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MAXIMAL ABELIAN AND
SINGULAR SUBALGEBRAS IN L(Fy)

V. NITICA, A. TOROK

INTRODUCTION

Let M be a type II; factor, tr its unique normalized trace, and let A C M
be a maximal abelian von Neumann subalgebra (M.A.S.A.). Let Ny (A4) = {u €
EM |u unitary, uAu* = A} be the normalizer of A in M and let B = Np(A)”
be the von Neumann subalgebra generated by Npr(A) in M. A is called singular if
B = A and A is called regular (or Cartan) if B = M. For singular M.A.S.A.’s see [4],
(6], (8], [9], [13], [14], and for regular M.A.S.A.’s see 3] and [T7].

The aim of this paper is to find certain singular M.A.S.A.’s in L(Fn), the von
Neumann algebra generated by the left regular representation of the free nonabelian
group with N generators, say a1,...,ay. Examples of singular M.A.S.A’s in L(Fn)
are given in [6] and [11]. These algebras are generated by the convolutors a;, 1 <7 <
< N,in[6),orbyay+---+any+a7' + -+ a]'vl in [11]. Our examples are generated
by convolutors of the form

(1) all+ -+ ail +ai™ +---+ay™N, where r,...,rxy € N\ {0}

In Theorem 4 of Section 1, developing the technique of Pytlic [10], we prove that
even more general convolutors in L(Fy) generate M.A.S.A.’s. Then, in Theorem 18
of Section 2, we prove the singularity for convolutors given by (1), using a result of
Popa [7] about the Pukanszky invariant.

Let ||z]l = tr(z*z)% be the Hilbert norm given by tr on M, let L%(M,tr)
be the completion of M with respect to this norm, so that M acts (in the stan-
dard way) on L%(M,tr). We denote the induced scalar product by (-|-). Let also
J : L*(M,tr) — L%(M,tr) be the canonical conjugation (given by Jz = z*, for
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z € M) and let A = (AVJAJ)" be the (abelian) von Neumann subalgebra generated
in B(L?(M, 1)) by A and JAJ.

Denote by p; the cyclic projection corresponding to £ € L2(M,tr) in A’ (i.e. pg
is the projection on .A_EIHIZ). Since 4 is a M.A.S.A., p1 is a central projection of A’
(see Lemma 3.1 in [7]).

The Pukanszky invariant of A is the type of homogenity of the (type I) algebra
A’. This invariant was also considered by Ambrose-Singer.

Now, by Popa’s result (Corollary 3.2 in [7]), if A’(I — Py) is homogeneous of type
Io, then A is singular.

Developing the technique of Ridulescu [11], we prove that the Pukanszky in-
variant of the von Neumann algebra A generated by any convolutor given by (1) is
infinite.

Note that by a result of Popa ([6], Theorem 6.1) our result implies that the
singularity holds also for von Neumann algebras generated by convolutors of the form

- —-r
a;'+-'-+a;"+a1r‘+---+ak *

where 2< k < N and ry,...,r € N\ {0}.
One is led to conjecture that given a free family {v1,...,v%}xp2 in Fyn, the von
Neumann algebra generated by the convolutor vy +- - -+vg+v7 > 4+ +up ! is singular.
Finally, we mention that similar problems can be studied in free products of
groups instead of free groups (see [1], where the singularity is proved for the radial
algebra in some free products' of groups).

1. MAXIMAL ABELIAN SUBALGEBRAS

Let N > 2 be an integer and let Fiy be the free nonabelian group with N
generators ai,...,a,. Let X be the left regular representation of Fiv on the Hilbert
space £2(Fy). Denote by L(Fy) the von Neumann algebra generated by A(Fy) in
B(£2(Fy)). It is well known that L(Fy) is a type II; factor that acts standardly
on #2(Fy) and that with this identifications the norm given by tr coincides with the
usual norm || - ||z on'¢2(Fy). For a set X C £2(Fy), X will stand for the closure of X
in the norm || - |2.

