SOLUTIONS OF THE OPERATOR-VALUED INTEGRATED CAUCHY FUNCTIONAL EQUATION

CHO-HO CHU and KA-SING LAU

Communicated by Serban Strătilă

ABSTRACT. Let G be a separable, metrizable locally compact abelian group and let σ be a vector measure on G taking values in the centre of a von Neumann algebra A. Given an A-valued measure μ on G, we define the convolution $\mu * \sigma$ and study the equation $\mu = \mu * \sigma$, using Choquet's integral representation theory as in [7] where the same equation for scalar measures was studied.

KEYWORDS: Convolution equation, locally compact group, exponential function, operator-valued measure, von Neumann algebra, conditional expectation, Choquet's integral representation.

AMS SUBJECT CLASSIFICATION: Primary 43A05; Secondary 46G10, 47C15, 46A55, 46L10, 47A56.

1. INTRODUCTION

Given a locally compact group G and a Borel measure σ on G, the integrated Cauchy functional equation

$$f(x) = \int_G f(x - y) d\sigma(y) \qquad (x \in G)$$

has been studied by many authors (cf. [5], [6], [7], [9], [10], [14], [16], [18], [20]) and the real or complex-valued solutions f have been characterized under various assumptions and with diverse techniques using devices such as Fourier transform (e.g., [13], [20]), Martingales [9] and Choquet's integral representation theory (e.g., [5], [7]). In particular, Choquet and Deny [5] proved that if G is separable, metrizable and abelian, and if σ is a probability measure such that supp σ generates G,

then the bounded solutions are constant functions. If both f and σ are nonnegative, then Deny [7] showed, as a development of [5], that f can be represented as an integral of the exponential functions g on G (i.e., g(x+y)=g(x)g(y)) satisfying $\int_G g(-y) d\sigma(y) = 1$. In fact, Deny considered the more general convolution equation

where μ is a nonnegative Borel measure on G. The solutions μ are of the form $\mu = f\lambda$ where λ is the Haar measure on G and f is as above.

The integrated Cauchy functional equation has many important applications (cf. [1], [10], [12], [18]) and it is natural and desirable to seek vector-valued solutions f (or μ) of the equation. The case that f is an \mathbb{R}^n -valued function and σ is a matrix-valued measure has been considered in [15]. In such case positivity is defined to be coordinatewise positive, and the probability measure used in the scalar case is replaced by a positive measure σ so that $\sigma(G)$ is a Markov matrix (i.e., the sum of each row is 1). The vector-valued theorem thus extended is used to solve a vector-valued renewal equation, which is in turn used to study some class of self-similar fractal measures.

Let G be a separable, locally compact metrizable abelian group, and A a von Neumann algebra of bounded operators on a (complex) separable Hilbert space H with centre Z. In this paper, we study equation (1.1) where σ is a given positive Z-valued measure and μ is a positive extended A-valued measure on G. The basic difference of this consideration from [15] is that the positivity here refers to the positive definiteness of an operator. The extended A-valued measure (including the ' ∞ ' in the range (Section 3)) is used because we want to include the unbounded solutions also. Following Bartle [2], we define the bilinear vector integral $\int_G f \, d\sigma$, for an A-valued function f, as an element in A. This is used to define the convolution $\mu * \sigma$. Our main results are the following extension of Deny's theorem:

THEOREM 4.11. Under the above assumption, let H_{σ} be the cone of positive solutions of (1.1) and ∂H_{σ} the extremal elements in H_{σ} . Then $\mu \in \partial H_{\sigma}$ if and only if $d\mu(x) = cpg(x)d\lambda(x)$ where c > 0, λ is the Haar measure on G, p is a minimal projection in A, and $g: G \to (0, \infty)$ satisfies

$$g(x+y) = g(x)g(y)$$
 and $p = p\left(\int\limits_G g(-y)\,\mathrm{d}\sigma(y)\right)$.

Theorem 5.6. If in addition, A is atomic and the solution μ is also a positive extended T(H)-valued measure (T(H)) denotes the trace-class operators on H), then μ is a 'mixture' of the above extremal solutions in the sense that there is

a probability measure P on H_{σ} supported by a Borel subset B of $\partial H_{\sigma} \bigcup \{0\}$ such that

$$\mu = \int_{\mathbf{R}} \nu \, \mathrm{d}\mathbf{P}(\nu).$$

That σ takes values in the centre Z of A is crucial in the proof of Theorem 4.11. First, if ρ is a pure state of A, then $\rho(az) = \rho(a)\rho(z)$ for all $a \in A$ and $z \in Z$ (Lemma 2.1). This allows us to reduce the equation into scalar form so that Deny's technique is applicable. Second, since A acts on a separable Hilbert space, A has a faithful normal state and there is a faithful contractive projection from A onto Z which is essential for constructing the exponential function g in the theorem (Lemma 4.9). The extremal solution in Theorem 4.11 may not exist in general and the atomic assumption on A in Theorem 5.6 guarantees such existence. The additional assumption on the measure μ in Theorem 5.6 implies that μ is contained in a cap of a cone containing H_{σ} so that Choquet's integral representation applies.

2. PRELIMINARIES

Recall that a $C^*-algebra$ \mathcal{A} is a norm-closed *-subalgebra of the algebra $\mathcal{B}(H)$ of all bounded operators on a Hilbert space H. We call \mathcal{A} a von Neumann algebra (or W*-algebra) if it has a (unique) predual \mathcal{A}_* ; in this case \mathcal{A} contains an identity and we can assume without loss of generality that it is the identity operator I in $\mathcal{B}(H)$. We denote by $\mathcal{A}_{sa} = \{a \in \mathcal{A} : a^* = a\}$ the self-adjoint part of \mathcal{A} , and by $\mathcal{A}_+ = \{a^*a : a \in \mathcal{A}\}$ the cone of positive operators in \mathcal{A} which defines a partial ordering \leq in \mathcal{A}_{sa} . We refer to [22] for the basics of operator algebras.

A state of a C^* -algebra \mathcal{A} is a complex linear functional ρ on \mathcal{A} such that $||\rho|| = 1$ and $\rho \geqslant 0$ where the latter means $\rho(a^*a) \geqslant 0$ for all $a \in \mathcal{A}$. A state ρ of \mathcal{A} is called *pure* if for any state ψ satisfying $\alpha \psi \leqslant \rho$ for some $\alpha > 0$, then one must have $\psi = \rho$. We note that the pure states of \mathcal{A} separate points of \mathcal{A} in that given $a, b \in \mathcal{A}_{sa}$, then $a \leqslant b$ if and only if $\rho(a) \leqslant \rho(b)$ for every pure state ρ of \mathcal{A} . If \mathcal{A} is a von Neumann algebra and if $\rho \in \mathcal{A}_*$ is a state of \mathcal{A} , then ρ is called a normal state of \mathcal{A} . Normal states of \mathcal{A} also separate points in \mathcal{A} .

If \mathcal{A} is a commutative C^* -algebra, then a state ρ of \mathcal{A} is pure if and only if it is multiplicative, i.e., $\rho(ab) = \rho(a)\rho(b)$ for all $a, b \in \mathcal{A}$. We will make frequent use of the following result of Størmer in ([21], Theorem 3.1) and we include the proof here for completeness.

LEMMA 2.1. Let A be a C^* -algebra containing the identity I and with centre Z. Let ρ be a pure state of A.

Then the restriction $\rho|_Z$ is a pure state of Z and furthermore,

(2.1)
$$\rho(az) = \rho(a)\rho(z)$$

for all $a \in A$ and $z \in Z$.

Proof. Since $Z = Z_{sa} + iZ_{sa}$, we need only consider $z \in Z_{sa}$. Without loss of generality we assume that $||z|| < \frac{1}{2}$ say. Then

$$|\rho(z)| \leqslant ||\rho|| \cdot ||z|| < \frac{1}{2} \quad \text{and} \quad \frac{1}{2} - \rho(z) > 0.$$

Let $\alpha = 1/2 - \rho(z)$ and define $\psi : \mathcal{A} \to \mathbb{C}$ by

$$\psi(a) = \alpha^{-1} \rho\left(a\left(\frac{I}{2} - z\right)\right), \quad a \in \mathcal{A}.$$

Then ψ is a state of \mathcal{A} and $\alpha\psi \leq \rho$. As ρ is pure, we have $\psi = \rho$ which gives, for $a \in \mathcal{A}$, $\rho(a) = \alpha^{-1}\rho(\frac{a}{2} - az)$, yielding $\rho(az) = \rho(a)\rho(z)$.

REMARK. Every pure state on Z extends to a pure state on A. This fact will be used later.

Throughout G will always denote a locally compact abelian group, \mathcal{B} the σ -algebra of Borel sets in G, and \mathcal{A} is a von Neumann algebra with centre Z. Let $\sigma: \mathcal{B} \to Z$ be a (norm) countably additive positive measure, that is, $\sigma(E) \geqslant 0$ in Z for all $E \in \mathcal{B}$. For the natural bilinear map

$$(a, z) \in \mathcal{A} \times Z \longmapsto az \in \mathcal{A},$$

we define the semi-variation of σ on any $E \in \mathcal{B}$ as

$$||\sigma||(E) = \sup \left\|\sum a_i \sigma(E_i)\right\|$$

where the supremum is taken over all $a_i \in \mathcal{A}$ with $||a_i|| \leq 1$ and all partitions $\{E_i\}$ of E [2]. Since \mathcal{A} contains identity and σ is positive, $||\sigma||(E)$ equals $||\sigma(E)||$. In particular σ has finite semi-variation by taking E = G. We can also define, as in [2], a σ -integrable function $f: G \to \mathcal{A}$ and the so-called bilinear vector integral $\int_E f \, d\sigma$ for $E \in \mathcal{B}$. For convenience and completeness, we give below an ad hoc construction of the integral which is equivalent to Bartle's integral.

