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ABSTRACT. Let G be a separable, metrizable locally compact abelian group
and let o be a vector measure on G taking values in the centre of a von
Neumann algebra A. Given an A-valued measure p on G, we define the
convolution p* o and study the equation g = p x o, using Choquet’s integral
representation theory as in [7] where the same equation for scalar measures
was studied.

KEYWORDS: Convolution equation, locally compact group, ezponential func-
tion, operator-valued measure, von Neumann algebra, condi-
tional expectation, Choquet’s integral representation.

AMS SUBJECT CLASSIFICATION: Primary 43A05; Secondary 46G10, 47C15,
46A55, 46110, 47A56.

1. INTRODUCTION

Given a locally compact group G and a Borel measure o on G, the integrated
Cauchy functional equation

f@) = [ fe-udol)  (@e0)
G

has been studied by many authors (cf. [5], [6], [7], (9], [10], [14], [16], [18], {20])
and the real or complex-valued solutions f have been characterized under various
assumptions and with diverse techniques using devices such as Fourier transform
(e.g., [13], [20]), Martingales [9] and Choquet’s integral representation theory (e.g.,
[5], [7]). In particular, Choquet and Deny [5] proved that if G is separable, metriz-
able and abelian, and if ¢ is a probability measure such that supp ¢ generates G,
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then the bounded solutions are constant functions. If both f and ¢ are nonnega-
tive, then Deny [7] showed, as a development of [5], that f can be represented as an
integral of the exponential functions g on G (i.e., glz+y) = g(z)g(y)) satisfying
' [ 9(—y)do(y) = 1. In fact, Deny considered the more general convolution equation
G

(1.1) p=pxa

where p is a nonnegative Borel measure on G. The solutions u are of the form
p# = fA where X is the Haar measure on GG and f is as above.

The integrated Cauchy functional equation has many important applications
(cf. [1], [10], [12], [18]) and it is natural and desirable to seek vector-valued solutions
f (or p) of the equation. The case that f is an R"-valued function and ¢ is a matrix-
valued measure has been considered in [15]. In such case positivity is defined to
be coordinatewise positive, and the probability measure used in the scalar case
is replaced by a positive measure ¢ so that ¢(G) is a Markov matrix (i.e., the
sum of each row is 1). The vector-valued theorem thus extended is used to solve
a vector-valued renewal equation, which is in turn used to study some class of
self-similar fractal measures.

Let G be a separable, locally compact metrizable abelian group, and A a von
Neumann algebra of bounded operators on a {complex) separable Hilbert space H
with centre Z. In this paper, we study equation (1.1} where o is a given positive
Z-valued measure and p is a positive eztended A-valued measure on G. The basic
difference of this consideration from [15] is that the positivity here refers to the
positive definiteness of an operator. The extended .A-valued measure (including
the ‘0o’ in the range (Section 3)) is used because we want to include the unbounded
solutions also. Following Bartle [2], we define the bilinear vector integral [ f do, for

G
an A-valued function f, as an element in ,4. This is used to define the convolution
# * 0. Our main results are the following extension of Deny’s theorem:

THEOREM 4.11. Under the above assumption, let H, be the cone of postlive
solutions of (1.1) and OH, the eziremal elements in H,. Then u € 0H, if and
only if du(z) = cpg(z)dA(z) where ¢ > 0, A is the Haar measure on G, p is a
minimal projection in A, and g : G — (0, c0) satisfies

g(z+y) =g(z)g(y) and p=p ( / 9(-v) da(y))-
G
THEOREM 5.6. If in addilion, A is elomic and the solution p is also a
positive extended T(H)-valued measure (‘T(H} denotes the trace-class operators on
H), then p is a ‘mizture’ of the above extremal solutions in the sense that there is
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a probability measure P on H, supported by a Borel subset B of 0H, (J{0} such
that
p= / vdP(v).
B

That o takes values in the centre Z of A is crucial in the proof of Theo-
rem 4.11. First, if p is a pure state of A, then p(az) = p(a)p(2) for all a € A and
z € Z (Lemma 2.1). This allows us to reduce the equation into scalar form so
that Deny’s technique is applicable. Second, since A acts on a separable Hilbert
space, A has a faithful normal state and there is a faithful contractive projection
from A onto Z which is essential for constructing the exponential function g in
the theorem (Lemma 4.9). The extremal solution in Theorem 4.11 may not ex-
ist in general and the atomic assumption on A in Theorem 5.6 guarantees such
existence. The additional assumption on the measure x4 in Theorem 5.6 implies
that 4 is contained in a cap of a cone containing H, so that Choquet’s integral
representation applies.

2. PRELIMINARIES

Recall that a C*—algebra A is a norm-closed *-subalgebra of the algebra B(H) of
all bounded operators on a Ililbert space H. We call A a von Neumann algebra
(or W*-algebra) if it has a (unique) predual A,; in this case A contains an identity
and we can assume without loss of generality that it is the identity operator I in
B(H). We denote by A,q = {a € A : a* = a} the self-adjoint part of A, and by
Ay = {a*a : a € A} the cone of positive operators in A which defines a partial
ordering € in A,s. We refer to [22] for the basics of operator algebras.

A state of a C*—algebra A is a complex linear functional p on A such that
lloll = 1 and p > 0 where the latter means p(a*a) > 0 for all a € A. A state p of A
is called pure if for any state 1 satisfying ay < p for some o > 0, then one must
have ¢ = p. We note that the pure states of A separate points of A in that given
a,b € Asq, then a < b if and only if p(a) < p(b) for every pure state p of A. If A
is a von Neumann algebra and if p € A, is a state of A, then p is called a normal
state of A. Normal states of A also separate points in A.

If A is a commutative C*~algebra, then a state p of A is pure if and only if
it is multiplicative, i.e., p(ab) = p(a)p(b) for all a,b € A. We will make frequent
use of the following result of Stgrmer in ([21], Theorem 3.1) and we include the
proof here for completeness.
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LemMa 2.1. Let A be a C*-algebra containing the identily I and with centre
Z. Let p be a pure state of A.
Then the restriction plz is a pure state of Z and furthermore,

2.1 plaz) = p(a)p(z)

forallae Aand z € 2.