By C[Fx] we denote the group ring of Fiy over C, and by 1 we denote the unity of
Fy. (However, the identity operator will usually be denoted by 7.) By means of the
identification of M with a subspace of L2(M, tr), C[Fn] corresponds to the subspace
of finitely supported functions from £2(Fy). (We shall use the same notation for the

elements of Fiy and for their image in C[Fn]. If f = Z oy, - w is a function in
. weFN
£(Fy), then supp f = {w € Fv | @y # 0}.)
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Bach w € Fn \ {1} can be written uniquely as a finite product of generators
and their inverses, w = af’:---a;—?, such that i # fg41, o € Z \{O} This is
the reduced form of w. We define the beginning of w to be l(w) = a;.5"** and the
end of w to be r(w) = a:ig" %?_ The canonical length function |- | on F is defined
by |wf = Jay]+ -+ |opl, and [1f = 0. If H is a free subgroup of Fy with given
generators, we shall denote by |- |g the corresponding length function on H. For
Vi,.-., 0k € Fy, k 2 2, we say that the product v192...vx is reduced if none of the
factorsis 1 and for all i = 1,...,k ~ 1, »(v;) - l{vi41) # 1. We say that the product
v1...v; is reduced mod {v; |i € I}, where I C {1,...,k}, if some v;’s, i € I, may
equal 1 and after deleting those equal to 1, we obtain a reduced product.

Let V be a family in Fiy \ {1}, with at least two elements, which satisfies:

(2) for any v,w € V¥ if vw # 1 then vw is reduced

where V¥ := VUV~ V- = {v? Iv € V}. We denote by x:1 the convolutor

Z('a + ™), and by H the subgroup generated by V (which is a free group with

[13%
basis V).

Let A be the von Neumann algebra generated by x1 in L(Fn). We shall prove
that A is a M.A.S.A. in L(Fy).
In the sequel, f-g will stand for the convolution of f and g, for any f, g € £2(Fy).

LemMMA 1. Let v,v' € V* and w € Fiy be such that vwy' is reduced mod{w}.
Then, fcr any € > 0, there exists a function o € £2(Fy) such that:

-9 — ¢ x1) = (vw — wo')]lz <&

Proof. We use the construction of Pytlik (see Lemma 4.1 from [10]), but we
border vwv’ with words of equal H-length from H insteed of using words of equal
length from Fy. &

LEMMA 2. Let v,v' € V* and w € Fn \ {1} be such that v’ . w is reduced for
all v € VE\ {v} and wv" is reduced for all v € V* \ {v'}. Then, for any ¢ > 0,
there exists a function ¢ € £2(Fn) such that:

(1 - o=@ x1) — (vw — w')|2 <&.

Proof. x1 -w—w-x; = vw—wv' + E v — Z wy'™,

4 1 i
v’ #u [ias- 37
u”EVi u”'GVi
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R : 77— " el
From the two sums above, we can form 2-card V — 1 pairs v” - w—w - v"’ with v"wy

reduced. Applying for each of them Lemma 1, we find functions @y € £2(Fn)
such that:

£
”(Xl . ‘Pv",v”’ ce (puu’u.m - Xl) —— (’U”w - wU”’)Ih < m

Hence, for p = w — Z @yt g one has the desired conclusion. n
(U”,”"’)
LEMMA 3. Let g € £2(Fy) be such that g -x1 = X1 9-
2) Ifz,y € H and |z|g = |ylu, then g(z) = g(y).
b) If z ¢ H, then g(z) = 0.

Proof. a) Use Lemma 1 above and the arguments of Lemma 4.1 and Proposition
4.2 in [10].

b) By the uniqueness of the reduced form, there exists h € H, w € Fy such
that 2 = hw is reduced mod{h}, and |h|y is maximal. If 2 # 1, write h =
= ¥y ---T in reduced form, 7; € VE, and choose @y, o,...,®x € V* such that
wWWy, WW1Wa, . .., ww Wa - - - Wy are reduced. (If u € Fy \ {1}, there is an element
v € V¥ such that uv is reduced: indeed, condition (2) implies that the map ! : V* —
— {aj.*‘1 I 1 £ i € N} is one-to-one, and card V¥ > 4.) Now, from Lemma 1 and the

argument of Proposition 4.2 in [10] it follows that:
9(2) = 9(T2 - - - TrwWi) = - -+ = g{WWy - - W)

So, we can assume that A = 1.

