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C*-ALGEBRAS GENERATED BY ISOMETRIES AND
WIENER-HOPF OPERATORS

A. NICA

1. INTRODUCTION

1.1 AMENABILITY FOR A CLASS OF ORDERED GROUPS. If G is a discrete group
and P is a subsemigroup of G, the C*-algebra generated by the compression to £2(P)
of the left regular representation of G (or, equivalently, of £2(G)) is called the C*-
-algebra of the Wiener-Hopf operators on (G, P) and is denoted by W(G, P). In this
paper we study a class of pairs (G, P) with the property that W(G, P) is generated
by isometries. The C*-algebras generated by one-parameter semigroups of isometries
studied by R. Douglas in [5] and the Cuntz algebras are obtained as (or at least related
to) particular examples. Moreover, the uniqueness properties which are known to hold
for these C"-algebras (see J. Cuntz [3], R. Douglas [5]) are interpreted as being related
to the amenabi'lity of the corresponding (G, P)’s, and may in fact be deduced from
amenability phenomena combined with an analysis of the ideals of W(G, P).

We call the (G, P)’s we consider “quasi-lattice ordered groups (it is not a stan-
dard notion; the precise definition and some examples will be given in the next sec-
tion). This is the context discussed everywhere in the present section, withcut any
other mention.

In order to make things more explicit, let us consider the simple example of
(Z,N), and recall a well-known theorem of L. Coburn (see [2]), which asserts that the
C*-algebra generated by a non-unitary isometry on a Hilbert space does not depend
on the particular choice of the isometry. It is convenient to view this theorem as being
implied by the following two facts:

1° For any isometry V on a Hilbert space H there exists a unique #-representation
m: C*(S) — L(H) such that 7(S) = V, where S is the unilateral shift on £2(N) and
C*(S) is the C*-algebra generated by S.
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2° Every non-zero closed two-sided ideal of C*(S) contains the compact operators.
Indeed, assuming that 1° and 2° are true, consider the non-unitary isometry V on
the Hilbert space H, and the corresponding representation 7 given by 1°. If = were
not isometric, then its kernel would contain by 2° the compact operator I — SS*,
implying I - VV* = x(I — $S*) = 0, a contradiction.

Now the Wiener-Hopf C*-algebra of (Z,N) is W(Z,N) = C*(S), and an isomeiry
on a Hilbert space means a representation by isometries of N on the corresponding
space. Hence assertion 1° above means exactly that any representation by isometries
of N can be uniquely extended to W(Z,N). This is one of the possible definitions for
the amenability of a “quasi-lattice” ordered group, applied to (Z,N).

The use of the term “amenability”is justified by several equivalent reformulations,

rescmbling the amenability of (unordered) groups:

1° Besides W(G, P) one can construct a universal C*-algebra C*(G, P), which
has a canonical *-homomorphism onto W(G, P). (G, P) is amenable if and only if

this #-homomorphism is one-to-cne.

2° The universal C*-algebra C*(G, P) has a remarkable Abelian C*-subalgebra,
and a canonical conditional expectation onto it. (G, P) is amenable if and only if this

conditional expectation is faithful.

3° Among the positive forms on C*(G, P) there are some which are, in a certain
natural sense, finitely supported. (G, P) is amenable if and only if these forms are

weak® dense in the space of all positive forms on C*(G, P).

4° Under a suitable natural definition for a positive definite function on PP~1,
the amenability of (G, P) is implied by the existence of a net of finitely supported
positive definite functions on PP~ which converge pointwisely to 1 (but we do not

know if the converse is true).

(G, P) is always amenable when G is amenable in the usual sense; this comes
out directly from the assertion 4° above. With a simpler proof we can derive the
weaker result that (G, P) is amenable if P is Abelian. Quite surprisingly, (F, SFy)
is also amenable, where F,, is the free group on n generators, and SF,, the semigroup
generated by a free family of generators. The amenability of (F,,, SF,,) is equivalent
to the uniqueness property of the Cuntz algebra O,.

1.2. THE “CROSSED-PRODUCT TYPE” STRUCTURE OF W(G, P). All our results
depend on a description of W(G, P) which is very much alike the one given to the
crossed product of a C*-algebra by a discrete group. More precisely, we can define for
any @ in PP™* a closed subspace D, of W(G, P), called the diagonal subspace of .
The spaces {D; | z € PP~} establish, in a weak sense, a direct sum decomposition
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of W(G, P), and obey the muitiplication and involution rules:

Dgy, ifzyisstillin PP,

DD, C
i y_{{O}, if not,

and Dy = Dy-1. In particular D = D, (with e the unit of G) is a C*-subalgebra of
W(G, P), called the diagonal subalgebra; it can be shown to be maximal Abelian. For
any z in PP~! we have a canonical Banach space isomorphism between D and Dy,
given by a multiplication operator. The form of the isomorphisms D « D, suggests
a set of (not necessarily unital) *-endomorphisms {a; | £ € PP~} of D. In addition,
there exists a canonical conditional expectation E : W(G, P) — D which can. be
transported via the canonical isomorphism to give a projection of norm one onto Dy,
for any z in PP~!. Hence, informally speaking, W(G, P) is a kind of crossed product
of D by the action {a;|z € PP~} of PP71,

Now, W(G, P) is actually the analogue of the reduced crossed product, the ana-
logue of the full crossed product being the universal C*-algebra C*(G, P) mentioned
above. This is seen by considering covariant representations. One naturally expects
such an object to consist of a *-representation p of D and a “representation ” U of
PP~ on the same Hilbert space, tied together by the covariance relation p(ez (X)) =
= U(z)p(X)U(z)*, Vz € PP~!,V¥X € D. In our approach, both p and U are deter-
mined by a representation by isometries of P enjoying a precise property, which wiil
also be called “covariance”. C*(G, P) is the universal object obtained by enveloping
all the covariant representations of P, while W(G, P) is associated to a remarkable
covariant representation W : P — L(¢2(P)), which will be called the Wiener-Hopf
representation.

The remarks on covariance make ciear why a necessary and sufficient criterion of
arienability is :“Every covariant representation of P can be extended to W(G, £)".
In the case of a totally ordered group, and in particular of (Z,N}, every representation
by isometries of the semigroup is covariant. But for instance in the case of (Fy,, Siy)
a representation by isometries of the semigroup is determined by n isometries on the
same Hilbert space (the values at the generators) and it is covariant if and only if
these n isometries have mutually orthogonal ranges; this explains the relation with
O,.

We mention that in his paper [10], G. Murphy describes the Wiener-Hopf C*-
-algebra of a totally ordered Abelian group as a corner of a crossed product C*-
-algebra. In this case (which enters our context) his approach and ours have commaon

points, but do not coincide.

1.3. INDUCED IDEALS. As we saw in 1.1, the theorem of L. Coburn can be
derived from the amenability of (Z,N) combined with considerations concerning the



20 A. NICA

ideal structure of W(Z,N). It generally seems useful to have some information about
the ideals of W(G, P). In this paper we put into evidence a class of ideals which are
obtained from the invariant ideals of the diagonal subalgebra by an induction process
(“invariant” means invariant for the *-endomorphisms {a.|z € PP~1} of 1.2).

There are several possible definitions of IndZ (Z C D closed invariant ideal),
which coincide under suitable hypothesis-for instance if G is amenable:

1° We write 7 as the kernel of a representation p of D, we induce p to a repre-
sentation m of W(G, P) (in the sense of [15]) and define IndZ = Ker 7.

2° IndZ = {T' € W(G, P)|E(T*T) € I} with E : W(G, P) — D the conditional
expectation (compare with Lemma I 2.2 of [16]).

3° For any T'in W(G, P) we take the projections of T onto the diagonal subspaces
{D;.z € PP~} and transport them onto D with the canonical isomorphisms D,
— D (z € PP1), obtaining thus a family of “coefficients” {T;;|z € PP~'}. We define
T to be in IndZ if and only if all the T3’s are in 7 (compare with Definition 4.15 of
(19]).

4° IndZ = the closed two-sided ideal of W(G, P) generated by T (compare with
Corollary I 2.6 of [16], Proposition 5.10 of [19]).

The map Z — IndZ is one-to-one, with inverse J — J N D, and its range con-
sists of the closed two-sided ideals of W(G, P) which are invariant to the conditional
expectation. Generally, these are not all the closed two-sided ideals of W(G, P).

1.4. AppPLICATIONS. The spectrum of the diagonal subalgebra D can be canoni-
cally identified to an explicitly described space £2 having as elements a class of subsets
of P. Taking into account the induction process, £2 can be used as an intermediate
link in finding connections between W(G, P) and the order relation determined by P
on (.

As an application we can prove that W(G, P) contains the compact operators if
and only if there exists a finite subset of P \ {e} which contains a lower bound for
every element of P\ {e} (the last condition always holds when P is finitely generated).
'The proof is done by passing through the equivalent statement: “For any ¢ in P, the
interval [e,t] = {a € Pla < t} is an open point of 2”. The implication “[e, ] open,
Vt ¢ P = W(G, P) 2 K” was proved by P. Muhly and J. Renault in a more general
case (see Corollary 3.7.2 of [9]), and they conjecture that its converse also holds in
general (see [9], 3.7.3). We note that W(G,P) D K is a necessary condition for
W(G, P) to be type I, because W(G, P) is irreducible; this condition is not sufficient
(W(F,,SF,) 2 K, but it is not type I because W(F,,, SF,)/K = O,).

For another application, let us consider the Theorem 1 of [5], which can be stated
as follows: “If the totally ordered Abelian group (G, P) is Archimedean, then any two
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non-unitary representations by isometries of P generate canonically isomorphic C*-
-algebras”. This is equivalent to the fact that, in the considered setting, any non-
-unitary representation by isometries of P extends to a faithful representation of
W(G, P), and a proof may be given along these lines. It is interesting that we can
also prove “the converse”; more precisely, for a totally ordered Abelian group (G, P)

the following are equivalent:

1° P is Archimedean;

2° any two non-unitary representations by isometries of P generate canonically
isomorphic C*-algebras;

3° the commutator ideal of W(G, P) is simple.
(Remark: 2° = 3° is proved in [5], too.)

1.5. THE WIENER-HOPF GROUPOID. It is known that, in a more general case
than the one studied here, the C*-algebra of the Wiener-Hopf operators can be pre-
sented as C},4(G), with G a locally compact groupoid ([9], see also [11]). In the present
context, G can be got by transposing the action {a.|z € PP~!} considered at 1.2
on the spectrum £ of D; the action of PP~! on § obtained in this manner is only
partially defined, and gives exactly a groupoid structure (this is G).

The groupoid interpretation has turned out to be extremely useful during the
preparation of this work. Nevertheless we have decided, for lack of space, to omit it

in the final presentation, and discuss it separately in a future paper.

