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TRANSFERENCE OF ALMOST EVERYWHERE CONVERGENCE

NAKHLE ASMAR, EARL BERKSON and T. A. GILLESPIE

1. INTRODUCTION

Let G be a locally compact abelian group, and let X, = LP(M,p), where
1<p < oo and (M, ) is an arbitrary measure space (this notation will be fixed
throughout all that follows). As shown in [2, Theorem (2.3)] (and sketched in [1,
Thécréme 1)), a strongly continuous, uniformly bounded representation of G in X,
by separation-preserving operators (for instance, by positivity-preserving operators)
will transfer to X, strong type (p, p) bounds for maximal operators on L?(G) defined
by sequences of convolution operators. This result ceases to be valid if the separation-
-preserving hypothesis is removed, or if “strong type” is replaced by “weak type” (see
[1] for the relevant counterexamples). In [3], [4], we introduced a broad proper subclass
of the separation-preserving representations of G in X, so as to guarantee the trans-
ference of weak type bounds for maximal convolution operators ([4, Theorem (4.14)]
or, alternatively, [3, Théoréme 2]). This subclass, consisting of the u-distributionally
bounded representations of G described in §2 below, includes the representations in-
duced by measure-preserving transformations on M, and consequently results stem-

ming from distributional boundedness generalize their ergodic theory counterparts.

The present article applies the foregoing results, in conjunction with the Ba-
nach Principle ([16, Theorem 1.1.1], [23, §3.2]), to the transference of almost every-
where convergence from G to M. More precisely, given a separation-preserving or
p-distributionally bounded representation of G, we develop suitable natural condi-
tions for a sequence in L!(G) so that when the corresponding sequence of transferred
convolution operators is applied to an arbitraty element of X,, convergence y-a.e. will
ensue. The spirit of these considerations is motivated by the transference viewpoint
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of R. R. Coifman and G. Weiss ([10], [11]).

In order to make the subsequent discussion more self-contained, §2 reviews the
features of transference theory which are essential for our considerations, while fixing
some notation in the process. §3 treats the transference of a.e. convergence in a set-
ting wherein the convolution operators have kernels supported in a common compact
subset of G. In §4 this requirement on the supports is replaced with a milder condi-
tion ((4.8) below) on the convolution kernels reminiscent of the Hérmander condition
for singular integrals [27, (2') on p. 34). In §5, the foregoing results are applied to
the truncates of the classical Calderén-Zygmund singular integral kernels to obtain
transferred singular integral operators defined in terms of u-a.e. convergence. The
transferred singular integral operators so obtained generalize their ergodic counter-
parts.

Throughout what follows, the symbols N, Z, R and T wiil denote, respectively,
the set of positive integers, the additive group of integers, the additive group of real
numbers, and the multiplicative group of the unit circle in the complex plane C. The
set-theoretic (respectively, group-theoretic) difference of two sets A and B will be
written A\B (respectively, A — B).

2. PRELIMINARIES

In this section we collect, for subsequent use, some definitions and prior facts,
in the process standardizing some of our notation. Henceforth let {k,}5%; be a
sequence of functions in L1()), where A denotes a fixed Haar measure on G. We shall
write Np({kn}) (respectively, NS)({kn})) for the strong (respectively, weak) type
{p.p) norm of the maximal convolution operator on L?()) defined by the sequence
{kn}o%,. We shall denote by u —» S, a strongly continuous representation of G in
Xp = LP(p) such that

(2.1) ap = sup{||Sull : v € G} < .

For each ¢ € L}(G), we use Bochner integration to define the transferred convolution

operator HF) : Xp -+ X, as follows:
(2.2) HPf = /G @(u)S_y fdA(u), forall f € X,.

In particular, H&” ) is a bounded linear mapping of X, into itself. Let Mf be the
maximal operator on X, defined by the sequence {H,E’: )}:

(2.3) M#f = sup|HP f| forall f € X,.
nEN
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DEFINITION. The representation S is said to be separation-preserving, provided
that whenever f € X,, g € X, and f-g = 0 p-a.e., then (Syf)(Sug) = 0 p-ae.
for all v € G. We remark that S will be separation-preserving provided that S,
is positivity-preserving for each u € G (see, for instance, [2, Scholium A in §2}).
The main advantage of the separation-preserving property for our purposes is that it
permits S to transfer strong type bounds for maximal convolution operators. More

precisely, the following theorem holds.

THEOREM 2.4. ([2, Theorem (2.3)]). If S is separation-preserving, then

[ME £[|, < 2Ny ({ka})l|fllp,  for all f € Xy,

where ap is the constant defined in (2.1).

In order to treat the transference of weak type maximal bounds, we shall need the
notion of distributionally bounded representation from [3], [4]. For a g-measurable
function f, let ¢(f;-) denote the distribution function of f defined by:

o(f;y) = p({w € M :|f(w)] > y}), forally>0.

DEFINITION. Let I'(u) be the group (under composition) of all injective linear
mappings of L!(p) N L®(u) onto itself. A u-distributionally bounded representation
of G is an identity-preserving homomorphism v — R, of G into I'(y) for which there

exists a positive real constant ¢ such that:
(2.5) o(Ruf;y)<co(f;y), forallu € G, all f e LY (p) N L®(u), and all y > 0.

We next list the properties of distributionally bounded representationé which will
be required for our purposes. The demonstrations of these properties can be found
in [4]. It follows from (2.5) that there is a unique representation u — RP of Gin Xp
such that RP)f = R, f for all u € G and all f € L}(i) N L®(u). Moreover,

sup {"Rq(f)” (U € G} <etl?,

and (2.5) is valid for the representation R(® and all u € G, f € Xp, y > 0. As
shown in [4, Corollary (2.20)] (see, alternatively, [3,(3)]), the representation R(®) is
separation-preserving. As noted in [4,(2.9)], for 1 <py, p2 < 00,

(2.6) RPVf = RPIf  forallu€ G, f € Xp, N Xp,,

and it then follows from [4, Proposition (3.2)] that if there is some s € [1,00) such
that R(®) is strongly continuous on X, then R® is strongly continuous on X; for all
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t € [1,00). In this case, we say that the y-distributionally bounded representation R is
strongly continuous, and we apply the notation in (2.2) and (2.3) to the representation
R in place of S. In particular, if the distributionally bounded representation R is
strongly continuous, and 1 <y, p2 < o0, then, as a corsequence of (2.6), we have for
each ¢ € L}(G):

(2.7) HEVf = HFPf, for all f € Xp, N Xp,.

