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ANALYTIC AUTOMORPHISMS OF A FIELD OF COMPACTS

MICHAEL P. LAMOUREUX

1. INTRODUCTION

A basic notion in the theory of operator algebras is the construction of crossed
product algebras from covariant systems, be it with groups, groupoids, groups acting
on C*-algebras, groups acting on von Neumann algebras, or foliations of spaces, to
name just a few examples. (cf. [4], [15], and [17].) The unfortunate fact is that the
construction of -algebras by this process tends to lose information; the construction
may produce isomorphic #-crossed products from non-isomorphic covariant systems.
(See for instance, Wang’s example in [20] of two smooth, free actions of the real line
on the plane with non-isomorphic foliations yielding isomorphic C*-crossed products.)
Recent work indicates that this deficiency results from restricting one’s attention to *-
algebras, as certain non-self-adjoint algebras arising naturally in the crossed product
construction often retain more information about the underlying covariant system.
When the group of integers acts on an abelian C*-algebra, the problem goes back to
Arveson in [1] and Averson and Josephson in [3], where two non-self-adjoint crossed
products are shown to be unitarily equivalent only if the ergodic transformations
of the covariant systems are measureably conjugate. Similarly, DeAlba and Peters
consider integers acting on a finite dimensional algebra in [6], while in [10], the au-
thor examines topological ordered groups acting freely on the maximal ideal space of
abelian C*-algebras. In all these instances the non-self-adjoint algebras retain much
more structural information about the covariant systems.

. In each of these instances, a locally compact group G acts on a C*-algebra A, with
a regularly closed subsemigroup ' of G determining the so-called analytic subalgebra
A xq % of the crossed product A x4 G, as described in the work by McAsey and Muhly
in [14]. This non-self-adjoint algebra is defined as the completion of the convolution
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algebra L1(X, A), which sits as a subalgebra in *-algebra L!(G, A) used to define
the crossed product, where the group action a introduces a “twist”in the convolution
product. The present work is motivated by an attempt to understand the simplest
case where the group is neither discrete nor freely acting; namely, where the real line
acts on a one-torus by rotation. Here, A x4 G is the transformation group C*-algebra
C*(R/Z,R) which by Green [8] is canonically isomorphic to C(T)®K, with T the circle
of complex numbers of modulus one and K the algebra of compact operators on the
Hilbert space L2([0,1]). It will be shown that this isomorphism maps A x4 Rt to the
subalgebra of C(T)®K consisting of those K-valued continuous functions that extend
to analytic functions on the open disk, and taking values at the origin in the Volterra
algebra of “lower triangular operasors”on L?([0,1]). The analytic automorphisms of
C*(R/Z,R) will be characterized, that is, those C*-automorphisms which preserve
the analytic subalgebra A x, R*. It turns out that each such automorphism induces
naturally an orientation-preserving homeomorphism of R/Z, there by recovering the
essential structural information of the underlying space.

The analysis does not depend in any essential way on the crossed product struc-
ture of Ax,R¥, so Section 2 begins by replacing A x o Rt with a more general analytic
subalgebra Ay in C(T) ® K of K-valued analytic functions on the disk with value
at the origin in the nest algebra determined by the nest A”. Theorem 1 describes an
obvious class of analytic isomorphisms for this algebra, which may be described as a
rotation of the disk followed by a unitary transformation of “shifted”nests. Section
3 is devoted to showing that these are the only analytic isomorphisms, while Section
4 restricts attention to the group action case. Proposition 7 describes the canonical
mapping of A xR mentioned above, while Theorem 8 characterizes the analytic au-
tomorphisms for the real action. Theorem 9 characterizes the analytic automorphisms
for the case of a cyclic action by the integers on a finite space, wherein the algebra Ayr
is the algebra of analytic functions from the disk into n by n matrices, taking lower
triangular matrix values at the origin. This finite cyclic action and matrix algebra
were examined earlier by McAsey in [13], in a study of invariant subspaces.

