MAXIMAL ABELIAN AND SINGULAR SUBALGEBRAS IN $L(F_N)$

V. NITICĂ, A. TÖRÖK

INTRODUCTION

Let M be a type II₁ factor, tr its unique normalized trace, and let $A \subseteq M$ be a maximal abelian von Neumann subalgebra (M.A.S.A.). Let $\mathcal{N}_M(A) = \{u \in M \mid u \text{ unitary}, uAu^* = A\}$ be the normalizer of A in M and let $B = \mathcal{N}_M(A)''$ be the von Neumann subalgebra generated by $\mathcal{N}_M(A)$ in M. A is called singular if B = A and A is called regular (or Cartan) if B = M. For singular M.A.S.A.'s see [4], [6], [8], [9], [13], [14], and for regular M.A.S.A.'s see [3] and [7].

The aim of this paper is to find certain singular M.A.S.A.'s in $L(F_N)$, the von Neumann algebra generated by the left regular representation of the free nonabelian group with N generators, say a_1, \ldots, a_N . Examples of singular M.A.S.A.'s in $L(F_N)$ are given in [6] and [11]. These algebras are generated by the convolutors a_i , $1 \leq i \leq N$, in [6], or by $a_1 + \cdots + a_N + a_1^{-1} + \cdots + a_N^{-1}$ in [11]. Our examples are generated by convolutors of the form

(1)
$$a_1^{r_1} + \dots + a_N^{r_N} + a_1^{-r_1} + \dots + a_N^{-r_N}$$
, where $r_1, \dots, r_N \in \mathbb{N} \setminus \{0\}$.

In Theorem 4 of Section 1, developing the technique of Pytlic [10], we prove that even more general convolutors in $L(F_N)$ generate M.A.S.A.'s. Then, in Theorem 18 of Section 2, we prove the singularity for convolutors given by (1), using a result of Popa [7] about the Pukanszky invariant.

Let $||x||_2 = \operatorname{tr}(x^*x)^{\frac{1}{2}}$ be the Hilbert norm given by tr on M, let $L^2(M,\operatorname{tr})$ be the completion of M with respect to this norm, so that M acts (in the standard way) on $L^2(M,\operatorname{tr})$. We denote the induced scalar product by $\langle \cdot | \cdot \rangle$. Let also $J:L^2(M,\operatorname{tr}) \to L^2(M,\operatorname{tr})$ be the canonical conjugation (given by $Jx=x^*$, for

 $x \in M$) and let $A = (A \vee JAJ)''$ be the (abelian) von Neumann subalgebra generated in $B(L^2(M,\tau))$ by A and JAJ.

Denote by p_{ξ} the cyclic projection corresponding to $\xi \in L^{2}(M, \operatorname{tr})$ in \mathcal{A}' (i.e. p_{ξ} is the projection on $\overline{\mathcal{A}\xi}^{\|\cdot\|_{2}}$). Since A is a M.A.S.A., p_{1} is a central projection of \mathcal{A}' (see Lemma 3.1 in [7]).

The Pukanszky invariant of A is the type of homogenity of the (type I) algebra A'. This invariant was also considered by Ambrose-Singer.

Now, by Popa's result (Corollary 3.2 in [7]), if $\mathcal{A}'(I-P_1)$ is homogeneous of type I_{∞} , then A is singular.

Developing the technique of Rădulescu [11], we prove that the Pukanszky invariant of the von Neumann algebra A generated by any convolutor given by (1) is infinite.

Note that by a result of Popa ([6], Theorem 6.1) our result implies that the singularity holds also for von Neumann algebras generated by convolutors of the form

$$a_1^{r_1} + \cdots + a_k^{r_k} + a_1^{-r_1} + \cdots + a_k^{-r_k}$$

where $2 \leqslant k \leqslant N$ and $r_1, \ldots, r_k \in \mathbb{N} \setminus \{0\}$.

One is led to conjecture that given a free family $\{v_1, \ldots, v_k\}_{k \geq 2}$ in F_N , the von Neumann algebra generated by the convolutor $v_1 + \cdots + v_k + v_1^{-1} + \cdots + v_k^{-1}$ is singular.

Finally, we mention that similar problems can be studied in free products of groups instead of free groups (see [1], where the singularity is proved for the radial algebra in some free products of groups).

1. MAXIMAL ABELIAN SUBALGEBRAS

Let $N \geqslant 2$ be an integer and let F_N be the free nonabelian group with N generators a_1, \ldots, a_n . Let λ be the left regular representation of F_N on the Hilbert space $\ell^2(F_N)$. Denote by $L(F_N)$ the von Neumann algebra generated by $\lambda(F_N)$ in $B(\ell^2(F_N))$. It is well known that $L(F_N)$ is a type II₁ factor that acts standardly on $\ell^2(F_N)$ and that with this identifications the norm given by tr coincides with the usual norm $\|\cdot\|_2$ on $\ell^2(F_N)$. For a set $X \subseteq \ell^2(F_N)$, \overline{X} will stand for the closure of X in the norm $\|\cdot\|_2$.

By $\mathbb{C}[F_N]$ we denote the group ring of F_N over \mathbb{C} , and by 1 we denote the unity of F_N . (However, the identity operator will usually be denoted by I.) By means of the identification of M with a subspace of $L^2(M, \operatorname{tr})$, $\mathbb{C}[F_N]$ corresponds to the subspace of finitely supported functions from $\ell^2(F_N)$. (We shall use the same notation for the elements of F_N and for their image in $\mathbb{C}[F_N]$. If $f = \sum_{w \in F_N} \alpha_w \cdot w$ is a function in

$$\ell^2(F_N)$$
, then supp $f = \{w \in F_N \mid \alpha_w \neq 0\}$.)

Each $w \in F_N \setminus \{1\}$ can be written uniquely as a finite product of generators and their inverses, $w = a_{i_1}^{\alpha_1} \cdots a_{i_p}^{\alpha_p}$, such that $i_k \neq i_{k+1}$, $\alpha_k \in \mathbb{Z} \setminus \{0\}$. This is the reduced form of w. We define the beginning of w to be $l(w) = a_{i_1}^{\operatorname{sign} \alpha_1}$ and the end of w to be $r(w) = a_{i_p}^{\operatorname{sign} \alpha_p}$. The canonical length function $|\cdot|$ on F_N is defined by $|w| = |\alpha_1| + \cdots + |\alpha_p|$, and |1| = 0. If H is a free subgroup of F_N with given generators, we shall denote by $|\cdot|_H$ the corresponding length function on H. For $v_1, \ldots, v_k \in F_N$, $k \geq 2$, we say that the product $v_1 v_2 \ldots v_k$ is reduced if none of the factors is 1 and for all $i = 1, \ldots, k-1$, $r(v_i) \cdot l(v_{i+1}) \neq 1$. We say that the product $v_1 \ldots v_k$ is reduced mod $\{v_i \mid i \in I\}$, where $I \subset \{1, \ldots, k\}$, if some v_i 's, $i \in I$, may equal 1 and after deleting those equal to 1, we obtain a reduced product.