The next theorem describes tae role played by distributional boundedness in the
transference of weak type bounds for maximal convolution operators [4, Theorem
(4.14)] (for an outline of the proof, see [3, Théoréme 2]).

THEOREM 2.8. Let R be a strongly continuous u-distributionally bounded rep-
resentation of G. Then

o(M¥ £;y) < AH{N{kaDifllpy~" )}, forally >0, and all f € X,,

where ¢ is the constant appearing in (2.5).

The next theorem [4,Theorem (2.21)] provides a direct way of testing for distri-
butional boundedness.

THEOREM 2.9. Let & be a representation of G in Xp. Then there is a p-
-distributionally bounded representation R of G such that G = R®) if and only if the
following two conditions hold:

() sup{[iSulip : u € G} < oo
(i) |8u flloc <iIflloo, for all u € G and all f € LP{p) N L™ ().

REMARKS 2.10. (i) For purposes of illustration, we describe here a natural ex-
ample of a distributionally bounded representation. Let £ be a compact abelian
group (other than {0} or T) with archimedean ordered dual, and with normalized
Haar measure 8. In [6] the correspondence of Helson’s theory between the cocycles
on & and the normalized simply invariant subspaces of L?(&) was generalized to the
setting of LP(R) for 1 < p < co. In brief, each unimodular cocycle A on & gives
rise to a strongly continuous one-parameter group {U;} of isometries on L?(K). The
group {U;} has a spectral decomposition from which the normalized simply invariant
subspace corresponding to A is obtained. The group {U;} has the form

(U f)(2) = A(@)f(z +1t), fort€eR, z €&, feLP(R).

it is clear from this that the group {U.} is the L?(R)-version of a §-distributionally
bounded representation of R. (ii) It is not difficult to frame examples of strongly
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continuous distributionally bounded representations such that any constant ¢ in (2.5)
must be strictly greater than 1 [4, (2.27)-(ii)]. (iii) An example of a separation-
-preserving representation & of R in L (R) which does not satisfy (2.9)-(ii) is furnished
by the strongly continuous one-parameter group of positivity-preserving isometries of
LP(R) defined by

(&:f)(z) = e’Pf(elz) forteR, z €R, f e LP(R).

3. TRANSFERENCE OF ALMOST EVERYWHERE CONVERGENCE UNDER CONDITIONS
OF COMPACTNESS

In order to handle measure-theoretic technicalities of joint measurability without
having to assume that (S, f)(z) is measurable in (u,z) on G x M, we begin this
section with the following technical lemma ([7, proof of Lemma 2.5]).

LEMMA 3.1. Let u — @y be a uniformly bounded strongly continuous represen-
tation of G in a closed subspace Y of LP(p). Let K be a compact subset of G, and let
V be a relatively compact open subset of G. Let y € Y. Then there exist a o-finite
measurable subset Mg of M and a jointly measurable function F : G x M — C such
that:

(i} F vanishes off (V — K) x My;

(ii) for A-almost all u € V — K, F(u,-) is a representing function for the equiva-
lence class (modulo equality p-a.e.) of ©yy.

If, moreover, k € L(G) has support contained in K, then for each v € V,

/ k() F (v — u, w)dA(u)
G

exists for p-almost all w € M, and, as a function of w, is a representing function for

the equivalence class of
(3.2) 0. / k()0 -uydA(u),
G

the integral in (3.2) being a Bochner integral.

The following scholium provides a useful complement to Lemma 3.1. This techni-
cal scholium is readily deduced with the aid of [17, Theorem E, p. 139, and Theorem
B, p. 27].

Scuorium 3.3. Let F(-,-) be a measurable compex-valued function on
G x M, and let k € L'(G). Then the set I consisting of all (v,w) € G x M such that
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k(u)F (v~ u,w) is d\(u)-integrable is a measurable subset of G x M, and the integral
/ k(v)F{v — u,w)d(u) defines a jointly measurable function of (v,w) on I.
G
The stage is now set for our first result on the transference of a.e. convergence.

THEOREM 3.4. Let S be a strongly continuous representation of G in X, satis-
fying (2.1), and let {k,}3°., be a sequence of functions belonging to L(G). Suppose
that:

(i) there is a compact subset K of G such that, for each n € N, k, vanishes
A-a.e. on G\K;
(ii) for each ¥ € L?(G), {kn * ¥}5%, converges A-a.e. on G;

(iii) the maximal operator Mf defined in (2.3) is of weak type (p,p) on X,.

Then for each f € X,, the sequence {H,(:"’j)f}?=1 converges p-a.e. on M.

Proof. ¥ix f € X, and let V be a relatively compact open neighborhood of the
identity element of G. Applying Lemma 3.1t0 @ =S5,Y = X, K, V,and y = f,
we obtain a o-finite measurable My C M and a jointly measurable F : G x M — C
satisfying (3.1)-(i), (ii). Morcover, the remaining part of Lemma 3.1 shows that, for
neENveV,

(3.5) /;kn(u)F(v —u,w)dA(u) = (Hg)suf)(w), for p-almost all w € M.
By Fubini’s theorem,
[ AL rwarsmlaw = [ issgams
SV = K)ol fli < oo
Hence, in view of (3.1)-(i), there is a p-null set A" of M such that
(3.6) F(-,w) € L?(G) for all w € M\WV.
Let ¥ be the subset of V' x My given by
{(v,w) EV XxXMp: /G ko(u)F(v — u,w)dA(u) exists for all n € N, and
RILIEO/G ky(u)F(v — u,w)dA(u) exists in C} .

In view of Scholium 3.3, ¥ is a measurable subset of G x M. It follows from (3.4)-(ii)
and (3.6) that for each w € My\WN, there is a A-null set G, of G such that

(3.7) (V\Gu) x fw} C W
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Denoting by xw the characteristic function, defined on G x M, of ¥, we see from (3.7)
and Fubini’s theorem that

L {/Mo(l - X""(“’w))d#(w)} dA\(u) = 0.