1.6 Finally let us give a brief review of the sections into which the paper is
subdivided. In Section 2 we present the “quasi-lattice” ordered groups, and show
that their Wiener-Hopf C*-algebras are generated by isometries. In Section 3 we
put into evidence the “crossed-product type” stucture of W(G, P). Amenability is
discussed in Section 4. In Section 5 we consider two important particular cases: in 5.1
we show how the uniqueness property of the Cuntz algebra implies the amenability of
the free partially ordered group; in 5.2 we consider the totally ordered Abelian case
and we give a simple proof to a generalization of the Theorem 1 of [5], due to G.
Murphy (Theorem 2.9 of [10]). The sixth section, which is the last one, deals with
the induced ideals; it also contains the two applications announced at 1.4.

2. QUASI-LATTICE ORDERED GROUPS

2.1. DEFINITIONS. By a (partially) ordered group we shall understand a pair
(G, P), with G a (not necessarily Abelian) discrete group and P a subsemigroup of G.
We shall always assume that P N Q is the unit e of G, where Q = P~1; this implies
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that = < yéé% zly e Pisa partial order relation on G (called the left invariant
order relation induced by P).

It is clear that P = {z € G|z > ¢} and @ = {z € G|z < ¢}. An important role
will be played in what follows by the set PQ = {pg|p € P, ¢ € Q} which can be also
described in terms of “ <” as {z € G|z has upper bounds in P}.

The ordered group (G, P) is said to be quasi-lattice ordered if the following
condition is satisfied:

(QL) For any n > 1, any z;,..., Z, in G which have common upper bounds
(c.u.b.) in P, also have a least c.u.b. in P.

This condition can also be expressed in a weaker form, i.e. (QL)< (QL1)+(QL2),
with:

(QL1) Any z in PQ has a least upper bound in P;

(QL2) Any s,t in P with c.u.b. have a least c.u.b.;

(the proof of “4=” is easily done using induction).

If (G, P) is a quasi-lattice ordered group and z;,..., Z, in G have c.u.b. in P,
then their least c.u.b. in P will be denoted by o(z1,..., z,). In particular, the least
upper bound in P of an arbitrary element z of PQ will be denoted by o(z). We shall
also use the notation 7(z) = 2~ 1o(z), Vz € PQ; 7(z) is in P, because z < o(z). It
can be seen without difficulty that o(z~!) = 7(z) and 7(z~!) = o(z), Vz € PQ.

The name “quasi-lattice ordered” is justified by the fact that lattice ordered
Abelian groups are quasi-lattice ordered. To be more precise, an ordered Abelian
group (G, P) with the property that any two elements of P have a least c.u.b. is quasi-
lattice ordered. Indeed, this hypothesis is exactly (QL2) (we take into account that
in the Abelian case, any two clements of P have c.u.b.---their product for instance).
In what concerns (QL1), it suffices to note that for any z in PQ and for an arbitrary
writing & = st™1 with s,t in P, o(s,t)¢™! is the least upper bound of z in P.

2.2. ELEMENTARY REMARKS. Let (G, P) be a quasi-lattice ordered group.
1° For any z in PQ, the set:

L Ay = {(s,t) € Px P|st™' = 2}

will be called the diagonal of z. Clearly, {A;|z € PQ} is a partition of P x P; note that
each A is canonically put into bijection with P by the map: P 3 p — (o(z)p, 7(2)p) €
A; {we leave the simple proof to the reader). So an (s,t) € P x P is determined by
x = st~} € PQ and an element p € P such that s = o(z)p, ¢t = 7(z)p; z and p can
be thought as “diagonal coordinates” of (s,1).

2° s,t € P have c.ub. in P if and only if s~'¢ € PQ. If this happens, then
c(s7) = s7a(s,t).
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Proof “ =757t = (s71o(s,t))(t e (s,t))"! € PQ; at the same time we get
o(s7H) < s7lo(s,t).

“e=” t = s(s~'t) € so(s~'t) and obviously s < so(s~!t), hence s and t have
cub. and o(s,t) € so(s~ 1) (<= s~1o(s,t) < o(s711)). |

3° Let s,t1,t5 be in P. t; and t5 have c.u.b. if and only if st; and sty have. If
this happens, then o(sty, st3) = so(t1,t2). (This is immediate from 2°.)

2.3. ExaMPLES. 1° Any totally ordered group is clearly quasi-lattice ordered.
In particular, if G is a subgroup of R and P = GN|[0, o), then (G, P) is quasi-lattice
ordered. By a theorem of Holder (see [7], Chapter IV, Section 1, Theorem 1) any
totally ordered Archimedean group can be put into this form.

2° Direct products. If {(G;, P;)|{1 < j < n} are quasi-lattice ordered groups,
then so is (G X - - X Gy, Py X --- X P,), too, because the order on it is the “product
order”. In particular, if {G;]1 € j < n} are subgroups of R and if we put G =
=Gy x - x Gp, P=GnN|[0,00)", then (G, P) is quasi-lattice ordered.

3° Semi-direct products. Let (G, P) and (H, R) be quasi-lattice ordered groups
such that G has an action @ by automorphisms on H, and such that R is $-invariant.
It is then easy to see that P x R gives on GxgH the product order; this entails that
(GxgH, P x R) is quasi-lattice ordered.

In particular, we may consider the action of ((0, 00), -) on (R, +) by multiplication,
which leaves fixed the semigroup [0, 00) C R, and obtain a natural quasi-lattice order

on the “az + b” group (with positive semigroup [1, 00) x [0, 00)).
4° Free groups. Let F,, be the free group on n generators a,, ..., an, and denote
by SF, the semigroup generated by a,,..., a,. We claim that (F,, SFy,) is quasi-,

lattice ordered. To prove this, we first remark that for any ¢ in SF, the set {s €
€ SF,|s € t} can also be written as {e$a;,§a;,a,§ - - -§@,a;, -+ -aj,, =t}, with t =
= aj,aj, - - -a;, the “spelling” of t, and is hence totally ordered. This implies that
any s,t in SF, which have c.u.b. are comparable; consequently, the greater one of
the two elements is also their least c.u.b., and (QL2) is satisfied. In what concerns
(QL1), it is easy to see that any z in (SF,)(SF,) ! has a unique reduced writing
z = st~1 with s,t € SF,, and that o(z) = s.

Using a slight adaptation of this argument, one can prove without difficulty the
more general fact that if {(G;, P;)|i € I} is a family of quasi-lattice ordered groups,
then the free product ( ¥ Gi, Y F;) is also quasi-lattice ordered.

iel el
5° If G = ((0,00), -) and P = N\ {0}, then any two elements of P have a

least c.u.b., which is their least common multiple, and any element of G = PQ has
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a least upper bound in P, which is the numerator of its unique representation as an
irreducible fraction. Hence (G, P) is a quasi-lattice ordered group.

2.4. We now prove that the Wiener-Hopf C*-algebra of a quasi-lattice ordered
group is generated by isometries.

For any ordered group (G, P), the Wiener-Hopf C*-algebra W(G, P) can be
defined as the C*-subalgebra of L(£%(P)) generated by {J*A(z)J | z € G} with
A: G — L(3(G)) the left regular representation and J : £2(P) — £2(G) the inclusion
operator. For any ¢ in P, the operator J* A(t)J, which will be from now on denoted by
1W(¢), is an isometry; it is determined by the fact that W(t)é, = 614, Va € P, where
{82)aep is the canonical basis of £2(P). We note that W(s)W(t) = W(st), Vs,t € P,
and that W(e) = Ipz(p), i.e. W : P — L(£2(P)) is a representation by isometries. W
will be called the Wiener-Hopf representation.

Let us remark that (in the case of any ordered group) J*A(z)J = 0if ¢ g PQ;
indeed, it is immediate that:

bza, if za € P,
(2 J* =
@) (7*A(2)7)8a { 0, ifzagP,

so that: J*A(z)J # 0 => Ja € P such that za € P = z € PQ. Hence we can also
write W(G, P) = C* ({J*A(z)J | z € PQ}).
Assume now that (G, P) is quasi-lattice ordered. An easy computation shows
that for any z in PQ@ and ¢ in P:
8za, if7(z) <q,

) WeE@PW(r(=))"6 = {0 if 7(z) £ a;

but 7(z) < @ &> o(z7!) K a < z7! < a <> za € P. So (2) and (3) imply
J*A(z)] = W(o(2))W(r(z))*, Vz € PQ, and this makes clear that W(G, P) =
= C* ({W(t) |t € P}). Hence W(G, P) is indeed generated by isometries.

3. THE “CROSSED-PRODUCT TYPE"” STRUCTURE OF W(G, P)

In this section we fix a quasi-lattice ordered group (G, P).

3.1. THE DI1aGoNAL SUBALGEBRA. We introduce the notation M(t) =
= W({t)W(t)* - the multiplication operator with the characteristic function of {a €
€ Pla > t}, Vt € P, and define D = clossp{M(t)|t € P}. It is immediate that:

M(o(s,t)), if s and ¢ have c.u.b.,
0, if they haven’t.

() M(s)M(t) = {



C*-ALGEBRAS GENERATED BY ISOMETRIES ANI) WIENER-HOPF OPERATORS 25

This implies that {M(t)|t € P}U{0} is a commuting and closed under multiplication
family of selfadjoint projections of W(G, P), and makes clear that D is an Abelian
C*-subalgebra of W(G, P). D is also unital, because M(e) = Ipa(p); it will be called
the diagonal subalgebra of W(G, P). (Remark: it can be shown that D is maximal
Abelian.)

3.2. THE “PICTURE” OF W(G, P). The name of D is justified by the following

ProprosITION. The operators {W(s)W(t)*|s,t € P} are linearly independent,
and their linear span is a dense unital x-subalgebra of W(G, P).

Indeed, the proposition asserts that, in an informal sense, W(G, P) is “the closed
linear span of P x P”; in the same informal sense, D is the closed linear span of 4.,
the principal diagonal of P x P (see relation (1) of 2.2).

Proof. Let us suppose that {W(s)W(t)*|s,t € P} are linearly dependent. We can
then find {};]1 < 7 < n}in C\ {0} and {(s;,%)]1 < j < n} with (s5,%;) # (si,t)
n

for j # k, such that E/\jW(sj)W(tj)* = 0. We have of course n > 2, because
ji=1
W(s)W(t)* can never be zero (W(s)W(t)*é; = &5). The finite set {¢1,...,t,} must

contain an element t; which is minimal, in the sense that for any 1 < j < n, {; <1,
implies ¢; = t;. But:

j#k
ti<tx

n
0= (Z AjW/'(Sj)VV(tj)") by, = /\késk + Z '\jés,'t;‘tk
Jj=1

implies that there exists at least one j # k such that ¢; < t; and s]-tj'ltk = sp; for
such a j we clearly obtain ¢; = tg, s; = sy — contradiction.