The following cases appear:

I: vz is reduced for every v € V*;

IL: there exists vg € V¥ such that voz is not reduced {and then this v, is unique,
due to (2)).

Case I: There exist 7,7, € V* such that Tyz, 7, are reduced and 7; # 5 .
Then

9(z) = g(71272) = g(z0172),

where we have used Lemma 2 (with w = 27, v = Ty, o' = &, ) for the first equality,
Lemma 1 (with w = 275, v = %1, v' = 7;) for the second equality and the argument
of Proposition 4.2 from [10] for both.

Since |z| < |2.71|, and 2%, is also in case I, we can iterate this trick to find
an infinite set of distinct elements y from Fy such that g(y) = g(z). But g € £2(Fn),
therefore g(z) = 0.
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Case I1: There exist 7;,To € V¥ such that 27,7 is reduced and r{voa®1) = 7(71).

Then
9(z) = g(vozT1) = 9(2¥:792),

where we have used Lemma 2 with w = zT3, v = vy, v' = 1‘)1‘1 for the first equality
and with w = v2717;, v = Vg ! o = ;! for the second equality (here Lemma 2 can
be applied because !(vo2¥172) = I{vg) and r(vz¥,%2) = r(%s)), and the argument of
Proposition 4.2 from [10].

Since |z| < |271T3| and 2717, is also in case II, we can again iterate this trick
and obtain g(z) = 0 too. L

THEOREM 4. A is 2 M.A.S.A. in L(Fn).

Proof. It is an easy consequence of Lemma 3 (see Theorem 4.3 in {10]).
2. SINGULAR SUBALGEBRAS
In this paragraph we take V' to be:

V = {a} a?,...,a}, where r; e N\ {0}.

It is clear that V satisfies (2).
For v, and A as above, let A = 4 V JAJ. We shall prove that A’ is of homoge-
neous type I, on I — p;.

DEFINITION. We say that w € Fy is a core if w = 1 or if the reduced form
of w neither begins nor ends with a word from H (ie., if w = hivhs is reduced
mod{hi, v, hp} with h1,hs € H, then hy = hy = 1). We put the cores ig families of
related cores. These families are of the following three type:

(3) Co = {1}
(4) C(i,j, e, B,w) = {af waf, af~ "waﬁ of waf T af’""*tuaf_rj}
where 1 < 4,5 < N aresuch that r; 22, r; 22, 1< -1, 1<8< r; — 1 and

w € Fy is such that I(w) # ¢F*, r(w) # afl and w :,zé lifi=j.

)] C(i,e) = {af,a] ™"}

where I i< Nissuchthat ;, 22and 1agn— 1L
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We remark that if we denote by € the colection of the families of cores described

above, then:

(6) C is a partition of the set of cores;
(7) span{H - C - H} is orthogonal to span{H - C’ - H} for every C,C' € C, C # C';

(8) €D span{H - C - H} = P(Fy);
Cec

(9) spaa{H-C-H} is an invariant subspace for M(x1) and JA(x1)J for every C € C.

The core of type (3) was studied by Ridulescu, [11]. One has:

THEOREM 5. (see [11]). The space spanH = spanH -Cy- H is a sum of orthogonal
cyclic projections p; + Z pe, where Iy C I2(Fy) is an infinite family of norm one
¢elo
vectors and pg is equivalent to p, for any €,n € Io.
In order to prove that the homogenity type of A’ on I — p; is I, it is sufficient
to show that the central support of p¢, £ € Iy, is I — p1. Indeed:

LEMMA 6. Let M be a von Neumann algebra of type I, et {en}n31 be an infinite
family of mutually equivalent and orthogonal projections and let ¢ = 2(e;) be their
central support. Then the reduced algebra M, is of homogeneous type Io.

Proof. By contradiction, let 0 # p < ¢ be a central projection such that M, is
of homogeneous type I;, with k < co. Then {pen}n>1 C M, is an infinite family of
nonzero (because p < z(en)) mutually orthogonal and equivalent projections. This
is a contradiction with M, being of homogeneous type Iy, with k& < oo (see [12],
Section 4). |

In fact, we show that for each family of cores C € C\ {Cy}, there exists a family
of norm one vectors I(C) C I?(Fy) such that:

EeI(C})

and pg is equivalent to p,, for any & € I(C). Here w is a fixed vector from Iy, which
will be described below. By (7), (8) and the result quoted in Theorem 5, this implies
that the central support of p,, is I — p;.