2. NESTS AND ANALYTIC SUBALGEBRAS

Let H denote a separable Hilbert space, with X the algebra of compact operators
on H. A nest N in H is a linearly ordered, strongly closed lattice of projections
containing 0 and I. Let K denote the subalgebra of compacts contained in the nest
algebra determined by N. That is, Kyy = {T € K : TP = PTP, P € N'}. By the
Erdos Density Theorem, K determines A as its lattice of invariant projections. (cf.



ANALYTIC AUTOMORPHISMS OF A FIELD OF COMPACTS 81

[6]). With T the group of complex numbers of modulus one, let C(T,K) denote the

C*-algebra of continuous functions from T into K. Note that polynomials in z and
n

271 with coefficients T} in K, of the form Z 2Ty, are norm dense in C(T,K).

k=-n

Define the analytic subalgebra Ay in C(T,K) as the norm closure of polynomials in

z alone, of the form szTk, with Tp in K and the remaining T} in K, £ > 0. Of
k=0
course, Ay is a non-self-adjoint algebra. By extending the Fourier transform on T to

operator-valued functions, it is easy to see that A, is precisely the algebra of functions
in C(T,K) whose negative Fourier coefficients are zero and whose zero-th coefficient
is an element of Kxr. Equivalently, Ay is the algebra of functions in C(T,K) with
operator-valued analytic extensions to the interior of the unit disk in the complex
plane, taking values in K, at the origin.

If N and M are two nests in K with U a unitary such that UNU* = M, then
the *-automorphism p defined by

p(F)(z)=UF(2)U*, FeC(T,K), z€T,

maps Ay onto Apg. Any *-automorphism mapping Ax onto Apxq will be called an
analytic automorphism relative to analytic subalgebras Ax- and Axq. A slightly more
general analytic antomorphism is obtained by also allowing a rotation of the circle T
by-an element A in T, so that z maps to zA. The interesting analytic automorphisms
occur when there is a unitary which shifts the “bottom half” of the first nest A" onto

the “top half”of M, and vice versa, as in ¢he following theorem.

THEOREM 1. Fix A in T, P and Q projections in nests N' and M, respectively,
and U a unitary such that UPNU* = Q*M and UP*NU* = QM. Then the
C*-automorphism p of C(T,K) given by

p(F)(2) = (Q + 2AQ )YUF(2A)U*(Q + 22QY)", FeC(T,K), z€T,

is an analytic automorphism mapping Ay onto Ap.

Proof. It sufficies to consider how p acts on the dense set of polynomials in Ay
n
of the form F(z) = Z 2*Ty, with T in K and Ty in K. The image under p is the

k=0
polynomial function

7 INTIQUTWU* QL + 2°(QUTOU*Q + AMQUTU* Q1) + order z and higher.

Since Ty is in Kur, 0 = UPLToPU* = QUTHoU*Q™, so the 2~ coefficient is zero.
Since @ is in M, the term QUTU* Q' is in K4, as is QUTU*Q = UPLTo PLU*,
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so the 20 coefficient lies in K o4. Thus polynomials in Axr map to polynomials in Ay.
To see this map is onto all polynomials in A, note the inverse of p takes a function
G(z) to the function

P HG)(2) = (P 4+ 22X P PYYUG(AYU(P + 227 tPLY, z €T,

which is of the same form as p, with the roles of A" and M reversed. [ ]

3. ANALYTIC AUTOMORPHISMS

This section establishs that every analytic automorphism of C(T,K) is of the
form described in Theorem 1. It is convenient to recall some elementary facts about
the double centralizers of the algebras under consideration; that is, their multiplier
algebras. First, note that algA/, the algebra of bounded operators in B{H) leaving
invariant the range subspaces of projections in A, is exactly the multiplier algebra of
Ka = K NalgV, since Ky contains a bounded approximate identity and is strong*
dense in algN. (cf. [5]). The diagonal algebra Dy, defined as algh N algh™, is
the commutant of the nest of projections. As for C{T,K), it is easy to compute
that its multiplier algebra is the C*-algebra of strong* continuous functions from the
circle into the bounded operators on H, herein denoted by C.(T, B(H)), which acts
pointwise on C(T,K). As the subalgebra Ay has a bounded approximate identity
for C(T, K), there is a natural inclusion of its multiplier algebra into C.(T, B(H)), by
Proposition 2.5 of [14]. By the extended Fourier transform, M(Ay ) is identified as
the subalgebra of functions in C, (T, B(H)) whose negative Fourier coefficients vanish,
and whose zero-th coefficient lies in algV. That is,

M(Ap) = {F € C(T,B(H)) : F(n) =0, n < 0, F(0) € algN}.