For the rest of the proof it clearly suffices to show that {W(s)W(¢)*|s,t € P}U{0}
is closed under multiplication and *-operation. The latter fact is clear. To prove the
first one, we remark that if for arbitrary ¢ and u in P we multiply the relation (4)
of 3.1, written for ¢ and u, with W(¢)* on the left and with W(u) on the right, we
obtain:

W () W(u) = {

But:

W(t)*W(o(t,u))W(e(t,u))*W(u), iftand u havecub,,
0, if they haven’t.

W) W(o(t, u)) = Wty (WRW (™ o(t,v)) = Wt a(t, v)),
and similarly W(o(t, u))*W(u) = W(u~to(t,u))*. Hence for any ¢,u in. P:

Wt to(t, u))W (v lo(t,v))*, iftand uhave cub,
0, if they haven’t,

W) W (u) = {
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and it becomes clear that for any s,t,u,v in P:

W(st=lo(t,u))W(vuto(t,u))*, iftand u
have c.u.b.,
if they

haven’t.

() (W(EHWE) )W (w)W(v)") =

3.3. AN OTHER JUSTIFICATION FOR THE NAME OF D is given by the equivalent

characterization:

D = {T € W(G, P)|T has diagonal matrix relatively to the canonical basis of £*(P)}

Proof. Every M(t) (t € P) is diagonal relatively to the canonical basis, because:

b, ifa>t,
0, otherwise.

(©) M@&:{

Since the property of being diagonal can be passed through the closed linear span,
we get “C 7.

In order to prove “D ”, we denote by Do the C*-subalgebra of L(¢2(P)) con-
sisting of all the operators having diagonal matrix relatively to the canonical basis.
It is well-known that there exists a linear and contractive map Ep : L(£2(P)) — Do
determined by the following rule: the matrix of Eo(T) (relatively to the canonical
basis) is obtained from the one of T' by replacing with zero all the entries which are
not situated on the principal diagonal. If s # t, then E¢(W(s)W(t)*) = 0, because
for every a in P:

(W(s)W ()" belba) = (W ()" 8alW(s)"6a) =

{ (6:-14165-1a), ifs,t < a:} =0
0, otherwise

On the other hand Eo(W(t)W(t)*) = W()W(?)*, Vt € P, because wWHWw@): =
M(t) is diagonal. Hence the closed linear subspace {T' € W(G, P)|Eo(T) € D} of
W(G, P) contains W(s)W(t)* for any s, in P, and therefore must be W(G, P) itself,
by Proposition 3.2. Finally, if T in W(G, P) has diagonal matrix relatively to the
canonical basis, then T' = Eo(T) € D. L

3.4. A FIrsT EVIDENCE that W(G, P) has a “crossed-product type” structure
is obtained by remarking that D is only one of the diagonal subspaces of W(G, P)
that can be considered. More precisely, for any z in PQ we can define the diagonal
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subspace of z, D, = clossp{W(s)W(t)*|(s,t) € Az} (A is defined in 2.2, relation
(1). Clearly D = D,.) The subspaces {Dg|z € PQ} cbey the following rules of

multiplication and involution :

Dsy, if zy is still in PQ,
! PPy €Y (g, Vz,y € PQ),
\ ) v= {{0}, otherwise, ( z,y¢c Q)
(8) D; = D_,—x (V:c € PQ)

The formula (8) is clear. To prove (7), let z,y be in PQ such that DDy # {0};
then there exists (s,t) € A, and (u,v) € 4, such that (W(s)W()*)(W(u)W(v)*) #
# 0. According to the relation (5) of 3.2, t and u must have c.u.b., and the product
is W(st~le(t, u))W(vu=to(t,u))*. But (st~ o(t, u))(vulo(t,u))"! = zy, and this
makes clear that zy € PQ and D;Dy C Dyy.

Moreover, Proposition 3.2 implies that the set of finite sums of elements of the
D.’s is a dense linear subspace of W(G, P). It can be shown that every element T'

of this subspace has a unique writing T' = Z Tz, with T; € Dy, Vz € PQ(T; #

z€PQ
0 only for a finite number of z’s). Hence, in a weak sense, the diagonal subspaces
g

establish a direct sum decomposition of W(G, P).

Using the method of 3.3, one can describe the operators belonging to a given D,
in terms of their matrices relatively to the canonical basis. This description offers a
better understanding of the picture of W(G, P); but however, since we shall not be
using it anywhere in the paper, we leave its details to the reader.

3.5. A sECOND EVIDENCE for the “crossed-product type” structure of W(G, P)
is given by the fact that for any z in PQ, the map X — W(o(z))XW(r(z))* is
an isometric isomorphism (of Banach spaces) between D = D, and D; its inverse
is D, 3 Y — W(o(z))*YW(r(z)) € D. The only non-trivial point in the proof
of this fact is that for any (s,t) € A, we have, putting Y = W(s)W(t)*, that
W(a(z))*YW(r(z)) € D and that W(o(z))(W(o(z))*Y W(r(2)))W(r(z))" = Y.
In order to show this, we take the diagonal coordinates of (s,t), i.e. we write s =
= o(z)p, t = 7(z)p for a uniquely determined p in P (see 2.2.1°), and we easily get:
W(o(z))*YW(r(2)) = M(p) € D, W(c(z))M(p)W(r())* = W(s)W(E)" =Y.

3.6. A THIRD EVIDENCE for the “crossed-product type” structure of W(G, P)
is the existence of a canonical conditional expectation of W(G, P) onto D. More

precisely, we have the following

PROPOSITION. There exists a unique bounded linear map E : W(G,P) — D
such that for any s,t in P:
. W(s)W(t)*, ifs=t,
EWEW") = {

0, if s #¢.
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F5 is a conditional expectation.

Proof. Fy : L{{*(P)) — Dy considered in the prof of 3.3 gives by restriction and
corestriction a contractive linear map acting as in the statement of the proposition.
T'his proves the existence of E. Its uniqueness is clear (from 3.2}, and the fact that it
is 2 conditional expectation is immediately implied by the theorem of Tomiyama. W

COROLLARY. For any £ in PQ there exists a canonical projection of norm cone
E. of W(G, P) onto D, determined by:

W(s)W(t)*, if (s,t) € 4,
0, otherwise.

B(W(s)W(t)) = {

(Of course, E, = E.)

Proof. The map T — W(o(2))E(W(o(2))*TW (r(2)))W(r(2))* is easily seen to
have the properties requested in the statement of the corollary. On the other hand,
the uniqueness of F; (with these properties) is cbvious from 3.2. N

REMARK. E is faithful. Indeed, taking into account that E is obtained from
Iy : L(£2(P)) — Dy defined in the proof of 3.3, we easily obtain the formula:

(9) (E(T)8418.) = (T'64]6.), VT € W(G, P), a € P.

So, if a positive T € W(G,P) has E(T) = 0, then: |[VT6&|® =
= (T'64160) = (E(T)6,16,) = 0, Ya € P, hence VT =0 and T =0.

E is always faithful because actually W(G, P) is the analogue of a reduced crossed
product (“of D by PQ”). An analogue of the full crossed product will be considered
in the next section, in connection with amenability phenomena.

3.7. THE ACTION OF PQ oN D The last three subsections indicate that, in
an informal way, W(G, P) must be the analogue of a (reduced) crossed product C*-
-algebra “of D by PQ”. It is believable that there exists a natural “action” of PQ on
D connected to this crossed product structure. Recalling the way things look like in
the theory of crossed products by discrete groups, it is also believable that the map
D — D given by an z € PQ must be tied to the canonrical isomorphism D — Dy of

3.5. A natural candidate is :
10)  ax(X) = (W(e(e))W(r(z)) ) X(W(a(z))W(r(2))")", VzePQ, VXeD,
which makes sense and is a #-endomorphism of D, by the following

PROPOSITION AND DEFINITION. For any s,t in P, the map X — (W(s)W(t)*)-
X(W{s)W(t)*)* is a {(not necessarily unital) x-endomorphism of D, denoted by o .
We briefly write ag instead of a,(s),+(s) (V2 € PQ).
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Proof. It suffices to show that for any t in P, X — W(t)XW(t)* and X —
— W(t)*XW(t) are *-endomorphisms of D. It is obvious that these maps are *-mor-
phisms of D into W(G, P). (Let us check for instance the multiplicativity of the
second. For ¢t in P and X, X in D we have:

(W) X1 W () (W () XaW (1)) = W(t)* Xy M() X2 W (t) =
= W(t) MA)X1 X2 W (E) = W(E)* X2 X2 W (2),

where we used the commutativity of D and the fact that W(t)* M(¢t) = W(t)*.) So
all we need to verify is that the two considered maps take values in D. It clearly
suffices to make the verifications on the generators {M(s)|s € P} of D. But simple
computations show that for any s,¢ in P:

(11) W(OM(s)W ()" = M(ts),

M(t~to(s,t)), ifsandt haveacu.b,

(12) W(t)* M(s)W(t) = { 0 if they haven’t.

3.8. REMARK. We can sum up the results of this section into the formula
W(G, P) =“DxoPQ” (with « defined in 3.7). Now, of course, PQ is generally not a
group (see for instance the Example 4° of 2.3). Even if it is, it does not “act” on D by
automorphisms, but only by a class of not necessarily unital *-endomorphisms, which
is not closed under composition. (Indeed, the semigroup generated by {a:|z € PQ}
is {as,|s,t € P} when any two elements of P have c.u.b., and {a,.|s,t € P}U {0}
in the opposite case. The only observation needed to prove this, besides a trivial use
of relation (5) of 3.2, is that o, = @, 0 aer = @5 0 41, Vs,t € P.) Hence even in
the simplest cases, we do not have a crossed product structure in the proper sense.