Consequently, for A-almost all v € V,
(3.8) (v,w) € ¥ for p-almost all w € M,.
It follows from (3.1)-(i), (3.5), and (3.8) that, for A-almost all v € V,
(p) e
{(H v Sy f) (w)} | converges in C, for y-almost all w € M.
n=

Since & is strongly continuous, and V is a neighborhood of the identity in G, it follows,
in particular, that there is a sequence {v;} in V such that ||Sujf—f"p — 0, as j — o0,
and, for each j € N,

{(H ,EZ) Sy, f) (w)}oo_1 converges for p-almost all w € M.

Hence the set consisting of all g € X, such that { H ,(c: )y}:°___1 converges y-a.e. is dense
in Xp. In view of the Banach Principle, an application of (3.4)-(iii) completes the
proof of Theorem 3.4. |

COROLLARY 3.9. Let B be a compact abelian group, and suppose that the

sequence {kn}5%, C L!(B) has the property that

n=1 =
for each b € LP(B), {kn *x ¢¥}5L, converges A-a.e. on B.

Let S be a strongly continuous representation of B in X,,. If either
(i) S is separation-preserving, and Np({kn}) < oo,
or
(ii) S = R®) for some p-distributionally bounded representation R of 8, and

NE({kn}) < o0,

then, for each f € X,, the sequence {H,(::‘)f}f::l converges p-a.e.

Proof. Use Theorem 3.4. together with Theorems 2.4 and 2.8. (Since B
is compact, the uniform boundedness of S follows automatically from strong con-
tinuity.) n

Similarly, we have the following result.
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COROLLARY 3.10. Let S be a strongly continuous representation of the locally
compact abelian group G in X, satisfying (2.1), and let {k,}3%., be a sequence of
functions belonging to L'(G). Suppose that:

(i) there is a compact subset K of G suck that, for each n € N, k. vanishes
A-a.e. on G\K;
(ii) for each ¥ € LP(G), {kyp + ¥}, converges A-a.e. on G.
If either

(a) S is separation-preserving, and Np{{ka.}) < o0,
or

(b) § = R® for some p-distributionally bounded representation R of G, and

NS({k,}) < oo,

then, for each f € X,, the sequence { H,(f; ) f }:;1 converges pi-a.e.

EXAMPLES 3.11. When B =: T and the representation S in Corollary 3.9 satisfies
(3.9)-(i) (respectively, (3.9)-(ii)), then the corresponding hypotheses on the sequence
{kn}32.; in Corollary 3.9 are well-known to hold for the truncates of the pericdic
Hilbert kernel when 1 < p < oo (respectively, 1<p < oo) - see, e.g., [28, The
orems V.1.1, V.2.12, and V.2.13]. As a further illustration and application of the
foregoing circle of ideas, we note that Corollary 3.10 permits transference from RV
of the Lebesgue Differentiation Theorem. This transference result (Theorem 3.12)
includes Wiener’s Local Ergodic Theorem ([29, Theorem III“]), which generalized
Lebesgue’s theorem to the setting of a finite measure space acted on by a multi-
-parameter group of measure-preserving transformations. More specifically, let xn
denote the characteristic function on RN of the closed unit ball By = {y € RV .
Hyll <1}. Let {€,}3%, be a sequence of positive real numbers convergent to . For

each n € N, define k, € L*(RV) by putting xn(z) = EN—/\}B_-SXN ( z )
n N

€n
THEOREM 3.12. Let S be & uniformly bounded, strongly continuous representa-
tion of ®* in X,. If either
(i) 1 < p < o0, and S is separation-preserving;

.

or
(i) 1 <p < o0, and S = R®) for some p-distributionally representation R of RY,
then, for each f € X, { HY fioo . converges to f p-a.e. on M, where {%,}32.; is

the sequence just described.

Proof. 1t is well-known that in either of the cases (3.12)-(i), (i), the sequence
{%,}22.; satisfies the corresponding requirements of Corollary 3.10 {27, §1.1.3, Theo-
rem 1-(b), (¢) and Corollary 1]. Consequently for each f € X, {H ,Ef; f }:021 CONVerges
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p-a.e. on M. To complete the proof it suffices to notice that ||H ,(J:‘) f-7 ”p — 0 as
n — 00, which is a consequence of the following standard reasoning. A Hahn-Banach
separation argument shows that X, is the closed linear span of {H‘E,p )(Xp) 1 €
LY(RN)}. Our claim now ensues, since {x,}52, is a bounded approximate identity
for LY(RV). n

In special circumstances, (3.4)-(ii) is known to imply that N,Sw)({kn}) < 00. In
such cases the applications of Theorem 3.4 take on a particularly simple form. We
close this section with a sample theorem illustrating this state of affairs.

THEOREM 3.13. Suppose that 1< p<2, and let S be a strongly continuous
representation of the compact abelian group B on X, such that S = R(®) for some
u-distributionally bounded representation R of ®B. If the sequence {k,}32, C L!(*B)
has the property that

(3.14) for each ¢ € LP(B), {kn * ¥}5%, converges A-a.e. on B,

then for each f € X,, {H,E?f}:;l converges p-a.e. on M.

Proof. Since B is compact and 1<p<2, the condition (3.14) implies
N,S"')({kn}) < 00, by [26, Theorem 1, p. 148]. An application of Corollary 3.9
completes the proof of Theorem 3.13. n

4. GENERAL TRANSFERENCE OF ALMOST EVERYWHERE CONVERGENCE

Broadly speaking, our goal in this section is to transfer a.e.-convergence while
relaxing the condition (3.10)-(i). In order to accomplish this, we shall require the
following extension of Lemma 3.1 from compact K to o-compact L.

LEMMA 4.1. Let u — @, be a uniformly bounded strongly continuous represen-
tation of G in a closed subspace Y of LP(p). Let L be a o-compact subset of G, and
let V' be a relatively cdmpact open subset of G. Let y € Y. Then there exist a o-finite
measurable subset N' of M and a jointly measurable function F : G x M — C such
that:

(i) F vanishes off (V — L) x N;

(ii) for A-almost allu € V—L, F(u,-) is a representing function for the equivalence
class (modulo equality p-a.c.) of @yy.