Let V be a family in $F_N \setminus \{1\}$, with at least two elements, which satisfies:

(2) for any
$$v, w \in V^{\pm}$$
, if $vw \neq 1$ then vw is reduced

where $V^{\pm} := V \cup V^{-}$, $V^{-} := \{v^{-1} \mid v \in V\}$. We denote by χ_{1} the convolutor $\sum_{v \in V} (v + v^{-1})$, and by H the subgroup generated by V (which is a free group with basis V!).

Let A be the von Neumann algebra generated by χ_1 in $L(F_N)$. We shall prove that A is a M.A.S.A. in $L(F_N)$.

In the sequel, $f \cdot g$ will stand for the convolution of f and g, for any $f, g \in \ell^2(F_N)$.

LEMMA 1. Let $v, v' \in V^{\pm}$ and $w \in F_N$ be such that vwv' is reduced $\text{mod}\{w\}$. Then, for any $\varepsilon > 0$, there exists a function $\varphi \in \ell^2(F_N)$ such that:

$$||(\chi_1 \cdot \varphi - \varphi \cdot \chi_1) - (vw - wv')||_2 < \varepsilon.$$

Proof. We use the construction of Pytlik (see Lemma 4.1 from [10]), but we border vwv' with words of equal H-length from H instead of using words of equal length from F_N .

LEMMA 2. Let $v, v' \in V^{\pm}$ and $w \in F_N \setminus \{1\}$ be such that $v'' \cdot w$ is reduced for all $v'' \in V^{\pm} \setminus \{v\}$ and wv'' is reduced for all $v'' \in V^{\pm} \setminus \{v'\}$. Then, for any $\varepsilon > 0$, there exists a function $\varphi \in \ell^2(F_N)$ such that:

$$||(\chi_1 \cdot \varphi - \varphi \cdot \chi_1) - (vw - wv')||_2 < \varepsilon.$$

Proof.
$$\chi_1 \cdot w - w \cdot \chi_1 = vw - wv' + \sum_{\substack{v'' \neq v \\ v'' \in V^{\pm}}} v''w - \sum_{\substack{v''' \neq v' \\ v''' \in V^{\pm}}} wv'''.$$

From the two sums above, we can form $2 \cdot \operatorname{card} V - 1$ pairs $v'' \cdot w - w \cdot v'''$ with v''wv''' reduced. Applying for each of them Lemma 1, we find functions $\varphi_{v'',v'''} \in \ell^2(F_N)$ such that:

$$||(\chi_1\cdot\varphi_{v'',v'''}-\varphi_{v'',v'''}\cdot\chi_1)-(v''w-wv''')||_2<\frac{\varepsilon}{2\mathrm{card}\,V-1}$$

Hence, for $\varphi = w - \sum_{(v'',v''')} \varphi_{v'',v'''}$ one has the desired conclusion.

LEMMA 3. Let $g \in \ell^2(F_N)$ be such that $g \cdot \chi_1 = \chi_1 \cdot g$.

- a) If $x, y \in H$ and $|x|_H = |y|_H$, then g(x) = g(y).
- b) If $x \notin H$, then g(x) = 0.

Proof. a) Use Lemma 1 above and the arguments of Lemma 4.1 and Proposition 4.2 in [10].

b) By the uniqueness of the reduced form, there exists $h \in H$, $w \in F_N$ such that x = hw is reduced $\operatorname{mod}\{h\}$, and $|h|_H$ is maximal. If $h \neq 1$, write $h = \overline{v}_1 \cdots \overline{v}_k$ in reduced form, $\overline{v}_i \in V^{\pm}$, and choose $\overline{w}_1, \overline{w}_2, \ldots, \overline{w}_k \in V^{\pm}$ such that $w\overline{w}_1, w\overline{w}_1\overline{w}_2, \ldots, w\overline{w}_1\overline{w}_2\cdots\overline{w}_k$ are reduced. (If $u \in F_N \setminus \{1\}$, there is an element $v \in V^{\pm}$ such that uv is reduced: indeed, condition (2) implies that the map $l: V^{\pm} \to \{a_i^{\pm 1} \mid 1 \leq i \leq N\}$ is one-to-one, and $\operatorname{card} V^{\pm} \geqslant 4$.) Now, from Lemma 1 and the argument of Proposition 4.2 in [10] it follows that:

$$g(x) = g(\overline{v}_2 \cdots \overline{v}_k w \overline{w}_1) = \cdots = g(w \overline{w}_1 \cdots \overline{w}_k).$$

So, we can assume that h = 1.

The following cases appear:

I: vx is reduced for every $v \in V^{\pm}$;

II: there exists $v_0 \in V^{\pm}$ such that v_0x is not reduced (and then this v_0 is unique, due to (2)).

Case I: There exist $\overline{v}_1, \overline{v}_2 \in V^{\pm}$ such that $\overline{v}_1 x, x \overline{v}_2$ are reduced and $\overline{v}_1 \neq \overline{v}_2^{-1}$. Then

$$g(x) = g(\overline{v}_1 x \overline{v}_2) = g(x \overline{v}_1 \overline{v}_2),$$

where we have used Lemma 2 (with $w = x\overline{v}_2$, $v = \overline{v}_1$, $v' = \overline{v}_2^{-1}$) for the first equality, Lemma 1 (with $w = x\overline{v}_2$, $v = \overline{v}_1$, $v' = \overline{v}_1$) for the second equality and the argument of Proposition 4.2 from [10] for both.

Since $|x| < |x\overline{v}_2\overline{v}_1|$, and $x\overline{v}_2\overline{v}_1$ is also in case I, we can iterate this trick to find an infinite set of distinct elements y from F_N such that g(y) = g(x). But $g \in \ell^2(F_N)$, therefore g(x) = 0.

Case II: There exist $\overline{v}_1, \overline{v}_2 \in V^{\pm}$ such that $x\overline{v}_1\overline{v}_2$ is reduced and $r(v_0x\overline{v}_1) = r(\overline{v}_1)$. Then

$$g(x) = g(v_0 x \overline{v}_1) = g(x \overline{v}_1 \overline{v}_2),$$

where we have used Lemma 2 with $w = x\overline{v}_1$, $v = v_0$, $v' = \overline{v}_1^{-1}$ for the first equality and with $w = v_0 x \overline{v}_1 \overline{v}_2$, $v = v_0^{-1}$, $v' = \overline{v}_2^{-1}$ for the second equality (here Lemma 2 can be applied because $l(v_0 x \overline{v}_1 \overline{v}_2) = l(v_0)$ and $r(v_0 x \overline{v}_1 \overline{v}_2) = r(\overline{v}_2)$), and the argument of Proposition 4.2 from [10].

Since $|x| < |x\overline{v}_1\overline{v}_2|$ and $x\overline{v}_1\overline{v}_2$ is also in case II, we can again iterate this trick and obtain g(x) = 0 too.

THEOREM 4. A is a M.A.S.A. in $L(F_N)$.

Proof. It is an easy consequence of Lemma 3 (see Theorem 4.3 in [10]).

2. SINGULAR SUBALGEBRAS

In this paragraph we take V to be:

$$V = \{a_1^{r_1}, a_2^{r_2}, \dots, a_N^{r_N}\}, \text{ where } r_i \in \mathbb{N} \setminus \{0\}.$$

It is clear that V satisfies (2).

