes a Cartan subalgebra and I'(e) = G, then
this o is unique up to c<')cycle conjugacy.

Proof. Suppose a, 8 be actions as in the statement. We may assume these are
of the above type, and by Theorem 1.6, we may also assume these are of the infinite
tensor product type by changing these within their cocycle conjugacy classes if neces-
sary. Now again by Theorem 1.6, both o and 3 are cocycle conjugate to-a ® 3, thus
o and B are cocycle conjugate. Q.E.D.

We can apply the above technique to the hyperfinite type Il factor Ry ;, too.

ProPOSITION 1.10. If o is an action of a separable locally compact abelian
group G on the hyperfinite type Il factor Ro1 which fixes a Cartan subalgebra and
I'a)= G, then this a is unique up to cocycle conjugacy.
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Proof. We may assume Ro; = L®(X, p) ¥, Z, where T is a measure preserving

transformation on a measure space L®(X, p), p(X) = 00, and « is given by

{at(w) =, for ¢ € L®(X, p)
ay(u) = (t, h(z))u,

Then choose a sequence of mutually disjoint measurable sets {X,}nen in X such

that X = |J Xn, #(Xn) = 1. Choose an open neighborhood W C G of 0. Then
neN :
by applying Lemma 1.5, we get S, € [T] such that So = id, Sp(Xo) = X, and

F(h;z,S,) € W for almost all z € Xo. Define hi(z) = F(h;S;'z,z) for z € X,
and consider the induced transformation Ty on Xo, the reduced cocycle cx,, and the
action o' given by cx, on the hyperfinite type II; factor L*(Xo,p) X, Z as above.
Then Ad((t, h,))a is given by o’ ® i and . I'(a’) = G, where i stands for the trivial
action on the type I, factor. If 8 is another action as in the proposition, we get 8’
similarly. Now o’ and /3’ are cocycle conjugate, so we know that « and 8 are cocycle

conjugate. : Q.E.D.

2. ALMOST PERIODIC PRIME ACTION OF LOCALLY COMPACT
ABELIAN GROUPS WITH (R®)' N R = €I

As an application of the result in Section 1, we consider almost periodic prime
actions of separable locally compact abelian groups with (R®)' N R ="CI. We keep
denoting a separable locally compact abelian group by G, and consider an action «
of G on the hyperfinite type II; factor R. We say a is prime if the fixed point algebra
R isa factor. We define an eigenspace R(p) for p € G by

R(p) = {x € R | a,(z) = (g9,p)z, for all g € G},
and the pure point spectrum Spg4(a) by

Spa(a) ={p€ G| R(p) # 0}

We say a is almost periodic if the linear span of the subspaces R(p),p € G, is weakly
dense in R. (Definition 7.3 in [16] and Definition 7.1 in [25].) Note the assumption
of the existence of a faithful normal a-invariant state in definitions of [16] and [25] is
unnecessary here because we consider the type II; factor. In this section, we assume
o is a faithful, almost periodic action of G on the hyperfinite type II; factor R with
(R*)Y NR = CI, and we will show the uniqueness up to cocycle conjugacy of this
type of action. (In this case, o is prime by Theorem of [18].) We need the following
lemma.
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LEMMA 2.1. Let H be a separable compact abelian group, and let H = {\, | n €
€ N}. Define the infinite tensor product type action o of H on the hyperfinite type

I1; factor R by
1 0

on= Q) Ad ,
imeN 0 (h’ ’\ﬂ.j)
where An; = A, for all j € N. Then this is faithful, the Connes spectrum of o is
equal to H, and (R°) NR =CI.
Proof. It is trivial that this o is faithful. First we calculate the Connes spectrum

I'(¢). Although I'(¢) = H follows from (R°)' N'R = CI by Theorem of [19], we will

need this type of calculation later. We make a sequence {¢, }nen by renumbering the
. o0
double sequence {A, j}n jen. Set X = H{O, 1}, and let g be the product measure

n=1
of the measure v on {0, 1}, #({0}) = v({1}) = 1/2. We define an equivalence relation
z~yforz=(2,), y=(yn) € X by

T~y & z,= y,.' for all sufficiently large n’s.

Then this induces a groupoid, and we can define an H-valued 1-cocycle ¢ by ¢(z,y) =

(o0}

= Z(y,. — Z,)pn for z ~y € X. (Note that the sum is actually a finite sum.)
n=1 .