Every automorphism of the C*-algebra C(V,K) extends to an automorphism of its
multiplier algebra, (¢f. {15]), and an analytic automorphism p mapping Axr onto A
extends to an automorphism of C.(T, B(H)) mapping M (Au) onto M(Aas). Since
p is a “-map, its extension maps the diagonal M(Ayx) N M(Ax)* onto
M(Am) N M(Am)". Again by the Fourier transform, note that M(Ax) N M(An)*
is just the subalgebra in C.(T,B(7{)) of constant functions F(z) = Tp, with Tp any
element in the diagonal Dy of the nest A.

Given a homeomorphism # of the circle and a strongly continuous path z — U,
of unitaires, it is easy to writc down an automorphism of C(T,K); forcing it to be
analytic puts many restrictions on the homeomorphism and the unitaires.
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PRroPOSITION 2. Let p(F)(z) = U,F(0(z))U; define a C*-automorphism of
C(T,K), where 8 is a homeomorphism of T and z — U, is a strongly continuous path
of unitaires. If p is analytic, mapping Ay onto Ap4, then @ is analytic, the unitaires
U, satisfy U, DyU} = Dp, and the unitaires W, = U, U} are in the von Neumann
algebra generated by the nest M. Moreover, there exist linear maps a_1, a9 and a
on K, with

W, TW} = 0(2)"*a-1(T) + ao(T) + 8(2)ar(T), T€K, z€T.

Proof. The polynomial F(z) = zI is an element of M(Ay) so its image G(2) =
= 0(z)I under the extension of p must be in M(Ar). Thus the negative Fourier
coefficients of the function 6(z) vanish, so 8 is analytic.

To see that W, is in the von Neumann algebra generated by the nest M, which
is just the commutant of the diagonal Dy, fix an operator S in Dypy, and let the
constant function G(z) = S denote an element of M(Axm) N M(Aam)*. Since the
multiplier extension of p maps M(Ay) N M(Ax)* onto M(Am) N M(Arm)*, there
exists an operator T in Dy and a constant function F(z) = T in M(Anx) N M(Apx)*
with p(F) = G. Thus

U.TU; =S =U,TU}, z€T,

so W, = U,U; commutes with S, for all §in Dapy. Thus W, is in the commutant.
Moreover, since the extension of p is onto, every S in Dpy is achieved as above by
some T in Dpr, so U, DyU)} = Dpy.

Finally, let F denote a function in Ay of the form F(z) = zUyTUy, with T in
K. Its image under p is a function p(F)(z) = 6(2)W,TW; which must be analytic,
so expanding as a power series in 6(z) yields

[o°]
W.TW; = ) 6(2)%ar(T).
k=-1
Considering T* instead, observe that W,T*W} must also have a series expansion
beginning with a term of order 6(2)~!; but starring the last equation also gives an
expansion for W, T* W, with negative terms 8(z)~2a,(T)*, 6(z)~3a3(T)*, and so on,
which must vanish. a

These essentially polynomial actions on the compacts are interesting in them-
selves, in that they arise only in a very simple form, as the following lemma shows.

LEMMA 3. Let z — W, be a path of unitaires from the circle T into an abelian
von Neumann algebra, with Wy = I, such that there are linear maps a_,, ag, a; of
K to K with

W.TW} = z7'a_1(T) + ao(T) + 2za1(T), T€K, z€T.
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Then there exists projection @ in the von Neumann algebra such that
W, TW! = (Q + zQY)T(Q + 2Q*)*, TeKk, z€T.