If, moreover, k € L}(G) vanishes A-a.e. in G\L, then for each v € V,

/G k() F (v — u,w)dA(u)
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exists for p-almost all w € M, and, as a function of w, is a representing function for

the equivalence class of

G, /c; k(u)O_yydA(u),

the latter integral being a Bochrer integral.
o0
Proof. Let L = U K, where {K,}3, is an increasing sequence of compact

subsets of G. For eacgzr: € N, apply Lemma 3.1 to KX,, to get a o-finite measurable
subset M,, of M and a jointly measurable function F, : G x M — C such that:
(4.2) F,, vanishes off (V ~ K,,) x Mp;
(4.3) for M-almost all u € V — K,,, Fu(u,-) is a representing function for the

equivalence class of O,y.
oo

Put N = U M,,. In particular,

n=1

(4.4) F,, vanishes outside of (V - K,) x A, for each » € N.
Suppose now that m € N, n € N, and m > n. Let
Ama = {(w,w) €V — K} x N : Faw,w) # Faulv,w)}
Since V = Ky, D V — K, it follows from (4.3) that for A-almost all u € V — K,
Fo(u,w) = F,(y,w), for g-almost allw € M.

Consequently Ay, 5, has product measure 0 in (V - K,) x . Let

o0
a=J U Amn-
n=1m>n
o
Thus 2 has product measure 0 in U (V-Kp)pxN=(WV-L)xN.

n=1
Let n € N. It follows from the foregoing that if (u,w) € [(V — K,) x N\, then
Fu(u,w) = Fp(u,w) for all m>n. Hence we can unambiguously define a function

F{,yon [ J{[(V - Ka) x N\2} = [(V — L) x N]\2 by setting
n=1
(4.5) F(u,w) = Fp(u,w) for (u,w) € (V- K,) x N\2.

Extend F to G x M by setting F = 0 on [G x M]\{[(V — L) x N]\2}. Obviously F
is jointly measurable on G x M, and (4.1)-(i) holds.
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Since 2 has product measure 0 in (V — L) x N, we see with the aid of Fubini’s
theorem (applied to the characteristic function of 21) that for A-almost allu € V — L,

we have

(4.6) (u,w) € A, for p-almost allw € N.

For n € N, it follows from (4.5) and (4.6) that for A-almost all u € V — K,,,
F(u,w) = Fp(u,w), for p-almost all w € V.

Hence by (4.4) and (4.1)-(i), we see that for A-almost all u € V — K,,
F(u,w) = Fp(u,w), for p-almost all w € M.

The conclusion (4.1)-(ii) follows readily from this, with the aid of (4.3).
To obtain the last assertion of the lemma, let k¥ € L!}(G) vanish A-a.e. in G\L,
and fix an element v of V. Using Bochner integration, we define the bounded linear

mapping T} : Y — Y by putting

Tz = / k(u)O_yzdA(u), forallz €Y.
G

We have 6, Ty = / k(u)Oy—_uydA(u). Let ¢ be the index conjugate to p. For any

g € Li(p) integration against gdp gives a continuous linear functional on Y. Hence

J@Tetu= [ [ rw@.-)@@anwnw.

Using (4.1)-(i), (ii), we see that

/M(@,,Tky)gd,u = /L /M k() (v - u,w)g(w)du(w)dA(u).

Applying Fubini’s theorem to this, we obtain:
(4.7) [ @Twen= [ [ k@F©-uw@irwiu).
M mle

Since (O, Try) vanishes outside a set of o-finite measure, and / k(u)F(v—u,w)dA(u)=
= 0 if w is not in the o-finite set A, we can complete the groof of Lemma 4.1 by
letting ¢ in (4.7) run through the characteristic functions of the subsets of M having
finite naeasure. n

Henceforth we shall denote the dual group of G by G. For k € L}(G), the Fourier
transform of k will be written k. Thus, k(y) = / k(u)y(u)dA(u), for all ¥ € G. In this
G
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section we shall develop variants of Corollary 3.10 in which the conditions (3.10)-(i),
(i) on a sequence {kn}3%, C LY(G) will be replaced by the following set of conditions
on {ka}aly:
{4.8) for each s € G and cach € > 0, there is a corresponding relatively compact
open neighborhood U of the identity element in G such that

jf (i) — kot +)1dA () < €,
G\

for all sufficiently large n ¢ N;
(4.9) sup{ f:n('y)! neN, v¢€ G"’} < 00;
(4.10) the sequence {I;’n(y)}:& converges in C, for each y € G.

Before proceeding to develoy the results of this section, we comment briefly on
the roles of the conditions (4.8)-(4.10). The condition (4.8), reminiscent of a condition
of Héormander for singular integrels [27,(2') on p. 34], is a weakening of (3.10)-(i) that
broadens the scope of our considerations. The conditions (4.9) and (4.10) will replace
the condition (3.10)-(ii), which they imply in the presence of a suitable maximal
estimate. To be more precise, let 7(G) be the linear space {p € LY(G) : ¢ has
compact support}. It follows from (4.9) and (4.10) (using Fourier inversion, and
dominated convergence on G) that

(4.11) for each ¢ € T(G), the sequence {ky * v}, is uniformly bounded and
converges pointwise on G.
Since 7(G) is norm-dense in LP(G), (4.11), taken in conjunction with the Banach
Principle, has the following obvious consequence.

ScHOLIUM 4.12. Suppose that {kn}2., C LY(G), 1<p < oo, and NS)({ka}) <
< oo. If (4.9) and (4.10) hold, then for each ¥ € LP(G), the sequence {kn *
#9)}9%2_ | converges A-a.e. on C.

In order to give effect to the conditions (4.8)-(4.10) on {k,}, C LY(G), we
shall require the following general result concerning representations.

THEOREM 4.13. Suppose that 1 < p < 00, and S is a uniformly bounded, strongly

continuous representation of G in X,. Let
XP =ifeX,:Suf=f forallueG},
ond et X&) be the linear span in X, of
{f -S:f:5€C, f= Hé")h for some b € LP{p) N L™ (), and some g € @m(G)},

where 840(G) is the set of 2}l continuous complex-valued functions on G having com-
pact support. Then
£
Dp = Xgp) + X%P)
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is norm-dense in X,. Moreover, if {kn}3, C L*(G) satisfies (4.10), then

[= ]}
(4.14) {H,(c’:‘)z:} | converges p-a.e. on M, forallz € X§p).

n=

Proof. Since 1 < p < o0, X, is reflexive, and it follows from [5, Theorem 2.1]
that
Xp = X @ cm {(I - S,)X, : u € G},

where I denotes the identity operator of X, and “clm” stands for “closed linear span
of”. Since the linear span of {H'(pp )X,J P E Ll(G’)} is norm-dense in X,, €o(G) is
norm-dense in L!(G), and LP(p)N L*(y) is norm-dense in X, the desired conclusion
for D, now follows.