Proof. Since Z = Z,5 +1Z,4, we need only consider z € Z,,. Without loss
of generality we assume that ||z|| < 1 say. Then

1 1
lo) <lipll-llzll <5 and 5 —~p(z) > 0.

Let @ = 1/2 — p(z) and define ¢ : A — C by

¥(a) = a~1p (a (é - z)) . acA

Then v is a state of A and ay) < p. As p is pure, we have ¢ = p which gives, for
a € A, p(a) = e~ 'p(% — az), yielding p(az) = p(a)p(z). §

REMARK. Every pure state on Z extends to a pure state on A. This fact will
be used later.

Throughout G will always denote a locally compact abelian group, B the
c-algebra of Borel sets in G, and A is a von Neumann algebra with centre Z. Let
o : B — Z be a (norm) countably additive positive measure, that is, o(E) > 0 in
Z for all E € B. For the natural bilinear map

(a,2)EAXx Z+——az€ A,

we define the semi-variatlion of 6 on any £ € B as

loli(E) = sup|| 3" o (8|
where the supremum is taken over all a; € A with ||a;]| £ 1 and all partitions
{E;} of E [2]. Since A contains identity and ¢ is positive, ||o||(E) equals |le(E}||.
In particular ¢ has finite semi-variation by taking F = G. We can also define, as

in (2], a o-integrable function f : G — A and the so-called bilinear vector iniegral
J fdo for E € B. For convenience and completeness, we give below an ad hoc
E

construction of the integral which is equivalent to Bartle’s integral.
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First, if f : G — A is a simple function, say, f = ) aixg; with a; € A and
i

E; € B, we define
/fda = Zam(EﬂE;)
B i

for E € B. Since ||f(2)|| = ¥_ llaillx e (2) for z € G, we have
:

| [ £4o] <] [1s@ae@)] < Gup latpieca
E B

A function f : G — A is said to be o-integrable if it satisfies the following two
conditions:
(i) There is a sequence {f» } of simple functions on G such that nlinolo | fn(2)—
f(@)|| = 0 for each z in some E € B with ||o(G\ E)|| = 0;
(i) The sequence { [ fn da} is norm convergent in 4 for every £ € B.
E

We define, as usual,
/fda:nlingo/f,.do'e./l.
E E

It follows from Lemma 2.1 that if f is o-integrable, then for any pure state p of

A,
2.2) 0 (/fdo) :/(pf)dpa EcB

E E
where pf = po f and po = poo.
We note that for every ¢ € Ay, |t]] < r if and only if —rI € ¢ < L Given
a function f : G — A,, such that there is a sequence f; : G — A,, of simple
functions with nli.rgxo |1fa(z) — f(z)|| = 0 for every = € G, then we have

{zeCG:f(@l<r}=

[= < B o s BN « ¢

N U ﬂ{zéG:—(r-}«%)Ian(w)s (7‘+%)I}€B,

k=1 N=1n=N

and we have the following version of Egorov’s theorem.

LEMMA 2.2, Lel f : G — Ay, and let {f,} be a sequence of simple functions
such that ﬂlin;x0 lfa(z)}— f(2)|| = O for each z € G. Then f, — f almost uniformly,
i.e., for each € > 0, there exisis E € B such that ||o(G\ E)|| < € and sup || fu(z) —

r€E

f(@)]| =0 asn—oo.

By analogous proof as in the scalar case we have:
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LEMMA 2.3. Let f : G — Ay be such thal forr € R, thesets {z € G: f(x)
rI} and {z € G : rI € f(z)} are in B. Then there is an increasing sequence of
simple functions f, : G — Ay such that f, < f and ﬂlingo”fn(x) - f=@) =0
for each = € G. Moreover, if f is bounded, then f is o-integrable and [ fdo =

E

lim [ fndo for every E € B.
n—"OOE

Later on we will also use the vector integral in which the roles of A and 2
are interchanged, i.e., the vector integral [ gdp with respect to the bilinear map
F

(,a)EZxA—zac A

where 4 : B — A is a positive countably additive measure and g : G — Z is a
p-integrable function. As in (2.2), we also have p([ fde) = [(pf)dpo for every
E E

pure state p of A.

To conclude this section we remark that if 4 is the algebra of n x n matrices,
then the center Z is the scalar multiples of the identity matrix I. Coordinatewise
the A-valued equation f(z) = [ f(z — y) do(y) becomes

G

fii@) = / fii(z - 9 dr(y).
G

where 7 is a scalar measure. The matrix extension of the Choquet-Deny [5] the-
orem (i.e. the case f is bounded) is easily achieved by characterizing each f;;
separately. However for the extension of Deny’s theorem [7], the reader should be
cautioned that although f is assumed to be positive-definite-valued, it does not
imply that each fi; is positive and hence the scalar Deny thearem can not be ap-
plied coordinatewise to characterize the solutions of the above equation. Further
even if the general solution of each f;; can be obtained, simply putting these fi; to-
gether need not form a positive definite matrix-valued solution f of the integrated
Cauchy functional equations.

We note that any finite dimensional von Neumann algebra is a finite direct
sum of matrix algebras, and in this case the convolution equation can be reduced
coordinatewise as above. To illustrate the idea, we give the following éimple ex-
ample with a nontrivial center Z:

Let M3(C) be the algebra of 2 x 2 complex matrices and let £° be the
2-dimensional commutative von Neumann algebra, i.e., C? equipped with the £°—
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norm. Let 4 = M3(C) @ £3° with centre Z = I ® £3°. Then a function f: G — A
can be represented as follows:

fu(zy 0 fia(z) 0

0 falz) 0 fa(z)
fa(z) 0 faz(z) O

0 faoz) 0 fas(x)

£(2) = [fis(2)] =

where fi; : G — C. A Z—valued measure o on (7 can be written as

J11

033
T44

where 017 = 033 and 090 = 044 are complex-valued measures on G, In this case,
the operator-valued equation

f@) = [ £z - v)dotw)
G
irnplies the following simultaneous equations:
£5@) = [ fy(z = 1) da0)
G
and the above remarks apply to these scalar equations as well.