First, if $f: G \to \mathcal{A}$ is a simple function, say, $f = \sum_{i} a_{i} \chi_{E_{i}}$ with $a_{i} \in \mathcal{A}$ and $E_{i} \in \mathcal{B}$, we define

$$\int_{E} f \, \mathrm{d}\sigma = \sum_{i} a_{i} \sigma(E \bigcap E_{i})$$

for $E \in \mathcal{B}$. Since $||f(x)|| = \sum_{i} ||a_i|| \chi_{E_i}(x)$ for $x \in G$, we have

$$\left\| \int_{E} f \, \mathrm{d}\sigma \right\| \leq \left\| \int_{E} \|f(x)\| \, \mathrm{d}\sigma(x) \right\| \leq (\sup_{i} \|a_{i}\|) \|\sigma(E)\|.$$

A function $f: G \to \mathcal{A}$ is said to be σ -integrable if it satisfies the following two conditions:

(i) There is a sequence $\{f_n\}$ of simple functions on G such that $\lim_{n\to\infty} ||f_n(x)-f(x)|| = 0$ for each x in some $E \in \mathcal{B}$ with $||\sigma(G \setminus E)|| = 0$;

(ii) The sequence $\left\{ \int_{E} f_n d\sigma \right\}$ is norm convergent in \mathcal{A} for every $E \in \mathcal{B}$. We define, as usual,

$$\int\limits_{E} f \, \mathrm{d}\sigma = \lim_{n \to \infty} \int\limits_{E} f_n \, \mathrm{d}\sigma \in \mathcal{A}.$$

It follows from Lemma 2.1 that if f is σ -integrable, then for any pure state ρ of A,

(2.2)
$$\rho\left(\int_{E} f \, d\sigma\right) = \int_{E} (\rho f) \, d\rho \sigma \qquad E \in \mathcal{B}$$

where $\rho f = \rho \circ f$ and $\rho \sigma = \rho \circ \sigma$.

We note that for every $t \in \mathcal{A}_{sa}$, $||t|| \le r$ if and only if $-r\mathbf{I} \le t \le r\mathbf{I}$. Given a function $f: G \to \mathcal{A}_{sa}$ such that there is a sequence $f_n: G \to \mathcal{A}_{sa}$ of simple functions with $\lim_{n\to\infty} ||f_n(x) - f(x)|| = 0$ for every $x \in G$, then we have

$$\{x \in G : ||f(x)|| \le r\} = \bigcap_{k=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \left\{ x \in G : -\left(r + \frac{1}{k}\right) \mathbf{I} \le f_n(x) \le \left(r + \frac{1}{k}\right) \mathbf{I} \right\} \in \mathcal{B},$$

and we have the following version of Egorov's theorem.

LEMMA 2.2. Let $f: G \to \mathcal{A}_{sa}$ and let $\{f_n\}$ be a sequence of simple functions such that $\lim_{n\to\infty} ||f_n(x)-f(x)|| = 0$ for each $x\in G$. Then $f_n\to f$ almost uniformly, i.e., for each $\varepsilon>0$, there exists $E\in \mathcal{B}$ such that $||\sigma(G\setminus E)||<\varepsilon$ and $\sup_{x\in E}||f_n(x)-f(x)||\to 0$ as $n\to\infty$.

By analogous proof as in the scalar case we have:

LEMMA 2.3. Let $f:G\to \mathcal{A}_+$ be such that for $r\in \mathbb{R}$, the sets $\{x\in G: f(x)\leqslant r\mathbf{I}\}$ and $\{x\in G: r\mathbf{I}\leqslant f(x)\}$ are in \mathcal{B} . Then there is an increasing sequence of simple functions $f_n:G\to \mathcal{A}_+$ such that $f_n\leqslant f$ and $\lim_{n\to\infty}\|f_n(x)-f(x)\|=0$ for each $x\in G$. Moreover, if f is bounded, then f is σ -integrable and $\int\limits_E f\,\mathrm{d}\sigma=\lim\limits_{n\to\infty}\int\limits_E f_n\,\mathrm{d}\sigma$ for every $E\in \mathcal{B}$.

Later on we will also use the vector integral in which the roles of \mathcal{A} and Z are interchanged, i.e., the vector integral $\int\limits_E g \, \mathrm{d}\mu$ with respect to the bilinear map

$$(z,a) \in Z \times A \rightarrow za \in A$$

where $\mu: \mathcal{B} \to \mathcal{A}$ is a positive countably additive measure and $g: G \to Z$ is a μ -integrable function. As in (2.2), we also have $\rho(\int_E f \, d\sigma) = \int_E (\rho f) \, d\rho \sigma$ for every pure state ρ of \mathcal{A} .

To conclude this section we remark that if \mathcal{A} is the algebra of $n \times n$ matrices, then the center Z is the scalar multiples of the identity matrix I. Coordinatewise the \mathcal{A} -valued equation $f(x) = \int_{\mathcal{A}} f(x-y) \, d\sigma(y)$ becomes

$$f_{ij}(x) = \int_G f_{ij}(x-y) d\tau(y).$$

where τ is a scalar measure. The matrix extension of the Choquet-Deny [5] theorem (i.e. the case f is bounded) is easily achieved by characterizing each f_{ij} separately. However for the extension of Deny's theorem [7], the reader should be cautioned that although f is assumed to be positive-definite-valued, it does not imply that each f_{ij} is positive and hence the scalar Deny theorem can not be applied coordinatewise to characterize the solutions of the above equation. Further even if the general solution of each f_{ij} can be obtained, simply putting these f_{ij} together need not form a positive definite matrix-valued solution f of the integrated Cauchy functional equations.

We note that any finite dimensional von Neumann algebra is a finite direct sum of matrix algebras, and in this case the convolution equation can be reduced coordinatewise as above. To illustrate the idea, we give the following simple example with a nontrivial center Z:

Let $M_2(\mathbb{C})$ be the algebra of 2×2 complex matrices and let ℓ_2^{∞} be the 2-dimensional commutative von Neumann algebra, i.e., \mathbb{C}^2 equipped with the ℓ^{∞} -

norm. Let $A = M_2(\mathbb{C}) \otimes \ell_2^{\infty}$ with centre $Z = \mathbb{I} \otimes \ell_2^{\infty}$. Then a function $f: G \to A$ can be represented as follows:

$$f(x) = [f_{ij}(x)] = \begin{bmatrix} f_{11}(x) & 0 & f_{13}(x) & 0 \\ 0 & f_{22}(x) & 0 & f_{24}(x) \\ f_{31}(x) & 0 & f_{33}(x) & 0 \\ 0 & f_{42}(x) & 0 & f_{44}(x) \end{bmatrix}$$

where $f_{ij}: G \to \mathbb{C}$. A Z-valued measure σ on G can be written as

$$\sigma = \left[egin{array}{cccc} \sigma_{11} & & & & & \\ & & \sigma_{22} & & & \\ & & & \sigma_{33} & \\ & & & & \sigma_{44} \end{array}
ight]$$

where $\sigma_{11} = \sigma_{33}$ and $\sigma_{22} = \sigma_{44}$ are complex-valued measures on G. In this case, the operator-valued equation

$$f(x) = \int_G f(x - y) d\sigma(y)$$

implies the following simultaneous equations:

$$f_{ij}(x) = \int\limits_C f_{ij}(x-y) d\sigma_{jj}(y)$$

and the above remarks apply to these scalar equations as well.

3. OPERATOR-VALUED MEASURES

We will further assume that G is separable metrizable so that it is σ -compact: $G = \bigcup_{n=1}^{\infty} G_n$ where each G_n is a compact subset of G and $G_n \subset G_{n+1}^{\circ}$. Following [3], we let $K(G, \mathbb{R})$ be the real vector space of real continuous functions on G with compact support. We equip $K(G, \mathbb{R})$ with the pointwise ordering and with the inductive topology as in ([3], p.66, [4], p.13). The dual $K(G, \mathbb{R})^*$, consisting of continuous linear functionals, is precisely the set of regular Borel measures (Radon measures) on G, and the positive cone $K(G, \mathbb{R})^*$, the positive ones ([3], Section 11). Given a net $\{\mu_{\alpha}\}$ in $K(G, \mathbb{R})^*$, we say that $\{\mu_{\alpha}\}$ converges to $\mu \in K(G, \mathbb{R})^*$ vaguely if $\{\mu_{\alpha}\}$ converges to μ in the w^* -topology, that is, $\mu_{\alpha}(f) = \int_G f \, \mathrm{d}\mu_{\alpha} \to \mu(f)$ for all $f \in K(G, \mathbb{R})$.

More generally, if X is a real Banach space partially ordered by a cone X_+ , we let K(G,X) be the real vector space of continuous functions from G to X with compact support, and let $K(G_n,X)$ be its subspace consisting functions with supports in G_n . With the supremum norm, $K(G_n,X)$ is a Banach space and its dual $K(G_n,X)^*$ identifies with the space $M(G_n,X^*)$ of X^* -valued Borel measures on G_n with bounded total variation. Since K(G,X) is the inductive limit of the increasing sequence $\{K(G_n,X)\}_{n=1}^{\infty}$ of spaces, we can equip K(G,X) with the inductive topology as in ([4], p.13) so that the w^* -topology on $K(G,X^*)$ is the product topology defined by $\{M(G_n,X^*)\}_{n=1}^{\infty}$. For $f,h\in K(G,X)$, we write $f\leqslant h$ to mean that $f(x)\leqslant h(x)$ in X, for every $x\in G$.

Let \mathcal{A} be a von Neumann algebra as before, and henceforth let \mathcal{A}_* be the (real) predual of the real Banach space \mathcal{A}_{*a} . Then the cone $(\mathcal{A}_*)_+$ is in duality with the cone \mathcal{A}_+ in \mathcal{A}_{*a} . For $t \in \mathcal{A}_*$, |t| is defined as in ([22], III 4.3), and satisfies

$$t^{\pm} = \frac{1}{2}(|t| \pm t)$$
 and $||t^{\pm}|| = \frac{1}{2}|||t| \pm t|| \le ||t||$.

If $\{t_n\}$ is a sequence in \mathcal{A}_* norm-convergent to $t \in \mathcal{A}_*$, then $\{|t_n|\}$ converges to |t| in norm ([22], p.145). Therefore using $t = t^+ - t^-$, each $f \in K(G, \mathcal{A}_*)$ can be decomposed as $f = f^+ - f^-$ where $f^{\pm} \in K(G, \mathcal{A}_*)$ are positive.