For \vee_1 and A as above, let $A = A \vee JAJ$. We shall prove that A' is of homogeneous type I_{∞} on $I - p_1$.

DEFINITION. We say that $w \in F_N$ is a core if w = 1 or if the reduced form of w neither begins nor ends with a word from H (i.e., if $w = h_1vh_2$ is reduced $\text{mod}\{h_1, v, h_2\}$ with $h_1, h_2 \in H$, then $h_1 = h_2 = 1$). We put the cores in families of related cores. These families are of the following three type:

(3)
$$C_0 = \{1\}$$

(4)
$$C(i,j,\alpha,\beta,w) = \{a_i^{\alpha}wa_j^{\beta}, a_i^{\alpha-r_i}wa_j^{\beta}, a_i^{\alpha}wa_j^{\beta-r_j}, a_i^{\alpha-r_i}wa_j^{\beta-r_j}\}$$

where $1 \leqslant i, j \leqslant N$ are such that $r_i \geqslant 2$, $r_j \geqslant 2$, $1 \leqslant \alpha \leqslant r_i - 1$, $1 \leqslant \beta \leqslant r_j - 1$ and $w \in F_N$ is such that $l(w) \neq a_i^{\pm 1}$, $r(w) \neq a_j^{\pm 1}$ and $w \neq 1$ if i = j.

(5)
$$C(i,\alpha) = \{a_i^{\alpha}, a_i^{\alpha-r_i}\}$$

where $1 \le i \le N$ is such that $r_i \ge 2$ and $1 \le \alpha \le r_i - 1$.

We remark that if we denote by C the collection of the families of cores described above, then:

- (6) C is a partition of the set of cores;
- (7) span $\{H \cdot C \cdot H\}$ is orthogonal to span $\{H \cdot C' \cdot H\}$ for every $C, C' \in \mathcal{C}, C \neq C'$;

(8)
$$\bigoplus_{C \in \mathcal{C}} \overline{\operatorname{span}} \{ H \cdot C \cdot H \} = l^2(F_N);$$

(9) $\overline{\operatorname{span}}\{H\cdot C\cdot H\}$ is an invariant subspace for $\lambda(\chi_1)$ and $J\lambda(\chi_1)J$ for every $C\in\mathcal{C}$.

The core of type (3) was studied by Radulescu, [11]. One has:

THEOREM 5. (see [11]). The space $\overline{\text{span}}H = \overline{\text{span}}H \cdot C_0 \cdot H$ is a sum of orthogonal cyclic projections $p_1 + \sum_{\xi \in I_0} p_{\xi}$, where $I_0 \subset l^2(F_N)$ is an infinite family of norm one vectors and p_{ξ} is equivalent to p_n for any $\xi, \eta \in I_0$.

In order to prove that the homogeneity type of \mathcal{A}' on $I - p_1$ is I_{∞} , it is sufficient to show that the central support of p_{ξ} , $\xi \in I_0$, is $I - p_1$. Indeed:

LEMMA 6. Let M be a von Neumann algebra of type I, let $\{e_n\}_{n\geqslant 1}$ be an infinite family of mutually equivalent and orthogonal projections and let $q=z(e_1)$ be their central support. Then the reduced algebra M_q is of homogeneous type I_{∞} .

Proof. By contradiction, let $0 \neq p \leqslant q$ be a central projection such that M_p is of homogeneous type I_k , with $k < \infty$. Then $\{pe_n\}_{n\geqslant 1} \subset M_p$ is an infinite family of nonzero (because $p \leqslant z(e_n)$) mutually orthogonal and equivalent projections. This is a contradiction with M_p being of homogeneous type I_k , with $k < \infty$ (see [12], Section 4).

In fact, we show that for each family of cores $C \in \mathcal{C} \setminus \{C_0\}$, there exists a family of norm one vectors $I(C) \subset l^2(F_N)$ such that:

$$\overline{\operatorname{span}}\{H\cdot C\cdot H\}=\bigvee_{\xi\in I(C)}p_{\xi},$$

and p_{ξ} is equivalent to p_{ω} for any $\xi \in I(C)$. Here ω is a fixed vector from I_0 , which will be described below. By (7), (8) and the result quoted in Theorem 5, this implies that the central support of p_{ω} is $I - p_1$.

If $\mathcal{H} \subset \mathcal{K}$ are Hilbert spaces, we shall denote the orthogonal projection on \mathcal{H} by $\operatorname{proj}_{\mathcal{H}}^{\mathcal{K}}$.

Let us fix some $C \in \mathcal{C}$. All the notations we introduce from now on depend on C, even if it does not appear explicitly. The family C we are referring to will always be clear.

For any integers $k, k', k'' \ge 0$ define:

$$\begin{split} V_{k',k''} &:= \operatorname{span}\{\overline{w} = w_1 \cdot w \cdot w_2 \ \big| \ \overline{w} \ \text{is reduced}, \ w \in C, \ w_1, w_2 \in H, \\ & |w_1|_H = k', \ |w_2|_H = k''\}; \\ V_k &:= \operatorname{span}\{V_{k',k''} \ \big| \ k' + k'' = k\}; \\ q_k & \text{is the orthogonal projection on } V_k \subset l^2(F_N); \\ S_k &:= \operatorname{span}\{q_k(\chi_1 \cdot w), \ q_k(w \cdot \chi_1) \ \big| \ w \in V_{k-1}\}; \\ L_k &:= q_k \cdot \lambda(\chi_1) \cdot q_k, \quad R_k := q_k \cdot J\lambda(\chi_1)J \cdot q_k. \end{split}$$

We introduce the convolutors

$$\chi_n := \begin{cases} \sum_{w \in H, \ |w|_{H} = n} w, & \text{if } n \ge 1, \\ 1, & \text{if } n = 0, \\ 0, & \text{if } n < 0. \end{cases}$$

For $\gamma \in V_k$ $(k \geqslant 0)$ and $n, m \in \mathbb{Z}$, define

$$\gamma_{n,m} := \begin{cases} q_{n+m+k}(\chi_n \cdot \gamma \cdot \chi_m) & \text{if } n, m \geqslant 0, \\ 0 & \text{if } n < 0 \text{ or } m > 0. \end{cases}$$

The following formulae are easy to check (see [2] or [11]):

(10)
$$\begin{cases} \chi_1 \cdot \chi_1 = \chi_2 + 2N; \\ \chi_1 \cdot \chi_n = \chi_n \cdot \chi_1 = \chi_{n+1} + (2N-1)\chi_{n-1}, & \text{for } n \geq 2; \end{cases}$$

(11)
$$\begin{cases} \chi_1 \cdot \gamma_{n,m} = \gamma_{n+1,m} + (2N-1)\gamma_{n-1,m}, & \text{for } n \ge 1, \ m \ge 0; \\ \gamma_{n,m} \cdot \chi_1 = \gamma_{n,m+1} + (2N-1)\gamma_{n,m-1}, & \text{for } n \ge 0, \ m \ge 1. \end{cases}$$

We can now describe the vector $\omega \in I_0$. It is chosen such that for any $n, m, p, q \ge 0$ the following formulae hold:

(12)
$$\begin{cases} \chi_n \cdot \omega \cdot \chi_m = \omega_{n,m} - \omega_{n-2,m} - \omega_{n,m-2} + \omega_{n-2,m-2}; \\ \omega_{n,m} = \sum_{s,t \geqslant 0} \chi_{n-2s} \cdot \omega \cdot \chi_{m-2t}; \end{cases}$$

(13)
$$\begin{cases} \text{ for } (n,m) \neq (p,q), \ \omega_{n,m} \text{ is orthogonal to } \omega_{p,q}; \\ ||\omega_{n,m}||^2 = (2N-1)^{n+m}. \end{cases}$$

(See [11], Lemma 2 (a), Lemma 3 (a) and the proof of Theorem 7; almost all the vectors from I_0 satisfy these formulae.)