If H C K are Hilbert spaces, we shall denote the orthogonal projection on M by
projf;.
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Let us fix some C € C. All the notations we introduce from now on depend on
C, even if it does not appear explicitly. The family C' we are refering to will always

be clear.
For any integers k, k', k" > 0 define:

Vis g 2= span{®@ = w; - w - wy | W is reduced, w € C, wy,w; € H,
lualg =¥, |wala = &'}

Vi := span{Vis x» ] B4k =k}

gk is the orthogonal projection on Vi C I2(Fn);

St = span{gr(x1 - w), ge(w - x1)|w € Vi—1};

Ly =gk - Ax1) qk, Rr:=aq-JAa)J - k-

We introduce the convolutors

w, ifnzl,

weH, lwig=n
Xn =191, ifn=0,
0, if n <0.

For v € Vi (k 2 0) and n,m € Z, define

. {Q’n+m+k(Xn Y- Xm) ifn,m 20,
Tn,m = .
0 ifn<0orm>0.

The following formulae are easy to check (see [2] or [11]):

(10) {Xl'X1=X2+2N§
X1°Xn = Xn XL = Xng1 + (2N = Dxn-1, forn:2;
(1) {Xl “Anym = Ynt1,m + N = Dyncim, forn21, m20;
Ya,m * X1 = Ya,mi1 + (2N = Dynm-1, fornz0, mz 1

We can now describe the vector w € Ip. It is chosen such that for any n,m, p, ¢ >

2 0 the following formulae hold:

Xn "W Xm = Wpm ~ Wn—9m — Wnm=2+Wn-2m-2;
(12) Wnom = Z Xn—2s "W Xm=2t;
&,120
(13) for (n,m) # (p,q), Wn,m is orthogonal to wp g;
llwn,mi|® = (2N — 1)r+m.

(See [11], Lemma 2 (a), Lemma 3 (a) and the proof of Theorem 7; almost all the
vectors from I satisfy these formulae.)
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Our aim is to show that each Vi, & > 0, can be covered with cyclic projections
p¢, which are equivalent to p,, (i.e. g < V Pe., With pe equivalent to p,). The case
k = 0 is made by ad-hoc methods and wxll be developed later, in Lemmas 13-17.
For k > 1, we shall use an induction argument, which relies on Lemmas 7-12 and is
described in the Remark following Lemma 12.

LEMMA 7. Let k> 1. If Vis, 0 < k' < k=1, can be covered with projections
which are equivalent to p,,, then these projections cover Sy too.

Proof. This follows from the fact that for any w € Vi—1,
(- w)y=x1-w-o
where T € span{Vi_2, Vi-1}
Therefore, in proving the induction step for k > 1, we have to deal only with the

space Vi © 5. n

LEMMA 8. Let k> 1.
(a) fy € Vi © S, and s 2 0, then
X1 Y0,s = 1,8 + (LeY)o,ei
Ye,0 " X1 =Ys1 + (Rk')')s,o-
(b) Ry - Ly = L - Ry = 0, hence L and Ry commute.
(¢) Vi, © Sk is a reducing subspace for L and Ry.
(d) L is the orthogonal projection on Vi © span{V,:|s+t =k, s 2 1}. In
particular, the spectra of Ly, Ry, L and Ry
(and all these values can appear).

are contained in {—1,0,1}

,Vkesk leeSk

Proof. (a) Let 5 € Vi+, with &’ > 0 and let s > 0. Then
{x1 Y0, I’l) = {70, 3)(1 1) = {gr+s(7Xs) IXI )=
(14) = (7 Xe | @res(x1 - 0)) = (7] GO M) - X0} =

= {7 | a4+ (x1 - 0) - X:))-
For B’ <k +s—1, gess(x1-n) =0, hence the last member of (14) is zero.

For k' = k45— 1, ga(gr+s(X1 - 1)Xs) = q(X1 - ge-1(n - X)), as one can see
comparing the length of the words which appear. Hence the last member of (14) is
Zero again.