We thank Professor C. Lennard for the proof of the following result.

LEMMA 3.1. Let $\varphi: K(G, \mathcal{A}_{\bullet}) \to \mathbb{R}$ be a positive linear functional. Then φ is continuous, that is, $\varphi \in K(G, \mathcal{A}_{\bullet})^*$.

Proof. It suffices to prove that the restrictions $\varphi_n = \varphi|K(G_n, \mathcal{A}_*)$ are continuous. Suppose some φ_n is not continuous. Then there is a sequence $\{f_m\}$ in $K(G_n, \mathcal{A}_*)$ such that $||f_m|| \leq 1$ and $||\varphi_n(f_m)|| \to \infty$ as $m \to \infty$. Since

$$|\varphi_n(f_m)| \leq \varphi_n(f_m^+) + \varphi_n(f_m^-),$$

we may assume $\varphi_n(f_m^+) \to \infty$, say. By the above remarks, we have $||f_m^+|| \le ||f_m|| \le 1$. Choose a subsequence $\{f_k\}$ of $\{f_m\}$ such that $\varphi_n(f_k^+) \ge 2^k$ for all $k \ge 1$. Then $\sum_{k=1}^{\infty} \frac{1}{2^k} f_k^+ \in K(G_n, \mathcal{A}_*) \text{ and hence}$

$$\varphi_n\left(\sum_{k=1}^{\infty} \frac{1}{2^k} f_k^+\right) \geqslant \varphi_n\left(\sum_{k=1}^{N} \frac{1}{2^k} f_k^+\right) = \sum_{k=1}^{N} \frac{1}{2^k} \varphi_n(f_k^+) \geqslant N \quad \text{for all} \quad N \in \mathbb{N},$$

which is impossible. So φ_n is continuous for all n.

Let X be a real partially ordered Banach space with a monotone closed cone X_+ (i.e., every bounded increasing sequence in X_+ converges). By an extended X_+ -valued measure on G we mean a countably additive function

$$\mu: \mathcal{B} \to X_+ \bigcup \{\infty\}$$

such that $\mu(K) \in X_+$ for every compact subset K of G, where the symbol $\infty \notin X_+$ satisfies

$$0 \cdot \infty = 0$$

$$\infty + \infty = \infty$$

$$r \cdot \infty = \infty$$

$$t + \infty = \infty + t = \infty$$

$$t \le \infty$$

for r > 0 and $t \in X_+$. We write $\sum_{n=1}^{\infty} x_n = \infty$ if the series $\sum_{n=1}^{\infty} x_n$ diverges in X_+ . We will denote this class of measures by $M(G, X_+)$. Given $\mu, \nu \in M(G, X_+)$, we write $\mu \leq \nu$ to mean that $\mu(E) \leq \nu(E)$ for all $E \in \mathcal{B}$.

Given $\mu \in M(G, \mathcal{A}_+)$ and a state ρ of \mathcal{A} , we define $\rho\mu : \mathcal{B} \to [0, \infty]$ by $\rho\mu(E) = \lim_{n \to \infty} \rho\mu(E \cap G_n)$, then $\rho\mu$ a regular Borel measure on G ([19], Theorem 2.18). It follows that for any $\mu, \nu \in M(G, \mathcal{A}_+)$, we have $\mu \leq \nu$ whenever $\mu(K) \leq \nu(K)$ for every compact set $K \subset G$, since the latter implies that for every state ρ of \mathcal{A} , $\rho\mu \leq \rho\nu$ by regularity. Note that the states separate points of \mathcal{A} .

A von Neumann algebra \mathcal{A} is called σ -finite ([22], p.78) if there exists a normal state $\kappa \in \mathcal{A}_*$ which is faithful in that whenever $a \in \mathcal{A}_+$ and $\kappa(a) = 0$, then a = 0. We note that every von Neumann algebra acting on a separable Hilbert space H has a separable predual and is σ -finite, and that a commutative σ -finite von Neumann algebra is just an $L^{\infty}(\nu)$ where ν is a σ -finite complex measure.

LEMMA 3.2. Let A be a σ -finite von Neumann algebra (with faithful normal state κ). Then there is a one-one correspondence between $M(G, A_+)$ and the positive linear functionals on $K(G, A_*)$.

Proof. Given $\mu \in M(G, \mathcal{A}_+)$, let $\mu_n : \mathcal{B}_{G_n} \to \mathcal{A}_+$ be the restriction of μ to G_n . Then there exist positive functionals $\varphi_n : K(G_n, \mathcal{A}_*) \to \mathbb{R}$ such that $\varphi_n(f) = \int\limits_{G_n} f \, \mathrm{d}\mu_n$ for $f \in K(G_n, \mathcal{A}_*)$ where the (bilinear) vector integral is defined as in [2] using the bilinear map

$$(f, \psi) \in K(G_n, \mathcal{A}_*) \times K(G_n, \mathcal{A}_*)^* \to \psi(f) \in \mathbb{R}.$$

The corresponding positive functional $\varphi: K(G, \mathcal{A}_{\bullet}) \to \mathbb{R}$ is then given by $\varphi = \lim_{n \to \infty} \varphi_n$.

Conversely, let $\varphi: K(G, \mathcal{A}_*) \to \mathbf{R}$ be a positive functional and let φ_n be its restrictions to $K(G_n, \mathcal{A}_*)$. Then there exists, for each n, a measure $\mu_n \in M(G_n, \mathcal{A}_+)$ such that $\varphi_n(f) = \int\limits_{G_n} f \, \mathrm{d}\mu$ for all $f \in K(G_n, \mathcal{A}_*)$. Note that $\mu_m = \mu_n$ on G_n for $m \leq n$.

Now we are going to define $\mu: \mathcal{B} \to \mathcal{A}_+ \bigcup \{\infty\}$ associated with φ . For each $E \in \mathcal{B}$, the sequence $\{\mu_n(E \cap G_n)\}_{n=1}^{\infty}$ is increasing in \mathcal{A}_+ , by positivity of μ_n . Since $\mathcal{A}_{\epsilon a}$ is monotone closed in the sense of ([22], p.137), we can define

$$\mu(E) = \begin{cases} \sup_{n} \mu_n(E \cap G_n) = s - \lim_{n \to \infty} \mu_n(E \cap G_n), & \text{if } \{\|\mu_n(E \cap G_n)\|\}_{n=1}^{\infty} \text{ is bounded,} \\ \infty & \text{otherwise,} \end{cases}$$

where 's-lim' denotes the limit in the strong operator topology on $\mathcal{A} \subset B(H)$. Evidently μ is finitely additive, and since strong-operator convergence implies $\sigma(\mathcal{A}, \mathcal{A}_*)$ -convergence, we know that the scalar measure $\rho\mu$ is countably additive for every normal state $\rho \in \mathcal{A}_*$. We show that μ is indeed countably additive which will complete the proof. Let $E = \bigcup_{k=1}^{\infty} E_k$ be a disjoint union of Borel sets in G.

Case (i): If $\|\mu_n(E \cap G_n)\| \to \infty$ as $n \to \infty$, then $\mu(E) = \infty$ by definition. On the other hand, by the uniform boundedness principle, there exists a normal state ρ in \mathcal{A}_* such that $\rho\mu_n(E \cap G_n) \to \infty$. It follows that

$$\sum_{k=1}^{\infty} \rho \mu(E_k) = \rho \mu(E) = \lim_{n \to \infty} \rho \mu_n(E \cap G_n) = \infty.$$

Therefore $\sum_{k=1}^{\infty} \mu(E_k) = \infty = \mu(E)$.

Case (ii): If $\{\|\mu_n(E \cap G_n)\|\}_{n=1}^{\infty}$ is bounded, then $\mu(E) = s$ - $\lim_{n \to \infty} \mu_n(E \cap G_n)$ $\in \mathcal{A}_+$. Let $\sum_{j=1}^{\infty} \mu(E_{k_j})$ be a subseries of $\sum_{k=1}^{\infty} \mu(E_k)$. Then, for $\rho \in \mathcal{A}_+^*$ and $m \in \mathbb{N}$, we have

$$0 \leqslant \sum_{j=1}^{m} \rho \mu(E_{k_j}) = \rho \mu(E_{k_1} \bigcup \cdots \bigcup E_{k_m}) \leqslant \rho \mu(E).$$

So $\sum_{j=1}^{\infty} \rho \mu(E_{k_j}) < \infty$. Since $\mathcal{A}_{sa}^* = \mathcal{A}_+^* - \mathcal{A}_+^*$, we conclude that $\sum_{j=1}^{\infty} \rho \mu(E_{k_j}) < \infty$ for all $\rho \in \mathcal{A}_{sa}^*$, that is, every subseries of $\sum_{k=1}^{\infty} \mu(E_k)$ is weakly convergent and

hence, by a theorem of Orlicz and Pettis ([7], p.22), the series $\sum_{k=1}^{\infty} \mu(E_k)$ is norm convergent in A_+ . Now

$$\sum_{k=1}^{\infty} \mu(E_k) = \lim_{N \to \infty} \sum_{k=1}^{N} \mu(E_k) \leqslant \mu(E),$$

and for the given faithful normal state $\kappa \in \mathcal{A}_*$, we have

$$\kappa\left(\sum_{k=1}^{\infty}\mu(E_k)\right)=\sum_{k=1}^{\infty}\kappa\mu(E_k)=\kappa\mu(E).$$

Hence $\sum_{k=1}^{\infty} \mu(E_k) = \mu(E)$ by faithfulness of κ .

REMARK. The above proof actually implies that

$$\mu(E) = \lim_{n \to \infty} \mu(E \cap G_n), \qquad E \in \mathcal{B}$$

where 'lim' denotes the norm limit if the sequence $\mu(E \cap G_n)$ is bounded, and is ∞ otherwise.