3. OPERATOR-VALUED MEASURES

We will further assume that G is separable metrizable so that it is o—compact:
G= G Gn where each Gy, is a compact subset of G and Gp C Gy, . Following
(3], w:zwliet K(G,R) be the real vector space of real continuous functions on G with
compact support. We equip K(G,R) with the pointwise ordering and with the
inductive topology as in ({3}, p.66, [4], p.13). The dual K(G,R)*, consisting of
continuous linear functionals, is precisely the set of regular Borel measures (Radon
measures) on G, and the positive cone K(G,R)} the positive ones ([3], Section
11). Given a net {uq} in K(G,R)*, we say that {us} converges to yu € K(G,R)*
vaguely if {u1q } converges to p in the w*-topology, that is, za(f) = [ f dpa — u(f)
for all f € K(G,R). ¢
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More generally, if X is a real Banach space partially ordered by a cone
X4, we let K(G,X) be the real vector space of continuous functions from G to
X with compact support, and let K(G,,X) be its subspace consisting functions
with supports in G,. With the supremum norm, K(G,, X) is a Banach space
and its dual X (Gn, X)* identifies with the space M(Gn, X*) of X*-valued Borel
measures on G, with bounded total variation. Since K(G,X) is the inductive
limit of the increasing sequence {K(Gn, X)}3L, of spaces, we can equip K(G, X)
with the inductive topology as in ([4], p.13) so that the w*-topology on K(G, X*)
is the product topology defined by {M(Gn, X*)}13%;. For f, h € K(G, X), we write
f < h to mean that f(z) €< h(z) in X, for every z € G.

Let A be a von Neumann algebra as before, and henceforth let A, be the
(real) predual of the real Banach space A,q. Then the cone (A.)4 is in duality
with the cone Ay in A,,. Fort € A, [t| is defined as in ({22], IIT 4.3), and satisfies

1 1
t=sl£t) and [e5]| = [l £ <[l

If {t,} is a sequence in .A, norm-convergent to t € A,, then {|t,,|} converges
to [t| in norm ([22), p.145). Therefore using t = t* ~¢~, each f € K(G, A.) can
be decomposed as f = f* — f~ where f* € K(G,.A.) are positive.

We thank Professor C. Lennard for the proof of the following result.

LemMMa 3.1. Let p: I{(G, A.) — R be a positive linear functional. Then ¢
is continuous, that is, ¢ € K(G, A.)".

Proof. 1t suffices to prove that the restrictions ¢, = @|K(Gn,As) are con-
tinuous. Suppose some @, is not continuous. Then there is a sequence {fn} in
K(G,, A.) such that || fm]| € 1 and |@a(fin)| — 00 as m — oo. Since

I‘Pﬂ(fm)i <€ ‘Pn(f;) + wn(fn:)s

we may assume @n(f1) — oo, say. By the above remarks, we have || f}|| € ||fm]] €
1. Choose a subsequence {fi.} of {f} such that wn(fi) 2> 2* for all k 2> 1. Then

o0
> #f)?' € K(Ghn, As) and hence
k=1

N

(ii& ) (i:-lz ) Z%wn(fg“)zfv forall NN,

k=1 k=1

which is impossible. So ¢, is continuous for alln. @
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Let X be a real partially ordered Banach space with a monotone closed cone
X4 (ie., every bounded increasing sequence in X, converges). By an extended
X ¢-valued measure on G we mean a countably additive function

p: B — Xy | J{oo}

such that u(K) € X for every compact subset K of G, where the symbol co ¢ X
satisfies

0-00=0

o0 400 = 00

r-00=00

t+oo=0c0+t=00

s

00 o0
for r > 0 and t € X;. We write Y z, = co if the series ) #, diverges in X.

We will denote this class of meas;;;s by M(G, X4). Giver':_pl, ve M(G,X3), we
write 4 < v to mean that u(E) < v(E) for all E € B.

Given g € M(G,A;) and a state p of A, we define pp : B — [0,00] by
pu(E) = "lirrgo pi(E (N Gr), then pp a regular Borel measure on G ([19], Theo-
rem 2.18). It follows that for any u,v € M(G,A;), we have p < v whenever
p(I) € v(K) for every compact set K C G, since the latter implies that for every
state p of A, ppu € pv by regularity. Note that the states separate points of A.

A von Neumann algebra A is called o—finite ([22], p.78) if there exists a
normal state x € A, which is faithful in that whenever ¢ € A4 and k(a) = 0, then
a = 0. We note that every von Neumann algebra acting on a separable Hilbert
space H has a separable predual and is o-finite, and that a commutative o-finite
von Neumann algebra is just an L (v) where v is a o-finite complex measure.

LEMMA 3.2. Let A be a o-finite von Neumann algebra (with faithful normal
state k). Then there is a one-one correspondence between M(G,A4) and the
positive linear functionals on K(G, A.).

Proof. Given p € M(G,Ay), let p, @ Bg, — A4 be the restriction of u
to G,. Then there exist positive funcitonals ¢, : K(Gn, Ax) — R such that
en(f) = [ fdpn for f € K(Gn, A.) where the (bilinear) vector integral is defined

G

as in [2] us“ing the bilinear map

(f,¥) € K(Gn, As) x K(Ga, A)* — ¥(f) €R.
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The corresponding positive functional ¢ : K{G, A.) — R is then given by ¢ =
i, o

i Conversely, let ¢ : (G, A.) — R be a positive functional and let ¢, be its re-
strictions to K (C‘,., A.). Then there exists, for each n, a measure p, € M(Gn, Ay)

such that n(f) = [ fdufor all f € K(Gn,A,). Note that gy, = pn on Gy for

Gn

m<n.