Because this groupoid is amenable, this cocycle is of the type considered in Section

1, and the obtained action is exactly . Thus it is enough to show r*(c) = H by
Proposition 1.2, and it is also enough to show that for every E C X there exists an
integer k such that if n > k, then p, € r*(cg). (Here cg is the restriction of the
above cocycle ¢ to E. See Proposition 7.6 in [6].)
Fix E C X, u(E) # 0 and take ¢ = p(F)/9. Then there exist an integer
3

k and F C H{O,l} C X such that p(E A F) < e. (We indentify a set A C
=t

k (<] L
C H{O,l} with A x H {0,1}.) Let F = HF” where each Fj is a singleton in
j=1 j=k+1 1=1
k
H{O, 1}. Note that each F; has measure 1/2F. We show p(g.(ENGS)NENGL) £ 0
i=1
for n > k, where g, = (0,...,0,1,0,...) € @Zg (1 is at the n-th entry), GY =
et
n—1 (o) ) nJ—I (o]
= JJ{0.1} x {0} x JJ {0,1},and G} = J[{0,1} x {1} x I {0,1}. Suppose
i=1 j=n+l j=1 j=n+1

it was zero. Setting E; = ENF;, we get u(g.(E:NGS)N E;NGL) # 0 for each 1. It
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implies.u(E;) < 1/2%+1. Thus p(F) - Er) > 1/24*!, and we get

L

L
W(E AF)2 Y p(Fi—E) > Y 1/25 = p(F)/2,
=1 =1
which- implies (v2 + 1)u(E)!/2/3 > p(E)!/?, but this is a contradiction. Thus
1#(9+(E NG2)NENGL) # 0. Because ¢(z,gaz) = pn for z € ENGANg H(ENGY),
we get pn € r*(cg). Thus we now have I'(0) = A '
It is known that the dual action of the free action of Z on R is conjugate to the

‘ _ /1 0
infinite tensor product type action® Ad ( 0' ) , 2 €T, of T. Because each element
z
i=1

of Gappears for infinitely many times in {g,,}, we can write R = ®'R, , ®’PJ C 'R,”
j=1. i=1
where R = P;: = R, P; r‘I’R’.J = CI for all j. This'implies (R’) "R =CI.. QE.D.

Now we can prove the followmg theorem

THEOREM 2.2. For a separable IocaIly compact abelian group G a faithful almost
periodic action o with (R*) N R = CI is unique up to cocycle conjugacy.

Proof. By Proposition 7.3 in [25], Sp;(a) is a countable dense subgroup of G, and
if we'set. H-=Spq4(a)", there exists an action J of the separable compact abelian group
H on R such that ay = f,(,), where ¢ is a natural dense embedding G C H. Because
R? is.afactor:by assumption and ¢ is a dense embedding, R®? = R* is also a factor.
By Theorém 5.2 in (25], we know that this 3 is conjugate to the action ¢ in Lemma
2.1:bécase-the fixed point algebras of the both have trivial relative commutants. By
ay = fi(g), @ is also of infinite tensor product type. Because I'(a) = G by the almost
periodicity and primeness, we know that 'this a is unique up to cocycle conjugacy by
C_orolvlar‘yv 1.9. _ Q.E.D.

REMARK 2.3. A faithful almost periodic ergodic action is a particular-case of
prime action. A classification of this type of actions up to conjugacy was given
by Theorem 7.4 in [16], and this result was extended to faithful almost periodié
prime actions by Theorem 7.4 in [25]. Their invariants are Spy(a) and a symplectic
bicharacter x4 in 16}, and a fixed point algebra M® and N(a) = Spd(a [ (M*Y NM)
in addition to these two in [25]. Theorem 7.5 in [25] says there is only one action of the
type of Theorem 2.2 up to conjugacy for each Spg(«). Our Theorem 2.2 shows that
the-co'cycIe conjugacy class of this type of action does not depend on the embedding

of G into H = Spy(a)”, and these actions are unique if we consider cocycle conjugacy.