Let $\sigma: \mathcal{B} \to Z$ be as before and let $\mu \in M(G, \mathcal{A}_+)$, where \mathcal{A} acts on a separable Hilbert space. Let $E \in \mathcal{B}$. We observe that the sets $\{y \in G : \mu(E-y) \le r\mathbf{I}\}$ and $\{y \in G : r\mathbf{I} \le \mu(E-y)\}$ are in \mathcal{B} for $r \in \mathbb{R}$. Indeed, as \mathcal{A} has separable predual, its normal states have a countable dense set $\{\rho_n\}$ and so

$$\{y \in G : \mu(E-y) \leqslant r\mathbf{I}\} = \bigcap_{n=1}^{\infty} \{y \in G : \rho_n \mu(E-y) \leqslant r\} \in \mathcal{B}.$$

Using Lemma 2.3 and the monotone closedness of \mathcal{A} , we can define the *convolution* measure $\mu * \sigma : \mathcal{B} \to \mathcal{A}_+ \bigcup \{\infty\}$ by

$$(\mu * \sigma)(E) = \begin{cases} \int_G \mu(E - y) \, d\sigma(y) & \text{if the integral exists ;} \\ \infty & \text{otherwise} \end{cases}$$

where $E \in \mathcal{B}$.

Let T(H) be the Banach space of trace-class operators on a Hilbert space H, equipped with the trace-norm $||t||_1 = \operatorname{tr}(|t|)$ so that the dual $T(H)^*$ identifies with B(H) under the duality

$$(t,s) \in T(H) \times B(H) \longmapsto \mathbf{tr}(st) \in \mathbb{C}.$$

As a special case of Lemma 3.1 and 3.2, every positive linear functional φ on $K(G, T(H)_{sa})$ is continuous, and if H is separable, φ can be represented as a positive measure in $M(G, B(H)_+)$.

Let K(H) be the C^* -algebra of compact operators on H (with the operator norm $\|\cdot\|$). Then $K(H)^*_{sa} = T(H)_{sa}$. If $\{t_n\}$ is an increasing sequence in $T(H)_+$ and if $\{\|t_n\|_1\}$ is bounded, then $\{\|t_n\|_1\}$ is bounded because $\|t\| \le \|t\|_1$ for $t \in T(H)$. So $t = s - \lim_{n \to \infty} t_n$ exists in $B(H)_+$. But $0 \le t_n \uparrow$ implies $\|t_n\|_1 = \operatorname{tr}(t_n)$ is increasing and therefore converges. It follows that, for $n \ge m$, we have

$$||t_n - t_m||_1 = \operatorname{tr}(t_n - t_m) = \operatorname{tr}(t_n) - \operatorname{tr}(t_m) \to 0$$

as $n, m \to \infty$. Hence $\{t_n\}$ is Cauchy in T(H) and so $t = \lim_{n \to \infty} t_n \in T(H)_+$. Therefore T(H) is monotone closed with respect to $||\cdot||_1$, and similar to Lemma 2.3, we have the identification

$$M(G, T(H)_{+}) = K(G, K(H)_{so})_{+}^{*}$$

provided that H is separable so that B(H) has a faithful normal state.

4. EXTREMAL SOLUTIONS

In view of the above discussions, we will only consider G a separable, metrizable, locally compact abelian group, H a separable Hilbert space and $A \subset B(H)$ a von Neumann algebra with centre Z. For a fixed measure $\sigma: \mathcal{B} \to Z_+$ such that supp σ generates G, our objective is to solve the equation

$$\mu = \mu * \sigma$$

for $\mu \in M(G, A_+)$. We are going to generalize Deny's method [7] to the above setting. We let

$$H_{\sigma} = \{ \mu \in M(G, \mathcal{A}_+) : \mu = \mu * \sigma \}.$$

In this section, we characterize the extremal solutions in H_{σ} and we show in the next section that if $\mu \in H_{\sigma}$ is $T(H)_+$ -valued as well, then it can be represented, via Choquet theory, by the extremal solutions in H_{σ} .

By Lemma 3.2, we identify $M(G, \mathcal{A}_+)$ with the cone $K(G, \mathcal{A}_*)_+^*$ of positive functionals in $K(G, \mathcal{A}_*)^*$. Clearly H_{σ} is a subcone of $M(G, \mathcal{A}_+)$.

Given a cone C in a real vector space and given a nonzero $u \in C$, let $R(u) = \{ru : r \ge 0\}$ be the ray in C generated by u. We call a nonzero u an extremal element in C if R(u) is an extreme ray in C, that is, for any $v \in C$, $v \le u$ implies $v \in R(u)$. Let ∂C denote the set of all extremal elements in C. Note that $0 \notin \partial C$.

We first describe the extremal elements of the cone \mathcal{A}_+ of any C^* -algebra \mathcal{A} . A nonzero projection $p \in \mathcal{A}$ is called *minimal* if $p\mathcal{A}p = \{\alpha p : \alpha \in \mathbb{C}\}$ (cf. [22], p.51).

LEMMA 4.1. Let $p \in \mathcal{A}$ be a projection and let $b \in \mathcal{A}$ with $0 \le b \le p$. Then b = bp = pb = pbp. In particular, if p is a minimal projection, then $b = \alpha p$ for some $\alpha \ge 0$.

Proof. We have

$$0 = (\mathbf{I} - p)0(\mathbf{I} - p) \leqslant (\mathbf{I} - p)b(\mathbf{I} - p) \leqslant (\mathbf{I} - p)p(\mathbf{I} - p) = 0$$

implying (I - p)b(I - p) = 0, that is, $((I - p)b^{\frac{1}{2}})((I - p)b^{\frac{1}{2}})^* = 0$ which gives $(I - p)b^{\frac{1}{2}} = 0$ and hence (I - p)b = 0.

PROPOSITION 4.2. The extremal elements of the cone A_{+} are precisely the positive scalar multiples of the minimal projections in A.

Proof. Let $t \in \mathcal{A}_+$ be extremal with ||t|| = 1, then t is an extreme point of the positive part of the unit ball $\{a \in \mathcal{A}_+ : ||a|| \le 1\}$. Hence t is a projection in \mathcal{A} (cf., [22], Lemma I.10.1). Now for any $a \in \mathcal{A}_+, 0 \le tat \le ||a||t$ implies that $tat = \alpha t$ for some $\alpha \ge 0$, since t is extremal. It follows that $t\mathcal{A}t = \mathbb{C}t$ and t is a minimal projection in \mathcal{A} .

Conversely, if p is a minimal projection in \mathcal{A} and if $t = \alpha p$ for some $\alpha > 0$, then for any $0 \le b \le t$, we have, by Lemma 4.1, $b = pbp = \beta p$ for some $\beta \ge 0$. So t is extremal in \mathcal{A}_+ .

We remark that the minimal projections in B(H) are just the rank-one projections; in a von Neumann algebra minimal projection need not exist.

LEMMA 4.3. Let \mathcal{M} be a maximal abelian subalgebra of \mathcal{A} . If $p \in \mathcal{M}$ is a minimal projection in \mathcal{M} , then p is also minimal in \mathcal{A} .

Proof. Let $a \in \mathcal{A}$. For any $b \in \mathcal{M}$, we have $bp = pb = \alpha p$ for some $\alpha \in \mathbb{C}$, so

$$(pap)b = pa(\alpha p) = \alpha pap = b(pap).$$

Hence pAp commutes with every element in \mathcal{M} and so $pAp \subseteq \mathcal{M}$ by maximality. Therefore $pAp = \mathbb{C}p$ and p is minimal in A.

We now return to consider the extremal elements of H_{σ} .

LEMMA 4.4. Let $\mu \in \partial H_{\sigma}$. Let $V \in \mathcal{B}$ and let σ_{V} be the restriction of σ to V. Then

$$\mu * \sigma_V = \alpha \mu$$

Proof. For any compact set $K \subset G$ and for any pure state ρ of A, we have

$$\rho((\mu * \sigma_V) * \sigma)(K) = ((\rho\mu * \rho\sigma_V) * \rho\sigma)(K)$$
$$= ((\rho\mu * \rho\sigma) * \rho\sigma_V)(K)$$
$$= \rho((\mu * \sigma) * \sigma_V)(K).$$

Therefore $(\mu * \sigma_V) * \sigma = \mu * \sigma_V$ and $\mu * \sigma_V$ is in H_σ . That μ is extremal and $\mu * \sigma_V \leq \mu * \sigma = \mu$ implies $\mu * \sigma_V = \alpha \mu$ for some $0 \leq \alpha \leq 1$.

LEMMA 4.5. Let $\mu \in \partial H_{\sigma}$ and let ρ be a state of A satisfying (2.1) (in particular, a pure state) and $\rho \mu \neq 0$. Then supp $\rho \sigma = \text{supp } \sigma$.

Proof. Clearly supp $\rho\sigma \subseteq \text{supp }\sigma$. To prove the reverse inclusion, let $x \in \text{supp }\sigma$, let V be any compact neighbourhood of x, and let σ_V be the restriction of σ to V. Then $\mu * \sigma_V \neq 0$ (indeed supp $\mu * \sigma_V = \text{supp }\mu + \text{supp }\sigma_V$). If $\rho\sigma(V) = 0$, then $\rho\sigma_V = 0$ and by Lemma 4.4 and (2.1), we have

$$\alpha(\rho\mu) = \rho\mu * \rho\sigma\nu = 0.$$

This contradicts the hypothesis that $\rho\mu \neq 0$, so $\rho\sigma(V) \neq 0$ and $x \in \operatorname{supp} \rho\sigma$.

We note that $\rho\mu=0$ can occur. Indeed, let $\mathcal{A}=M_2(\mathbb{C})$ and define $\rho\in\mathcal{A}^*$ by

$$\rho \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \operatorname{tr} \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \;,$$

then ρ is a pure state of \mathcal{A} ([21], Lemma 8.3), and if $\mu: \mathcal{B} \to \mathcal{A}_+$ is given by

$$\mu(\cdot) = \begin{bmatrix} \nu(\cdot) & \nu(\cdot) \\ \nu(\cdot) & \nu(\cdot) \end{bmatrix}$$

where $\nu: \mathcal{B} \to [0, \infty)$ is any scalar measure, then $\rho \mu = 0$.