Our aim is to show that each V_k , $k \ge 0$, can be covered with cyclic projections p_{ξ} , which are equivalent to p_{ω} (i.e. $q_k \le \bigvee_{\alpha} p_{\xi_{\alpha}}$, with $p_{\xi_{\alpha}}$ equivalent to p_{ω}). The case k = 0 is made by ad-hoc methods and will be developed later, in Lemmas 13-17. For $k \ge 1$, we shall use an induction argument, which relies on Lemmas 7-12 and is described in the Remark following Lemma 12.

LEMMA 7. Let $k \ge 1$. If $V_{k'}$, $0 \le k' \le k-1$, can be covered with projections which are equivalent to p_{ω} , then these projections cover S_k too.

Proof. This follows from the fact that for any $w \in V_{k-1}$,

$$q_k(\chi_1 \cdot w) = \chi_1 \cdot w - \overline{w}$$

where $\overline{w} \in \text{span}\{V_{k-2}, V_{k-1}\}.$

Therefore, in proving the induction step for $k \ge 1$, we have to deal only with the space $V_k \ominus S_k$.

LEMMA 8. Let $k \ge 1$.

(a) If $\gamma \in V_k \ominus S_k$ and $s \geqslant 0$, then

$$\chi_1 \cdot \gamma_{0,s} = \gamma_{1,s} + (L_k \gamma)_{0,s};$$

 $\gamma_{s,0} \cdot \chi_1 = \gamma_{s,1} + (R_k \gamma)_{s,0}.$

- (b) $R_k \cdot L_k = L_k \cdot R_k = 0$, hence L_k and R_k commute.
- (c) $V_k \ominus S_k$ is a reducing subspace for L_k and R_k .
- (d) L_k^2 is the orthogonal projection on $V_k \ominus \operatorname{span}\{V_{s,t} \mid s+t=k, s \geqslant 1\}$. In particular, the spectra of L_k , R_k , $L_k \mid_{V_k \ominus S_k}$ and $R_k \mid_{V_k \ominus S_k}$ are contained in $\{-1,0,1\}$ (and all these values can appear).

Proof. (a) Let $\eta \in V_{k'}$, with $k' \ge 0$ and let $s \ge 0$. Then

(14)
$$\langle \chi_{1} \cdot \gamma_{0,s} | \eta \rangle = \langle \gamma_{0,s} | \chi_{1} \cdot \eta \rangle = \langle q_{k+s}(\gamma \chi_{s}) | \chi_{1} \cdot \eta \rangle =$$

$$= \langle \gamma \cdot \chi_{s} | q_{k+s}(\chi_{1} \cdot \eta) \rangle = \langle \gamma | q_{k+s}(\chi_{1} \cdot \eta) \cdot \chi_{s} \rangle =$$

$$= \langle \gamma | q_{k}(q_{k+s}(\chi_{1} \cdot \eta) \cdot \chi_{s}) \rangle.$$

For k' < k + s - 1, $q_{k+s}(\chi_1 \cdot \eta) = 0$, hence the last member of (14) is zero.

For k'=k+s-1, $q_k(q_{k+s}(\chi_1\cdot\eta)\chi_s)=q_k(\chi_1\cdot q_{k-1}(\eta\cdot\chi_s))$, as one can see comparing the length of the words which appear. Hence the last member of (14) is zero again.

For k' = k + s, $q_k(q_{k+s}(\chi_1 \cdot \eta) \cdot \chi_s) = q_k(\chi_1 \cdot q_k(\eta \cdot \chi_s))$, hence the last member of (14) becomes:

$$\langle \gamma \mid q_k(\chi_1 \cdot q_k(\eta \cdot \chi_s)) \rangle = \langle q_k(\chi_1 \cdot \gamma) \mid \eta \cdot \chi_s \rangle =$$

$$= \langle q_k(\chi_1 \cdot \gamma) \cdot \chi_s \mid \eta \rangle = \langle q_{k+s}(q_k(\chi_1 \cdot \gamma)\chi_s) \mid \eta \rangle =$$

$$= \langle [q_k(\chi_1 \cdot \gamma)]_{0,s} \mid \eta \rangle = \langle (L_k \gamma)_{0,s} \mid \eta \rangle.$$

So
$$\chi_1 \cdot \gamma_{0,s} = \gamma_{1,s} + (L_k \gamma)_{0,s}$$
.

The second formula can be proved similarly.

- (b), (d) It is enough to verify the formulae for $\gamma \in V_k \cap F_N$, for each type of family of cores (because $V_k \cap F_N$ is an orthogonal basis of V_k). For example, $L_k \mid_{V_{s,t}} = 0$ whenever, $s \ge 1$ and s + t = k.
 - (c) The inclusion $L_k(S_k) \subset S_k$ follows from:

$$L_k q_k(\chi_1 \cdot v) = 0$$
, for $v \in V_{k-1}$,

$$L_k q_k(v \cdot \chi_1) = q_k(q_{k-1}(\chi_1 \cdot v) \cdot \chi_1), \text{ for } v \in V_{k-1}.$$

Since L_k is a selfadjoint operator, $V_k \oplus S_k$, is a reducing subspace for it. R_k can be dealt with analogously.

From (b) and (c) of the previous Lemma each $V_k \ominus S_k$, $k \ge 1$, has a basis made from eigenvectors for both L_k and R_k . If $\gamma \in V_k \ominus S_k$ is an eigenvector such that $L_k \gamma = \lambda_1 \cdot \gamma$, $R_k \gamma = \lambda_2 \cdot \gamma$, then from (b) and (d) of Lemma 8:

$$(\lambda_1,\lambda_2)\in\{(\varepsilon,0),(0,0),(0,\varepsilon)\,\big|\,\varepsilon\in\{-1,1\}\}.$$

LEMMA 9. Let $k \ge 0$, and let $\gamma \in V_k \ominus S_k$ be an eigenvector for both L_k and R_k , of norm one, with eigenvalues (λ_1, λ_2) .