Now we are going to define u : B — A4 [ J{oo} associated with . For each
E € B, the sequence {u,(E[)Gn)}%%, is increasing in Ay, by positivity of u,.
Since A,, is monotone closed in the sense of ([22], p.137), we can define

{supyn(EﬂG,,):s-nli_r{.lopn(Er]Gn), if {|lun(ENGn)l|}o%; is bounded,

E)=
mE) og otherwise,

where ‘s-lim’ denotes the limit in the strong operator topology on A C B(H).
Evidently pu is finitely additive, and since strong-operator convergence implies
o(A, A.)-convergence, we know that the scalar measure pp is countably additive
for every normal state p € A4.. We :ohow that u is indeed countably additive which

will complete the proof. Let E = |J E} be a disjoint union of Borel sets in G.
k=1

Case (i): If ||un(EGn)|| — 00 as n — o0, then p(E) = oo by definition.
On the other hand, by the uniform boundedness principle, there exists a normal
state p in A, such that ppu,(E () Gn) — oo. It follows that

Y _pu(Er) = pu(E) = lim ppn(E[)Gn) = co.
k=1

Therefore § u(Er) = oo = p(E).
k=1

Case (ii): If {Jlun(E N Gn)l|}3%, is bounded, then u(E) = s- im pn(E N Gn)
€ A;. Let f: p(Er;) be a subseries of f: #(Er). Then, for p € A} and m € N,
we have = m =
0< Y pu(Bry) = pu(Br, |- -\ Ern) < pu(E).
j=1

(o] [o2]
So Y pu(Ey;) < oo. Since A;, = AL — A%, we conclude that 3 pu(Ey;) < oo
j=1 i=1

o0
for all p € Aj,, that is, every subseries of 3 u(Ey) is weakly convergent and
k=1
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o0
hence, by a theorem of Orlicz and Pettis ([7], p.22), the series ) pu(E%) is norm
k=1

convergent in 4. Now

00 N
k}_jlp(Ek) = lim ’;M(Ek) < u(E),

and for the given faithful normal state £ € A., we have

o0

(2 H(ER) = 3 wi(Ex) = ni(E)

k=1

(o)
Hence ) p(Er) = p(E) by faithfulness of k. 11
k=1

REMARK. The above proof actually implies that
u(E)= lim w(E(\Ga), FE€B

where ‘lim’ denotes the norm limit if the sequence u(E{) Gy} is bounded, and is
oo otherwise.

Let 0 : B — Z be as before and let u € M(G, A4), where A acts on a
separable Hilbert space. Let E € B. We observe that the sets {y € G : p(E —y) <
rI} and {y € G : rI < p(E — y)} are in B for r € R. Indeed, as A has separable
predual, its normal states have a countable dense set {pn} and so

{veG:WE-y) <} = (J{y€G: pap(E ~y) <t} €B.

n=1

Using Lemma 2.3 and the monotone closedness of A, we can define the convolution
measure g+ o : B — AL | J{oo} by

(u*0)(E) =

f p(E —y)do(y)  if the integral exists ;
otherwise

where E € B.

Let T(H) be the Banach space of trace-class operators on a Hilbert space
H, equipped with the trace-norm [[2]|; = tr (]¢]) so that the dual T(H)* identifies
with B(H) under the duality

(t,s) € T(H) x B(H) — tr(st) € C.
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As a special case of Lemma 3.1 and 3.2, every positive linear functional ¢ on
K(G,T(H)sa) is continuous, and if H is separable, ¢ can be represented as a
positive measure in M(G, B(H)4).

Let K(H) be the C*—algebra of compact operators on H (with the operator
norm || - ||). Then K(H):, = T(H)sqa. If {15} is an increasing sequence in T(H )4
and if {||t,||1} is bounded, then {||¢4||} is bounded because ||¢]| < ||¢||; fort € T(H}.
Sot = s- lim, exists in B(H)4. But 0 € t, 1 implies |[tall; = tr(t,) is
increasing and therefore converges. It follows that, for n 2 m, we have

ltn = tmls = tr(tn — tm) = te(ty) = tr(tm) — 0
as n,m — co. Hence {t,} is Cauchy in T(H) and so t = nlingotn € T(H)4.

Therefore T(H) is monotone closed with respect to ||-||1, and similar to Lemma 2.3,
we have the identification

M(G,T(H)+) = K(G, K(H)sa)}
provided that H is separable so that B(H) has a faithful normal state.

4. EXTREMAL SOLUTIONS

In view of the above discussions, we will only consider G a separable, metrizable,
locally compact abelian group, H a separable Hilbert space and .4 C B(H) a von
Neumann algebra with centre Z. For a fixed measure & : B — Z, such that supp o
generates G, our objective is to solve the equation

p=pxo
for 4 € M(G,A4). We are going to generalize Deny’s method [7] to the above
setting. We let
H,={p € M(G,Ay) p=p*c}

In this section, we characterize the extremal solutions in H, and we show in the
next section that if 4 € H, is T(H)4+-valued as well, then it can be represented,
via Choquet theory, by the extremal solutions in H,.

By Lemma 3.2, we identify M(G,.A+) with the cone K(G, A.)} of positive
functionals in K (G, A,)*. Clearly H, is a subcone of M(G, A4).

Given a cone C in a real vector space and given a nonzero u € C, let R(u) =
{ru : r > 0} be the ray in C generated by u. We call a nonzero u an extremal
element in C if R(u) is an extreme ray in C, that is, for any v € C,v € u implies
v € R(u). Let 8C denote the set of all extremal elements in C. Note that 0 ¢ 9C.

We first describe the extremal elements of the cone A4 of any C*-algebra
A. A nonzero projection p € A is called minimalif pAp = {ap: a € C} (cf. [22],
p.51).
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LEMMA 4.1. Let p € A be a projection and let b &€ A with 0 € b < p. Then
b = bp = pb = pbp. In particular, if p is @ minimal projection, then b = ap for
some o 2 0.

Proof. We have
0=(I-p0I-p)<A-p)b(I-p) ST -p)p(I-p)=0

implying (I — p)b(I — p) = 0, that is, (I - p)b3)((I - p)b3)* = 0 which gives
(I—-p)b3 =0 and hence (I-p)b=0. B

PRropPOSITION 4.2, The extremal elements of the cone Ay are precisely the
positive scalar multiples of the minimal projections in A.

Proof. Let t € Ay be extremal with |}¢|] = 1, then ¢ is an extreme point of
the positive part of the unit ball {¢ € A4 : ||a|| € 1}. Hence ¢ is a projection in
A (cf.,, [22], Lemma 1.10.1). Now for any a € A4,0 < tat < |aj|t implies that
tat = at for some o 2 0, since t is extremal. It follows that t At = Ct and tis a
minimal projection in A.