Suppose next that z € Xf"). For each n € N,

HP)z = [ /G k,.(u)d,\(u)] z = kn(0)z.

Application of (4.10) completes the proof of Theorem 4.13. |

KEMARK. In the case p = 1, the linear manifold D, as defined in the statement
of Theorem 4.13 need not be norm-dense in X, (see [5, proof of Theorem (3.8)-(ii)]).
The stage is now set for the main result of this section, which is expressed in the

following theorem.

THEOREM 4.15. Let R be a strongly continuous p-distributionally bounded repre-
sentation of G, and let {k,}3%., C L'(G) satisfy the conditions (4.8)-(4.10). Suppose
that 1 < p < 00, Np({kn}) < 00, and put S = R(®). Then for each ¢ € L?(G), the
sequence {kn * ¥}, converges A-a.e. on G and also in the norm topology of L*(G).
Moreover, in the notation of (2.2) and (2.3), we have that Mf is of strong type (p, p)
on X,, and for each f € L?(p), the sequence {H,E’:‘)f}:o_l converges pu-a.e. on M and
in the norm topology of X,.

Proof. The asserted convergence A-a.e. of {ky * ¥}, is assumed by Scholium
4.12. The convergence of this sequence in the norm topology of LP(G) then follows
by dominated convergence, since Np({kn}) < co. Since S is separation-preserving,
Theorem 2.4 shows that M# is of strong type (p,p). In order to complete the proof,
it now suffices, in view of Theorem 4.13, to show that {H,(:; )W}:o_l converges u-a.e.
on M, whenever ¥ € Xﬁ” ) has the form ‘

(4.16) ¥ = f— S, f, where s € G and f = Hép)h, for some g € €po(G) and some
h € LP(p) N L*=(p).

Fix¥,s, f, g, and h asin (4.16). For each n € N, we choose a fixed representative

of the equivalence class (modulo equality p-a.e. on M) of H,(c’: ). This representative
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(also denoted H g: )Jl) will be fixed throughout the remainder of the present proof. Let
Ky denote the compact support of g. Henceforth L will be a fixed g-compact subset
of G such that L is symmetric and contains

Ko, |J{z €G:ka(z) #0}, | J{z € G : kn(z) = kn(z +5) # 0},
n=1 n=1

[G {z € G kn(z) # O}J + Ky, and

n=1
[G {2: €G: kn(:z:) - kn(z + 5) # 0}} + K.

n=1

Let € > 0 be given. In accordance with (4.8), choose a symmetric, relatively
compact open neighborhood U, of the identity element of G such that s € U,, and

for some n; € N, we have
(4.17) / {kn(u) — kp(u+ s){dA(u) <e, foralln >n,.
G\U.

Choose N; CMand F, : GxM — Cfor S, L, U, and h in accordance with Lemma
4.1,
For n € N, Bochner integration shows easily that

(4.18) HI(:,’,)LD = H[(ﬁ-(k,.)mh’

where (k,)s; denotes the translate of k,, by s. Notice that for each n € N,

(4.19) jknl*|gi and {[kn — (kn)s]| * |9] each vanish on G\L.
It follows from (4.18), (4.19), and the last conclusion of Lemma 4.1 that for each
n €N,

(4.20) (HDD)@) = [ (0 = () £ 0) (), )0,

for p-almost all w € M.
Hence for each n € N, we have for pg-almost all w € M,

(4.21) (HPW) (w) = /G /L lkn — (kn)s)(u — 8)g(t) Fe(—u,w)dA(t)dA(u).

It follows from Theorem 2.9-(ii) and Lemma 4.1-(ii) that for A-almost all u €
6 Ug - L,

(4.22) Fe(=us Nlzoou) < |IPllzooqu)-
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Applying (4.22) and Fubini’s theorem to the characteristic function defined on (U, —
—L) x N, of the set

{(w,w) € (Ue = L) x N : |Fe(—u,w)]| > [|Alleo},
we find, after taking Lemma 4.1-(i) into account, that for y-almost all w € M,
(4.23) |Fe(—u,w)| <||hllo, for A-almost all u € U, — L.

It follows from (4.23) and (4.19), with the aid of Fubini’s theorem for locally compact
spaces [20, Theorem 13.9], that for each n € N, we have for p-almost all w € M,

[kn — (kn)s](u — t)g(t) Fe(—u,w) € LI (dA(t) x dA(u)).

It follows by another application of Fubini’s theorem for locally compact spaces, this
time to (4.21), that for each n € N, we have for y-almost all w € M,

(HPW) () = /G /G [kn — (kn)s)(u — 8)g(t) Fe(—u,w)dA(u)dA(t) =

(4.24) = [ [ te = ) da®F(~u — t0)r(waxe) =

= / / [6n = (kn)s)(w)g(t) Fs (—u — £, w)dA(t)dA(u).
GJG

Let xv.-k, denote the characteristic function, defined on G, of U, ~ Kj, and, for
each n € N, let 9N, = {z € G : kn(z) — kn(z + s) # 0}. From (4.24) we see that for
each n € N, the following holds for pu-almost all w € M:

(HW) (W) =

(425) = /U /G [k ~ (ko) (W)X0. Ko (—t — )0(2) Fe(~t — t,w)AA(£)dA(w)+

+ / b — (ka)s)(w)g(t) Fx (—u — £, w)AN(E)dA(u).
(G\U)NN,. VKo

By our choice of L, M, + Ko C L. It follows from this, (4.17), and (4.23) that for
n 2= ne, we have for y-almost all w € M,

J [t = () )@ @)F: (- = 1,)aN D) <
(G\U)NN, J Ko
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(4.26) < kil Le@mliglizr(a)e-

Similar reasoning based on (4.23) shows that for each n € N, we have for p-almost
allw e M,

[kn = (kn)s)(u)xv. - ko (—0 = )g($) Fe (—u =~ t,w) € L1 (dA(t) x dA(u)).
Consequently for each n € N, we have that for g-almest all w € M, we can add