(a) If
$$(\lambda_1, \lambda_2) = (0, 0)$$
, then:

$$\chi_n \cdot \gamma \cdot \chi_m = \gamma_{n,m} - (\gamma_{n,m-2} + \gamma_{n-2,m}) + \gamma_{n-2,m-2},$$

$$\gamma_{n,m} = \sum_{s,t \geqslant 0} \chi_{n-2s} \cdot \gamma \cdot \chi_{m-2t}, \text{ for } n,m \geqslant 0.$$

(b) If
$$(\lambda_1, \lambda_2) = (\varepsilon, 0)$$
, $\varepsilon \in \{-1, 1\}$, then:

$$\chi_n \cdot \gamma \cdot \chi_m = \gamma_{n,m} + \varepsilon \cdot \gamma_{n-1,m} - \gamma_{n,m-2} - \varepsilon \cdot \gamma_{n-1,m-2},$$

$$\gamma_{n,m} = \sum_{s,t \geqslant 0} (-\varepsilon)^s \cdot \chi_{n-s} \cdot \gamma \cdot \chi_{m-2t}, \text{ for } n,m \geqslant 0.$$

(c) If
$$(\lambda_1, \lambda_2) = (0, \varepsilon)$$
, $\varepsilon \in \{-1, 1\}$, then:

$$\chi_n \cdot \gamma \cdot \chi_m = \gamma_{n,m} + \varepsilon \cdot \gamma_{n,m-1} - \gamma_{n-2,m} - \varepsilon \cdot \gamma_{n-2,m-1},$$

$$\gamma_{n,m} = \sum_{s,t \ge 0} (-\varepsilon)^t \cdot \chi_{n-2s} \cdot \gamma \cdot \chi_{m-t}, \ n,m \ge 0.$$

Proof. In each of the cases (a), (b), (c), the second formula is an easy consequence of the first.

For the first formula we use (a) from Lemma 8 and induction based on formulae (10) and (11). For example, in case (a):

$$\chi_{1} \cdot \gamma \cdot \chi_{1} = \chi_{1} \cdot \gamma_{o,1} = \gamma_{1,1},$$

$$\chi_{2} \cdot \gamma \cdot \chi_{1} \stackrel{\text{(10)}}{=} \chi_{1}(\chi_{1} \cdot \gamma \cdot \chi_{1}) - 2N\gamma \cdot \chi_{1} \stackrel{\text{(11)}}{=}$$

$$= \gamma_{2,1} + (2N - 1)\gamma_{0,1} - 2N \cdot \gamma_{0,1} = \gamma_{2,1} - \gamma_{0,1}.$$

LEMMA 10. Let $k \ge 1$ and let γ be as in Lemma 9. Then $\gamma_{n,m}$ is orthogonal to $\gamma_{p,q}$ for $(n,m) \ne (p,q)$.

Proof. Since $\gamma_{n,m} \in V_{k+n+m}$, the assertion is true for $n+m \neq p+q$. If n+m=p+q, then:

$$\langle \gamma_{n,m} \mid \gamma_{p,q} \rangle = \langle \gamma_{n,m} \mid q_{k+n+m} (\chi_p \cdot \gamma \cdot \chi_q) \rangle = \langle \chi_p \cdot \gamma_{n,m} \cdot \chi_q \mid \gamma \rangle.$$

But for every $m, n, p, q \geqslant 0$

$$\chi_p \cdot \gamma_{n,m} \cdot \chi_q \in \operatorname{span}\{\gamma_{s,t} \mid |n-s| \leqslant p, |m-t| \leqslant q\}_1$$

as one can see by induction using (10) and the fact that

$$\chi_1 \cdot \gamma_{n,m} \in \operatorname{span}\{\gamma_{n-1,m}; \gamma_{n,m}; \gamma_{n+1,m}\},\$$

which is clear from (11) and Lemma 8 (a). Hence, if p < n, then:

$$\chi_p \cdot \gamma_{n,m} \cdot \chi_q \in \operatorname{span}\{\gamma_{s,t} \mid s \geqslant n-p > 0\} \subset V_k^{\perp}$$

and similarly for p > n, when q < m.

REMARK. The last two lemmas show that for γ as in Lemma 9, the family $\{\gamma_{n,m}\}_{n,m\geqslant 0}$ is an orthogonal basis for $\overline{A\gamma}$.

LEMMA 11. Let $k, m, n \ge 0, \gamma \in V_k$. Then:

$$||\gamma_{n,m}||_2^2 = (2N-1)^{n+m} \cdot ||\gamma||_2^2.$$

Proof. Let $\gamma = \sum_{g \in V_k \cap F_N} \lambda_g \cdot g$. For $g, g' \in V_k \cap F_N$, $g \neq g'$, supp $g_{n,m} \cap \text{supp } g'_{n,m} = \emptyset$, hence $g_{n,m}$ is orthogonal to $g'_{n,m}$. Therefore it is enough to prove the formula for $\gamma \in V_k \cap F_N$. In this case, $\gamma_{n,m}$ is the characteristic function of its support, and the cardinal of the support is $(2N-1)^{n+m}$.

LEMMA 12. Let γ be as in Lemma 9 and let $T_0: A\gamma \to A\omega$ be the linear mapping defined by $T_0(\chi_n \cdot \gamma \cdot \chi_m) = \chi_n \cdot \omega \cdot \chi_m$. Then T_0 is well defined and it extends to an

invertible bounded linear operator $T: \overline{A\gamma} \to \overline{A\omega}$. Since $T \in \mathcal{A}'$, one obtains that p_{γ} and p_{ω} are equivalent in \mathcal{A}' .

Proof. The vectors $\{\chi_n\gamma\chi_m\}_{n,m\geqslant 0}$ are linearly independent because for any integer $k\geqslant 0$, $\{\chi_n\gamma\chi_m\mid n+m\leqslant k\}$ is a family of generators for span $\{\gamma_{n,m}\mid n+m\leqslant k\}$ (see Lemma 9) and has the same cardinality as the dimension of the space it generates.

If γ has eigenvalues (0,0), then $T_0\gamma_{n,m}=\omega_{n,m}$ (use Lemma 9 and (12)), hence T is unitary (due to (12), (13) and to Lemmas 10 and 11).

If γ has eigenvalues $(\varepsilon, 0)$, $\varepsilon \in \{-1, 1\}$, then:

$$T_0 \cdot \gamma_{n,m} = \omega_{n,m} - \varepsilon \cdot \omega_{n-1,m}$$

(use Lemma 9 and (12)). We define the operators $U_0: A\gamma \to A\omega$ and $S_1^0: A\gamma \to A\gamma$ given by $U_0\gamma_{n,m} = \omega_{n,m}$ and $S_1^0\gamma_{n,m} = \gamma_{n-1,m}$. U_0 clearly extends to a unitary $U: \overline{A\gamma} \to \overline{A\omega}$. If we consider the unitary operator $W: \overline{A\gamma} \to \ell^2(N) \otimes \ell^2(N)$ given by

$$W(\gamma_{n,m}) = (2N-1)^{-\frac{n+m}{2}} \delta_n \otimes \delta_m,$$

then

$$WS_1^0W^* = (2N-1)^{-\frac{1}{2}}S^* \otimes I,$$

where both sides are restricted to the space $W(A\gamma)$ and S is the unilateral shift. Therefore S_1^0 has an extension $S_1: \overline{A\gamma} \to \overline{A\omega}$ too, and $||S_1|| = (2N-1)^{-\frac{1}{2}}$.

Since $T_0 = U(I - \varepsilon S_1) \big|_{A_{\infty}}$, the conclusion follows.