Conversely, if p is a minimal projection in A and if ¢t = ap for some a > 0,
then for any 0 < b € ¢, we have, by Lemma 4.1, b = pbp = 8p for some § 2 0. So
1 is extremal in A;. & ‘

We remark that the minimal projections in B(H) are just the rank-one pro-
jections; in a von Neumann algebra minimal projection need not exist.

LEMMA 4.3. Let M be a marimal abelian subalgebra of A. If p € M is a
minimal projection in M, then p is elso minimal in A.

Proof. Let a € A. For any b € M, we have bp = pb = ap for some o € C, so

(pap)b = pa(ep) = apap = b(pap).
Hence pAp commutes with every element in M and so pAp C M by maximality.
Therefore pAp = Cp and pis minimal in 4. §
We now return to consider the extremal elements of H,.

LEMMA 4.4, Let u € QH,. Let V € B and let ov be the restriction of o lo
V. Then

proy =aop

forsome 0 L a < 1.
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Proof. Tor any compact set ¥ C G and for any pure slate p of A, we have
r(prov)so)(K) = ((pp * pov) * pa) (K)
= (o + p2) * pov) (K)
=p((ji+0)* ov)(K).
Therefore (u* oy) *o = pp+ oy and g *x oy is in If,. That s is extremal and
p*oy € puxo=pinmplies proy =apforsomed€asl. 1
LEMMA 4.5. Let u € OH, and let p be a stale of A salisfying (2.1) (in

particular, a pure slate) and pp # 0. Then supp po = suppa.

Praof. Cleatly supp po C suppo. To prove the reverse inclusion, let 2 €
supp o, let V be any compact ncighbourhood of 2, and let o'y be the restriction of
o to V. Then p+ oy # 0 (indeed supp s # oy = supp e+ supp ov). If pa(V) =0,
then poyv = 0 and by Lemima 4.4 and (2.1), we have

a(pp) = ppex poy = 0.
This contradicts the hypothesis that pu # 0, so po (V) # 0 and 2 € supppo. ¥
We note that pyt = 0 can occur. Indeed, let A = Afz(C) and define p € A*

¢ b -,l,—-} a b
”[c d]‘“ [—% é”c d]'

then p is a pure state of A ([21], Lemma 8.3), and if pt : B — Ay is given by
=[]
v() ()
where » : 3 — [0, o) is any scalar measure, then ppe = 0.

e note that the centre Z is a commulative von Newmmann algebra and can
be identified with the algebra C(Q) of complex continuous functions on Lhe pure
state space

Q={weZ :w isapurcstale of Z},

which is w*-compact Ilausdor/l aud Stoncan ([22], p.104). There is a positive
contractive projection P : A — Z such that

P(az)=P(a)z for a€A and z€2

and that P is feithful ic., P(a) = 0 and ¢ 2 0 = ¢ = 0, [23]. It follows that
& = wP is a state of A satislying (2.1) for w € Q. By faithfuluess of P, the sct

U={weQ:an#0}

is nonemply.
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LEMMA 4.6. Let p € O0H, and let K € B be such that u(K) ;é 0. Then

Pu(K) is an extremal element in the cone 7.

Proof. By faithfulness of P, Pu(K) # 0. Let b € Z4 \ {0} be such that
< Pu(K). We show that b is a positive scalar multiple of Pu(K). Let

-1
by = (b+ %I) (P;I(I{) -+ ‘3’;1) (] Z+,

then b+ (I - b,) = b Pp(K), and 0 < b, < I. We define a measure v : 5 —
Ay {0} by v(E) = bopu(E) if u(E) € A, and = oo otherwise. Since b, commutes
with p(E), we have v € p. Evidently v € H,, and therefore v = c,u for some
¢n > 0 since u € 0H,. This implies

bt = (1= ba) = baP(K) = P(bas(K)) = P(/(K)) = Pleap(E)) = ea Pu(K).

Since b = nlilf;lo (b+ (X —1,)), it follows that {c,} converges to ¢ > 0 say, and
b= cPu(K). So Pu(K) is extremal in Z;. 1

LEMMA 4.7. Let p € 8H,. Then there is a minimal projeclion q in Z such
that Pu(Gn) = enq for some ep 2 0.

Proof. By Lemma 4.6 and Proposition 4.2, we have Pu(Gr) = enqn for
some e, 2 0 and some minimal projection ¢, in Z. But given n £ m say, enqn =

Pp(G,,) € Pu(Gm) = emgm implies gn = ¢y by Lemma 4.1. &

LEMMA 4.8. Let p € 0H, and let p be a pure state ofA with pp # 0. Then
pPu#0.

Proof. We have pu(Gr) # 0 for some n which implies Pu(Gp) = eqq with
> 0 by Lemma 4.7. Since g commutes with z(Gn), we have qu(G,) < p(Gr).

Now

P(qp(Gn)) = qP(4(Gn)) = eag = P(u(Gh))
entails gu(Gn) = u(Gr) by faithfulness of P. So pPu(Gn) = enp(q) > 0. 1

We note that if p is a projection in Z and if p is a pure state of A4, then
p(p)=1or0.
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LEMMA 4.9. Lei p € 8H, and let z € G. Then
p*bs = g(x)p

where 6 is the point mass at z and g : G — (0,00) satisfies g(z + y) = g(z)g(y).

Proof. Fix = € supp 0. Let {V,,} be a decreasing sequence of compact neigh-
bourhoods of z such that lim V, = {2}. Let 0, = ¢|V,, be the restriction of & to
V.. By Lemma 4.4, we 119.35’ w

H*Op = Opfi
for some 0 < ap, < 1. Let p be a state of A satisfying (2.1) such that pu # 0. By
Lemma 4.5, we have supp po = suppo and so po(V,) # 0. Now we can apply

Deny’s arguments {7], making use of the sequence {mlm pon} which converges
vaguely to 8., to conclude that

(4.1) P * bz = g,(x)pp

where g,(z) = nli.rgxo 7o(vyy satisfies

(4.2) 9oz +y) = g,(2)9, ()

for y, z + y € supp o . Further, since supp ¢ generates G, we can extend g, to a
continuous function g, : G — (0, 00) such that (4.1) and (4.2) hold for all z,y € G.
We remark that if p and p’ are two states satisfying (2.1) with the same restriction
to Z, then g, = g,r. Note that g,(0) = 1. ‘

To construct the required g, we make use of the aforementioned projection
P:A— Z. For each w € U, we have

opxbs = go(z)ap, z€G.