[ [ o= G d@r. s (= = 090D (- = £,0)dNDINW)
G\U.J&

to both sides of (4.25) to get:
(HDZ)(w@)+

+ ] \ / R = (b )e 1006wt = = 1)) P (0 = 1, 0)AN(E)ANw) =
G\U.JG

@12n) = j{; L o = (k) J (X0 5o (~t = £)9(E) Fa (e — £, w)dA(£)dAN )+

+ / / K = (k) g () o~ = £, w)AA(E)AA ().
(G\U ). J K

Ancther application of (4.23). this time to the iterated integral occurring in the first
member of the equation {(4.27), shows that for n > n., we have for y-almost all w €
€ M that this iterated integral has absclute value not exceeding |[hlize(niigliz:a)e-
Combining this fact with (4.26), we see from (4.27) that for each n > n, the following
holds for g-almost all w € M,

@ (HPw)(w) - /G /G [k = (a)s](2)x0. ko (2 — g {t) Fe (~u — £, w)dA(t)dM(u) | <

(4.28) < 2eBlic=uliglin:on-

Notice that we can also assert that for p-almost all w € M, we have (4.28) for all
n 2 ne. Applying the translation-invariance of Haar measure and Fubini’s theorem to
the iterated integral in (4.28), we see that for g-almost allw € M, we have for n 2 n,:

/G L [k — (kn)s (0) X0 Ko (— = £)a(E) Fa (-t — £,0)dA(t)dAN(w) =

= ‘/;\/;;[kw - (kn)s](u)XUg—K@("‘i)g(t - U)Fe(—t;w)d/\(t)d/\(u) =
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(420) = /G /G [k — (En)e](W)x0.— Ko (~2)0(t — ) Fe(—t,w)dA(u)dA(2) =

= /G XU+ Ko &) Fe(=1,0) [k — (kn),] * 9) (H)AAC).

It is an immediate consequence of the facts established at the outset of the proof of
the present theorem that {[k, — (kn)s] * 9}5%; converges in the norm topology of
L?(G) to a fixed function @ € LP(G), which is independent of ¢, n € N, and w € M.
Moreover, for p-almost all w € M, it follows from (4.23) that

1 1
Xt (OF.(—t,w) € L(@N(D),  where — + = =1

Applying these facts to (4.29) and (4.28) we find that for p-almost all w € M, we
have for all sufficiently large m € N, n € N,

|(H,9;)u7) W) - (H,E‘,’n)v'/) (w)l < 4e||hllzoo(uyllgllacay + 2

We have shown that for each n > 0, there is a measurable subset D,) of M such
that p(Dy,) = 0 and such that for each w € M\ Dy, we have

|(H#P0) @) - (HP®)(w)| < 1, for all sufficiently large m €N, n €N.

o0
By letting n run through the sequence {1} , we see that the sequence { H ,(cp )LT/}:°_1
] j:l n =
is Cauchy p-a.e. on M. This completes the proof of Theorem 4.15 |

COROLLARY 4.30. Let R be a strongly continuous p-distributionally bounded
representation of G, and let {k,}3%, C L'(G) satisfy the conditions (4.8)-(4.10).
Suppose that N{*)({kn}) < 0o, and that for somer € (1, +00), we have N (ko)) <
< 0. Then for each ¥ € LY(G), the sequence {k, * ¥}, converges A-a.e. on G, and
for each f € L'(p), the sequence {H,(ci) f }:°=1 converges y-a.e. on M, where H,(ct) fis
defined by (2.2) for the representation S = R(1).

Proof. The first conclusion is an immediate consequence of Scholium 4.12. To
obtain the second conclusion, fix an index p € (1,r). By the Marcinkiewicz interpo-
lation theorem [15, Theorem II1.2.11], Np({kn}) < co. Hence we can apply Theorem
(4.15) to R®, and thereby infer that for each f € LP(u), the sequence {H ,9: ) f }:°=1
converges u-a.e. on M. Recalling the general definitions for R®) and R(), we see im-
mediately that for each g € L' ()N L™ (1), the sequence { H,(ct)g}:o___l converges y-a.e.
on M. By Theorem 2.8, the maximal operator defined by the sequence {H ,(ci) }:°=1 is
of weak type (1,1) on L'(u). Since L(u) N L°(p) is norm-dense in L*(u), the proof
of the Corollary can now be completed by invoking the Banach Principle. ]



300 N. ASMAR, E. BERKSON, T. A. GILLESPIE

EXAMPLE AND REMARKS. 4.31. The two general results in this section regarding
transference of almost everywhere convergence (Theorem 4.15 and Corollary 4.30)
have imposed on the convolution kernels extra conditions in the form of (4.8)—(4.10)
together with suitable maximal bounds. It is well-known that in the absence of any
extra conditions a sequence of convolution kernels {k,}5%,; € L}(G) can produce A-
a.c. convergence when applied to each element of LP((F), whereas some representation
of G by measure-preserving transformations of the points of M will fail to transfer
this almost everywhere convergence to X, (for an example when p = 1, see [14,
Theorem 1]). As a counterpoint to the results of this section, we include here a
simple example of this phenomenon in which such a representation does not transfer
the almost everywhere convergeace to Xp, for any p € [1,+00). Take G = R, and
let A be Lebesgue measure. Define the sequence {k,}3%, by taking k, to be the
characteristic function of the interval {n,n + 1] for cach n € N. Fix p € [1,+oc).
Given ¢ € LP(R), it is easy to sez from Holder’s inequality that for n € N and z € R,

=N

s )@F < [ WPy

T=N=4

[o <]
whence Z | (kn * ¥) (:c)ip < 00, and consequently

n=1

(4.32) {kn * ¥}, converges to 0 pointwise on R, for each ¥ € LP(R).

Since for each n e Nand sc R

1, ifs=0,
icn(s) = i
1—e™ _ins
—_—e fs#0
e , ifs#0,
it follows that
. 0 ,
(4.33) {kn(s)} | converges if and only if s € 27Z.
ns

Clearly (4.9) holds and (4.10) fails in the present circumstances.
For any relatively compact open neighborhood ¥/ of 0 in R, it is easily seen that
for all sufficiently large n € N,

/ (1) = kn(u + 1)|du = 2.
R\U

Hence (4.8) now fails when s = ¢ = 1.
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Next we show that in the present set-up, N,gw)({k,,}) = 00. Let M denote the
maximal convolution operator on LP(R) defined by the sequence {k,}. Thus, for

¥ € LP(R) and z € R,
IR

It is easily seen that (My)(z + 1) > (My)(z). Using this we can readily infer that
forn € Z, v €N, and t a positive real number, we have

(M) () = sup

A([nyn+1)Nn{z eR: (MP)(z) > t}) <
SA([n+v-1Ln+v)Nn{zeR: (MY)(z) >1t}).