For k' =k +s, 4k(9k+s(X1 n) - xs) = ¢x(x1 - ¢&(1 - X)), hence the last member
of (14) becomes:

(rlae(xr - ae(n- %)) = (@O - M) |9 xs) =
= {ge(x1 ) - Xs [ M) = {graelar(x - Mxs) | 0) =
= {lge(xz - No.s | 1) = (Lev)o,s | 7).
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So x1 - ¥0,s = 11,5 + (L&7)o,s -

The second formula can be proved similarly.

{b), (d) It is enough to verify the formulae for v € Vi NFy, for each type of family
of cores (because Vi N Fi is an orthogonal basis of V). For example, Ly [Vc,: =0
whenever, s > 1l and s+ = k.

(¢) The inclusion Li(Sk) C Si follows from:
Ligr(x: -v) =0, for v & Vi_1,

Ligr(v - x1) = qre(ge-1{x1 - ©) - x1), for v € Vi_;.

Since Ly is a selfadjoint operator, Vi © Sk, is a reducing subspace for it. Ry can
be dealt with analogously. |

From (b) and (c) of the previcus Lemma each Vi, © Sk, k > 1, has a basis made
from eigenvectors for both L and Ry. If v € Vi © S is an eigenvector such that
Liyy=2; -7, Rpy= Az-4, then from (b) and (d) of Lemma 8:

(A1, Aa) € {(£,0),(0,0),(0,¢) [¢ € {~1,1}}.

LEMMA 9. Let k 2 0, and let v € V}, © Sy, be an eigenvector for both L and Ry,
of norm one, with eigenvalues (A1, A2).
(a) If (A1, A2) = (0,0), then:

Xn Y ' Xm = ¥Yn,m — (’Yn,m—2 + ’Yn-z,m) + Yn—-2,m=2,

Yn,m = Z Xn—2s 7 " Xm—2¢; for n,m2 0.
a,t20

(b) If (A1, A2) = (€,0), ¢ € {—1,1}, then:

Xn "7 Xm =Tnm+E€ Yneim— Tnm~2—€ Yn-lm—2;

Yam = 3 (—€)" “Xnos ¥ Xm-2t, for m,m >0,
§,120

(¢) If (A1, X2) = (0,¢), € € {~1,1}, then:
Xn 'Y Xm = Yam+tE Tnmel — Tn-2,m — € Tn-2,m-1,

Ynm = Z (—E)t *Xn—2s Y - Xm—t, 0, m 2 0.
8,120

Proof. In each of the cases (a), (b}, (c), the second formula is an easy consequence
of the first.
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For the first formula we use (a) from Lemma 8 and induction based on formulae
(10) and (11). For example, in case (a):

X1 X1 =X1"%e,1 = 71,1,

—

11)

{10
X2 Y X1 (f)x1(X1 cv-x1) —2Nv-x1

=721+ (2N = 1)y0,1 — 2N - 70,1 = 72,1 — Yo,1. -

LEMMA 10. Let k > 1 and let ¥ be as in Lemma 9. Then vy is orthogonal to
7?,9 for (n: m) # (ps Q)‘

Proof. Since Ynm € Vignim, the assertion is true for n+m # p+gq. If
n<+m=p+q, then:

{(Tn,m l")’p,g) = (Yn,m |‘Qk+n+m(x:> ¥ Xa)) = {xp - Ynm - Xq | 7).
But for every m,n,p,qg 2 0
Xp * Yuym - Xg €span{ys s ||n — 5| < p, Im—t| < g},
as one can see by induction using (10) and the fact that

X1 "Yam € Span{7n—1,m; Ta,mj Tn-i-l,m},

which is clear from (11) and Lemma. 8 (a). Hence, if p < n, then:

Xp "~ Tnm - Xq €pan{res|s 2n—p>0} C Vi
and similarly for p > n, when ¢ < m. L

REMARK. The last two lemmas show that for v as in Lemma 9, the family
{¥n,m}n,m30 is an orthogonal basis for A7.

LemMA 11. Let k,m,n > 0, v € Vi. Then:
ln.mll3 = (2N = 1)**™ - |I4]]3.