3.9. COVARIANT REPRESENTATIONS. One naturally expects such an object ( a
“covariant representation of (D, PQ, a)”) to consist of a unital *-representation p of
D and a “representation” U of PQ on the same Hilbert space H, tied toghether by
the covariance relation:

(13) plaz(X)) = U(z)p(X)U(z)*, Vxe PQ, X€D.
But let us remark that if we put in (13) z =t € P and X = I, we get:

p(M(t)) = UQU()*, Vte P,
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this clearly implies that p is determined by U. So U alone gives the covariant repre-
sentation, provided it satisfies a certain condition extracted from the following lemma:

LEMMA. Let {L(t)|t € P} be a family of selfadjoint projections of the unital C*-
-algebra ™. There exists a *-homomorphism p : D — U such that p(M(t)) =
L(¢), Vt € P, if and only if for any s,t in P:

L if dt u.b.
(14) L)L) = { (e(s, 1), 1 s and t have c.u.b.,
0, if they haven’t.
Proof. “==" clearly follows from (4) of 3.1. To prove “=" it is suffices to show
that :

n n
;Z/\jL(tj) < Z/\jM(tj) , Vii,..,ta €P, Ay,...,An €C.
j=1 i=1

n
Because the operator T = Z’\jM (¢;) is diagonal relatively to the canonical
i=1
basis of £2(P) (see 3.3), its norm equals sup [(T'6,16,)|, and so we get :
aEP

DO M(t;)

Ej:l

(15)

= sup Al
S€P l1gign
t;€a

On the other hand we have:

Z’\jL(tj) ;sup{'Z/\j O+AC{1,...,n}

g=1 JEA

(16)

IT 26 [T - 2@)) # 0}

JEA EgA

The proof of (16) is done by writing for every j : L(f;) = L(¢;) H(L(tk) + (I~
k#j§
—L(t))), and effectively computing the product, which is thereafter substituted in

Z A; L(t;). We leave the details to the reader.
j=1
Now, comparing (15) and (16) we see that it suffices, in order to end the preof,

to take @# A C {1,...,n} as in (16) and find an element ¢ in P such that A = {j|]1 <

< j < n, t; <t}. For such an A we have in particular H L(t;) # 0; taking (14) into
jea



C*-ALGEBRAS GENERATED BY ISOMETRIES AND WIENER-HOPF OPERATORS 31

account, we deduce that {¢;]; € A} have c.u.b. and in fact H L(t;) = L(t), with
jeA

t = o({t;|j € A}). We finally remark that for any k in the complement of A we have

L(t)(I — L(tr)) # 0 => L(t) € L(tx) = t £ t (the last implication holds because,

as an immediate consequence of (14), s — L(s) is decreasing). This makes clear that

A= {jl1 £j<n, t; <t}, which completes the proof. [ ]

Now, it is not very clear to us what is the correct definition for the notion of
“representation of PQ” (a hint is given by the fact that o defined at 3.7 must be an
“action” of PQ). We have made the simplifying assumption that such a representation
should be determined by its restriction to P, arriving thus to the following

DEFINITION. Let V be a representation by isometries of P on the Hilbert space
H(V@)V(Et)=1,Vt, V(s)V(t) = V(st), Vs,t, V(e) = I). V is said to be covariant
if (14) holds with L(t) = V(#)V(t)*, Vt € P.

By the previous lemma, a covariant representation V : P — L(H) gives a unital
*-representation p : D — L(H). It is not difficult to see that p and U satisfy (13),
where U(z) = V(o(2))V(7(z))*, Vz € PQ.

4. AMENABILITY FOR QUASI-LATTICE ORDERED GROUPS

4.1 THE UNIVERSAL C*-ALGEBRA C*(G, P). From the C*-algebraic point of
view, amenability means the canonical coincidence of two C*-algebras, one of them
being universal, obtained by enveloping a certain class of representations, and the
other one being associated to a remarkable representation of the class. Now let (G, P)
be a quasi-lattice ordered group. We have the class of covariant representations of P,
and one remarkable covariant representation, namely the Wiener-Hopf one (defined
in 2.4; W : P — L(£%(P)) is covariant because of the formula (4) of 3.1). The C*-
-algebra generated by W is W(G, P) (see 2.4), so that W(G, P) naturally plays the
role of “reduced C*-algebra of (G, P)”. Our next task is to construct the envelope of
the covariant representations of P, i.e. the “full C*-algebra of (G, P)”.

Let us first remark that any covariant representation V : P — L(H) can be
extended to the dense x-subalgebra sp {W({s)W(t)*|s,t € P} put into evidence in
Proposition 3.2. Indeed, since by the same proposition {W(s)W(t)*|s,t € P} are lin-
early independent, there exists a unique linear map v : sp {W(s)W(t)*|s,t € P} —
— L(H) such that 7y (W(s)W(t)*) = V(s)V(t)*, Vs,t € P. Some simple algebraic
computations, similar to those made in the proof of the Proposition 3.2, show that
Ty 18 a *-representation.

The next fact to be observed is that sp {W(s)W(t)*|s,t € P} has an obvious



32 A. NICA

identification with C.(P x P), the space of finitely supported complex functions on
P x P, such that, for any s,¢ in P, W(s)W(t)* becomes x,¢ = the characteristic
function of {(s,t)}. Carrying multiplication and involution through this identification,
we get a w-algebraic structure on C.(P x P), determined by the relations:

Xst=1o(t,u), vu=toft,)y 11t and u have c.ub.,

Xs,tXuy = { 0, if they haven’t,

X:,t = Xt,s-
Xe,e is the unit of Co(P x P). The preceding remark and the clear fact that for any
s tin P:
Xs,eXt,e = Xost,es
Xols,the(s.) if s and ¢ have c.u.b.,
0, if they haven’t,

show together that there exists a canonical bijection between the unital s-representa-

Xo,sXt,t =2 {

tions of Ce(P x 1) on a given Hilbert space and the covariant representations of P
on the same space.

The only thing left to be done is the enveloping of Co(P x P). We define for any
Fin Ce(P x P):

[i i = sup{l|]=(£)il | = unital -representation of C.(P x P)}.

i1 fil is finite and actually not greater than Z [£(s,t)]; because f = Z F(s,8)xs,2
s,tcP s,teP
and each x, s is a partial isometry. On the other hand, the canonical identification of

Ce{P x P) with sp {W(s)W(t)*|s,t € P} gives an injective unital x-representation,
henee ||f|| > 0 for f # 0. It follows then immediately that || - || is a C*-norm on
C.(P x P).

DerINITION. The completion of C.(P x P) with respect to || - {| will be denoted
by C*(G, P) and will be called the universal C*-algebra of (G, P).

REMARK. In his paper [10], G. Murphy constructs, for an ordered group, a C*-
-algebra which envelops all the representations by isometries of the positive semi-
group. This C*-algebra is not fit for studying amenability, because it is too large
(they generally exist non-covariant representations of the positive semigroup, and the
relation (4) of 3.1 clearly shows that these representations can not be factored through

the Wiener-Hopf operators).

4.2. THE DEFINITION OF AMENABILITY. It is clear that covariant representa-
tions of P extend to unital =-representations of C*(G, P). In particular, the Wiener-
Hopf representation W : P — L(£>(P)) extends to ww : C*(G, P) — L(£2(P)).
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DEFINITION. The quasi-lattice ordered group (G, P) is said to be amenable if
(and only if) mw is one-to-one.

It is obvious that the range of 7w is W(G, P). So, if (G, P) is amenable, mw es-
tablishes a canonical isomorphism between C*(G, P) and W(G, P). It is also obvious
that we have the following equivalent reformulation:

ProrosiTioN. (G, P) is amenable if and only if every covariant representation
V : P — L(H) can be factored through the Wiener-Hopf representation W, in the
sense that there exists a x-representation 7 : W(G, P) — L(H) such that m(W(t)) =
=V(t), Vte P.

Other less trivial reformulations of the amenability concept will be discussed in
the next two subsections.

4.3 AMENABILITY IN TERMS OF THE CONDITIONAL EXPECTATION C*(E). In
the same notation as above, let us define

. C*(D) = clos sp{x:,:|t € P} C C*(G, P).
Exactly as in 3.1 we see that C*(D) is a unital Abelian C*-subalgebra of C*(G, P).

Moreover, since mw(x:,:) = M(t), Vt € P, it is clear that mw (C*(D)) =D.

LEMMA 1. 7w |C*(D) is isometric (hence it is an isomorphism between C*(D)
and D).

Proof. By Lemma 3.9, there exists a unital *-homomorphism p : D — C*(D)
such that p(M(t)) = x:,t, Vt € P, which is clearly an inverse for 7w |C*(D). ]

LEMMA 2 AND DEFINITION. There exists a unique linear bounded map C*(E) :
: C*(G, P) — C*(D) such that:

Xs,ty ifs= t;

CH(B)xst = {o, ifs#1t.

C*(E) is a conditional expectation.

Proof. The uniqueness of C*(E) is clear, and its existence follows from the fact

that in the diagram:

Tw

C*(G, P) W(G, P)
C'(E)J lE
C*(D) D

7rw|C‘('D)
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we can reverse the horizontal arrow of the bottom, due to the previous lemma. ¥rom
this diagram it also results that C*(E) is a conditicnal expectation. N

PrOPOSITION. (G, P) is amenable if and only if the conditional expectation
C*(E) is faithful.
Proof. In the commutative diagram of Lemma 2, all the arrows are positive maps

between C*-algebras, and E and mw |C*(D) are faithful. It is then easy to see that
aw is faithful if and only if C*(E) is so. |

REMARK. No matter if (G, P) is amenable or not, the above argument shows
that (Ker 7w ) N C*(G, P)4 = (Ker C*(E)) N C*(G, P)+, where C*(G, P}y is the set
of positive elements of C*(G, P).

As an application, one can use an idea of R. Douglas [5] to obtain the following
COROLLARY. If P is Abelian, then (G, P) is amenable.

Proof. Tt can be seen without difficulty that the compact group P of the cha-
racters of P has a continuous action by automorphisms 8 on C*(G, P), determined
by:

ﬁc(X.s,t) = C(S)Z(T)‘XS,K; Vee P; s,t € P.

Moreover, we have:

(17) (B = [ Belxsi)de, VateP

»
)

(if s = ¢, this equality is clear; if not, it amocunts to / e(s)e(t)de = 0, and it holds
}A’ Py
beeause ¢ — ¢(s) and ¢ — c(t) are two characters of P, which are different by a
theorem of Hewitt and Zuckermann - - see Chapter V of {1]).
Using relation (17) and the fact that clos sp {xs.¢}s,t € P} = C*(G, P), we easily
infer that:

C(B)f = ] B.(fde, Vf €CG,P).
P

Finally, for a positive f € C*(G, P) every B.(f) is also positive, hence C*(E)f =

= 0= /,@c(f) de= 0= B.(f) =0, Ve € P = f = B1(f) = 0, with 1 the unit of P.
b4

|

4.4. AMENABILITY IN TERMS oF PosITIVE Forms. Let us consider a quasi-
iottice ordered group (G, P) and make the following
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DEFINITION. A positive form ¢ on C*(G, P) is said to be finitely d-supported
if the set d-supp ¢ = {z € PQ|3(s,t) € A, such that ¢(x,,:) # 0} is finite (A =the
diagonal of x, defined in 2.2.1°.)

The significance of this definition is clear if we recall that C.(P x P) is a dense
*-subalgebra of C*(G, P), hence that, exactly as in the case of W(G, P), we can
imagine C*(G, P) as “the closed linear span of P x P”. The positive form ¢ on
C*(G, P) is determined by the map (s,t) — ¢(xs,t), and it is finitely d-supported if

and only if this map vanishes outside a finite set of diagonals.

ProrosiTiON. (G, P) is amenable if and only if the set of finitely d-supported
positive forms on C*(G, P) is weak* dense in the space of all positive forms.