We note that the centre Z is a commutative von Neumann algebra and can be identified with the algebra $C(\Omega)$ of complex continuous functions on the pure state space

$$\Omega = \{ \omega \in \mathbb{Z}^* : \omega \text{ is a pure state of } \mathbb{Z} \},$$

which is w*-compact Hausdorff and Stonean ([22], p.104). There is a positive contractive projection $P: \mathcal{A} \to Z$ such that

$$P(az) = P(a)z$$
 for $a \in A$ and $z \in Z$

and that P is faithful, i.e., P(a) = 0 and $a \ge 0 \Rightarrow a = 0$, [23]. It follows that $\tilde{\omega} := \omega P$ is a state of A satisfying (2.1) for $\omega \in \Omega$. By faithfulness of P, the set

$$U = \{ \omega \in \Omega : \hat{\omega}\mu \neq 0 \}$$

is nonempty.

LEMMA 4.6. Let $\mu \in \partial H_{\sigma}$ and let $K \in \mathcal{B}$ be such that $\mu(K) \neq 0$. Then $P\mu(K)$ is an extremal element in the cone Z_{+} .

Proof. By faithfulness of P, $P\mu(K) \neq 0$. Let $b \in \mathbb{Z}_+ \setminus \{0\}$ be such that $b \leq P\mu(K)$. We show that b is a positive scalar multiple of $P\mu(K)$. Let

$$b_n = \left(b + \frac{1}{n}\mathbf{I}\right) \left(P\mu(K) + \frac{1}{n}\mathbf{I}\right)^{-1} \in \mathbb{Z}_+,$$

then $b + \frac{1}{n}(\mathbf{I} - b_n) = b_n P \mu(K)$, and $0 \le b_n \le \mathbf{I}$. We define a measure $\nu : \mathcal{B} \to \mathcal{A}_+ \bigcup \{\infty\}$ by $\nu(E) = b_n \mu(E)$ if $\mu(E) \in \mathcal{A}$, and $= \infty$ otherwise. Since b_n commutes with $\mu(E)$, we have $\nu \le \mu$. Evidently $\nu \in H_{\sigma}$, and therefore $\nu = c_n \mu$ for some $c_n > 0$ since $\mu \in \partial H_{\sigma}$. This implies

$$b + \frac{1}{n}(\mathbf{I} - b_n) = b_n P\mu(K) = P(b_n \mu(K)) = P(\nu(K)) = P(c_n \mu(K)) = c_n P\mu(K).$$

Since $b = \lim_{n \to \infty} (b + \frac{1}{n}(\mathbf{I} - b_n))$, it follows that $\{c_n\}$ converges to c > 0 say, and $b = cP\mu(K)$. So $P\mu(K)$ is extremal in Z_+ .

LEMMA 4.7. Let $\mu \in \partial H_{\sigma}$. Then there is a minimal projection q in Z such that $P\mu(G_n) = e_n q$ for some $e_n \ge 0$.

Proof. By Lemma 4.6 and Proposition 4.2, we have $P\mu(G_n) = e_n q_n$ for some $e_n \geqslant 0$ and some minimal projection q_n in Z. But given $n \leqslant m$ say, $e_n q_n = P\mu(G_n) \leqslant P\mu(G_m) = e_m q_m$ implies $q_n = q_m$ by Lemma 4.1.

LEMMA 4.8. Let $\mu \in \partial H_{\sigma}$ and let ρ be a pure state of A with $\rho \mu \neq 0$. Then $\rho P \mu \neq 0$.

Proof. We have $\rho\mu(G_n) \neq 0$ for some n which implies $P\mu(G_n) = e_n q$ with $e_n > 0$ by Lemma 4.7. Since q commutes with $\mu(G_n)$, we have $q\mu(G_n) \leq \mu(G_n)$. Now

$$P(q\mu(G_n)) = qP(\mu(G_n)) = e_n q = P(\mu(G_n))$$

entails $q\mu(G_n) = \mu(G_n)$ by faithfulness of P. So $\rho P\mu(G_n) = e_n\rho(q) > 0$.

We note that if p is a projection in Z and if ρ is a pure state of A, then $\rho(p) = 1$ or 0.

LEMMA 4.9. Let $\mu \in \partial H_{\sigma}$ and let $x \in G$. Then

$$\mu * \delta_x = g(x)\mu$$

where δ_x is the point mass at x and $g: G \to (0, \infty)$ satisfies g(x+y) = g(x)g(y).

Proof. Fix $x \in \text{supp } \sigma$. Let $\{V_n\}$ be a decreasing sequence of compact neighbourhoods of x such that $\lim_{n \to \infty} V_n = \{x\}$. Let $\sigma_n = \sigma | V_n$ be the restriction of σ to V_n . By Lemma 4.4, we have

$$\mu * \sigma_n = \alpha_n \mu$$

for some $0 < \alpha_n < 1$. Let ρ be a state of \mathcal{A} satisfying (2.1) such that $\rho\mu \neq 0$. By Lemma 4.5, we have supp $\rho\sigma = \text{supp }\sigma$ and so $\rho\sigma(V_n) \neq 0$. Now we can apply Deny's arguments [7], making use of the sequence $\left\{\frac{1}{\rho\sigma(V_n)}\rho\sigma_n\right\}$ which converges vaguely to δ_x , to conclude that

where $g_{\rho}(x) = \lim_{n \to \infty} \frac{\alpha_n}{\rho \sigma(V_n)}$ satisfies

$$(4.2) g_{\rho}(x+y) = g_{\rho}(x)g_{\rho}(y)$$

for y, $x + y \in \text{supp } \sigma$. Further, since supp σ generates G, we can extend g_{ρ} to a continuous function $g_{\rho}: G \to (0, \infty)$ such that (4.1) and (4.2) hold for all $x, y \in G$. We remark that if ρ and ρ' are two states satisfying (2.1) with the same restriction to Z, then $g_{\rho} = g_{\rho'}$. Note that $g_{\rho}(0) = 1$.

To construct the required g, we make use of the aforementioned projection $P: \mathcal{A} \to Z$. For each $\omega \in U$, we have

$$\tilde{\omega}\mu * \delta_x = g_{\tilde{\omega}}(x)\tilde{\omega}\mu, \qquad x \in G.$$

We show that $g_{\tilde{\omega}_1}(x) = g_{\tilde{\omega}_2}(x)$ for all $\omega_1, \omega_2 \in U$. Indeed, there is some G_m such that both $\tilde{\omega}_1 \mu(G_m)$ and $\tilde{\omega}_2 \mu(G_m)$ are positive which implies

$$\tilde{\omega}_1\mu(G_m)=\omega_1P\mu(G_m)=\omega_1(e_mq)=e_m=\tilde{\omega}_2\mu(G_m)>0.$$

So $\omega_1 P\mu(G_m - x) = g_{\hat{\omega}_1}(x)\omega_1 P\mu(G_m) > 0$ entails that $P\mu(G_m - x) = e'_m q'$ for some positive e'_m and some minimal projection $q' \in Z$. It follows that

$$g_{\tilde{\omega}_1}(x) = \frac{e'_m}{e_m} = g_{\tilde{\omega}_2}(x).$$

Fix any $\omega_0 \in U$, we define $g: G \to (0, \infty)$ by $g(x) = g_{\tilde{\omega}_0}(x)$ for $x \in G$, then g(x+y) = g(x)g(y) for $x, y \in G$.

Now for each pure state ρ of \mathcal{A} with $\rho\mu \neq 0$ and $\omega = \rho|Z$, we have $\omega \in U$ by Lemma 4.8. Using (4.1), we have

$$\rho(\mu * \delta_x) = \rho \mu * \delta_x = g_\rho(x)\rho\mu = g_{\tilde{\omega}}(x)\rho\mu = g_{\tilde{\omega}_0}(x)\rho\mu = g(x)\rho\mu.$$

Hence

$$\mu * \delta_x = g(x)\mu. \quad \blacksquare$$

LEMMA 4.10. Let $\mu \in \partial H_{\sigma}$. Then

$$\mathrm{d}\mu(x) = ag(-x)\mathrm{d}\lambda(x)$$

where $a \in \mathcal{A}$, λ is the Haar measure on G, and $g: G \to (0, \infty)$ satisfies g(x+y) = g(x)g(y).

Proof. For each n, define ν_n by

$$\nu_n(E) = \int\limits_{E \cap G_n} g(x) \, \mathrm{d}\mu(x), \qquad E \in \mathcal{B}.$$

By the remark following Lemma 2.3, the vector integral is defined by the bilinear map $(z, a) \in \mathbb{Z} \times \mathcal{A} \mapsto za \in \mathcal{A}$. Also we define

$$\nu(E) = \lim_{n \to \infty} \nu_n(G_n \cap E), \quad E \in \mathcal{B},$$

where 'lim' is the norm limit (see Lemma 3.2 and the remark there). It follows that for any pure state ρ of \mathcal{A} , $d\rho\nu(x) = g(x)d\rho\mu(x)$. We denote ν by

$$\mathrm{d}\nu(x) = g(x)\mathrm{d}\mu(x).$$

Using (4.2), it is elementary to show that $\rho\nu$ is actually translation invariant [7]. Since pure states separate points of \mathcal{A} , ν is translation invariant as well. We conclude that for any state ρ of \mathcal{A} , $\rho\nu$ is a (scalar) translation invariant regular Borel measure, hence there exists $a(\rho) \in [0, \infty)$ such that

where λ is the Haar measure on G.