We show that gg,(z) = ga,(z) for all wy,wz € U. Indeed, there is some G such
that both @;u(Gm) and @2u(G,n) are positive which implies

014(Gm) = w1 PH(Gm) = wi(emq) = em = G24(Gm} > 0.

So w1 Pu(Gm — z) = gg, (2)w1 Pu(Gm) > 0 entails that Pu(Gy, ~ z) = e, ¢’ for
some positive e/, and some minimal projection ¢’ € Z. It follows that

e
g‘;,,(z) = 'cﬁ = ‘yd)z(z)'
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Fix any wg € U, we define g : G — (0,00) by g(z) = gao(x) for € G, then

9(z +y) = g(z)9(y) for z,y € G.
Now for each pure state p of A with pp # 0 and w = p|Z, we have w € U by

Lemma 4.8. Using (4.1), we have
Pl * 85) = ppx 8z = go(2)pp = 9 ()P = gao(T)pp = g(z)pp.
Hence

p*by = g(z)p. 1
LEMMA 4.10. Let p € 9H,. Then

du(z) = ag(—=z)dA(z)

where a € A, ) is the Haar measure on G, and g : G — (0,0) satisfies g(z +y) =
9(2)9(v)-
Proof. For each n, define v, by

wB)= [ s@)due), EeB.

EnG,

By the remark following Lemma 2.3, the vector integral is defined by the bilinear
map (z,8) € Z x A+ za € A. Also we define

v(E) = lim vn(Gn (E) Ee€B,

where ‘lim’ is the norm limit (seé Lemma 3.2 and the remark there). It follows
that for any pure state p of A, dpv(x) = g(z)dppu(z). We denote v by

dv(z) = g(z)du(z).

Using (4.2), it is elementary to show that pv is actually translation invariant
[7]. Since pure states separate points of A, v is translation invariant as well. We
conclude that for any state p of A, pv is a (scalar) translation invariant regular
Borel measure, hence there exists a(p) € [0, 00) such that

(4.3) pv = a(p)A

where X is the Haar measure on G.

It is easy to see that the function a(:) is affine on the state space of A. It
is also continuous with respective to the o(A*, A)-topology. Indeed let {p,} be
a net of states of A, ¢(A*, A)-converging to p. Let K C G such that A(K) # 0,
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then pav(K) — pv(K) and (4.3) implies that a(ps) — a(p). Therefore a(p) is a
nonnegative continuous affine function of the states p of A and it defines a positive
operator, denoted by g, in A (cf., [22], p.161). Hence we have ¥(K) = aA(K) for
every compact set K C G. For every pure state p of A, we have

dpp = g(—z)dpv = g(—z)a(p)dX

and hence
du(z) = ag(~=z)dA(z). 1
We are now ready to characterize.the extremal solutions of the equation
p+ o = p. Recall that A4 acts on a separable Hilbert space.

THEOREM 4.11. Let u € H,. The following conditions are equivelent:

(l) p€OH,;

(ii) du(z) = cpg(z)dA(z) where c¢> 0, X is the Haar measure on G, p is a
minimal projection in A, and the function g : G — [0,00) has the properties that

9(z+y) =g(z)g(y) and p=p ( / 9(-y) dv(y))-
G
Proof. (i) = (ii). By the previous lemma, we have

dp(z) = ag(-2) dA(z)

where a € A} and g : G — (0, 00) satisfies g(z + y) = g(z)g(y). We show that a
is extremal in A, . We first note that y has commuting range in .A; which means,
for u(E), p(F) € Ay, p(E)p(F) = p(F)u(E). Hence there is a maximal abelian
subalgebra M C A such that p : B — My |J{oo}. Let K C G be a compact set
such that u(K) # 0. We have

wK)=a /g(-—z) dA(z).
K

Using similar arguments as in Lemma 4.6, one can show that u(K) is extremal
in M, and hence a € M. By Proposition 4.2 and Lemma 4.3 there exists
a minimal projection p € A such that a = ¢p for some ¢ > 0. Hence we have
du(z) = cpg(—z)dA(z).

It remains to prove the last identity in (ii). Since g = p* o, and du(z) =
cpg(—z)dA(z) we have, by a direct calculation,

/ pa(—z) dA(z) = j / pa(~2)g(~1) dX(z) do(y),
X G K
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for any compact K C G. It follows from (2.1) that for any pure state p of A,
o) [ -2 32)) = / / o203 X6) do)
K

| "= p(p) (/ g(—z) d/\(l‘)) (/ 9(-y) dpo‘(y))

K G

- ( / 9(-z) dA(m)) p(p / 9(-y) dv(y))-
. K G

We conclude that p = p [ g(—y) do(y).
G

(i) = (i). Let p satisfy condition (ii) and let v € H, be such that v < pu.
We show that v is a positive scalar multiple of . Let du(z) = cpg(x) dA(z) be as
given. Define ¥ € M(G, A;+) and 6 : B — Ay by

di(z) = g(—z)dv(z) and dé(z)= g(-z)do(z).
It follows from a direct calculation that, for any compact subset K C G,
(0 *6)(K) = #(K),

so that ¥ € Hs. Let b, = U+ 6, be a translation of v and let h be a positive
real continuous function with compact support on G. Define f : G — A4 by

f(=) =£ h(y) dP-+(y), then
/ f(z - 1) do(y) = f(z)
G

for all z € G. Let p be a pure state of A such that pv # 0. Then py # 0 and
p(p) #0. Also

/ pf(z —y) dpé(y) = pf(z)

G
where p6(G) = 1 as p6(G) = p by the last identity in (ii). Since pf(z) =
J h(y) dpi_z(y) with pi < cp(p)A, the function pf : G — R is bounded and
G

uniformly continuous. Therefore by Choquet and Deny’s Theorem ({5}, Théoréme
1), we have

pf(z —a) = pf(z)



176 Cuo-Ho CHU aND KA-SiNG Lau

for z € G and a € supp p&. By Lemma 4.5, supp p& = supp po = supp 0. Since
supp o generates the group G, we conclude that pf(z —a) = pf(z) forall z,a € G.
In particular, pf(—a) = pf(0) for a € G, that is

[ My epmnte) = [ m)dpota)
G

G

As h is arbitrary, we have pi, = p¥ for a € G and hence pir = a(p)X for some
a(p) € (0, 00), where A is the Haar measure on G.