Proof “=” Since 7w is isometric, the sums of positive forms of the type (mw (-)€|€)
with £ in £?(P) are weak* dense in the space of all positive forms on C*(G, P).
A simple approximation argument shows that this is still true if we assume only
£ e (sc(P). But for any € in C.(P), (mw(-)€|€) is finitely d-supported. Indeed, if

£ = Z Ajba; (A1,...,An €C, ay,...,a, € P), a simple computation shows that for
ji=1

any s,t in P:

(mw (X)) = Y. A,

1<j, kgn
‘Saj. 5<ak
tla;=s"ta,
and this immediately implies that d-supp (7w (-)€[€) C {a;jaz*[1 < j, k < n}. Finally,
it is clear that a finite sum of finitely d-supported positive forms is still finitely d-
supported.

“&” We need a

LEMMA. Let ¢ be a finitely d-supported positive form on C*(G, P). Define
e1(f) = o(C*(E)f), Vf € C*(G, P), obtaining another positive form ¢, on C*(G, P),
and consider the GNS representation of ¢1, = : C*(G,P) — L(H), with cano-
nical cyclic vector € € H. Then there exists a vector n € H such that o(f) =

= (r(f)¢In), Vf € C*(G, P).

Proof of the Lemma. Let d-supp ¢ = {1,...,2,}. We shall prove that:

(18) le(HI? < nlleller(f*f),  VfeC*G,P).

This inequality entails the statement of the Lemma. Indeed, it can be also writ-

ten |o(f)] < Vnllellll=(f)¢ll, Yf € C*(G, P), and (since £ is cyclic for ) it im-
plies the existence of a linear bounded functional on H such that v(f)¢ — ¢(f),
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V(G PY. By the theorem of Riesz, this functional must be the inner predact
with a certain y ¢ .

It clearly suffices to prove (18) for f in C.{P x P). We fix such an f and
write it as a sum, f = Z fe, with [, = Z F{s.)Xs,2, V2 € PQ (this holds

TEFQ {s.2)eAr

beeanse {Azlz € PQY is a partitior of P x P). Orly a finite number of the f.'s
are iu fact non-zero, hence we can find a finite subset I° of PQ, about which we
ray assume that it contains d-supp i, such that f = Z fr. Since for any =z, f:

zeF
belongs to sp {xs.¢i(s, t) € A.}, it is clear that ¢(fz) = 0 for 2 in F\(d-supp ¢), hence

el = Z e(fe) = Z ¢(fz;). We majorize:

cE€F i=1

C‘S for ¢

|~ ’
I g”}:i¢£h3 <

A = 3 (1)

CS forp 2 jid
< 0 llelle(fs. fe,) = nlielle | D fo, fes
j=1 j=1

{whore we used the Cauchy-Schwartz inequality, first for n-tuples of complex numbers,

then for the form ). We are only left to prove that:
n
(i) D f2fe, SCHENSF)
i=1

beeanse, assuming this true, we can continue our majorization with

nlielie(CT(E)F £)) = nilpiw: S f),

obtaining thus {18).
Finally, in order to get (19) we write:

ESN =) | (2 fz) (Z f)) =

zel’ sCF
= Y CUE)S L)
z.yeF

An argument sitnilar to the one which proved the relation (7) of 3.4 shows that:

sp{Xs,el(8,8) € A5y}, if 277y € PQ,

I8y € {{0} if =1y ¢ PQ,
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and this yields: ]
fofy, fz=y,

C*(E)(fo fy) = {0’ ifz#y.

Hence C*(E)(f*f) = Z fofe 2 Z f2;fz;, and the proof of the Lemma is complete.
z€F j=1

Now let us fix a positive f in C*(G, P) such that 7w (f) = 0. We shall prove that
f = 0 (obtaining thus the faithfulness of mw). Taking into account the hypothesis
it suffices to prove that ¢(f) = 0 for every finitely d-supported positive form ¢ on
C*(G, P). We also fix such a g, and define ¢; and 7 as in the statement of the Lemma.
We have: 7w (g* fg) = 0, Vg € C*(G, P) = C*(E)(¢*fg9) = 0, Vg € C*(G, P) (by the
remark following Proposition 4.3) = 1(¢* fg) = 0, Vg € C*(G, P) (by the definition
of p1)=> 7(f) = 0 (by the definition of the GNS representation)=> ¢(f) = 0 (by the
Lemma). ||

4.5. AMENABILITY IN TERMS OF PosSITIVE DEFINITE FUNCTIONS. Recalling
the development of the theory for unordered groups, it is natural to try to find,
at this moment, a fourth description of the amenability concept, made in terms of
positive definite functions. The notion of a positive definite function on a group (see
for instance [13], 7.1.9) can be adapted to work in our situation, with the following
remark: it is not generally true that z,y € PQ = 2~y € PQ, but this is the case
if  and y have c.u.b. in P, because for any common upper bound ¢ we can write
=1y = (2~ t)(y~1t)~!. We can thus make the following definitions:

DEFINITION 1. Let (G, P) be a quasi-lattice ordered group. A function 8 : P@Q —
— C is said to be positive definite if for any z,,...,z, in PQ there exists a positive
definite matrix (0;x)1¢;, kgn such that 8 = 0(z;1xk) whenever z; and z; have
cub. in P.

DEeFINITION 2. The quasi-lattice ordered group (G, P) is said to have the approx-
imation property for positive definite functions if there exists a net (6;); of positive
definite functions with finite support on PQ such that §;(z)—1, Vz € PQ.

H

It is known that a necessary condition for the amenability of G (discrete group)
is the existence of a net of positive definite functions on G, with finite support, which
converge to 1 pointwisely (see 7.3.8 of [13]). On the other hand, it is clear that if
(G, P) is a quasi-lattice ordered group, then the restriction to PQ of a positive definite
function on G is positive definite in the sense of Definition 1. Hence we obviously

have:

ProposiTION 1. If G is amenable, then (G, P) has the approximation property
for positive definite functions.
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On the other hand we have:

PRrROPOSITION 2. A quasi-lattice ordered group with the approximation property

for positive definite functions is amenable.

The proof of the latter result leans upon the fact that positive definite functions

on PQ naturally “perturbate” the positive forms on C*(G, P):

ProrosITION 3. Let (G, P) be a quasi-lattice ordered group, 6§ : PQ — C a
positive definite function and ¢ a positive form on C*(G, P). There exists a unique
positive form 1 on C*(G, P) such that ¥(x;,) = 0(st~1)p{Xs,:) for any s,t in P.

Proof of Proposition 2 (using the Proposition 3). By Proposition 4.4 it suf-
fices to show that an arbitrary positive form ¢ on C*(G, P) is the weak* limit of
a net of finitely d-supported positive forms. In order to do this, we just have to
consider a net (6;); as in the Definition 2, and take for any i the positive form ;
on C*(G, P) determined by ¢i(xs:) = 0:(st™)e(xs,), Vs,t € P. (Then d-supp
;i C supp 4;, Vi, and <pi-ui;><p, since clearly ¢g(xs,¢)T¢(xs,g), Vs,t € P, and since
esll = i(Xe,e)——9(Xe,c) = lipll, so that |jp;]| is uniformly bounded for sufficiently
large 4.) ' |

Proof of Propositon 3. We break the argument in two steps.

Step 1. There clearly exists a unique linear map g : C.(P x P) — C such
that to(xs,1) = 0(st™1)p(xs,t), Vs,t € P. We shall prove that ¥ is positive on the
x-algebra Cc(P x P).

n
In order to do this, let us fix an f in C.(P x P). We can write f = Z AiXsjts
j=1
for some Ay,..., A, In C, 83,...,584, 11,...,1s in P, and we clearly have:

n
f'f= Z A AEXt5,85 Xsn ts

3,k=1

henee
n

. —
DolF H =Y Nhetho(Xey,s5Xon.ts)-
J.b=1
Now let us put z; = s; ;1, V1 < § < n, and let us consider a positive definite
matrix (0;,1)1¢5, kgn such that ;5 = B(a:;’l:c;;) whenever z; and 2 have c.ub. in P.
We claim that for any j and k we have o(X¢;,s; Xsx,t) = 05,69(Xt;,5;Xsp,tx )- Indeed, if
8; and s; have no c.u.b., then both sides of this equality are zcro, because xq; s, Xsx,tx
is s0. If s; and s; have c.u.b., then z; and z; have c.u.b. in P, because z; < s; and
@p € sp; in this case the multiplication rule of Co(P x P) and the definition of ¥

immediately yield: ¥io(xt;,5;Xs0,8) = 9(33}-lzk)‘P(an,sJ-Xsk,tk)



C*-ALGEBRAS GENERATED BY ISCMETRIES AND WIENER-HOPF OPERATORS 39

Hence we can write:

n
YolF )= D MM s@(Xs)0;Xon,t0)-
jib=1
But the matrix (6;,69(X5; 1, Xsx,t))1<j, kgn 18 Positive definite, because it is the point-
wise product of the positive definite matrices (f;r)1g;, kgn  and
(P(X5, 2, Xsx,t )15, kgn (see for instance [13], the proof of 7.1.10), and this makes
clear that ¥o(f*f) > 0.

Step 2. The positive form 1 on the *-algebra C.(P X P) can be uniquely extended
to a positive form ¥ on C*(P x P).

Taking into account the definition of C*(G, P) it suffices to show that there
exists a unital x-representation 7 : C.(P x P) — L(H) and a vector £ in H such that
Yo(f) = (w(f)E|E), Vf € C(P x P) (then we can extend « to C*(G, P), and define.
Y(f) = (7(f)E|E), Vf € C*(G, P); the uniqueness of ¥ is clear, since any positive
form on a C*-algebra is bounded).

Thus we only need to prove that the GNS construction can be performed on
C.(P x P). 1t is known that a sufficient condition for this to happen is the fulfillment
of the Combes’ axiom: for any f in C.(P x P) there exists a constant k(f) > 0 such
that f*f < k(f)xe,.. But, as one can immediately check, the set of those f enjoying
the latter property is a linear subspace of C.(P x P); this set contains every x,.,
because X; :Xs;t = Xt;t € Xe,e (Xe,e — Xz, being a selfadjoint projection), and the
proof is over. :

[ |

5. TWO PARTICULAR CASES

5.1. THE CASE oF THE FREE GROUP. With the exception of the partially
ordered free group of 2.3.4°, all the examples of quasi-lattice ordered groups given
at 2.3 are amenable, by the Proposition 1 of 4.5. Quite surprisingly, (Fy, SFy) is
amenable too; this comes out from the uniqueness property of the extended Cuntz
algebra, to which both- W(F,,, SF,,) and C*(F,, SF,) are naturally isomorphic. (Re-
mark also that onehas C*( ¢ Z, 3 N)= 3 C*(Z,N), where the free product

1gign  1<ign 1<ign
of C*-algebras is considered in the sense of D. Voiculescu [18].) Thus:
PROPOSITION. (Fy,SF,) is amenable.
Proof. We denote by ay, ..., a, the free generators of F, and SF;,.