The cases of eigenvalues $(0,\varepsilon), \ \varepsilon \in \{-1,1\}$ is similar.

REMARK. The induction step is now completely proved. For $k \ge 1$ we can choose a basis for $V_k \ominus S_k$ made from eigenvectors for both L_k and R_k (by Lemma 8), and Lemma 12 shows that the cyclic projections associated to the vectors of this basis are equivalent to p_{ω} . Hence, if we admit that $\operatorname{span}\{V_{k'} \mid k' \le k-1\}$ is covered by projections equivalent to p_{ω} , then Lemma 7 and the above arguments show that V_k can be covered by projections equivalent to p_{ω} too.

We shall study now the spaces V_0 for the families of cores $C \in \mathcal{C} \setminus \{C_0\}$. Let $V_0 = \operatorname{span} C(i, j, \alpha, \beta, w)$ (see (4)). Consider the vectors of norm one

$$\xi^{\varepsilon,\delta} = \frac{1}{2} (a_i^{\alpha} + \varepsilon \cdot a_i^{\alpha - r_i}) w(a_j^{\beta} + \delta \cdot a_j^{\beta - r_j}),$$

where $\varepsilon, \delta \in \{-1, 1\}$. It is obvious that

$$\operatorname{span}\{\xi^{\varepsilon,\delta} \, \big| \, \varepsilon,\delta \in \{-1,1\}\} = V_0.$$

Fix now a pair $(\varepsilon, \delta) \in \{-1, 1\}^2$ and denote $\xi^{\varepsilon, \delta}$ by ξ . We shall prove that p_{ξ} is equivalent to p_{ω} .

LEMMA 13. (a)

$$\chi_n \cdot \xi \cdot \chi_m = \xi_{n,m} + \varepsilon \cdot \xi_{n-1,m} + \delta \cdot \xi_{n,m-1} + \varepsilon \cdot \delta \cdot \xi_{n-1,m-1},$$

$$\xi_{n,m} = \sum_{s,t \geqslant 0} (-\varepsilon)^s \cdot (-\delta)^t \chi_{n-s} \cdot \xi \cdot \chi_{m-t}, \text{ for } n,m \geqslant 0.$$

(b) If $(m, n) \neq (p, q)$, where $m, n, p, q \in \mathbb{N}$, then $\xi_{n,m}$ is orthogonal to $\xi_{p,q}$, hence the family $\{\xi_{n,m}\}_{n,m\geq 0}$ is an orthogonal basis for $\overline{A\xi}$.

(c)
$$||\xi_{n,m}||^2 = (2N-1)^{n+m}$$
, for $n, m \ge 0$.

Proof. (a) Denote $\eta = a_i^{\alpha} + \varepsilon \cdot a_i^{\alpha - r_i}$, $\zeta = a_j^{\beta} + \delta a_j^{\beta - r_j}$. Since all the words which appear in the support of $\chi_p \cdot \eta$ end with a nonzero power of a_i (and similarly for $\zeta \cdot \chi_q$), one has

(15)
$$(\eta \cdot w \cdot \zeta)_{p,q} = \eta_{p,0} \cdot w \cdot \zeta_{0,q}, \text{ for } p,q \text{ integers.}$$

For $1 \leqslant k \leqslant r_i - 1$ one has

$$\chi_n \cdot a_i^k = (a_i^k)_{n,0} + (a_i^{k-r_i})_{n-1,0},$$

hence:

(16)
$$\chi_n \cdot \eta = \eta_{n,0} + \varepsilon \cdot \eta_{n-1,0}$$

and similar formulae hold for $\zeta \cdot \chi_m$.

Now, (15) and (16) give the first formula. The second formula follows from the first.

- (b) See the proof of Lemma 10.
- (c) See Lemma 11.

LEMMA 14. Consider the linear mapping $T_0: A\xi \to A\omega$ defined by $T_0(\chi_n \cdot \gamma \cdot \chi_m) = \chi_n \cdot \omega \cdot \chi_m$. Then T_0 is well defined and it extends to an invertible bounded linear operator $T: \overline{A\xi} \to \overline{A\omega}$. Since $T \in A'$, p_{γ} and p_{ω} are equivalent in A'.

Proof. That T_0 is well defined follows as in Lemma 12.

The formula of T_0 with respect to the basis $\{\xi_{n,m}\}_{n,m\geqslant 0}$ is

$$T_0 \cdot \xi_{n,m} = \omega_{n,m} - \varepsilon \cdot \omega_{n-1,m} - \delta \cdot \omega_{n,m-1} + \varepsilon \cdot \delta \cdot \omega_{n-1,m-1}.$$

Consider the operators $S_1, S_2 : \overline{A\xi} \to \overline{A\xi}, \ U : \overline{A\xi} \to \overline{A\omega}$ given by

$$S_1\xi_{n,m} = \xi_{n-1,m}, \ S_2\xi_{n,m} = \xi_{n,m-1}, \ U\xi_{n,m} = \omega_{n,m}, \ \text{ for } \ \dot{n}, m \geqslant 0.$$

,

As in the proof of Lemma 12, U is unitary and $||S_1|| = ||S_2|| = (2N-1)^{-\frac{1}{2}}$. Since

$$T_0 = U(I - \varepsilon S_1)(I - \delta S_2) |_{A\xi},$$

the lemma holds.

Take now $V_0 = \operatorname{span} C(i, \alpha)$ (see (5)). We introduce the vectors of norm one

$$\eta^{\epsilon} = \frac{1}{\sqrt{2}} (a_i^{\alpha} + \epsilon \cdot a_i^{\alpha - r_i}), \text{ where } \epsilon \in \{-1, 1\}.$$

It is obvious that

$$V_0 = \operatorname{span}\{\eta^{\varepsilon} \mid \varepsilon \in \{-1, 1\}\}.$$

Fix $\varepsilon \in \{-1, 1\}$ and denote η^{ε} by η . We shall prove that p_{η} is equivalent to p_{ω} , but in this case, instead of an invertible operator $T : \overline{A\eta} \to \overline{A\omega}$ from A', we have only a closed, densely defined injective operator with dense range, which is affiliated to A'.

LEMMA 15. Let $\tau = \frac{1}{\sqrt{2}}(a_i^{\alpha+r_i} + \varepsilon \cdot a_i^{\alpha-2r_i}) \in V_1$ and introduce the notations:

$$\overline{\eta}_{n,m} = \eta_{n,m} - \varepsilon \cdot \tau_{n-1,m-1};$$

$$\overline{\overline{\eta}}_{n,m} = \sum_{s \ge 0} \overline{\eta}_{n-s,m-s}.$$

Then:

(a)
$$\chi_n \cdot \eta \cdot \chi_m = \overline{\overline{\eta}}_{n,m} + \varepsilon (\overline{\overline{\eta}}_{n-1,m} + \overline{\overline{\eta}}_{n,m-1}) + \overline{\overline{\eta}}_{n-1,m-1},$$

$$\overline{\eta}_{n,m} = \chi_n \cdot \eta \cdot \chi_m + \sum_{s \ge 1} (-\varepsilon)^s \cdot (\chi_{n-s} \cdot \eta \cdot \chi_m + \chi_n \cdot \eta \cdot \chi_{m-s}).$$

(b)
$$\langle \eta_{n,m} | \eta_{p,q} \rangle = \begin{cases} 0, & \text{if } n+m \neq p+q, \\ 2(2N-1)^{n+m-|n-p|}, & \text{if } n+m = p+q. \end{cases}$$

- (c) $\{\overline{\eta}_{n,m}\}_{n,m\geqslant 0}$ is a basis for $A\eta$.
- (d) If $|(n+m)-(p+q)| \ge 2$, then $\overline{\eta}_{n,m}$ is orthogonal to $\overline{\eta}_{p,q}$.