So taking v =1,2,..., m, we obtain

mA([n,n+1)N{z € R: (Mp)(z) >}) <
<A({z€R:z>n, and (MyY)(z) >t}) <
SA({zeR: (My)(z) > t}).

If N,Sw)({kn}) were finite, we could let m — +oo to conclude that
Mip =0 A—a.e. forevery ¥ € LP(R),

which is obviously false. So N{“)({kn}) = o0, as asserted.

To complete the considerations of this example, we shall exhibit a representation
of G = R by measure-preserving transformations of T such that the induced represen-
tation 5 in LP(T) does not transfer the almost everywhere convergence expressed in
(4.32). Let S be the strongly continuous representation of R by isometries of LP(T)
defined as follows:

(Sif)(2) = f(¢'*2), fort€R, feL’(T), z€T.
Take fo € LP(T) to be the identity mapping of T. Then
HP fo = kn(D)fo.

Since 1 ¢ 2nZ, it follows from (4.33) that { (H,Ei ) fo)(z)}:o=1 is divergent for almost
allzeT.
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5. SOME APPLICATIONS

Having already described some applications of §3 in (3.11) and (3.12}, we now
take up some applications of §4 by specializing the considerations therein to classi-
cal kernels. As will be noted, these results generalize their classical ergodic theory
antecedents to the setting of distributionally bounded representations.

The counterpart of the discrete pointwise ergodic theorem. (5.1) Forn = (, 1,.. .,
let xn be the characteristic function defined on G =Z of {m € Z : —n < m <0}, and

define k, € £}(Z) by putting k, = It is a well-known result of Hardy

1
(n+ D)X
and Littlewood that Ny, ({ka}) € _I: pfor1<p<oo ([18], {19, Theorems 326 and
394]). It is also well-known fromp[30] (see [13, Lemma VIIL6.7 and p. 729}) that
Nl(w)({kn}) < oo (as can be seen, for instance, by applying [13, Lemma VIIL.6.7] to
the left shift on £!(Z)). The corditions (4.8)—(4.10) are readily verified for {kn}5%;.
Thus Theorem 4.15 and Corollary 4.30 when applied to the present sequence {k.}3%,
include Birkhoff’s pointwise ergodic theorem [8]. In view of Theorem 2.9, our result
in this instance affords a slight extension of the Dunford and Schwartz pointwise
ergodic theorem [13, Theorem VIIL6.6] in that we do not require the operator T in
the discrete ergodic averages to be contractive on Xp; however, in contrast to the
Dunford and Schwartz context, our group setting does require hypotheses regarding
the invertibility of T. A precise formulation of the discrete pointwise ergodic theorem

resulting from Theorem 4.15 and Coroilary 4.30, in conjunction with Theorem 2.9, is

as follows.

ProPoSITION. Let T : X; — X, be an invertible linear operator such that
sup{{|T™{l: : m € Z} < oo,

and suppose that for each f € L'(p) N L= (p), we have ||T flico = [T flloe = [ flloc-
Then for each p € [1, +00), T has a unique extension from L}(u)NL™(u) to a bounded
linear mapping of X, into X,, (also denoted by T'), and for each f € X, the sequence

(Fhnmi)

m=0 n=0

converges p-a.e. on M.

We also remark here that, in particular, the pointwise ergodic theorem has been
generalized in the direction of measure-preserving actions of o-compact amenable
locally compact groups in c-finitc measure spaces {cee, e.g., [14] and the references

therein).



TRANSIFERENCE OF ALMOST EVERYWHERE CONVERGENCE 303

Tke classical Calderén-Zygmund singular integral kernels. (5.2) In [12] M. Cotlar
showed that theorems on singular integrals could be generalized in the context of
crgodic theory. Subsequently, in [9], A. P. Calderén showed that the maximal etgodic
theorem and the results of Cotlar on ergodic singular integral operators could be
made to follow directly from the known properties of the relevant classical operators.
Calderén’s methods proceeded from multi-parameter groups of measure-preserving
transformations acting in a o-finite measure space, and provided maximal bounds
and existence theorems for ergodic singular integral operators. This seminal approach
was expanded into a wider framework of transference methods in [10] and [11]. In the
same spirit, Corollary 3.10, Thecrem 4.15, and Corollary 4.30 above can be viewed as
descendants of the results on almost everywhere convergence in [9, Theorems 2 and
3]). We shall now sketch a proof that the truncates of singular integral kernels satisfy
the hypotheses of Theorem 4.15 and Corollary 4.30. This will generalize the existence
results for ergodic singular integrals in {12] and [9] to the setting of distributionally
bounded representations.

We shall consider a Calderén-Zygmund singular kernel & : R®\{0} — C having
the foria 0

He)= oy (= eRM\(0)),
for some function £2 on RV\{0} satisfying:
(6.3) 2(az) = 2(z), for a > 0, z € R¥\{0};
(5.4) / 2(z)ds(z) = 0, where Iy_; = {z € RV : ||z|| = 1}, and dg is the

N-1
induced Euclidean surface measure on Xy..1;

1
(5.5) / ‘—u%)-dé < 400, where
0

w(é)= sup |2(z) - 2(=")].
lz—='l| < 6
llzl=[l="|=1

For n € N, define k, € L}(RY) by putting

(5.6) k() = {k(zx for 1< lell <

0, otherwise.