Proof. Let ¥ = Z Ag-g. Forg,¢g' € ViNFn, g # ¢’, supp gn,m NSUPP 9;, ,n = @,
gEVRNFyN
hence gn,m is orthogonal to g}, ... Therefore it is enough to prove the formula for

¥ € Vi N Fyy. In this case, Yn,m 18 the characteristic function of its support, and the
cardinal of the support is (2N — 1)»+m™, u

LEMMA 12. Let v be as in Lemma 9 and let Ty : Ay — Aw be the linear mapping
defined by To(Xn - Xm) = Xn - W - Xm. Then Tp is well defined and it extends to an
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invertible bounded linear operator T : Ay — Aw. Since T € A’, one obtains that py
and p, are equivalent in A’.

Proof. The vectors {xnYXm}n,mzo are linearly independent because for any
integer k 2> 0, {xnYXm I n+m < k} is a family of generators for span{ya,m | n+m < k}
(see Lemma 9) and has the same cardinality as the dimension of the space it generates.

If v has eigenvalues (0,0), then To¥n,m = wn,m (use Lemma 9 and (12)), hence T'
is unitary (due to (12), (13) and to Lemmas 10 and 11).

If v has eigenvalues (¢,0), € € {—1, 1}, then:

T Tnm = Wnm— & YUnwim

(use Lemma 9 and (12)). We define the operators Up : Ay — Aw and S? : Ay — Ay
given by UsYa,m = wnm and SP9m = Yn-1,m- Usp clearly extends to a unitary
U: Ay — Aw. If we consider the unitary operator W : Ay — £2(N) @ £2(N) given
by

W('Yn,m) = (2N - 1)—2%2611 ® bm,

then
WSOW* = (2N —~1)"38* @ I,
where both sides are restricted to the space W(Ay) and S is the unilateral shift.
Therefore 59 has an extension S; : Ay — Aw too, and ||S;]| = (2N — 1)1,
Since Tp = U(I — 51) | A the conclusion follows.
The cases of eigenvalues (0,¢), £ € {-1,1} is similar. [

REMARK. The induction step is now completely proved. For £ > 1 we can choose
a basis for Vi © S made from eigenvectors for both L and Ry (by Lemma 8), and
Lemma 12 shows that the cyclic projections associated to the vectors of this basis
are equivalent to p,. Hence, if we admit that span{Vj |Ic' € k — 1} is covered by
projections equivalent to p,, then Lemma 7 and the above arguments show that V;

can be covered by projections equivalent to p, too.

We shall study now the spaces V5 for the families of cores C € €\ {Co}.
Let Vo = spanC(3, j, &, B, w) (see (4)). Consider the vectors of norm one

1 i —_r
€7 = 5(af +¢-af " w(af +5-af "),
where €,6 € {—1,1}. It is obvious that
spa’n{gs,b I g,6e€{-11}} =V

Fix now a pair (g, 6) € {—1,1}? and denote £°+% by £&. We shall prove that p; is
equivalent to p,,.
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LemMMA 13. (a)
Xn & Xm = €nmte- gn—l,m +46 '&n,m—l +e-6 'En-l,m-l:

bam= 3 (=€)° - (~8)'xnos € -Xms, for m,m 2 0.

8,020 -

(b) If (m,n) # (p,q), where m,n,p,q € N, then &, m is orthogonal to &y q, hence
the family {£n m}n,m>o0 is an orthogonal basis for A€.
(€) nmll?=(@N —1)"™ forn,m > 0.

Proof. (a) Denote n= e +¢-af " ¢ = af + 6a§3h"' . Since all the words which
appear in the support of x;, - n end with a nonzero power of a; (and similarly for {-x,),

one has
(15) (n-w-{)pq =npo-w-Co,q, for p,g integers.
For 1 < k < r; —1 one has
Xn - 6f = (af)n,0+ (af)n-1,0,
hence:
(16) | Xn 1= 1n0+E€ " Gn-1,0,

and similar formulae hold for ¢ - Xm.
Now, (15) and (16) give the first formula. The second formula follows from the

first. :

(b) See the proof of Lemma 10.

(c) See Lemma 11. u

LEMMA 14. Consider the linear mapping Tp : Af — Aw defined by To(xn - 7 -
"Xm) = Xn W+ Xm. Then Ty is well defined and it extends to an invertible bounded
linear operator T : A£ — Aw. Since T € A, p, and p,, are equivalent in A'.