Proof. When T is a Hilbert-Schmidt operator, so is W,TW, hence the linear
maps a; take Hilbert-Schmidts to Hiibert-Schmidts; indeed, by the polynomial form
above, the a; act as bounded operators on the space of Hilbert-Schmidt operators.
Thus, one may consider Adw; and a; as elements of B(H) ® B(H), the algebra of
bounded operators on the Hilbert tensor product H ® H, where H is the conjugate
space of H.

Rewriting the expansion for Adw . in terms of operators on H @ H yields

W.@W, = z"la_l + ap + za,

where W, @ W, is an element of W ® W, with W denoting the abelian von Neumann
algebra containing the W,. Uniqueness of the series expansion shows the a; also lie
in W ® W. Taking adjoints gives

W @W! ==z"'a] +a} + za*,,
and their product is

1= (V, @ W,)(W: @W?) =
=z %a_1a} + 27 (a_10f + aoa}) + (a-1a’, + aoal + ara}) + 2t (araf+

2
+aoal,) + z°aya’ ;.

Noting that the terms with non-zzro powers of z must vanish, one obtains a;a; = 0
for ¢ # j. Moreover, expanding the identity I = W; ® W; in terms of the a; yields
that a_,, ao and a; are disjoint projections in W ® W summing to I.

Since W is an abelian von Neumann algebra, it is isomorphic to an algebra L= (§2)
for some measure space 2. Representing the unitary W, in W as a function £, in
L*>(92), with f; = 1, and the projections a; in W @ W as characteristic functions x;
in L (2 x £2) give the a.e. equality

fz(s)m = z‘lx_l(s, )+ xo(s,t) + zx1(s,t), z€T,s,t € .

Thus by Fubini’s theorem, for almost all ¢ in £2, the functions ¢*,, ¢§, ¢} on 2,
defined by g¢{(s) = xi(s,t), are elements of L>°(f2), representing disjoint projections
Qb ., Qf and @} in W which sum to the identity. Moreover, for almost all r, 5, and
tin2andall zin T,

fz("')-fj(?)- =f: (r)mfz (S)fT(t—) =
=(z71¢L 1 (r) + q5(7) + 2ai (7)) (27 g4 (5) + b (s) + g 1(5)),
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so for almost all tin 2 and all zin T,
W.@W: = (27'QL, + Q% +2Q4) ® (z7'Q%, + Qb + 2Q%).

By fixing such a ¢ where the equalities hold, and expanding the tensor product, while

noting conjugate linearity in the second term, one obtains

W, oW, =2"2Q ,0Q  + 7@, 9Q+ QL Q) +...

-1
=z""a.1+ ao + za;,

so the z~2 coefficient Q*.; ® @} must vanish. Thus either @* ; or @} is zero: in the
first case, take Q@ = @}, with Q1 = @Q}; in the second case, take Q = Q*, with
Q1 = Q}. Either way,

W, W, =(Q+2QY)®(Q + 2Q*)

and so
W, TW;! = (Q + 2Q1)T(Q+2Q*)*, Tek, z€eT. m

The following lemma will be convenient in the proof of the subsequent theorem,
though the result is no doubt well known.

LEMMA 4. Let M be a nest and Q a projection in the von Neumann algebra
generated by M. Suppose that for every compact operator T, the operator QT Q™ is
a member of algM. Then @ is in the nest M.

Proof. Let £ be a separating vector for the von Neumann algebra generated
by the nest M. The rank one operator (Q¢) ® (@*¢) is in algM so by Lemma
3.7 of [5], there is a projection P in M, with immediate predecessor P_., such that
PQ¢ = Q¢ and (P-)* Q¢ = Q€. Since € is separating, PQ = @ and (P-)1Qt =
= @*. Combining the two yields @ = P — (P — P_)Q* and since P — P_ is an atom,
either Q) = P or Q = P_. Either way, @ is in the nest. ]

The above propositions combine to give the following main theorem on the struc-
ture of the analytic automorphisms.