It follows from (5.4) by using polar coordinates that kn(0) = 0 for all n € N, and this
fact together with [27, §11.4.3-(i), (ii)] shows that {kn}s%, satisfies (4.9) and (4.10).
Moreover, from [27, Theorem 4 in §I1.4.5], we have Np({kn}) < 0o for 1 < p < o0,
and N{")({kn}) < 0o. Thus, in order to show that the present sequence of kernels
{kn}3, satisfies the hypotheses of Theorem 4.15 and Corollary 4.30, it remains only
to verify (4.8). Since the condition (4.8) is roughly akin to a “o(1)” variation of
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Hormander’s condition for a single kernel (27, (2'), p. 34]), we proceed from the fact
that our kernel k is known to satisfy Hérmander’s condition [27, §I1.4.2). This implies
that for y € R¥\{0}, |k(z) ~ k(z + y)| is a Lebesgue integrable function of z over
{z € RN : ||z]| > 2||y||}, and so, given y € R¥\{0} and € > 0, there is an Mp > {[y|
such that:

(5.7) / [k(x) — k(z + y)|dz < e, forall M > M.
H=ll>M

1
For n € N such that n > Mo and M, — ||y|| > - we have:

/ lba(e +) = kn(o)ldz = [ lea(2)]dz+
llzil>Mo

lizil> Mo fiz+yii Z nllzl <n

+ / bz + ) — b(z)|dz+
lsll> Mollo+uli<n 2] < o

+ k(2 + y)ide.
ll=-+yll<n.fizli>n

This shows, with the aid of (5.7}, that:

/ (2 + ¥) — Ba(2)ldz < € + / ko (2)|da+
lizli> Ao n=ligh <=l <

+ len(& + 9)da.
n-ligll Slle+ull <n

We have found that, for » > max {Mo, —-=—]—-=,—},
Mo — [lyl
/ |kn(z +y) — kp(z)jdz < e + 2/ |k(z)|dz.
lIzll> Mo a-llyi <zl <n

Changing to polar coordinates in the last integral, we obtain:

n
k(2)|dz <s(Zn-1)|{2l|co log ———.
| (z)l z \C( N 1)” “°° g n— “y”

/n—llyli Slizll€n

This establishes (4.8) for our sequence of truncates of k. We summarize the outcome

of this discussion in the following.
PROPOSITION 5.8. Let & : RV\{0} — C have the form

2(z)

k(l‘) = W’

for some function 2 on RN\ {0} satisfying (5.3), (5.4), and (5.5). Then the sequence
of truncates {k,}3; C L*(RN) defined in (5.6) satisfies the hypotheses of Theorem
4.15 and Corollary 4.30.
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We remark that, in particular, Proposition 5.8 includes the sequence of tiuncates
for the Hilbert kernel of R.

The discrete Hilbert transform. (5.9) As would be expected from Proposition 5.8,
the sequence of truncated discrete Hilbert kernels on G = Z satisfies the hypotheses
of Theorem 4.15 and Corollary 4.30. In order to avoid repetitious ideas, we shall only
describe the bare essentials of the analogous proof for the discrete Hilbert transform.
Let b : Z — R be the discrete Hilbert kernel defined by k(k) = k=1 for k € Z\{0},
and h(0) = 0. For n € N, let h,, € £1(Z) be the n-th truncate of h defined by putting
ha(k) = h(k) for k € 2, |k|<n, and h,(k) =0fork € Z, k] > n. Forallk € Z,
h(k) = go(k), where go € BV(T) is the function given by: go(e't) = i(r —t) for
0 <t < 2w, and go(1) = 0. It is well-known (see, e.g. the reasoning in [31, Theorem
I11.3.7]) that for any f € BV(T), the partial sum sequence {S,(f, )}, for the

Fourier series of f satisfies
var(f, T
15206, oo < LT sup ), o all m 0.
z€
It follows from (22, Corollary §11.2.2., p. 53] that

E h(k)z¥ — go(z) as n — +o0, forall z € T.

k=-n
It is clear from the last two facts that {h,}3%, C £1(Z) satisfies (4.9) and (4.10). It
is well-known that Np({h,}) < oo for 1 < p < oo, and that Nl(w)({hn}) < oo (see,
e.g., [21, Theorem 10] and [24, Lemma 2]). So it remains now only to establish (4.8)
for {h,}32.;. Given m € N and € > 0, choese N € N such that N >2, and

Elementary calculations show that for n > (N + 1)m, we have:

m —-n4+m-1 1
3o k) bk +m)< Y et Y
5|2 Nem 1> N k(6] =m) 4= |k +ml]
whence ,
€ m
Z |ha(k) — ok + m)| < 5 + m,

ikl 2 New
for n > (N + 1)m. It follows that (4.8) holds for s = m when m > 0. The corre-

sponding result for m < 0 follows in turn by applying this fact to (—m) and taking
into account that h, is odd for all n € N. This completes the proof of (4.8) in the
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present setting. The following proposition describes the generalization of the discrete
ergodic Hilbert transform which arises by applying Theorem 2.9, Theorem 4.15, and
Corollary 4.30 to {hs}22,.

Prorosrtion 5.10. Suppose 1 € p < oo, and T is an invertible continuous linear
mapping of X, into X, such that

sup{{lT™}l; : m € L} < o0,
and
(5.11) T flloe = T filoo = [ fileo.  forall f € ZP(u) 0 L™ (p).

Then for each f € LP(p), the sequence

(28]

~ L
(512) Z ;:E'Ifmj'

0! n el

converges p-a.e. on M. If1 < p < oo, then, for cach f € X, the sequence (5.12)

also converges in the norm topology of X,.

REMARKS 5.13. (i) Recont results of R. Sato [25] describe weaker sets of hypothe-
ses which ensure the conlusions of Proposition 3.10 when g is o-finite. Specificaily, if
1 < p < w, the two conclusions of Proposition 5.10 remain valid if we replace (5.11)
of the hypotheses by the requirement that T be separation-preserving on LP{y) {25,
Theorems 1 and 2]. Moreover, when p = 1, [25, Theorem 3] states that the p-a.c.
convergence conclusion of Proposition 5.10 holds for each f € L!(u), provided that
T is separation-preserving on L*(p) and that {7 : m € Z} is uniformly bounded on
L'(p) with respect to the L*(y)-norm and uniformly bounded on L!(p)N L (u) with
respect to the p-essential supremum norm. (ii) When 1 < p < 00, an example of an
operator T satisfying the hypotheses of [25, Theorems 1 and 2], but not of Proposition
5.10, is provided by defining T : LP(R) — L”(R) as follows: (Tf)(z) = BY/* f(8z),
where £ is a positive constant other than 1.

The first author is grateful to the University of Missouri
for its Summer Research Fellowship.
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