LEMMA 1. W(F,,SF,) D K(£2(SF,)), and their quotient is Oy.
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n
Proof of Lemma 1. One can immediately see that I — ZM (a5) = {-16¢)8¢
j=1
(because any t # e in SF, is greater then exactly one of the a;’s), and hence
n

that (-|&,)6; = W(t)(I — Y M(a;))W(s)" € W(Fn,SFy,), Vs,t € P. Consequently,
j=1
K(€*(SFy)) = clossp{(-|6:)6:|s,t € SF,} C W(F,.,SF,).

Since {a;|1 < j < n} generates SF,, the isometries {W(a;)|1 < j < n} generate
the same C*-algebra as {W(t)|t € SF, }, which is W(F;,, SF,,) (by 2.4). It follows that
W(Fy, SF,)/K is generated by the isometries {W(a;)+K|1 € j < n}. But (I +K) -
=Y (W(a;) + K)Y(W(a;) + K)* = (6} + K=K, and it is clear that W(F,

1

R=3%

SF)/K = O,.

LEMMA 2. A representation by isometries V : SF,, — L(H) is covariant if and
only if the subspaces {RanV (a;)|1 < j < n} of H are mutually orthogonal.

Proof of Lemma 2. We put L(t) = V()V(t)*, Vt € SF,. If V is covariant, then
I{a;)L(ax) = 0, Vj # k, by the relation (14) of 3.9 and the fact that ¢; and a; have
no c.u.b.; hence RanV(a;) L RanV{ay) for j # k.

Conversely, let us assume that {Ran V(e;){1 < j < n} are mutually orthogonal,
and take two arbitrary elements s and t of SF,. As we saw in 2.3, Example 4°,
only three possibilities can occur: (a) s < t; (b) s > ¢; (¢) s and t have no c.u.b.
If it is (a), then RanV(¢) = RanV(s)V(s~!t) C RanV(s), and we obviously have
L{s)L(t) = L(t) = L(a(s,t)). Situation (b) is treated in the same manner. Finally,
if (=) takes place, we easily infer that there exist p,s’,#' in SF,, and j # k such that
s = pajs’, t = pazt’. We have RanV(s) C RanV(pa;) = V(p)(RanV(a;)), and
similarly Ran V(¢) C V(p)(Ran V(ax)). Since RanV(e;) L RanV(ai) and V(p) is an
isometry, it follows that RanV(s) L RanV(t), i.e. L(5)L{t) = 0. In conclusion (14)
of 3.9 takes place, and V is covariant.

LeMMA 3. Any covariant representation V : SF, — L(H) can be written as a
n

direct sum such that one of the summands, say Vy, has Z Vo(a;)Vo(a;)* = I, and
j=1

any other one is unitarily equivalent to the Wiener-Hopf representation W. (Remark:

Ve ean be missing, or it can be the only term of the direct sum.)

Proof of Lemma 3. The proof is carried over in the spirit of the Wold decom-
position for semigroups of isometries (sece Chapter IX of [17]). We only indicate the
n

main idea. If Z V(a;)V(a;)* = I, then we take Vp = V, the only term of the direct
=1
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sum. If not, we consider an orthonormal basis (§;); of the space H & (@ Ran V(a;)),

and define H; = clossp{V(t){;|t € SF,}, Vi. Then (H;); are mutually orthogonal
reducing spaces for V, and for each ¢ the restriction of V to H; is unitarily equivalent
to W. Vg is taken to be the restriction of V to H © (@ H;), if the latter space isn’t
zero. ’

Let us finally prove the statement of the proposition. We use the Proposition

4.2, i.e. we consider a covariant representation V : SF, — L(H) and show that it

can be extended to a representation of W(F,,SF,,). Using Lemma 3 and a direct

sum decomposition argument, we reduce ourselves to the situation when either V is
n

unitarily equivalent to W, or Z V(a;)V(a;)* = I. The first alternative is trivial.

ji=1
For the second, we use the uniqueness of O,: there exists a *-representation = :

: W(Fn, SFp)/K — L(H) such that 7(W(a;)+K) = V(e;), V1 £ j < n, and we only
have to compose 7 with the canonical surjection W(F,,, SF,) — W(F,,SF,)/K. &

REMARK 1. We do not know whether (F,, SF,) has the approximation property
of 4.5, Definition 2.

REMARK 2. At this moment one can naturally ask if there do indeed exist any
non-amenable quasi-lattice ordered groups. Related to this, let us make the following

remark:

Let (G, P) be a quasi-lattice ordered group such that any two elements of P have
caub. If (G, P) is amenable, then P is amenable (in the sense of invariant means—see
Chapter I of [8]).

Proof. The identically one representation of P on C is clearly covariant, hence

n
it can be extended to W(G, P). We obtain the inequality ZAJ' W(s; YW (t;)*|| =
j=1

n
> ZAJ- VA, .., €C, s1,...,8q, 11,...,1, € P.In particular, for any t4,...,t,

n n
in P and Ay,..., A, in [0,00) we get E/\jW(tj) > Z)\j, and we obviously must
j=1 j=1
have equality. By a criterion of M. Day [4], the semigroup P must be amenable. B
Hence a quasi-lattice ordered group (G, P) is amenable if P is non-amenable and
any two elements of P have c.u.b.; this is for instance the case for a total order on a
free group (as in Section 4.2 of [7]).

5.2. THE CASE OoF ToTALLY ORDERED ABELIAN-GROUPS. In this case, every
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representation by isometries of the semigroup is covariant (trivial verification). Since
amenability is ensured by Propositions 1 and 2 of 4.5 (or by the Corollary 4.3), we
have that any such representation can be uniquely extended to the C*-algebra of
Wicner-Hopf operators.

Let us make at this point the connection with a theorem of R. Douglas ([3],
‘T'heorem 1); using the characterization of totally ordered Archimedean groups cited

at 2.3, Example 1°, we can state it as follows:

If (G, P) is Abelian, totally ordered and Archimedean, then any two non-u-
(D) { nitary representations by isometries of P generate canonically isomorphic
C* —algebras.

It is clear that (ID) can be restated by saying that for any non-unitary represen-
tation by isometries of P, the corresponding representation of W(G, P) is isometric.

Now, it is an easy exercise to sec that if the Abelian totally ordered group (G, P)
is Archimedean, then for any representation by isometries V' : P — L(H) either V(t)
is unitary for every ¢ in P, or V(t) is non-unitary for every ¢ in P. Hence the following
result of G. Murphy (Theorem 2.9 of {10]) is a generalization of (D):

Let (G, P) be an Abeclian totally ordered group and let V : P — L(H) be a
(M) { representation by isometries, such that every V(¢) (t € P) is non-unitary.
Then the corresponding representation wy : W(G, P) — L({H) is isometric.

We give here a new proof of (M), which is sensibly simpler than the original one.
‘T'he proof is obtained by adapting the techniques of R. Douglas [5] to this situation,
when a universal object attached to (G, P) has been put into evidence.

Proof of (M). The law of G will be written additively.
We first remark that v is isometric on D. For any Ay,...,ArinCand ty,...,t,

in P we have my ZAjM(tj) = Z’\j[’(tj)’ where we use the notation L(t) =
ji=1 j=1

= V(t)V(t)*, V¥t € P. The hypothesis implies that L(s) # L(t) for s # ¢ (if for in-

stance L(s) = L(t) for sgt, then multiplying this equality with V(s)* on the left

and with V(s) on the right, we obtain L(t — s) = I, contradiction). But then

the formulae (15) and (16) deduced in the proof of Lemma 3.9 imply that {for any

n i n
BiyoosAa by, ta) both | A M(#5)| and Y A L(t;)|f equal max (|A], [As +
j=1 j=1
+Aal. .., AL+ Az + - -+ Ap). Hence wy|D is isometric.
‘The faithfulness of 7y |D will be lifted to the whole of W(G, P) by using the

following
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LEMMA. There exists a linear bounded map E’ : clossp{V(s)V (t)*|s,t € P} —
— clossp{V(s)V(s)*|s € P} such that for any s,t in P:

E(V(s)V (1)) = { VOV i - :

Indéed, assuming this lemma true, we have the commutative diagram:

W(G, P) — ", Ranmy

D - . (D
o v(D)

and the implications: 7y (T) = 0 = wy(T*T) = 0 = E/(7v(T*T)) = 0 = (7v|D) -
(E(T*T)) = 0 = E(T*T) = 0 (by the Lemma) = T*T = 0 (because E is also
faithful—3.6)= T = 0.

Proof of the Lemma. It suffices to prove that for any t; §t2§...§t, in P and
{} k]l <4, k < n} in C, the inequality

S A VeV | < || 30 bavis) Vi)
j=1

J.k=1

holds. As remarked earlier, the left side of this inequality is max(|A1], |A1 +
+Az2],. .., [A1+ A2+ -+ Ay ]), hence we only have to prove that in-the same notations
and for an arbitrary 1 < m < n:

| n
S AV ()

Jk=1

m
PR,

j=1

(20) <

This is done as follows: let ¢ be the least of the elements ¢2 —~11,...,t, —tn—1. V(t) is
non-unitary because ¢ # e and by the hypothesis; hence we can consider a vector of
norm one § in H © RanV (t) = Ker V(¢)*. It is immediate that for any s > ¢ in P we
have V(s)*¢ = 0 and (V(s)£[€) = 0. Using these facts, a simple computation shows
that:

< ( > )\j,kV(tj)V(tk)*) nmlnm> =3 X
j=1

Jik=1

where 7, = V(t,,)€. Since ||nm|| = 1, we obtain (20) and the proof is over. L]
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6. INDUCED IDEALS AND APPLICATIONS

In this section (G, P) is a fixed quasi-lattice ordered group. “Ideal” means
everywhere “two-sided closed ideal”.

6.1. EQUIVALENT DEFINITIONS FOR Ind Z. The process of induction is naturally
defined as follows: let 7 be an ideal of D; we take a unital *-representation p of D
such that Ker p = T, we induce p to a representation 7 of W(G, P) (in the sense of
M. Rieftel [15]), and define Ind T = Ker . Ind 7 depends only on Z, and not on the
particular choice of p, because the process of induction respects weak containment.
Considering the details of the construction of M. Rieffel [15], the reader may easily
check that we have:

(21) Ind Z = {T € W(G, P)la, (E(T*T)) € I, Vs,t € P},

with £ : W(G, P) — D the conditional expectation of 3.6 and {a,|s,t € P} the set
of endomorphisims of D defined in 3.7.