THEOREM 5. Let p be an analytic automorphism of the C*-algebra C(T,K)
mapping the analytic subalgebra Ay onto Apq, where N and M are fixed nests. If M
(equivalently N') is a non-trivial nest, then there exists a constant X in T, projections
P and Q in N and M respectively, and a unitary U with UPNU* = Q*M and
UPLNU* = QM such that

P(F)(2) = (@+ AQUUF(NU (@ + 20QL)", FeC(T,K), z€T.
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Proof. By Theorem 4.1 of [19], since the space T has trivial second cohomology,
the C*-automorphism p can be written as

p(F)(z) =U,F(0(z))U;, FeC(T,K), z€T,

where U, is a continuous path of unitaries on T and € is a homeomorphism of T. By
Proposition 2, # is an analytic map, and U, can be factored as U, = W,U, where
U=U,, UDyU* = Dpq and W, is in the von Neumann algebra generated by the
nest M, with

W, TW? = 0(z) Ya_y(T) + ao(T) + 6(2)ay(T), T€K, z€T.

By Lemma 3, there exists a projection @ in the von Neumann algebra generated by
M with
W.TW: = (Q +0(:)Q1)T(Q +6()Q")", TeK, z€T.

Thus,
p(F)(2) = (Q +6(2)Q )UF(6(2))U*(Q + (8(2)Q")*, FeC(T,K), z€T.

The map 6 is analytic. If 8(0) = 0, then there exists A in T with (z) = zA. This
will be shown to be the only possibility for such an analytic 8, by contradiction. If
6(0) # 0, fix S a compact operator, let

T = U*QSQ U + 6(0)"*U*(QSQ + Q*SQ*)U + 6(0)~2U*Q+SQU

and let F(z) = zT define an element of Ay. The image of F under p is an analytic
function taking value S at the origin. Thus the image of Axr, namely A, contains
analytic functions with values at the origin spanning K. But by definition, A
contains only analytic functions taking values at the origin in K4, contradicting that
M is non-trivial.

To show that @ is in the nest M, let S be any compact operator and let F(z) =
= zU"SU define an element of A,s; its image under p is an analytic function taking
the value QSQ* at the origin. By definiton of Axy, QSQL must lie in K¢ for all
compact operators S, so by Lemma 4, @ is in the nest M.

Finally, define the projection P = U*Q*U. If F(z) = T is any constant function
in Ay, with T a compact operator in K, then its image, given by

p(F)(z) = z7IAQUTU*Q + (QUTU*Q + QLUTU* Q1) + 22Q1UTU*Q,

is an element of Ap. Thus the 2~ coefficient must vanish, so PLTP = 0 for all T
in Kpr, which shows P is in the nest A of invariant projections for K. Moreover,
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the 2z coefficient must lie in Kum, so QUPLTPLU*Q and QrUPTPU*Q? lie in
Km, for all T in K. By restricting to subnests, one obtains UT1U* in Kgum for all
Ty in Kpey and UTRU* in Kgupm for all Ty in Kpyr. Thus UP*NU* = QM and
UPNU* = QM. a

The diagonal determined by an analytic subalgebra is often of particular interest,
. so it 1s useful to describe how the analytic automorphism acts on it.

COROLLARY 6. Let p be an analytic automorphism of the C*-algebra C(T,K)
mapping the analytic subalgebra Ajr onto Axq, where N and M are fixed nests. Then
the extension of p to the multiplier maps the diagonal Dy onto Day via adjunction
by a unitary shift mod 1 of the nests. That is, there exist projections P and Q in N'
and M respectively, and a unitary U with UPNU* = QiM and UPANU* = QM
such that

p(T)=UTU*, T € Dy.

Proof. Dy is identified with the constant maps in C,(T,B(H)) taking values in
Dy. I T is a operator in Dy, the constant map F(z) = T is taken under p to the
function

p(F)(2) = (Q + 2AQHUTU* (Q + 22Q*)*.