It is easy to see that the function $a(\cdot)$ is affine on the state space of \mathcal{A} . It is also continuous with respective to the $\sigma(\mathcal{A}^*, \mathcal{A})$ -topology. Indeed let $\{\rho_{\alpha}\}$ be a net of states of \mathcal{A} , $\sigma(\mathcal{A}^*, \mathcal{A})$ -converging to ρ . Let $K \subset G$ such that $\lambda(K) \neq 0$,

then $\rho_{\alpha}\nu(K) \to \rho\nu(K)$ and (4.3) implies that $a(\rho_{\alpha}) \to a(\rho)$. Therefore $a(\rho)$ is a nonnegative continuous affine function of the states ρ of \mathcal{A} and it defines a positive operator, denoted by a, in \mathcal{A} (cf., [22], p.161). Hence we have $\nu(K) = a\lambda(K)$ for every compact set $K \subset G$. For every pure state ρ of \mathcal{A} , we have

$$\mathrm{d}\rho\mu = g(-x)\mathrm{d}\rho\nu = g(-x)a(\rho)\mathrm{d}\lambda$$

and hence

$$\mathrm{d}\mu(x) = ag(-x)\mathrm{d}\lambda(x).$$

We are now ready to characterize the extremal solutions of the equation $\mu * \sigma = \mu$. Recall that \mathcal{A} acts on a separable Hilbert space.

THEOREM 4.11. Let $\mu \in H_{\sigma}$. The following conditions are equivalent:

- (i) $\mu \in \partial H_{\sigma}$;
- (ii) $d\mu(x) = cpg(x)d\lambda(x)$ where c > 0, λ is the Haar measure on G, p is a minimal projection in A, and the function $g: G \to [0, \infty)$ has the properties that

$$g(x+y) = g(x)g(y)$$
 and $p = p\left(\int_G g(-y) d\sigma(y)\right)$.

Proof. (i) \Rightarrow (ii). By the previous lemma, we have

$$\mathrm{d}\mu(x) = ag(-x)\,\mathrm{d}\lambda(x)$$

where $a \in \mathcal{A}_+$ and $g: G \to (0, \infty)$ satisfies g(x+y) = g(x)g(y). We show that a is extremal in \mathcal{A}_+ . We first note that μ has commuting range in \mathcal{A}_+ which means, for $\mu(E), \mu(F) \in \mathcal{A}_+$, $\mu(E)\mu(F) = \mu(F)\mu(E)$. Hence there is a maximal abelian subalgebra $\mathcal{M} \subset \mathcal{A}$ such that $\mu: \mathcal{B} \to \mathcal{M}_+ \bigcup \{\infty\}$. Let $K \subset G$ be a compact set such that $\mu(K) \neq 0$. We have

$$\mu(K) = a \int_K g(-x) \, \mathrm{d}\lambda(x).$$

Using similar arguments as in Lemma 4.6, one can show that $\mu(K)$ is extremal in \mathcal{M}_+ and hence $a \in \partial \mathcal{M}_+$. By Proposition 4.2 and Lemma 4.3 there exists a minimal projection $p \in \mathcal{A}$ such that a = cp for some c > 0. Hence we have $d\mu(x) = cpg(-x)d\lambda(x)$.

It remains to prove the last identity in (ii). Since $\mu = \mu * \sigma$, and $d\mu(x) = cpg(-x)d\lambda(x)$ we have, by a direct calculation,

$$\int_{K} pg(-x) d\lambda(x) = \int_{G} \int_{K} pg(-x)g(-y) d\lambda(x) d\sigma(y),$$

for any compact $K \subset G$. It follows from (2.1) that for any pure state ρ of A,

$$\rho(p) \left(\int_{K} g(-x) \, \mathrm{d}\lambda(x) \right) = \rho \left(p \int_{G} \int_{K} g(-x) g(-y) \, \mathrm{d}\lambda(x) \, \mathrm{d}\sigma(y) \right)$$

$$= \rho(p) \left(\int_{K} g(-x) \, \mathrm{d}\lambda(x) \right) \left(\int_{G} g(-y) \, \mathrm{d}\rho\sigma(y) \right)$$

$$= \left(\int_{K} g(-x) \, \mathrm{d}\lambda(x) \right) \rho \left(p \int_{G} g(-y) \, \mathrm{d}\sigma(y) \right).$$

We conclude that $p = p \int_C g(-y) d\sigma(y)$.

(ii) \Rightarrow (i). Let μ satisfy condition (ii) and let $\nu \in H_{\sigma}$ be such that $\nu \leq \mu$. We show that ν is a positive scalar multiple of μ . Let $d\mu(x) = cpg(x) d\lambda(x)$ be as given. Define $\hat{\nu} \in M(G, \mathcal{A}_+)$ and $\hat{\sigma} : \mathcal{B} \to \mathcal{A}_+$ by

$$\mathrm{d}\hat{\nu}(x) = g(-x)\mathrm{d}\nu(x)$$
 and $\mathrm{d}\hat{\sigma}(x) = g(-x)\mathrm{d}\sigma(x)$.

It follows from a direct calculation that, for any compact subset $K \subset G$,

$$(\hat{\nu} * \hat{\sigma})(K) = \hat{\nu}(K),$$

so that $\hat{\nu} \in H_{\hat{\sigma}}$. Let $\hat{\nu}_x = \hat{\nu} * \delta_x$ be a translation of ν and let h be a positive real continuous function with compact support on G. Define $f: G \to \mathcal{A}_{sa}$ by $f(x) = \int_G h(y) \, \mathrm{d}\hat{\nu}_{-x}(y)$, then

$$\int_G f(x-y) \,\mathrm{d}\hat{\sigma}(y) = f(x)$$

for all $x \in G$. Let ρ be a pure state of A such that $\rho \nu \neq 0$. Then $\rho \mu \neq 0$ and $\rho(p) \neq 0$. Also

$$\int_{G} \rho f(x-y) \,\mathrm{d}\rho \hat{\sigma}(y) = \rho f(x)$$

where $\rho\hat{\sigma}(G)=1$ as $p\hat{\sigma}(G)=p$ by the last identity in (ii). Since $\rho f(x)=\int\limits_G h(y)\,\mathrm{d}\rho\hat{\nu}_{-x}(y)$ with $\rho\hat{\nu}\leqslant c\rho(p)\lambda$, the function $\rho f:G\to\mathbb{R}$ is bounded and uniformly continuous. Therefore by Choquet and Deny's Theorem ([5], Théorème 1), we have

$$\rho f(x-a) = \rho f(x)$$

for $x \in G$ and $a \in \text{supp } \rho \hat{\sigma}$. By Lemma 4.5, $\text{supp } \rho \hat{\sigma} = \text{supp } \sigma$. Since $\text{supp } \sigma$ generates the group G, we conclude that $\rho f(x-a) = \rho f(x)$ for all $x, a \in G$. In particular, $\rho f(-a) = \rho f(0)$ for $a \in G$, that is

$$\int\limits_G h(y) \,\mathrm{d}\rho \hat{\nu}_a(y) = \int\limits_G h(y) \,\mathrm{d}\rho \hat{\nu}(y).$$

As h is arbitrary, we have $\rho \hat{\nu}_a = \rho \hat{\nu}$ for $a \in G$ and hence $\rho \hat{\nu} = a(\rho)\lambda$ for some $a(\rho) \in (0, \infty)$, where λ is the Haar measure on G.

That $\nu \leqslant \mu$ implies $0 \leqslant \hat{\nu}(K) \leqslant cp\lambda(K)$ where p is a minimal projection in \mathcal{A}_+ . By Proposition 4.2, there exists $\alpha_K \in (0,\infty)$ such that $\hat{\nu}(K) = \alpha_K cp\lambda(K)$. It follows that, if $\lambda(K) \neq 0$, then $\rho \hat{\nu} = a(\rho)\lambda$ gives $a(\rho) = \alpha_K c$. This shows that α_K does not depend on K and so we have $\hat{\nu} = \alpha cp\lambda$ for some $\alpha \in (0,\infty)$. Hence

$$\mathrm{d}\nu(x) = g(x)\mathrm{d}\hat{\nu}(x) = \alpha cpg(x)\mathrm{d}\lambda(x) = \alpha\mathrm{d}\mu(x).$$

Therefore $\mu \in \partial H_{\sigma}$. The proof is complete.

5. GENERAL SOLUTIONS

We have seen in Theorem 4.11 that the existence of extremal solutions $\mu: \mathcal{B} \to \mathcal{A}_+ \bigcup \{\infty\}$ for the equation $\mu = \mu * \sigma$ depends on the existence of minimal projections in \mathcal{A} . Therefore we have to restrict ourselves to the class of von Neumann algebras rich in minimal projections. These are the so-called *atomic* von Neumann algebras. Recall that a von Neumann algebra \mathcal{A} is called *atomic* if every nonzero projection in \mathcal{A} majorizes a nonzero minimal projection ([22], p.155). A typical example of an atomic von Neumann algebra is $\mathcal{B}(H) \otimes \ell^{\infty}$ in which ℓ^{∞} is the centre.

Henceforth \mathcal{A} will denote an *atomic* von Neumann algebra acting on a suitably chosen *separable* Hilbert space H so that there is a positive contractive projection $E: B(H) \to \mathcal{A}$ with the following properties:

- (i) E(atb) = aE(t)b for $a, b \in A$ and $t \in B(H)$;
- (ii) E continuous with respect to the w*-topologies on B(H) and A;
- (iii) $\mathbf{tr} \circ \mathsf{E} = \mathbf{tr}$ where \mathbf{tr} denotes the canonical trace on B(H).

The projection E is called a *conditional expectation* and its existence has been shown, for instance, in ([22], p.334 and Proposition V.2.36). Note that in the above representation of A, the minimal projections in A are rank-one projections on H. By (ii), there exists a map

$$E_*: \mathcal{A}_* \to T(H)_{sa}$$

induced by E on the preduals (recall A_* is the predual of A_{sa}) by transpose: $E_*(\rho) = \rho \circ E$. Since A has a separable predual, there is a countable set of normal states separating points of A. Further, the atomicity of A implies that its normal state space is the norm-closed convex hull of the pure normal states and therefore there is a countable set $\{\rho_n\}$ of pure normal states separating points of A. In particular, given $\mu, \nu \in M(G, A_+)$ with $\rho_n \mu \leq \rho_n \nu$ for all n, then $\mu \leq \nu$. In the sequel, $\{\rho_1, \rho_2, \ldots, \rho_n, \ldots\}$ will always denote the above set of pure normal states of A.