Let us call the ideal T of D “invariant” if a,(X) € Z, Vz € PQ, VX € Z, with
{azlz € PQ} the “action” of PQ on D (see again 3.7). Since, as shown at 3.8, the
scmigroup generated by {a|z € PQ} contains {a; :|s,t € P}, we have in fact for the
invariant ideal Z : 5, € P, X € T = a,+(X) € Z. It is clear that for such an ideal
(21) becomes:

(22) IndZ = {T € W(G, P)|E(T*T) € T}.

In what follows we shall consider invariant ideals only; the reason is that for an

arbitrary ideal Z of D, the set Zp = [\ «;;(Z) is an invariant ideal with Ind Z5 =
S,teP
= Ind Z (immediate verification); hence any induced ideal of W(G, P) can be obtained

from an invariant ideal of D. Moreover, for any invariant ideal Z C D we have
(IndZ)ND =17, because X € (IndZ)ND & X € D and X*X € I & X € I; this
implies that the map Z — Ind 7 is one-to-one on the set of invariant ideals of D.
The range of T — Ind Z (i.e. the set of induced ideals) can be characterized as
{J € W(G, P), ideal [T € J = E(T) € J} (see the Corollary below). Generally,
this is not the set of all the ideals of W(G, P). For instance in the case of (Z,N)
there exists exactly one non-trivial invariant ideal of D, which induces the compact
operators; in spite of that, W(Z,N) (=the C*-algebra of the shift) has a rich family of
ideals, indexed by the closed subsets of the unit circle (see [2]). A sufficient condition
ensuring that any ideal of W(G, P) is induced from D can be given by using the
groupoid interpretation of W(G, P) and a result of J. Renault ([14], Chapter Iil,
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Proposition 4.6); this condition holds for instance for the partially ordered free group
with at least two generators (2.3, Example 4°).

The main result of this subsection is the following:

PROPOSITION. Assume that (G, P) has the approximation property of 4.5, Def-
inition 2. Then for any invariant ideal T of D, IndZ can also be described as:

1° {T e W(G, P)|W(o(z))*E-(T)W(r(z)) € Z, Vz € PQ}.

2° The ideal of W(G, P) generated by T.

Before passing to the proof, let us make some explanatory remarks. In 1° above,
E; : W(G, P) — D, is the canonical projection onto the diagonal subspace of z € PQ
(see 3.6); so 1° says that T is in Ind Z if and only if all its projections on the diagonals,
when canonically transported on the principal diagonal (see alsc 3.5) lie in Z. This
is exactly the analogue of the definition used by G. Zeller-Meier for induced ideals in
the theory of crossed products by discrete groups (see 4.15 of [19]). The analogy with
the theory of crossed products is not a surprise, if we take into account the results
of Section 3. More surprising is the strong resemblance with the theory of induced
ideals developed in [16] by S. Stratild and D. Voiculescu, who use exactly the formula
(22) to induce an invariant ideal of a maximal Abelian subalgebra of an AF-algebra
(see Lemma I 2.2 of [16]). Both S. Stratild and D. Voiculescu [16] and G. Zeller-Meier
[19] prove the analogue of the characterization 2°.

Proof of the Proposition. We denote by J; and J> the sets appearing at 1° and
2° respectively. We shall prove that Ind Z C J; € J> C Ind Z. The last inclusion is
clear because Ind Z is an ideal of W(G, P) and contains Z.

IndZ C J1. Let us fix a T in IndZ and make the notation W(o(z))*E.(T) -
W(r(z)) = Tz, Yz € PQ. 3.5 implies that every T is in D and that we have E;(T) =
= W(o(2))T-W(r(z))*. It follows that E,(T)*E.(T) = W(r(z))(T2T:)W(r(z))*
and hence that T; T, = W(r(z))*(Ex(T)" Ez(T))W(7(2)) = te,r(z)(Ee(T)* E4(T)),
Vz € PQ. Now, our goal is to prove that T, € Z, Vz € PQ, which is clearly equivalent
to T, T, € I, Yz € PQ. Due to the latter equality and the fact that 7 is invariant, it
suffices to show that E,(T)*E,(T) € Z, Vz € PQ. (Remark: E(T)*E;(T) belongs in
any case to D, because of (7) and (8) of 3.4.) An-.argument similar to the one which
proved relation (19) (in the proof of Proposition 4.4) shows that E (T)*E(T) <
< E(T*T), Vz € PQ; but E(T*T) is in T (because T € Ind T), and T is hereditary,
hence all the E;(T)*Ey(T)’s are indeed in Z.

Ji1 € Ja. Define JP = {T € J1|3F C PQ finite such that T' € clos sp( LeJF D;)}.

T

It is clear that for T" in J and F' taken as in the above definition we have T =

Z E.(T); then using the same notations and invoking the same arguments as in the
zeF
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proof of “Ind T C Jy” we get T'= Z W(o(2))TzW(r(z))* € J2. Hence it suffices
z€F
to show that clos Jf =2 J;. The point is in proving the following
LeMMa. For any positive definite function 8 : PQ — C (Definition 1 of 4.5)
there exists a bounded linear operator My on W(G, P) such that Mg(W(s)W(t)*) =
= G(st~1YW(s)W(t)*, Vs,t € P; we have || Mp]| < 26(e).

Assuming this lemma true, we consider a net (#;); of finitely supported positive
definite functions on PQ@ having the property that 6;(z)—1, Vz € PQ, and we see
L]

that for any 7" in J; we have Mo..(T)L.”»T and My, (T) € J?, Vi. (Indeed, (Mo,)

converges strongly to the identity because (|| Ms,||)s is bounded and Mo,.(S)MS for
S € sp{W(s)W(t)*|s,t € P} which is dense. On the other hand it is immediate that
Ex(My,(S)) = 6;(2)E,(S), Vz € PQ, VS € W(G, P), Vi, and this shows that J; is

invariant to every Mpy,. It is also immediate that Ran My, C clossp( |J D.), Vi.)
z€suppb;

In the statement of the lemma it implicitly appears that that f(e) > 0 for any
positive definite function § : PQ — C. In fact, exactly as in the case of positive
definite functions on groups, it can be checked that 6(e) = ||f]|co. The same holds for
the assertion: “0(z~%) = 8(z), Yz € PQ”.

Proof of the Lemma. Since (G, P) is amenable, we may very well construct My
on C*(G, P) instead of W(G, P). There obviously exists a linear map Ly : Cc(P x
xP) — C¢(P x P) such that Ls(xs,:) = 0(st™1)xs,s, Vs,t € P. We will show that
WLa(F)|l < 0(e)|]fl] for any selfadjoint f in C(P x P); this wiil immediately imply
that {{L(f)|| < 20(e)||f|l, Vf € C{P x P), and hence the fact that Ly can be extended
to My ¢ L(C*(G, P)) with ||Mp|| < 26(e).

So let us consider the selfadjoint element f € Cc(P x P). Lg(f) is selfadjoint,
too (it is easy to see that Lo(x; ) = (Le(xs,¢))*, Vs,t € P, and this implies Ls(g*) =
= (Ls(9))*, Vg € Cc(P x P)); hence we can write ||Lo(f)|f = sup le(Lg(f))!, with
the supremum taken after all the states of C*(G,P). Now forwany such ¢ there
exists a positive form i on C*(G, P) such that ¢(xs.) = 0(st™1)p(Xs,:), Vs,t € P
(Proposition 3 of 4.5); this relation can also be written ¥¥(x,,:) = ¢(Lg(xs,¢)), Vs, €
& P, and it obviously entails ¥(f) = ¢(Ls(f)). Hence lp(La(£)| < [i¥il[I£1l; but
167 5= P(Xes) = 0(E)p(xe,s) = B(e), so what we have is lp(Za(H)] < (eI (for
any state ¢ of C*(G, P)). This clearly ends the proof. ]

COROLLARY. In the same conditions as in the previous proposition, an ideal
J of W(G, P) is induced from D if and only if it is closed under the conditional

expectation.
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Proof. “=” If J = IndZ,then T € J = E(T) € T C J due to the characteri-
zation 1° of the previous proposition (E(T) = W(o(e))* E.(T)W(r(e))).

“&” Let us denote J ND by Z. T clearly is an ideal of D, and it is invariant
because the x-endomorphisms {a,|s,t € P} are defined by multiplication operators.
For any T in J we have; T*T € J = E(T*T) e JND=I=T¢€ IndI,s0 that
J C Ind Z. On the other hand J is an ideal of W(G, P) which contains Z, so it also
contains Ind Z by assertion 2° of the previous proposition. ]

6.2. THE SPECTRUM OF D. Since the ideals of D are given by the closed subsets
of the spectrum of D, it is useful (if we want to know: what are we inducing?) to have
an explicit description of the spectrum. This is the goal of the present subsection.

DEFINITIONS. A subset A of P will be called hereditary if “s,t € P, s t, t €
€ A= s € A”, and will be called directed if any two elements of A have c.u.b. in
A. We shall denote by £ the set of all non-void hereditary and directed subsets of
P (remark that for A € £2 we have A 3 e and “s,t € A = o(s,t) exists and is in
A”). Identifying every subset of P with its characteristic function and considering
the product topology on {0,1}" we get a canonical compact Hausdorff topology on
the space of subsets of P. It is clear that £ is closed into this topology; hence 2 is a
compact Hausdorff space.

For any ¢ in P the “interval” {a € P|a < t} will be denoted by [e,t]. Clearly
{[e,t]|t € P} C 2; this is a dense subset, because for any A in 2 the net ([e,t])ica
directed by (A, <) converges to A (immediate verification). Moreover, [e, 5] = [e,] =
= s<tandt < s = s=t,so that £ is a compactification of P.

PROPOSITION 1°. Let v be a character of D. Then y(M(t)) € {0,1}, Vt € P,
and Ay = {t € P|y(M(t)) = 1} belongs to 02.
2° For any t in P, the vector state {-6;|6;) on D Is a character and A(.;,j5,) = [e,1].

3° v — Ay is a homeomorphism from the spectrum of D onto £2.

Proof. 1° v(M(t)) € {0,1} because M(t)2 = M(t). y(M(e)) = v(I) = 1, hence
e € A (and hence A, #@). Using (4) of 3.1 and the positivity of v we immediately
infer that s < t = vy(M(s)) > y(M(t)), and this implies that A, is hereditary.
Let us also prove that A, is directed. If s,¢ are any two elements of A,, from
1 = y(M(s))y(M(t)) = y(M(s)M(t)) we see that s and t have c.u.b. (otherwise
we would obtain y(M (s)M(t)) = ¥(0) = 0); we can further write, by (4) of 3.1:
1= y(M(o(s,t))), so that a(s,t) € A,.

2° The fact that (-6;|6;) is a character of D follows from 3.3; the equality
A(.5,5,) = [e,t] is a consequence of the relation (6) of the same subsection.