But UTU* is an element of D4 and commutes with @ and Q*, so p(F) is the constant
function taking value UTU™. [}

Note that the unitary U in the above theorem induces a homeomorphism of the
topological spaces AV and M obtained by endowing the nests A and M with the strong
operator topology and identifying the endpoints 0 ~ I. A point z in A’ corresponds to
one (or at most two) projection P, in N; its image under the homeomorphism is the
point in M corresponding to the projection Q., which equals Q + UP,U* if P, < P,
or Q+UPU*—Tif P, > P. Of course, 0 ~ I in A/ maps to Q and P maps to 0 ~ [
in M. Thus the interval [0, P] maps increasingly to [Q, I], while the interval [P,I]
maps increasingly to [0,Q]. This is what is meant by saying U is a shift mod 1 on
the nests. This will be particularly transparent in the following section, where group

actions are considered.

4. GROUP ACTIONS

We now consider an application of the above results to automorphisms of C*-
dynamical systems. The real line R acts on the circle R/Z by translation modulo
the integers, with the action given by (¢,z) — ¢t + z mod Z, for all ¢t in R and z in
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R/Z. The C*-crossed product, denoted C(R/Z) x, R, is defined as the enveloping
C*-algebra of the Banach *-algebra L' (R, C(R/Z)), with a certain twisted convolution
product and twisted *-operation. (cf. [15]). Following [14], the analytic subalgebra
for the crossed product is the non-self-adjoint subalgebra C(R/Z) x, R* obtained as
the norm closure in C(R/Z) x, R of the image of the functions in L} (R, C(R/Z)) with
support in R*. By the construction in Theorem 2.5 in [8], there is a C*-isomorphism
¢ of C(R/Z) x, R onto C(T,K), with K the algebra of compact operators on the
Hilbert space L?([0, 1]), where the measure space [0, 1] is a cross section of the space
R/Z. For each f in L1(R,C(R/Z)), ¢(f) is defined as power series expansion in z,

[>]

e(f)z)= Y ZTu(f),

k=—o00

where T} (f) is a Hilbert-Schmidt operator on L2([0, 1]), with kernel Ki(f) defined
on [0,1] x [0,1] by Ki(f)(s,t) = fs—t4+k(s). It happens that ¢ maps the analytic sub-
algebra of the C*-crossed product onto an analytic subalgebra of the form discussed
in the earlier section.

PRrOPOSITION 7. The C*-isomorphism ¢ : C(R/Z)x,R — C(T,K) defined above
maps C(R/Z) x Rt onto Ay, the analytic subalgebra of C(T,K) determined by the
continuous nest of projections N = {P; : t € [0,1]}, with P, the projection onto the
subspace L%([t,1]) in L%([0, 1)).

_ Proof. For any f in L}(R,C(R/Z)) with support in R*, the kernel function
K (f) defined above is zero for all k less than zero, and Ko(f)(s,t) = 0 for all s < £.
Thus ¢(f) is an analytic function in z, with zero-th order coefficient T3(f) a lower-
triangular Hilbert-Schmidt operator in K7, so ¢(f) is in Ax. Since L}(R+, C(R/Z))
is dense in the analytic crossed product, ¢ maps C(R/Z) x Rt into Ay .

To show that ¢ is onto Ay, it sufficies to demonstrate a dense family of analytic
polynomials in the image. For finitely many non-negative integers k, let K; be a
continuous function on the square [0, 1] x [0, 1] which vanishes on the boundary, and
let Ko have support in the lower triangle; that is, Ko(s,t) = 0 for all s < t. Thus
each K; represents a Hilbert-Schmidt operator T; on L?([0,1]), with Tp in Ky, so
the polynomial sz T is an element of Apr. The set of all polynomials constructed
in this way is dense in Ay, since the set of such of T} is dense in K, for each k > 0,
while the set of such Ty is dense in K.