In order to use Choquet's representation theory, we first note that the cone H_{σ} need not be closed in $M(G, \mathcal{A}_{+})$, and therefore we need to introduce the following auxiliary cone as in [7]:

$$C_{\sigma} = \{ \mu \in M(G, \mathcal{A}_{+}) : \mu * \sigma \leq \mu \}.$$

LEMMA 5.1. The cone C_{σ} is a w^* -closed subcone of $M(G, A_+)$.

Proof. Let $\{\mu_{\alpha}\}$ be a net in C_{σ} w*-converging to $\mu \in M(G, \mathcal{A}_{+})$. We observe that for any $h: G \to \mathbb{R}_{+}$ continuous with compact support and for any pure normal state ρ of \mathcal{A} ,

$$\rho\mu_{\alpha}(h) = \mu_{\alpha}(h(\cdot)\rho) \rightarrow \mu(h(\cdot)\rho) = \rho\mu(h)$$

where $h(\cdot)\rho \in K(G, \mathcal{A}_*)$. By $\mu_{\alpha} * \sigma \leq \mu_{\alpha}$ and by the Fatou Lemma, we have

$$\rho(\mu * \sigma)(h) = (\rho\mu * \rho\sigma)(h) \leqslant \rho\mu(h).$$

Since h is arbitrary, we have $\rho\mu * \sigma \leq \rho\mu$. Also since the pure normal states separates points of \mathcal{A} , we conclude that $\mu * \sigma \leq \mu$ and $\mu \in C_{\sigma}$.

LEMMA 5.2. Let $\mu \in H_{\sigma}$. Then μ is extremal in H_{σ} if and only if μ is extremal in C_{σ} ; that is, $\partial H_{\sigma} = \partial C_{\sigma} \cap H_{\sigma}$.

Proof. Let $\mu \in \partial H_{\sigma}$ and let $\nu \in C_{\sigma}$ be such that $\mu - \nu \in C_{\sigma}$. Then

$$\mu = \mu * \sigma = (\mu - \nu) * \sigma + \nu * \sigma \leqslant (\mu - \nu) + \nu = \mu,$$

which implies $\nu * \sigma = \nu$, that is, $\nu \in H_{\sigma}$ and hence $\nu = c\mu$ for some $c \geqslant 0$. This shows that $\mu \in \partial C_{\sigma}$.

Let C be a closed cone in a locally convex space. By a cap of C we mean a compact convex subset K of C containing 0 and is such that $C \setminus K$ is convex; C is called well-capped if C is a union of caps ([4], p.202).

LEMMA 5.3. Let C be a w^* -closed subcone of $M(G, A_+)$. Then C is w^* -complete and every cap of C is w^* -metrizable.

Proof. We first show that $M(G, \mathcal{A}_+)$ is w*-complete, so that C will be w*-complete as well. Let $\{\mu_{\alpha}\}$ be a w*-Cauchy net in $M(G, \mathcal{A}_+)$. Then $\{\mu_{\alpha}(f)\}$ is Cauchy in **R** for every $f \in K(G, \mathcal{A}_*)$ and converges to $\mu(f)$ say, which defines a positive linear functional μ on $K(G, \mathcal{A}_*)$. By Lemma 3.2, $\mu \in K(G, \mathcal{A}_*)^*_+ = M(G, \mathcal{A}_+)$ and the assertion follows.

Note that $K(G, \mathbf{R})_+^*$ is w*-complete and metrizable ([3], Theorem 12.2 and Theorem 12.10). Let $\{\rho_n\}$ be the pure normal states as described before Lemma 5.1, consider the mapping

$$\mu \in M(G, A_+) \mapsto (\rho_1 \mu, \dots, \rho_n \mu, \dots) \in \prod_{n \in \mathbb{N}} C_n$$

where $C_n = K(G, \mathbb{R})_+^*$, and $\prod_{n \in \mathbb{N}} C_n$, equipped with the product topology, is complete and metrizable. The map is one-to-one and continuous, therefore, given a cap $\mathcal{K} \subset C$, the restriction

$$\mu \in \mathcal{K} \mapsto (\rho_1 \mu, \ldots, \rho_n \mu, \ldots) \in \prod_{n \in \mathbb{N}} C_n$$

is a homeomorphic embedding, by compactness of K. Hence K is metrizable.

Now we have shown that C_{σ} is w*-complete, one may attempt at this stage to use Choquet's theory for weakly complete cones, as in [7], to show that every solution $\mu \in H_{\sigma} \subset C_{\sigma}$ can be represented by a probability measure supported by the extreme rays ∂H_{σ} which have been characterized in Theorem 4.11. We encounter an obstacle here as it is not clear to us if C_{σ} is well-capped. On the other hand, we observe that, by Theorem 4.11, each $\mu \in \partial H_{\sigma}$ is in fact an extended $T(H)_+$ -valued (i.e., $T(H)_+ \cup \{\infty\}$) measure and therefore, one expects that measures representable by ∂H_{σ} to be T(H)-valued as well. This suggests that we should consider the $T(H)_+$ -valued measures in C_{σ} , and indeed, such a measure is contained in a cap of C_{σ} for which one can apply Choquet's theory.

Let $E: B(H) \to \mathcal{A}$ be the aforementioned conditional projection and let $E_{\bullet}: \mathcal{A}_{\bullet} \to T(H)_{\bullet a}$ be the transpose of E. We define another induced map $\tilde{E}: M(G, T(H)_{+}) \to M(G, \mathcal{A}_{+})$ by

$$\tilde{\mathbb{E}}\mu(S) = \begin{cases} \mathbb{E}(\mu(S)) & \text{if } \mu(S) \in T(H)_{+} \\ \infty & \text{otherwise.} \end{cases}$$

Then $\tilde{\mathbb{E}}$ is w*-w*-continuous also. Indeed, let $\{\mu_{\alpha}\}$ be w*-convergent to μ in $M(G, T(H)_+)$ and let $h \in K(G, A_*)$. Then $\mathbb{E}_*(h(\cdot)) \in K(G, T(H)_{*a})$. Since

 $T(H) \subset K(H)$ and since the trace-norm dominates the operator-norm, we have $K(G, T(H)_{sa}) \subset K(G, K(H)_{sa})$ and so

$$(\tilde{\mathsf{E}}\mu_{\alpha})(h) = \mu_{\alpha}(\mathsf{E}_{*}(h(\cdot))) \to \mu(\mathsf{E}_{*}(h(\cdot))) = (\tilde{\mathsf{E}}\mu)(h).$$

LEMMA 5.4. Let E be defined as above.

- (i) For $\mu \in M(G, A_+) \cap M(G, T(H)_+)$, we have $\mu = \tilde{\mathbb{E}}\mu$;
- (ii) $M(G, A_+) \cap M(G, T(H)_+) = \{\tilde{E}\mu : \mu \in M(G, T(H)_+)\}.$

Proof. (i) is clear. For (ii) we need only observe that for $\mu \in M(G, T(H)_+)$, then $\tilde{\mathbb{E}}\mu \in M(G, T(H)_+)$ also since

$$\mu(S) \in T(H)_+ \Rightarrow \operatorname{tr}(\tilde{\mathsf{E}}\mu(S)) = (\operatorname{tr} \circ \mathsf{E})(\mu(S)) = \operatorname{tr}(\mu(S)) < \infty.$$

PROPOSITION 5.5. Let $\mu \in M(G, \mathcal{A}_+) \cap M(G, T(H)_+)$. Then there is a cap $\mathcal{K} \subset M(G, \mathcal{A}_+)$ such that $\mu \in \mathcal{K}$.

Proof. Define a mapping $\nu \in M(G, T(H)_+) \mapsto (\nu_1, \dots, \nu_n, \dots) \in \prod_{n=1}^{\infty} M(G_n, T(H)_+)$ where ν_n is the restriction of ν to G_n . Let $\alpha_n > 0$ be such that $\alpha_n |||\mu_n||| \le 1$ where $|||\cdot|||$ denotes the variation norm of a T(H)-valued measure on G_n with the trace norm on T(H), i.e., $|||\mu_n||| = ||\mu_n(G_n)||_1$. We first show that the convex set

$$B = \left\{ \nu \in M(G, T(H)_+) : \sum_{n=1}^{\infty} \frac{\alpha_n |||\nu_n|||}{2^n} \le 1 \right\}$$

is a cap in $M(G, T(H)_+)$. Indeed B is homeomorphic, via the above mapping, with a closed subset in

$$\prod_{n=1}^{\infty} \left\{ \nu \in M(G_n, T(H)_+) : |||\nu||| \leqslant \frac{2^n}{\alpha_n} \right\}$$

which is compact in the product topology. Also, $M(G, T(H)_+) \setminus B$ is convex since for $\nu, \tau \notin B$ and for 0 < r < 1, we have by additivity of the norm

$$\sum_{n=1}^{\infty} \frac{\alpha_n |||r\nu_n + (1-r)\tau_n|||}{2^n} = r \sum_{n=1}^{\infty} \frac{\alpha_n |||\nu_n|||}{2^n} + (1-r) \sum_{n=1}^{\infty} \frac{\alpha_n |||\tau_n|||}{2^n} > 1$$

which implies $r\nu + (1-r)\tau \notin B$.