REMARK: 2.4. If we assume only the almost periodicity in Theorem 2.2, the

conclusion is valid. Suppose u and v are generating unitaries of the hyperfinite type
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27wif

II; factor R with the relation uv = e2™%yu, where 8 is an irrational number. A

one-parameter automorphism group « is defined by a(u) = e?™u, ay(v) = 2"y
It is easy to see that this is faithful and almost periodic. Because a;(u) = u and
a1(v) = 2"y, we get o) = Ad(u), which is inner. But it can be shown for every
almost periodic one-parameter automorphism group 8 of R with ('R’,p YNR = ClI,
B¢ is outer for every t # 0. (See Example 4.5.) This implies the above a cannot be

cocycle conjugate to the actions of the type of Theorem 2.2.

-3. ONE-PARAMETER AUTOMORPHISM.GROUPS OF R

In this section we study the case where the group G in Sections 1 and 2 is the
real number group R.

In Theorem 0.1 in [13], we classified one-parameter automorphism group a of
the hyperfinite type II; and Il factors R, Ro, up to stable conjugacy under the
assumption I'(a) # R. Thus we have a complete classification for one-parameter
automorphism groups of R, Rg,; fixing a Cartan subalgebra by this result, Corollary
1.9, and Proposition 1.10. In [13], we considered the ergodic flow on Z(M x4, R)
given by & and the type of M x, R as complete invariants for M =R, Ro,1. In this
séction, we show all the ergodié flows occur as this invariant by a similar construction
to actions in Section 1. Note that we showed in [13] the type of the crossed product
algebra is of Ilo, or I, unless a&; is inner for every t € R. Because we have an
invariant trace on the crossed product algebra, if the crossed product is of type I,
only measure preserving ergodic flows can occur. In the following, we show this is the

only restriction on these complete invariants.

PRoPOSITION 3.1. In the above context, all the measure preserving ergodic flows
occur as &.on Z(M x4 R) if M x4 R is of type I, and all the ergodic flows occur
as & on Z(M x4, R) if M x4 R is of type Il.

Proof. Suppose an ergodic flow T; on'a measure space (Y, r) is given. First
assume’ this is measure preserving. Then by Theorem of Ambrose-Kakutani (see
[12]), there exist an ergodic measure preserving transformation T on the measure
spacé (Y, 1) and a positive measurable function h on X such that T; on Y is conjugate
to the flow under the ceiling function h over the base X. Construct a one-parameter
automorphism group a for this X, T, and h as in Section 1. Then by Proposition 1.3,
we know that & on Z(R x4 R) is conjugate to T;. It can be shown as in the argument
after Lemma 1.1 in [13] that the crossed product R x4 R is of type I. If we consider
a ® i on R®R, where 1 is trivial action of R on the second copy of R, we get a type
I, crossed product algebra and the same flow as & on Z(M X, R).
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Next assume there is no mesure on Y that is equivalent to v and preserved by
T:. By Theorem of Ambrose-Katukani-Krengel-Kubo (see {12]), there exist an ergodic
measurable transformation 7' on a measure space (X, u) and a positive measurable
function h on X such that T; on Y is conjugate to the flow under the ceiling function h
over the base X. Take and fix an action 6 of R on Ro,1 such that we have trof; = eltr
where tr is the trace on Ro; and t € R. (See [23].) We define an automorphism &
of L®(X,u)®Ro,1 by o(y) = 6_ |ogm(,) for z € X, where this define a map from
Ro, 1(2) to Ro 1(Tx) m

®
L% (X, p)@Ro,1 =/ Rop(z)dz, Ro(x) = Ro,,
' X : ,
and m(z) is the value of Radon-Nikodym derivative of T at z € X. Then this o is
trace preserving on L®(X, p)®Ro,1, where the trace is given by u and tr. By Lemma
7.11.10 in [20] and the ergodicity of T', we know that (L®°(X,u)®Ro,1)X, Z is a
factor. Because it has a trace and it is infinite, it is isomorphic to Ro,;. On this
(L=(X, ﬁ)@Rd, 1) X Z ~ Ro,1, we can define a one-parameter automorphism a¢ by

{ a(p) = for ¢ € L®(X, p)®Ro,1
au(w) = (&, KD,

where u is the implementing unitary in, the crossed product.. Then by a similar
argument to Proposition 1.3, we know that & on Z(Ro, %« R) is conjugate to T;.
Q.E.D.