That v € p implies 0 € #(K) < ¢pA(K) where p is a minimal projection in
A,. By Proposition 4.2, there exists ax € (0,00) such that #(K) = axepA(X).
It follows that, if A()) # 0, then pr = a(p)X gives a(p) = axc. This shows that
ak does not depend on K and so we have i = acpA for some & € (0, 00). Hence

dv(z) = g(z)di(z) = acpg(z)dr(z) = adu(z).

Therefore y € H,. The proof is complete. 1§

5. GENERAL SOLUTIONS

We have seen in Theorem 4.11 that the existence of extremal solutions p : B —
Ay [J{oco} for the equation s = p * ¢ depends on the existence of minimal projec-
tions in A. Therefore we have to restrict ourselves to the class of von Neumann
algebras rich in minimal projections. These are the so-called atomic von Neumann
algebras. Recall that a von Neumann algebra A is called atomic if every nonzero
projection in .4 majorizes a nonzero minimal projection ([22], p.1565). A typical
example of an atomic von Neumann algebra is B(H) ® £° in whick £ is the
centre.

Henceforth A will denote an atomic von Neumann algebra acting on a suit-
ably chosen separable Hilbert space H so that there is a positive contractive pro-
jection E : B(H) — A with the following properties:

(i) E(atd) = aE(t)b for a,b€ A andt € B(H);
(i) E continuous with respect to the w*-topologies on B(H) and A;

(iii) tr o E = tr where tr denotes the canonical trace on B(H).

The projection E is called a conditional ezpectation and its existence has
been shown, for instance, in ([22], p-334 and Proposition V.2.36). Note that in the
above representation of A, the minimal projections in A are rank-one projections
on H. By (ii), there exists a map

E, : A — T(H)sq
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induced by E on the preduals (recall A, is the predual of A,,) by transpose:
E.(p) = poE. Since A has a separable predual; there is a countable set of normal
states separating points of A. Further, the atomicity of 4 Implies that its normal
state space is the norm-closed convex hull of the pure normal states and therefore
there is a countable set {p,} of pure normal states separating points of A. In
particular, given u,» € M(G, A4) with pap < pnv for all n, then p < v. In the
sequel, {p1,p2,...,Pn,...} will always denote the above set of pure normal states
of A.

In order to use Choquet’s representation theory, we first note that the cone
H, need not be closed in M(G,A;), and therefore we need to introduce the
following auxiliary cone as in [7]:

Co={n€ M(G,Ay): p*o < p}.

LEMMA 5.1. The cone Cy is a w*-closed subcone of M(G, A4).

Proof. Let {sto} be a net in C, w*-converging to 4 € M(G, A;). We observe
that for any k : G — R,. continuous with compact support and for any pure normal
state p of A,

pa(h) = palh(-)p) — p(h(:)p) = pu(h)

where h(-)p € K(G,.A). BY po ¥ & € pto and by the Fatou Lemma, we have .

plp * o)(h) = (pp * po)(h) < pp(k).
Since h is arbitrary, we have pp * ¢ < pp. Also since the pure normal states

separates points of A, we conclude that uxo S pand peC,. 1

LEMMA 5.2. Let p € H,. Then p is extremal in H, if and only if p is
extremal in C,; that is, 8H, = 8C, ( H,.

Proof. Let p € 8H, and let v € C, be such that p—v € Cs,. Then
p=pro=(p—v)xotvso<(p—v)+v=4y,
which implies v * ¢ = v, that is, v € H, and hence v = cu for some ¢ > 0. This

shows that u € 3C,. &

Let C be a closed cone in a locally convex space. By a cap of C' we mean a
compact convex subset K of C containing 0 and is such that C'\ K is convex; C'is
called well-capped if C is a union of caps ([4], p.202).
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LEMMA 5.3. Let C be a w*-closed subcone of M(G, Ay). Then C is w'*-
complete and every cap of C is w*-metrizable.

Proof. We first show that M(G, A}) is w*-complete, so that C will be w*-
complete as well. Let {uq} be a w*-Cauchy net in M(G,A4). Then {ua(f)} is
Cauchy in R for every f € K(G,A.) and converges to p(f) say, which defines
a positive linear functional s on K(G, A,). By Lemma 3.2, u € K(G,A.)} =
M(G, A4) and the assertion follows.

Note that K(G,R)3 is w*-complete and metrizable ([3], Theorem 12.2 and
Theorem 12.10). Let {p,} be the pure normalstates as described before Lemma. 5.1,
consider the mapping

p€M(G,As) — (prtty-- ., papts. .Y € [] Cn
neEN

where C, = K(G,R);, and [] Cu, equipped with the product topology, is com-
neN

plete and metrizable. The map is one-to-one and continuous, therefore, given a
cap K C C, the restriction

pEK (..., o1, ) € [] Ca
nEN

is a homeomorphic embedding, by compactness of X. Hence K is metrizable. &

Now we have shown that C, is w*-complete, one may attempt at this stage
to use Choquet’s theory for weakly complete cones, as in [7], to show that every
solution z € H, C C, can be represented by a probability measure supported by
the extreme rays 8 H, which have been characterized in Theorem 4.11. We en-
counter an obstacle here as it is not clear to us if C, is well-capped. On the other
hand, we observe that, by Theorem 4.11, each p € H, is in fact an extended
T(H)4-valued (i.e., T(H)4 [J{oo}) measure and therefore, one expects that mea-
sures representable by dH, to be T(H)-valued as well. This suggests that we
should consider the T'(H');-valued measures in C,, and indeed, such a measure is
contained in a cap of C, for which one can apply Choquet’s theory.