Now let $\mathcal{K} = \{\tilde{\mathbb{E}}\nu : \nu \in B\} \subset M(G, \mathcal{A}_+)$. Then \mathcal{K} is compact in $M(G, \mathcal{A}_+)$ since we have shown that $\tilde{\mathbb{E}}$ is w*-w*-continuous. Evidently \mathcal{K} is convex. We show that $M(G, \mathcal{A}_+) \setminus \mathcal{K}$ is convex. Let $\tau, \gamma \in M(G, \mathcal{A}_+) \setminus \mathcal{K}$. Suppose $\nu = \frac{1}{2}\tau + \frac{1}{2}\gamma \in \mathcal{K}$, we deduce a contradiction. Note that $2\nu \geqslant \tau, \gamma$ implies $\tau, \gamma \in M(G, T(H)_+)$ and it

follows that $\tau, \gamma \notin B$ (otherwise $\tau = \tilde{\mathbb{E}}\tau \in \mathcal{K}$ and $\gamma = \tilde{\mathbb{E}}\gamma \in \mathcal{K}$). Suppose $\nu = \tilde{\mathbb{E}}\nu'$ for some $\nu' \in B$. Then

$$|||\frac{1}{2}\tau_n + \frac{1}{2}\gamma_n||| = |||\nu_n||| = |||(\tilde{\mathbb{E}}\nu')_n||| = |||\tilde{\mathbb{E}}\nu'_n||| = \operatorname{tr}\left(\tilde{\mathbb{E}}\nu'_n(G_n)\right)$$
$$= \operatorname{tr}\left(\nu'_n(G_n)\right) = |||\nu'_n|||$$

and therefore

$$1<\frac{1}{2}\sum_{n=1}^{\infty}\frac{\alpha_{n}|||\tau_{n}|||}{2^{n}}+\frac{1}{2}\sum_{n=1}^{\infty}\frac{\alpha_{n}|||\gamma_{n}|||}{2^{n}}=\sum_{n=1}^{\infty}\frac{\alpha_{n}|||\frac{1}{2}\tau_{n}+\frac{1}{2}\gamma_{n}|||}{2^{n}}=\sum_{n=1}^{\infty}\frac{\alpha_{n}|||\nu_{n}'|||}{2^{n}}\leqslant1$$

giving a contradiction. So K is a cap in $M(G, A_+)$ containing μ .

Now we are in a position to apply Choquet's theory to describe the $T(H)_+$ -valued measures in C_{σ} , and in particular, such measures in H_{σ} . We refer to ([4], Section 30) for the theory of conical measures on weakly complete cones.

THEOREM 5.6. Let A be an atomic von Neumann algebra acting on a separable Hilbert space H, with centre Z. Let σ be a positive Z-valued measure on G. Given $\mu \in M(G, A_+) \cap M(G, T(H)_+)$ and $\mu = \mu * \sigma$, then there is a probability measure P on H_{σ} supported by a Borel subset B of $\partial H_{\sigma} \cup \{0\}$ such that

$$\mu = \int\limits_R \nu \,\mathrm{d}\mathbf{P}(\nu)$$

where the integral means $\mu(h) = \int\limits_{B} \nu(h) \, \mathrm{d} P(\nu)$ for all $h \in K(G, \mathcal{A}_*)$.

Proof. Recall from Lemma 5.3 that C_{σ} is w*-complete and that every cap \mathcal{K} of C_{σ} is w*- metrizable, and hence the set $\partial_{e}\mathcal{K}$ of extreme points of \mathcal{K} is a w*- G_{δ} -set ([17], p.7). We also note that the rays generated by the elements of $\partial_{e}\mathcal{K}$ is contained in $\partial C_{\sigma} \bigcup \{0\}$ ([4], Proposition 30.12). By Proposition 5.5, every $\mu \in C_{\sigma} \cap M(G, T(H)_{+})$ is contained in a cap of C_{σ} . A direct application of Choquet's integral representation theory yields (cf. [4], Theorem 30.14, Theorem 30.22)

(5.1)
$$\mu = c \int_{\theta_{\bullet} \mathcal{K}} \nu \, \mathrm{d} \mathbf{P}(\nu)$$

where $c \ge 0$, P is a probability measure supported by $\partial_e \mathcal{K}$, and the integral means $\mu(h) = \int_{\theta_e \mathcal{K}} \nu(h) \, d\mathbf{P}(\nu)$ for every $h \in K(G, \mathcal{A}_*)$.

To replace the set $\partial_e \mathcal{K}$ by a subset B of $\partial H_\sigma \bigcup \{0\}$ in the above integral representation, we first show that H_σ is a Borel set. Observe that

$$H_{\sigma} = \bigcap_{n=1}^{\infty} \{ \nu \in M(G, \mathcal{A}_{+}) : \rho_{n}\nu = \rho_{n}\nu * \rho_{n}\sigma \}.$$

One can show, as in ([18], Lemma 9,5.2), that the set

$$\{\tau \in M(G, \mathbf{R}_+) : \tau * \rho_n \sigma = \tau\}$$

is a w*-Borel set in $M(G, \mathbb{R}_+)$. As the map

$$\nu \in M(G, \mathcal{A}_+) \mapsto \rho_n \nu \in M(G, \mathbb{R}_+)$$

is w*-continuous, it follows that H_{σ} is a Borel set in $M(G, \mathcal{A}_{+})$. Now we show that $\mathbf{P}(\partial_{e}\mathcal{K}\setminus H_{\sigma})=0$. Note that

$$\partial_e \mathcal{K} \setminus H_\sigma = \{ \nu \in \partial_e \mathcal{K} : \ \nu \neq \nu * \sigma \} = \bigcup_{n=1}^\infty \{ \nu \in \partial_e \mathcal{K} : \ \rho_n \nu > \rho_n \nu * \rho_n \sigma \}.$$

Let $\{h_m\}_{m=1}^{\infty}$ be a countable dense set in $K(G,\mathbb{R})_+$. Then

$$\{\nu \in \partial_e \mathcal{K} : \rho_n \nu > \rho_n \nu * \rho_n \sigma\} = \bigcup_{m=1}^{\infty} \{\nu \in \partial_e \mathcal{K} : (\rho_n \nu)(h_m) > (\rho_n \nu * \rho_n \sigma)(h_m)\}.$$

Suppose $\mathbf{P}\{\nu \in \partial_e \mathcal{K} : (\rho_n \nu)(h_m) > (\rho_n \nu * \rho_n \sigma)(h_m)\} > 0$ for some m. Then (5.1) implies

$$(\rho_n \mu)(h_m) = \mu(h_m(\cdot)\rho_n) = c \int_{\partial_e \mathcal{K}} \nu(h_m(\cdot)\rho_n) \, d\mathbf{P}(\nu) = c \int_{\partial_e \mathcal{K}} (\rho_n \nu)(h_m) \, d\mathbf{P}(\nu)$$

$$> c \int_{\partial_e \mathcal{K}} (\rho_n \nu * \rho_n \sigma)(h_m) \, d\mathbf{P}(\nu) = (\rho_n \mu * \rho_n \sigma)(h_m) = (\rho_n \mu)(h_m)$$

which is impossible. Hence we have shown that $\mathbf{P}(\partial_e \mathcal{K} \setminus H_\sigma) = 0$, that is, $\mathbf{P}(\partial_e \mathcal{K} \cap H_\sigma) = 1$ where $\partial_e \mathcal{K} \cap H_\sigma \subset (\partial C_\sigma \cap H_\sigma) \cup \{0\} = \partial H_\sigma \cup \{0\}$. By absorbing the constant c in (5.1) into ν we have the representation as stated.

Acknowledgements. The authors gratefully acknowledge a research grant from Goldsmiths' College in support of this project.

REFERENCES

- S. C. BAGCHI AND A. SITARAM, Spherical mean-periodic functions on semi-simple Lie groups, Pacific J. Math. 84 (1979), 241-250.
- 2. R.G. BARTLE, A general bilinear vector integral Studia Math. 15(1956), 337-352.
- 3. G. CHOQUET, Lectures on Analysis, Vol. I, W.A. Benjamin, New York 1969.
- 4. G. CHOQUET, Lectures on Analysis, Vol II, W.A. Benjamin, New York 1969.
- 5. G. CHOQUET and J. DENY, Sur l'equation de convolution $\mu = \mu * \sigma$, C.R. Acad. Sci. Paris Sér. I Math. 250(1960), 779-801.
- P.L. DAVIES and D.N. SHANBHAG, A generalization of a theorem of Deny with application in characterization theory, Quart. J. Math. Oxford Ser. (2) 38(1987), 13-34.
- 7. J. DENY, Sur l'equation de convolution $\mu * \sigma = \mu$, Semin. Théor. Potential de M. Brelat, Paris 1960.
- J. DIESTEL, J.J. UHL, Vector measures, Math. Surveys Monographs, Vol. 15, Amer. Math. Soc., Providence 1977.
- J. D. DOOB, J. L. SNELL, R. E. WILLIAMSON, Application of boundary theory to sums of independent random variables, in Contribution to *Prob. and Stat.*, Stanford Univ. Press 1960, pp. 182-197.
- W. FELLER, An Introduction to Probability Theory and its Applications, John Wiley 1966.
- 11. H. FURSTENBERG, Poisson formula for semi-simple Lie groups, Ann. of Math. (2) 77 (1963), 335-386.
- A.M. KAGAN, YU.V. LINNIK, C.R. RAO, Characterization Problems in Mathematical Statistics, John Wiley, New York 1973.
- J.-P. KAHANE, Lectures on mean periodic functions, Tata Inst. Fund. Res. Lectures on Math. and Phys., Bombay 1959.
- K.S. LAU, C.R. RAO, Integrated Cauchy functional equation and characterizations of the exponential law, Sankhya Ser. A 44(1982), 72-90.
- 15. K.S. LAU, J. WANG, C.H. CHU, Vector-valued Choquet-Deny Theorem, renewal equation and self-similar measures, *Studia Math.*, to appear.
- K.S. LAU W.B. ZENG, The convolution equation of Choquet and Deny on semigroups, Studia Math. 97(1990), 115-135.
- 17. R.R. PHELPS, Lectures on Choquet's Theorem, Van Nostrand, Princeton 1966.

- 18. B. RAMACHANDRAN, K.S. LAU, Functional Equations in Probability Theory, Academic Press 1991.
- 19. W. RUDIN, Real and Complex Analysis, McGraw-Hill 1966.
- L. Schwartz, Théorie génerale des functions moyennes-périodiques, Ann. of Math. (2) 48(1947), 857-929.
- 21. E. STØRMER, Positive linear maps of operator algebras, Acta Math., 110(1963), 233-278.
- 22. M. TAKESAKI, Theory of Operator Algebras I, Springer-Verlag, Berlin 1979.
- 23. M. TAKESAKI, Conditional expectations in von Neumann algebras, J. Funct. Anal. 9(1972), 306-321.

CHO-HO CHU
Goldsmiths' College
University of London
London SE14
ENGLAND

KA-SING LAU

Department of Mathematics

University of Pittsburgh

Pittsburgh PA 15260

U.S.A.

Received September 23, 1993.