In group é.ctions, the trivial relative commutant property R' NR % G = CI has
been important. We prove this property for one-parameter automorphism groups of
the type in Section 1.

PROPOSITION 3.2. If a one-parameter. automorphism group o of the hyperfinite
type I, factor R fixes a Cartan subalgebra and I'(a) = R, then this a has the trivial
relative commutant property, R' "R xo R=CI.

Proof. Because the trivial relative commutant property is invariant under cocycle
conjugacy, we may assume «a is of infinite tensor product type by Theorem 1.6. Thus
we have an increasing sequence M, of matrix algebras in R such that a(M;) =
= M, and YM.. =R. Suppose.,z € R NRx,u R Let £, be the conditional
expectation from R 3, R onto M, %, R. Now z € R' N R x, R implies £,(z) €
E MLNM,NM 4, R= A(R), where A denotes the representation of R in the crossed
product algebra. (Note that « | M, is inner.) Thus z = nlingo Eq(z) € A(R) = A(RY,
hence we have z € R' N A(R)’ = CI because R X4 R is a factor by I'(e) =

' Q.E.D.



52 ) YASUYUKI KAWAHIGASHI

In general, it is not very easy to compute the asymptotic range in Proposition

1.2. But we have the following example for one-parameter automorphism groups.

EXAMPLE 3.3. Let'f be an irrational number, 0.< 8 < 1, and consider the torus
T =[0,1) with the Lebesgue measure, and an ergodic transformation T on X defined
by Tz = ¢+ 6. Take a number ¢, 0 < ¢ < 1, ¢ ¢ Q + QF, and define a function
h(z) = x[0,c)(x) — c. Define an action a on R = L*°(T, u) xZ by h as above. Then
by Theorem A in [17], we have r(h,T) = E, where E is the closed subgroup of R
generated by 1 and ¢, which is R, and we get an example for I' (a) = R. Corollary 1.9
shows that the cocycle conJugacy class of this action does not depend on chmse of an
irrational c. ‘

We also have the following for almost periodic prime actions of R.

CoOROLLARY 3.4. For an almost periodic one-parameter automorphism group «
on the hyperfinite type I1, factor R with (R*)'NR = CI, we have the trivial relative
commutant property R’ "R x, R=CI.

Proof. It is clear by Theorem 2.2 and Proposition 3.2.

We consider the next example of an almost periodic one-parameter automorphism

group on the hyperfinite type II; factor K.

ExXAMPLE 3.5. Take a free action ﬂ of Z% on R, and make the crossed product
algebra R xg Z?, which is isomorphic to R. A one-parameter automorphism group
@ can be defined by ay(z) = z for z € R, a:(u) = el'#u and a,(v) = e**v, where u
and v are the implementing unitaries for Z%, and A and p are nonzero numbers with
A/p & Q. Then it is easy to show this is faithful, almost periodic, and (R*)NR = CI.

Thus by Theorem 2.2, this is cocycle conjugate to the action in Example 3.3.

4. THE CAR C*-ALGEBRA AND QUASLFREE ACTIONS OF R

As an application of the theorem in Section 1, we will classnfy quasi-free actions
arising from the CAR C*-algebra.

We introduce a quasi-free action of B on the hyperfinite type II, factor R as
follows. | _

Take a separable Hilbert space H. There exists the Fock representation f
— a(f) € L(K) on another Hilbert space K, which satisfies

(1) a(af + Bg) = aa(f) + Ba(g), o,B€C,

(2) a(f)a(g) + a(g9)a(f) =0,

(3) a(f)"alg) + a(g)a(f)" = (f | 9)nIx-
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Then a(f)’s generate a C*-algebra, and if {f.}n>1 is a complete orthonormal
~ basis for H, we get the following correspondence between this C*-algebra and the 2%
UHF algebra: )

01
a(fy) —
0 0
1 0 0 1
a(f2)<-—> ®
0 -1 00
1 0 1 0 0 1
a(f3) — ® ®
0 -1/ 0 -1 0-0

We get the hyperfinite type II; factor R by taking a weak closure with respect to the

trace. If we have a one-parameter unitary group {U:}ier on M, then

ay(P(a(fr),-..,a(fn)*)) = P(a(Uif1),-..,a(Usfa)*),

where P is a (non-commutative) polynomial, defines a one-parameter automorphism
group on the CAR C*-algebra. This extends to a one-parameter automorphlsm group
on R, and we denote it by «, too. We call this a quasi-free action of R on R, and
classify this type 6T actions in this section.