Let E : B(H) — A be the aforementioned conditional projection and let
E. : A, — T(H),, be the transpose of E. We define another induced map E :
M(G,T(H)s) — M(G, As) by

E(u(S)) if u(S) e T(H)+
oo otherwise.

eus) = {

Then E is w*-w*-continuous also. Indeed, let {gq} be w*-convergent to y in
M(G,T(H)4) and let A € K(G,A.). Then E,(h(-)) € K(G,T(H),a). Since
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T(H) C K(H) and since the trace-norm dominates the operator-norm, we have
K(G,T(H)sa) C K(G,K(H),q) and so .

(Epa)(k) = na(Ex(h()) = #(Ex(()) = (Ep)(h).

LEMMA 5.4. Let E be defined as above.
(i) For p € M(G,A3)M(G,T(H)4), we have p = Eu;
(i) M(G, A )M (G, T(H)4) = {Eu : p € M(G, T(H)+)}-

Proof. (i) is clear. For (ii) we need only observe that for 1 € M(G,T(H)4),
then Ex € M(G,T(H),) also since
W(S) € T(H)y = tr(Eu(S)) = (tro E)u(S)) = tr ((S)) < o0. 1

PROPOSITION 5.5. Let p € M(G,A+)\M(G,T(H)4). Then there is a cap
K c M(G,Ay) such that pe K.

o0
Proof. Define a mapping v € M(G, T(H)4)— (v1,...,¥n,..) € ] M(Ga,
n=1
T(H),) where v, is the restriction of ¥ to Gp. Let a, > 0 be such that o, ||lpallf <

1 where ||| - ||| denotes the variation norm of a T{(H)-valued measure on Gy with
the trace norm on T(H), i.e., ||[eall] = ||#n(Gn)ll1. We first show that the convex
set

B= {U € M(G T(H) ) Z an”anm < 1}

n=1

is a cap in M(G,T{H)4). Indeed B is homeomorphic, via the above mapping,
with a closed subset in

IT{v € M(Ga Tt : Il < 2}
n=l "

which is compact in the product topology. Also, M(G,T(H)+)\ B is convex since
for v,7 ¢ B and for 0 < r < 1, we have by additivity of the norm

o [e5)
anlllrvn + (1 = r)mll| anlllzalll o H!T 111
Z n 5 n = rz n 2nn )Z n n

n=l nw=l nxl

which implies rv + (1 — )7 ¢ B.

Now let K = {Ev : v € B} C M(G, A;). Then K is compact in M(G, A;)
since we have shown that E is w*-w*-continuous. Evidently K is convex. We show
that M (G, A;)\K is convex. Let 7,y € M(G, A;)\K. Suppose v = 12‘T+12‘7 ekK,
we deduce a contradiction. Note that 2v > 7, implies 7,y € M(G,T(H)+) and it
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follows that 7,7 ¢ B (otherwise 7 = Er € K and ¥ = Ey € K). Suppose v = Ev
for some V' € B. Then

37+ 230011 = Ulonlll = I )all = WEVA | = 2 (E44(Gn)
= tr (V4(Gn)) = |lIv4ll]

and therefore

anlllfnlll an”h’nm anllilfu‘ Tnm_ a,,||| All
22 Z Z ? Z <1

n=1

giving a contradiction. So K is a cap in M(G,.A4) containing . 8

Now we are in a position to apply Choquet’s theory to describe the T'(H)4-
valued measures in C,, and in particular, such measures in H,. We refer to ([4],
Section 30) for the theory of conical measures on weakly complete cones.

THEOREM 5.6. Let A be an atomic von Neumann algebra acting on a sepa-
rable Hilbert space H, with centre Z. Let o be a positive Z—valued measure on G.
Given p € M(G, AL )N M(G,T(H)4) and p = p* o, then there is a probability
measure P on H, supported by a Borel subset B of 8H, | J{0} such that

p= /VdP(U)

B

where the integral means p(k) = [v(h)dP(v) for all h € K(G, As).
B

Proof. Recall from Lemma 5.3 that C, is w*-complete and that every cap
K of C, is w*- metrizable, and hence the set 8.K of extreme points of K is a
w*-Gs-set ([17], p.7). We also note that the rays generated by the elements of 6.K
is contained in 8C, | J{0} ([4], Proposition 30.12). By Proposition 5.5, every u €
Co N\ M(G,T(H)4) is contained in a cap of C,. A direct application of Choquet’s
integral representation theory yields (cf. [4], Theorem 30.14, Theorem 30.22)

(5.1) p=c / vdP(v)
8.K
where ¢ > 0, P is a probability measure supported by 8.K, and the integral means
p(h) = [ v(h)dP(v) for every h € K(G, A,).
8.K
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To replace the set 9. by a subset B of dH,{J{0} in the above integral
representation, we first show that H, is a Borel set. Observe that

H, = ﬂ{v € M(G,Ay): pnv = ppv * ppo}.

n=1

One can show, as in ([18], Lemma 9.5.2), that the set
{re M(G,Ry) i Txpao =7}
is a w*-Borel set in M(G,R,). As the map
v € M(G,Ay) = pov € M(G,Ry)

is w¥*-continuous, it follows that H, is a Borel set in M(G, A;).
Now we show that P(8.X \ H,;) = 0. Note that

fev]
GK\H, ={rve€edK: vvxeo}= U{veaeIC: PrV > Pt * pao}.

n=l

Let {h}_, be a countable dense set in K(G,R)4+. Then

{v €8.K: ppv > pav*ppo} = G {v € 8K : (pnv)(hm) > (pnv * pno)(hm)}.

ma=1

Suppose P{v € 3.K : (pa¥)(hm) > (paV * pro)(hm)} > 0 for some m. Then (5.1)
implies

(b)) = Wb (Opn) = [ ¥(hn()0n) 4P@) = [ (pa)(tm) P ()
8.K

8.K

> / (Pnv % n0) (B AP() = (Pt # o)) = (pft) (i)
8. K

which is impossible. Hence we have shown that P(8.K \ H,) = 0, that is,
P(0.KNH,) = 1 where .K(VH, C (8C,(\H,)J{0} = 8H,J{0}. By ab-

sorbing the constant c in (5.1) into v we have the representation as stated. W
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