Proof. (a) We prove succesively the following formulae (each of them has one similar for the right action of χ_1 , which we do not write):

- (i) $\chi_1 \cdot \eta_{0,0} = \eta_{1,0} + \varepsilon \cdot \eta_{0,0}$;
- (ii) $\chi_1 \cdot \eta_{0,1} = \eta_{1,1} + \varepsilon \cdot \eta_{0,1} + \eta_{0,0} \varepsilon \cdot \tau_{0,0}$;
- (iii) $\chi_1 \cdot \tau_{0,0} = \tau_{1,0} + \eta_{0,0}$;
- (iv) $\chi_1 \cdot \tau_{0,1} = \tau_{1,1} + \eta_{0,1}$;
- (v) $\chi_1 \cdot \tau_{0,n} = \tau_{1,n} + \eta_{0,n}$, for $n \ge 0$;
- (by induction, using (iv) and (11))

(vi) $\chi_1 \cdot \eta_{0,n} = \eta_{1,n} + \varepsilon \cdot \eta_{0,n} + \eta_{0,n-1} - \varepsilon \cdot \tau_{0,n-1}$, for $n \ge 0$; (by induction, using (i), (ii), (iii) and (11)).

Using (v) and (vi) we can proceed as in Lemma 9, and we obtain the first formula. The second formula is a consequence of the first.

(b) The case $n + m \neq p + q$ is obvious. For n + m = p + q, since $\eta_{s,t}$ is the characteristic function of its support, we have to compute the cardinality of the intersection supp $\eta_{n,m} \cap \text{supp } \eta_{p,q}$. But:

$$\operatorname{supp} \eta_{s,t} = \operatorname{supp} (a_i^{\alpha})_{s,t} \cup \operatorname{supp} (a_i^{\alpha-r_i})_{s,t},$$

the union being disjoint, and:

$$\begin{split} \operatorname{supp} \left(a_i^\alpha\right)_{n,m} \cap \operatorname{supp} \left(a_i^{\alpha-r_i}\right)_{p,q} &= \emptyset, \\ \operatorname{card}[\operatorname{supp} \left(a_i^\alpha\right)_{n,m} \cap \operatorname{supp} \left(a_i^\alpha\right)_{p,q}] &= (2N-1)^{n+m-|n-p|}, \\ \operatorname{card}[\operatorname{supp} \left(a_i^{\alpha-r_i}\right)_{n,m} \cap \operatorname{supp} \left(a_i^{\alpha-r_i}\right)_{p,q}] &= (2N-1)^{n+m|n-p|}. \end{split}$$

(c) The family $\{\overline{\eta}_{n,m}\}_{n,m\geqslant 0}$ is a system of generators for $\mathcal{A}\eta$ due to the relations from (a).

Assume that:

$$\sum_{k=0}^{K} \sum_{s=0}^{k} \lambda_{s,k-s} \cdot \overline{\eta}_{s,k-s} = 0, \text{ for } K \geqslant 0 \text{ and } \lambda_{s,t} \in \mathbb{C}.$$

We apply q_K , the projection on V_K , and we obtain:

$$\sum_{s=0}^K \lambda_{s,K-s} \cdot \eta_{s,K-s} = 0.$$

But the family $\{\eta_{s,k-s}\}_{0\leqslant s\leqslant k}$ is linearly independent for any $k\geqslant 0$ (because $\det(\langle \eta_{s,k-s} \mid \eta_{t,k-t} \rangle)_{0\leqslant s,\ t\leqslant k}$ is nonzero by [11], Lemma 5), hence $\lambda_{s,K-s}=0$ for any $0\leqslant s\leqslant K$. Therefore, an induction argument shows that the given family is linearly independent.

(d) Use that
$$\overline{\eta}_{n,m} \in V_{m+n} + V_{n+m-1}$$
.

LEMMA 16. Consider the linear mapping $W_0: \mathcal{A}\eta \to \mathcal{A}\omega$ defined by $W_0: \overline{\eta}_{n,m} = \omega_{n,m}$, for $n,m \geq 0$. Then W_0 is a well defined closable operator on $\overline{\mathcal{A}\eta}$ into $\overline{\mathcal{A}\omega}$, and its closure W is densely defined, injective with dense range.

Proof. By Lemma 15, (c), and (12), (13), W_0 is bijective. We shall prove that both W_0 and W_0^{-1} are closable and then the lemma follows. (If W_0 is closable and bijective, then W is injective if and only if W_0^{-1} is closable).

 W_0 and W_0^{-1} would clearly be closable if $\{\overline{\eta}_{n,m}\}_{n,m\geq 0}$ were an orthogonal basis of $\mathcal{A}\eta$. Fortunately, our situation is not too far from this.

For $n \ge 1$, denote:

$$\begin{split} P_n &= \operatorname{proj}_{\operatorname{span}\{\overline{\eta}_{s,t} \mid s+t \leqslant n\}}^{\overline{A\eta}} \\ P'_n &= \operatorname{proj}_{\overline{\operatorname{span}}\{\overline{\eta}_{s,t} \mid s+t \geqslant n\}}^{\prime}, \\ Q_n &= \operatorname{proj}_{\operatorname{span}\{\overline{\omega}_{s,t} \mid s+t \leqslant n\}}^{\overline{A\omega}}, \end{split}$$

and put I for the identity operator both on $\overline{A\eta}$ and on $\overline{A\omega}$.

It is not hard to see that P_n and P'_{n+2} are orthogonal projections and $I-P_n-P'_{n+2}$ is a finite dimensional projection.

Note that $P'_n(\mathcal{A}\eta) \subset \mathcal{A}\eta$ because for all $s, t \geqslant 0$,

$$P_n'(\overline{\eta}_{s,t}) = \begin{cases} 0, & \text{if } s+t \leqslant n-2, \\ \operatorname{proj}_{\operatorname{span}\{\overline{\eta}_{p,q} \mid 0 \leqslant p,q, \ p+q=n\}}^{\overline{\mathcal{A}_{\eta}}}(\overline{\eta}_{s,t}), & \text{if } s+t = n-1, \\ \overline{\eta}_{s,t}, & \text{if } s+t \geqslant n. \end{cases}$$

In the following we shall consider all the operators restricted to $A\eta$, respectively $A\omega$.