In the above context, let H be a self-adjoint operator such that elflt = U,
Then by von Neumann’s theorem (see Theorem X.2.1 in [11]) there exists a Hilbert-
-Schmidt class self-adjoint operator V such that a self-adjoint operator K = H + V
has pure point spectrum. Then the one-parameter unitary group elXt defines another
one-parameter automorphism group 8 on R. We have the following for these two
actions. (See also p.315 in [22].)

THEOREM 4.1. Let o and B be quasi-free actions of R on R corresponding to

eHt and eK* respectively as above. Then « is cocycle conjugate to 3, and 3 is of the

infinite tensor product type.

Proof. Let V = Z AnE, where E, isa mutuélly orthogonal rank-one projection

n=1
onto a subspace spanned by f,. We may a.ssume {fn}n>1 is a complete orthogonal

basis of H. We know that A,’s are real and Z/\z < oo. Let as ) be the one-

n=1
parameter automorphism group on R corresponding to the one-parameter unitary
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n
group expit | H + Z A E; ). (We use the convention a(® = a.) We use the above
ji=1
correspondence between the CAR C*-algebra and the infinite tensor product of copies

of the 2 x 2 matrix algebra for the orthonormal sequence {f,}n>1. Define for n > 0,

¢ iAns1/2 0
0 0 —idnyr/2

where Exp, means an expansional. (See §2 in [1].) By Theorem 2 in [1], it is an
o(™)-unitary cocycle. If g is'in Dom(H) = Dom(K) C H, then we have

Satnin(a(g)) =

=a (i (H+ Z/\jEj +/\n+lEn+l) 9) =
ji=1

= 6a(") (a(g)) +

Any1/2 0 '
+% Ad |expit |1®---®1® a(g) =
0 ~Ant1/2 t=0
MAng1/2 0
=bam(a(g)) + |1®---®1® , a(g)]
0 —iAng1/2

‘where §’s stand for derivations. Thus of"*(a(g)) = Ad(w™)a{™(a(g)) by Theorem
2 in (1], and thus we get aE"'H) = Ad(usn))asn). Thus if we set vS") = uS") .. .ufo), it

is an a-unitary cocycle. Note that we have

.t A1/2 0 /\n+1/2 0
vf")zExp, /;oz, 1 ©---0 ds |,
0 0 —/\1/2 0 —/\n+1/2

where the operator @ is defined by

a+c 0 0 0
0 a+d O 0
0 0 b+c 0.
0 0 0 b+d

(This operation is defined similarly for higher dimensional matrices.)
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Now we claim that there exists an a-unitary cocycle v, such-that vf") — vy as

n — oo uniformly for ¢ on every compact set in R.

1/2
For a given ¢, choose N such that (E A:",) < 2¢. We will show that HvS") -
n>N

—vsm)”z Letforn>m> N. Set

Amy2/2° 0 Ant1/2 0
Am,n=0®"‘®0® Q-0
0 —Amy2/2 0 —~Anpr/2

Then by Theorem 1 in (1]

(o™ = o{™|l2 =

t

0

t s
0 0

t ‘ n+i 1/2
< /”Am,n||2d3= ( > ,\}.’) t/2 < et.
0 J

f=m+2

A

N

Thus v} converges to an a-unitary cocycle v;. Letting n — oo in

Ad(v{)a(a(g)) = o{(a(g)) = a (exp it (H +30% E,-) g) ,

i=1

we get Ad(ve)ay = f.

o0
Because K has a pure point spectrum, we may assume K = z pnEn, where pu,’s

n=1
oo

are real numbers, F,,’s are mutually orthogonal rank-one projections, and E F, =

n=1
‘ oo Bn/2 0
= I. Thus B is of the form @Ad exp it . Q.E.D.
n=l ’ -
! 0 Bn/2

Thus we can apply the result in Section 1 to quasi-free actions. In the following,

o o]
we consider the above a, and 8 which arises from K = Z pin Fn. Define a groupoid

n=1

[~
whose unit is X = H{O, 1} as in the proof of Lemma 2.1. We also define an R-valued-
j=1
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>+
1-cocycle ¢ by ¢(z,y) = Z(:cj ~yj)pj for  ~ y € X. The obtained one-parameter
’ ji=1
automorphism group as in Section 1 is 8, thus we get the following by Corollary 1.9

and Proposition 1.2.