Proof. That Tj is well defined follows as in Lemma 12.
The formula of Ty with respect to the basis {€a m}n,m30 is

To 'fn,m SWnm— € Wpim— - Wnm-11¢€ -8 Wn-im-1.
Consider the operators S1, S, : A€ > A€, U : Af — Aw given by

Slfn,m = En—l,ma S2£n,m =&n,m-1, Ufn,m = Wn,m, for n,m > 0.
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As in the proof of Lemma 12, U is unitary and ||$;]] = ||S2]| = (2N — 1)~ 5. Since
To = U(I - 851)(1 - 652) Lw

the lemma holds.

Take now Vy = span C(3, ) (see (5)). We introduce the vectors of norm one

N = -\}_—2@1? +e-af""™), where €€ {-1,1}.
It is obvious that
Vo = span{n® IE € {~1,1}}.

Fix € € {—1,1} and denote n° by . We shall prove that p, is equivalent to p,,
but in this case, instead of an invertible operator T' : Ay — Aw from A’, we have
only a closed, densely defined injective operator with dense range, which is affiliated

to A’.

1 . ‘ . .
LEmMMA 15. Let r = —\/_-5((3,?’”‘ +¢-af"?") € V; and introduce the notations:

'ﬁn’m - nn,m —E Tn-l,m-—l;

ﬁn,m = E :,ﬁn-—s,m—s'
520

Then:
(a') Xn 1 Xm = ﬁn,m + E(ﬁn-—l,m + ﬁn,m—l) + ﬁn—l,m—ls

—ﬁn,m =Xn"N Xm+ Z(‘"E)S ' (Xn-.s N Xm+Xn - Xm--a)-
szl
0, ifnt+ms#p+g,
b =
( ) (nn‘m | np,Q) { 2(2N _ 1)n+m~|n—~pl, fnt+m=p+q.
(¢) {Ta,mIn,myo0 is a basis for Azy.
(d) If|(n+m) — (p+q)| > 2, then Tin,m s orthogonal to %, ,.

Proof. (a) We prove succesively the following formulae (each of them has one
similar for the right action of x;, which we do not write):

(1) x1 - 0,0 = 11,0 + € - 70,05

() X1 M1 =m,1+€ M0,1 + 70,0 — € - To,0

(iil) x1 70,06 = 71,0 + 70,05

(iv) x1- 710,10 = 71,1 + n0,1;

(v) x1 *To,n = Ti,n + Mo, for n 2 0;

(by induction, using (iv) and (11))
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(Vi) X1 o,n = Myn + € Non + Nojn—1 — € - Tony, for n 2 0;

(by induction, using (i), (ii), (iii) and (11)).

Using (v) and (vi) we can proceed as in Lemma 9, and we obtain the first formula.
The second formula is a consequence of the first.

(b) The case n +m # p+ g is obvious. For n+ m = p+ g, since 9, is
the characteristic function of its support, we have to compute the cardinality of the
intersection supp fn,m Nsupp 7, 4. But:

SUpp 7s,; = supp (af)s,: Usupp (af ™), 1,
the union being disjoint, and:

v supp (6 )n,m Nsupp (] ")p,g = D,
card[supp (af)n,m Nsupp (a¥)p o] = (2N — 1)r+m=in—rl
card[supp (a§ ™" )n m Nsupp (a7~ " )p,i] = (2N - 1)n+mln-Pl_

(c) The family {7, ,,,}n,mpo is a system of generators for Az due to the relations

from (a}.
Assume that:
K
3> Ak-s Typoy =0, for K>0 and A,z €C.
k=0 +=0

We apply gk, the projection on Vi, and we obtain:

K
z Aa,K——s N Kms = 0.
s=0
But the family {7, r—s}ogsgk is linearly independent for any k > 0 (because
det({ns,k—s lm,kﬁ:))og,, t<k is nonzero by [11], Lemma 5), hence A, x—. = 0 for any
0 € s < K. Therefore, an induction argument shows that the given family is linearly
independent.
(d) Use that 7, », € Vingn + Vagm—1. n

LEMMA 16. Consider the linear mapping Wo : An — Aw defined by Wy - 7, 1 =
= Wn,m, for n,m 2 0. Then W, is a well defined closable operator on A7 into Aw,
and its closure W is densely defined, injective with dense range.