It is easy to verify that

$$W_0 \cdot P_n = Q_n \cdot W_0 \cdot P_n, \quad Q_n \cdot W_0 \cdot P'_{n+1} = 0, \text{ hence } Q_n \cdot W_0 \cdot P'_{n+2} = 0.$$

Then

$$(17) \ Q_n \cdot W_0 = Q_n \cdot W_0 \cdot P_n + Q_n \cdot W_0 \cdot P'_{n+2} + Q_n \cdot W_0 (I - P_n - P'_{n+2}) = W_0 \cdot P_n + X_n,$$

where $X_n = Q_n \cdot W_0(I - P_n - P'_{n+2})$ and W_0P_n are bounded operators. Since $W_0^{-1} \cdot \omega_{p,\sigma} = \eta_{p,\sigma}$, one has:

 $\omega_{p,q} = \eta_{p,q}$, one has.

$$W_0^{-1}Q_n = P_n W_0^{-1}Q_n,$$

$$P_n \cdot W_0^{-1}(I - Q_{n+1}) = 0,$$

hence

$$P_n \cdot W_0^{-1} = P_n \cdot W_0^{-1} Q_n + P_n \cdot W_0^{-1} (Q_{n+1} - Q_n) + P_n \cdot W_0^{-1} (I - Q_{n+1}) = W_0^{-1} \cdot Q_n + Y_n$$

where $Y_n = P_n \cdot W_0^{-1}(Q_{n+1} - Q_n)$ and $W_0^{-1} \cdot Q_n$ are again bounded operators.

We now can show that W_0 and W_0^{-1} are closable operators. The proof is given only for W_0 , for W_0^{-1} the arguments being similar. Take $x_i \in \mathcal{A}\xi$ $(i \geq 0)$ such that

 $\lim_{i\to\infty} x_i = 0$ and $y_i = W_0$ $x_i \to y$. We have to show that y = 0. Fix $n \ge 1$. Then, by (17)

$$Q_n y_i = Q_n \cdot W_0 \cdot x_i = (W_0 P_n + X_n) x_i \xrightarrow{\cdot} 0$$

because $W_0 \cdot P_n$ and X_n are bounded operators. But $y_i \rightarrow y$, hence

$$Q_n y = \lim_{i \to \infty} Q_n y_i = 0.$$

Since $Q_n \stackrel{\text{s.o.}}{\underset{n}{\longrightarrow}} I$, one has y = 0.

LEMMA 17. Consider the linear mapping $T_0: \mathcal{A}\eta \to \mathcal{A}\omega$ given by $T_0(\chi_n \cdot \eta \cdot \chi_m) = \chi_n \cdot \omega \cdot \chi_m$. Then T_0 is a well defined closable operator. Its closure $T: \mathcal{D}_T \subset \overline{\mathcal{A}\eta} \to \overline{\mathcal{A}\omega}$ is densely defined, injective, with dense range. Since T is affiliated to \mathcal{A}' , p_{η} and p_{ω} are equivalent.

Proof. That T_0 is well defined follows as in Lemma 12, using Lemma 15 (a) and (c). The formula of T_0 with respect to the basis $\{\overline{\eta}_{n,m}\}_{n,m} \ge 0$ of $\mathcal{A}\eta$ is:

$$T_0 \overline{\eta}_{n,m} = \omega_{n,m} - \varepsilon(\omega_{n-1,m} + \omega_{n,m-1}) + \varepsilon(\omega_{n-1,m-2} + \omega_{n-2,m-1}) - \omega_{n-2,m-2}.$$

Consider the operators $S_1, S_2 : \mathcal{A}\omega \to \mathcal{A}\omega$, $S_1\omega_{n,m} = \omega_{n-1,m}$, $S_2\omega_{n,m} = \omega_{n,m-1}$, and the operator $W_0 : \mathcal{A}\eta \to \mathcal{A}\omega$, $W_0\overline{\eta}_{n,m} = \omega_{n,m}$ considered in Lemma 16. Then $||S_1|| = ||S_2|| = (2N-1)^{-\frac{1}{2}}$ as in Lemma 12, and:

$$T_0 = [I - \varepsilon(S_1 + S_2) + \varepsilon S_1 S_2 (S_1 + S_2) - S_1^2 S_2^2] \cdot W_0 \Big|_{A\eta} =$$

$$= (I - S_1 S_2) (I - \varepsilon S_1) (I - \varepsilon S_2) W_0 \Big|_{A\eta}.$$

Since $||S_1|| = ||S_2|| < 1$, $(I - S_1 S_2)(I - \varepsilon S_1)(I - \varepsilon S_2)$ is invertible and then Lemma 16 gives the desired conclusion.

From the whole Section 2, one obtains:

THEOREM 18. The von Neumann algebra $A' = \{\lambda(\chi_1), J\lambda(\chi_1)J\}' \subset B(\ell^2(F_N))$ is of homogeneous type I_{∞} on $I - p_1$. Consequently, the algebra $A = \{\lambda(\chi_1)\}'' \subset L(F_N)$ is singular.

REFERENCES

- BOCA, F.; RĂDULESCU, F., Singularity of radial subalgebras II₁ in factors associated with free products of groups, J. Funct. Anal., 103(1992), 138-159.
- 2. COHEN, J. M., Operator norms of free groups, Boll. Un. Mat. Ital., A1, 1982.
- CONNES, A.; FELDMAN, J.; WEIS, B., An amenable equivalence relation is generated by a single transformation, Ergod. Th. and Dynam. Sys., 1(1981), 431-450.

- 4. DIXMIER, J., Sous-anneaux abelians maximaux dans les facteurs de type fini, Ann. Math., 59(1954), 279-286.
- FIGA-TALAMANCA, A.; PICARDELLO, M., Harmonic analysis on free groups, Lecture Notes in Pure and Appl. Math., vol. 87, Dekker, New York, 1983.
- POPA, S., Orthogonal pairs of *-subalgebras in finite von Neumann algebras, J. Operator Theory, 9(1983), 253-268.
- POPA, S., Notes on Cartan subalgebras in type II₁ factors, Math. Scand., 57(1985), 171-188.
- 8. Popa, S., Singular maximal abelian *-subalgebras in continuous von Neumann algebras, J. Funct. Analysis, vol. 50, no. 2, 151-165.
- PUKANSZKI, L., On maximal abellian subrings of factors of type II₁, Canad. J. Math, 12(1960), 289-296.
- PYTLIC, T., Radial functions of free group and a decomposition of the regular representation into irreducible components, J. Reine Angew. Math., 326(1981), 124-135.
- 11. RXDULESCU, F., Singularity of the radial subalgebra of $L(F_N)$ and the Pukanszky invariant, Pacific J. Math., 151(1991), 297-306.
- 12. STRĂTILĂ, S.; ZSIDO, L., Lectures on von Neumann algebras, Editura Academiei, București and Abacus Press, Tunbridge Wells, 1979.
- 13. TAKESAKI, M., On the unitary equivalence among the components of decompositions of representations of involutive Banach algebras and the associated diagonal algebras, Tohoku Math. J., 15(1963), 365-393.
- TAUER, R. I., Maximal abelian subalgebras in finite factors of type II, Trans. Amer. Math. Soc., 114(1965), 281-308.

VIOREL NIȚICÂ and ANDREI TÖRÖK

The Mathematical Institute
of the Romanian Academy,
P.O. Box 1-764, 70700 Bucharest,
Romania.

current address:
Department of Mathematics,
The Pensylvania State University
University Park, PA 16802
U.S.A.

Received February 14, 1991.