'‘COROLLARY 4.2. A one-parameter automorphism group & on R arising from the
CAR C*-algebra in the above way is unique up to cocycle conjugacy if I'(a) = R.

PROPOSITION 4.3. In the above context, the Connes spectra I'(a) and I'(B3) are
equal to the asymptotic range r*(c). '

We can also show the trivial relative commutant property (Proposition 3.2) for
this type of a if I'(a) = R.
For the computation of examples, we prove the following.

PROPOSITION 4.4. For a one-parameter automorphism group o on R arising from

iHt

one-parameter unitary group e in the above way, the essential spectrum o.(H) is

contained in I'(a).

Proof. By von Neumann’s theorem again, we get H + V = K as above. Because
g.(H) = 0.(K), we consider K = f:;t,.P,. and 8 instead of H and e.

Then we can prove the staten;‘:nlt exactly as in the proof of Lemma 2.1. Q.E.D.

In particular, if the spectrum of H contains a continuous part, it implies I'(a) = R

for o coming from et and this type of a is unique up to cocycle conjugacy.

EXAMPLE 4.5. Let X = L?(R), and define a one-parameter unitary group U; by
U:f(z) = f(z —t) for f € L?(R). Then we can define a one-paranieter automorphism
group a on R. (See pp.4-5 in [21]. They construct a similar endomorphism semigroup
for the CAR C™*-algebra.} In this context, above H is i%, which has spectrum R.
Thus by Proposition 4.4, we know I'(a) = R. ' ‘

Take another H' = H, @M, where H; and H; are infinite dimensional separable
Hilbert spaces. We consider H = 1\1[71‘ &® AzI,, where A; and A; are non-zero real
numbers, and A; /A, is irrational. Then we can consider one-parameter unitary group
¢t and it induces a one-parameter automorphism grodp o' of R as above. Because
oe(H') = {A1, A2, }, A1/ A2 is irrational, and I'(@’) is a closed subgroup of R, we know
I'(a') = R again by Proposition 4.4. Note that this.a’ is of the form

. A 0 w0 A2 O
®Ad exp it ® Ad jexp it
i=1 0 0 k=1 0 0

From this expression, it is easy to see that a} is outer for any t # 0.
t
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Then by Corollary 4.2, we know that o and o' are cocycle conjugate. We also
know that these are cocycle conjugate to'the one-parameter auromorphism groups in
Examples 3.3 and 3.5.

REMARK 4.6. The inclusion in Proposition 4.4 is not the best possible. Aéﬁ.u-
ally by very similar arguments to Lemma 4.2, Lemma 4.3, Lemma 5.4 in [2], and
Théoréme 1 in [3] with Corollaries 4.2 and 4.3 here, we get the folldwing characteri-
zation. This corrésponds to writing the asymptotic range in the original formulation
of the asymptotic ratio set of Araki-Woods.)

A real number X is in I'(a) if and only if the following conditions are satisfied:

(1) {In}nen is a family of mutually disjoint finite subsets of N,

(2) K}, 1{2 are mutually disjoint subsets of Eu, l fcl, s,
JEF
3) w,, is a bijective map from K} onto K2,

) ZlK /2! =
(5) llm max Iz\ (¢n(p) Al =0.

In (2), p;’s are eigenvalues of K as above.

By this criterion, we can show that the following H has o.(H) = {0}, but the
one-parameter automorphism group it induces has the Connes spectrum R. (Thus it
is cocycle conjugate to the actions in Example 4.5.)

Let {a,}neN be the following sequence:

1 1 1 1
L= oo =, =, -
2 2 n n
R [ S
8 times n2® times

Co1 )
Define anm = ;a,,. We define H = Zan,mE‘",m, where E, n’s are mutually
n,m ’
orthogonal rank-one projections in M. Then H is a compact operator, and o.(H) =

=-{0}, but by the above criterion, we can show 1/m is in I'(a) for every positive
integer m. Thus we have I'(a) =
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10.

11.
12,

13.

14.

15.

16.

17.

18.

19.
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