To show these polynomials are in the image, fix the K;. Define a function f as
follows: for each s in [0, 1} and ¢ in R, pick the unique k in Z so that s —¢ + k lies in
the half-open interval [0, 1), and set fi(s) = Ki(s,s—t+k). Since K vanishes on the
boundaries of the square, K = 0if k < 0, and only finitely many K;’s are non-zero, it
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is easy to check that f is in L!(R*, C(R/Z)). Moreover, the choice of f was precisely
such that Tx(f) = T, so o(f) = Esz"' Thus the image of L}(R*,C(R/Z)) is a
dense subset of Ays. | |

Since the algebra C(R/Z) is a subset of multiplier algebra of C(R/Z) x, R, the
isomorphism ¢ described above can be extended to a map defined on C(R/Z). It is
easy to check that for any f in C(R/Z), ¢(f) is the constant function in C(T, B(H)),
taking value Moy, the operator on L%([0, 1]) of multiplication by the function f o,
where 1 is the map of [0, 1) onto R/Z obtained by identifying the endpoints. Moreover,
using the isomorphism ¢, the diagonal algebra M(C(R/Z)x.R*)NM(C(R/Z)x,R*)*
can be identified in a natural way with L>(R/Z), which acts by multiplication on the
C(R/Z) elements of the multiplier.

Now a “shift mod 1” of the nest A corresponds to an orientation preserving
transformation of the circle R/Z. In fact, the following is true.

. THEOREM 8. Let p be an analytic automorphism of C(R/Z) x, R mapping
C(R/Z) x, Rt to C(R/Z) x, R*. Then there exists an orientation and measure class
preserving homeomorphism ¢ of R/Z such that the multiplier extension of p satisfies
p(f) = fo¢, for all f in C(R/Z). Moreover, every orientation and measure class

preserving homeomorphism of R/Z is obtained by some analytic automorphism.

Proof. By Proposition 7, the analytic automorphism p can be pulled back to an
analytic automorphism of C(T, K) mapping the analytic algebra A onto Axr, where
N is the continuous nest on L2([0, 1]). By Corollary 7, this pullback maps the diagonal
L*° ([0, 1]) onto itself via a unitary shift mod 1. Thus a function f in L°°([0, 1]) maps
to f o ¢, where @ is the measure class preserving transformation of [0,1] induced by
U. Since U is a shift mod 1, there exist points p and ¢ in [0, 1] such that é maps
the subinterval [0, p] monotonically increasing onto the subinterval [¢,1], and maps
the subinterval [p, 1] monotonically increasing onto the subinterval [0,g]. Pushing
forward to C(R/Z) x, R shows that p maps a function f in the diagonal L>(R/Z)
to f o ¢, where ¢ is the measure class and orientation preserving homeomorphism of
R/Z obtained from ¢ by identifying endpoints.

Moreover, every such ¢ maybe obtained from a mod 1 shift q; of the interval [0, 1],
which itself arises from a unitary shift mod 1 of the continuous nest, so every such ¢

arises from analytic automorphism. ]

Using Theorem 5 and Proposition 7, all analytic automorphisms of the C*-crossed
product C(R/Z) x ;R can be described; it suffices to say that every such automorphism
is a unique product of one each of the following three types of automorphisms. First,
there is the “inner” automorphism coming by conjugation by a unitary in the diagonal
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L*(R/Z); second, there is an “outer” automorphism given by an orientation and
measure-class preserving homeomorphism of R/Z lifted to the crossed product; third,
there is a cocycle automorphism coming from a rotation by A of T, the dual group of
the stabilizer Z in R.

The same analysis holds for the case of the group Z acting by addition mod n on
the finite group Z,. In particular, the analytic map preserves an orientation on the

underlying discrete space. The analogous theorem is as follows.

THEOREM 9. Let p be an analytic automorphism of C(Z,) X, Z mapping
C(Z,) x+ Z* to C(Z,) x, I*. Then there exists a shift ¢ on Z,, ¢(k) = k + ko
mod n, such that p satisfies p(f) = fo ¢, for all f in C(Z,). Moreover, every shift
mod n on Z,, is obtained by some analytic automorphism.

Proof. Follows as in the proof of Theorem 8, replacing the continuous nest on
[0, 1) with a maximal nest on the finite dimensional Hilbert space 12(1,2,...,n). B

This research was supported by a Canadian NSERC Postdoctoral Fellowship.
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