3 If 'y,'ﬂ.:'y in the spectrum of D, then (M (t)}=v(M(t)), Vt € P, which means
12 2
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exactly that the characteristic functions of (A4,;); converge pointwisely to the one of
Ay. This makes clear that the map ¥ — A, is continuous. It is also clear from 1° that
this map is one-to-one, and from 2° that it has dense range; but its range is compact,
henee closed in £2, and so we obtain surjectivity. Since we are dealing with compact

Hausdorft spaces, the continuous bijection ¥ — Ay is a homeomorphism. [ ]

REMARK ON INVARIANCE. Due to the previous proposition, D can be canonically
identified with C(42) and consequently the ideals of D can be canonically identified
with the closed subsets of £2. There cxists an appropriate notion of invariance for
closed subsets of £2, such that the invariant ideals of D correspond to closed invariant
subsets. Its precise definition is given as follows:

1° it can be shown that for any A in £, there are still in 2 the sets: A, = {e €
€ Pe has upper bounds in tA}, for every t in P, and A;-1 = t~*AN P, for every ¢
in A;

2° the closed subset 2y of £2 is invariant if for any A in 2y we have A; € 2y, Vi €
€ P, and A1 € £, Vt € A. (These facts will not be used in the sequel, and that is
why we do not enter into details.)

6.3. FIRsT APPLICATION: WHEN DOES W(G, P) CONTAIN THE COMPACT
OPFRATORS?

PRrRoPOSITION. The following are equivalent:

1° W(G, P) 2 K(£2(P)).

2° For any t in P, [e,t] is an open point of £2.

3° [e, €] is an open point of 2.

4° There exists a finite subset F of P\ {e} such that every t in P\ {e} has lower
bounds in F.

RrEMARKS 1°. The condition 2° can be rephrased: “f2 is a regular compactifica-
tion of P” (i.e. P 3t — [e,t] € 12 has open dense range and is a homeomorphism
onto the range). The implication 2° = 1° was proved by P. Muhly and J. Renault in
a more general context ([9], Corollary 3.7.2); they conjecture that 1° = 2° also holds
in general (see [9], 3.7.3).

2° Condition 4° depends only on the order relation on P. We note that it is
always fulfilled when P is finitely generated, because in this case any finite set of
generators of P\ {e} can be taken as F.

3° It can be shown that W(G, P) is irreducible; consequently, the equivalent
conditions which appear in the proposition are necessary for W(G, P) to be type
I. These conditions are not generally sufficient; for instance we saw in 5.1 that
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W(F,,SF,) D K(€2(SFy,)), but it has O, as a quotient (hence it cannot be type I).

4° A simple argument based on the minimality of K(£2(P)) can be invoked to
prove that if W(G, P) D K(£2(P)), then this ideal is induced from D. (The proof
given here does not explicitly use this fact.)

Proof. 1° = 2° We consider the space Co(P) = {¢ : P — C|Ve > 0,3F C
C P finite such that |p(t)| < € for t € P\ F}. We fix for the moment a ¢ in Co(P)
and define X, € L(£2(P)) to be the diagonal operator (relatively to the canonical
basis) which has the (¢,t)-entry of its matrix equal to ¢(t), for any ¢ in P. Clearly
X, is compact, hence it is in W(G, P) (by the hypothesis); but then, being diagonal,
X, must belong to D by 3.3. We can therefore define a continuous map @: 2 —» C
by @(A) = v(X,), VA € 2, with v the character of D corresponding to A by the
canonical homeomorphism of 6.2. We have, in particular, @([e,t]) = (-6:6:)(X,) =
= @(t), V¥t € P. Taking into account that {[e,t]|t € P} is dense in 2, and that
¢ € Co(P), we immediately obtain g(A) =0, VA € 2\ {[e,t] |t € P}.

The conclusion of the preceding paragraph is that for any ¢ in Co(P) the function
@ : 12 = C defined by:

p(t), if A=[e,t] witht € P,

p(4) = {0, if A¢ {[e,t)it € P},

is continuous. Particularizing ¢ to be the characteristic function of {t} we obtain that
[e,] is an open point of £2.

2° = 3° is clear.

3° = 4°. Let us suppose that for any finite subset F of P\ {e} there exists tp
in P\ {e} which does not have lower bounds in F. We claim that the net ([¢,tr])r
converges to [e, e] in £2 (the net is indexed by the family of finite subsets of P \ {e},
directed with inclusion). Since £2 is compact, it suffices to prove that an A # [e, €] in
12 is not a cluster point of the considered net. And indeed, for any such A, we take a
t # e belonging to A and we see that {B € 22|B 3 t} is an open neighborhood of A
in 2 which doesn’t contain [e,tF] if F D {t}.

But [e,tp]?[e,e] although tr # e, VF, contradicts the hypothesis that [e, €] is
an open point of £2.

4° = 1°. Let F = {a1,...,an} be as in the hypothesis. We shall say about the
non-void subset I of {1,...,n} that it is “marked” if {a;|j € I} have c.u.b.; for such
an I we make the notation a; = o({a;|j € I}).

We claim that the operator:

X=I+ Y (-1)**'M(as)

Imarked
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is {-[6c)6,. It is clear firstly, from the formula (6) of 3.3, that X6, = 6. Let us further
fix at # ¢ in P and denote the set {j|1 < j < n, a; < t}, which is non-void by
the hypothesis, by Iy. For any I C {1,...,n} we obviously have: “I marked and
af <t O +#1CI)". But then, again by (6) of 3.3:

Xé=1+ Y, (~pemhy =0+ Y (-1 s =0
Imarked, arg? D#£ICI,

o

Hence (-|6:)8. € W(G, P). But then for any s, in P : {-|6,)6; = W(t)({-]6¢)éc) -
-W(s)* € W(G, P), and finally K(£2(P)) = clos sp{(-|6,)8:]s,t € P} CW(G,P). W

6.4. SECOND APPLICATION: A CONVERSE TO A THEOREM OF R. DotGLas. In
this subsection we particularize and assume that (G, P) is a totally ordered Abelian
group, written additively.

ProrosiTioN. The following are equivalent:

1° P is Archimedean.

2° Every non-unitary representation by isometries of P extends to an isometric
representation of W(G, P).

3° The commutator ideal C of W(G, P) is simple.

REMARKS. 1° The implication 1° = 2° is a reformulation of the result of R.
Douglas discussed in 3.2. 2° = 3° was also proved by R. Douglas in the paper [5] (see
the Corollary to the Theorem 1 of [5]). We shall prove here only 3° = 1°.

2° The proposition shows that the generalization (M) discussed in 5.2 imposes an
effective restriction on the representation, since in general for a given representation
by isometries of the semigroup, V, some of the V(t)’s are unitary and some are not.
A typical example is Z2 with lexicographic order (i.e. G =22 and P = ({0} x N)U
({N\ {0}) x Z)), which clearly is totally ordered but not Archimedean. W(Z2,lex)
contains K, the ideal of compact operators, by 6.3 and the simple remark that (0, 1)
is the smallest element of P \ {(0,0)}. We have I — M(t) € K & I — M(t) has finite
rank <>t € {0} x N;; hence considering an isometric representation  of W(Z2,lex)/K
and defining V(¢) = m(W(t) + K), Vt € P, we obtain a representation by isometries
V of P such that V(t) is unitary if and only if ¢ € {0} x N.

We mention that using the groupoid interpretation, it can be shown that K C
¢ C € W(Z?,1ex) is a decomposition series of W(Z2,lex), which is hence type I.

3° It can be shown that the ideal C is induced from the diagonal subalgebra; the
(invariant) inducing ideal of D can be precisely described as clos sp {I — M (t)|t € P}.

Proof of 3° = 1°. We fix an arbitrary v # 0 in P; our task is to prove that
{e € Ple < nu for some n in N} == P. For any v in P we define 4, = {a € Pla <
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< nu + v for some n in N}, which clearly belongs to 2, and we denote by v, the
character of D canonically corresponding to A, (see Proposition 6.2).
Let us prove that for any ¢,v in P:

0, ift g A,
(23) Yo OOt = . .
Ykutv—t With k € N such that ¢t < ku+4v, ift € A,

where a = {a;|z € PQ} is the action of PQ on D defined at 3.7. (Note that on the
right side of this equality, Yru4vy—: does not depend on k, since it is generally true

that Ay = Ay4tu, Yo € P, | € N.) Indeed, fixing for the moment ¢ and v we see that
for any s in P:

1, ift+s€ A,
0, ift+s¢A,.

(1)of 3.7

(10 0 @) 00(6) L2y, (a1t + ) = {
Ift ¢ Ay, thent+s ¢ A,, Vs € P, hence 7, o o; vanishes on {M(s)|s € P} and is
therefore identically zero. If t € A,, let us consider a k in N such that t < ku + v.
We have t +s € A, < 3n > k such that t + s < nu 4+ v & In 2> k such that
s<(n—k)u+ (ku+v—1t) & 5 € Apytv—t, which implies that y, o a; and Yruqv-t
coincide on {M(s)|s € P} and are hence equal.

In a similar manner it can be shown that:

(24) Yo © ®4-1 = Yy4t, Vu,t € P.

The relations (23), (24) and the fact that a,; = a, 0 ay-1, Vs,t € P (see 3.8)
immediately imply that the ideal Z = {| Ker+y, of D is invariant. Observe that for
anytin P: I-M(@t)eIndZ & I :EII\}(t) € T (because (IndZ)ND = Z, by 6.1)
Sn(MiE)=1,VwePote ﬂ Ay = Ap (with 0 the unit of G).

Now (IndZ)NC is an ideal of C which is non-zero (it contains for instance I —

—M(u) = W(u)*W(u) — W(u)W(u)*), hence it must be C, because C is simple.
It results that IndZ O C; but I — M(t) € IndZ & t € Ao, while I — M(t) =

=Wy W) - WE)W(t)* € C, Vt € P, and it is thus clear that Ay = P. n
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Added in proof: a) The implication 1° = 2° of Proposition 6.3 was proved in the

gencral case by A. L.-J. Sheu (“On the type of Wiener-Hopf C*-algebras®, Proc. Amer.
Math. Soc., 109(1990), 1053-1058).

b) Let (G, P) be a quasi-lattice ordered group. Assume that every two elements of P

have common upper bounds; this is easily seen to be equivalent to the fact that H = pp!

a subgronp of G. From the argument of 4.5 it is clear that “H amenable = (G, P) amenable
‘The converse can also be shown to hold. Moreover, H is the maximal homomorphic group
image of the semigroup P x P appearing in Section 4.1; hence by a theorem of J. Duncan
and 1. Namioka (Proc. Royal Soc. of Edinburgh, 80A(1978), 309-321), the amenability of
(G, P) is in this case also equivalent to the one of P x P.
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