Proof. By Lemma 15, (¢), and (12), (18), Wy is bijective. We shall prove that
both Wy and W5 ! are closable and then the lemma follows. (If Wy is closable and
bijective, then W is injective if and only if Wo'1 is closable).
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Wo and Wy would clearly be closable if {fi,m }n,m3z0 were an orthogonal basis
of A#. Fortunately, our situation is not too far from this.
For n > 1, denote:

P, =pr
n=p onpan{n, ' 's+t<n}

An

P =
n = PF onpan{q, . |s+i>n}

@n = projspan{w.,. la+t<ﬂ}

and put I for the identity operator both on A7 and on Aw.
It is not hard to see that P, and P, , are orthogonal projections and I—P,—F;,,

is a finite dimensional projection.
Note that P;(A5) C An because for all s,¢ > 0,

0, fs+tgn~2

(T, 1) = fs+t=n-1
Pallse) = P JSPan{ﬂp logpa p+q—n}("s,t): ts+i=n—1,
Ts 25 ifs+tzn

In the following we shall consider all the operators restricted to Aw, respec-
tively Aw.
It is easy to verify that

Wo -Po=Qn -Wo-Pn, Qu-Wo- P, =0, hence Qn -Wo-P,, ,=0.
Then
(17) Qn'WD Qn WO n+Qn WO +2+Qn WO(Z Pn +2)——WO P +Xn;

where X, = Q, - Wo(I - P, — P} .) and Wy P, are bounded operators.
Since Wy ! - wp g = 7p 4, one has:

W5 'Qn = PaW5 ' Qn,
P, - WO—I(I - Qn+1) =0,
hence
P""I/VO“1 = Pﬂ 'Wn—lQn +Pn ‘WQ—I(Qn+1 "‘Qn)""Pn 'ij—l(I—Qn+1) = Wonl'Qn‘*"Yn

where Y, = P, - Wy (Qn41 — Qn) and Wyt - Qy are again bounded operators.
We now can show that Wy and Wy ! are closable operators. The proof is given
only for Wy, for Wy ! the arguments being similar. Take z; € A€ (¢ 2 0) such that
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lim z; = 0 and 3 = Wy z; - y. We have to show that y = 0. Fix n > 1. Then,
1=+00 H
by (17)

Qn¥i =Qn Wy -2; = (WoPa+ Xn)tiTO

because Wy - P, and X,, are bounded operators. But y; - hence
Qny = lim Qny: = 0.
1—+00

Since Q,,si—nrc"l, one has y = 0. [ |

LemMA 17. Consider the linear mapping Tp : An — Aw given by To(Xn1-Xm) =
= Xn *w-Xm. Then Ty is a well defined closable operator. Iis closure T : Dy C Ap —
— Aw is densely defined, injective, with dense range. Since T is affiliated to A’, P
and p,, are equivalent.

Proof. That Ty is well defined follows as in Lemma 12, using Lemma 15 (a) and
(c). The formula of Ty with respect to the basis {7 m}n,m > 0 of An is:

Toﬁn,m =Wnm = E(‘”ﬂ-—l,m +wn,m—1) + 6‘("-"sr;—:l,m—z + wn—2,m—1) —Wn-2m-2-

Consider the operators 81,5, : Aw — Aw, S1n,m = Wn=1,m, S2wnm = Wn,m-1,
and the operator Wy : An — Aw, WoTn m = wn,m considered in Lemma 16. Then
1811l = 1|S2]] = (2N = 1)~ % as in Lemma 12, and:

To = [I i E(S]_ + 52) + 55132‘(51 + S?-) - Sf’gg] -Wo I.A.n =

= (I - 5182)(I — e8;)(I — £52) Wy |.A:7'

Since ||51]] = [|Saf] < 1, (I — 85182)(I — £S51)(I — €8,) is invertible and then
Lemma 16 gives the desired conclusion. a
From the whole Section 2, one obtains:

THEOREM 18. The von Neumann algebra A’ = {A(x1), TA(x1)JY € B(2(Fn))
is of homogeneous type I, on I — py. Consequently, the algebra A = {\(x1)} C
C L(Fw) Is singular.
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