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ABSTRACT. We investigate the local spectral behaviour of (constant coef-

ficient) matrix differential operators, and more general matrix p-multiplier

operators, in L¥-spaces (particularly, over RY). Of particular interest is the

decomposability and spectral mapping properties of such operators, together

with relevant functional calculi, when they are available.
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0. INTRODUCTION

In this paper we investigate the local spectral behaviour on LP(RY R™) =
B m
LP(RNY™ 1 € p < oo, of square systems Q(D) = |Qji(—iz—, ..., —iz>)

Jx,y ' oz N

Fok=1
of linear partial differential operators with constant coefficients. For p # 21t turns

out, as for the case of m = | considered in [3], that the operator Q(D) is spectral
in the sense of N. Dunford ([11]) if and only if all the polynomial entries Q;y are
constant. The proof is however more involved since new phenomena occur for
m > |

For N = | and m = | the operator Q(D) is necessarily decomposable in the
sense of C. Foiag ([10], [12], [26); sec [3], Corollary 3.7). This is no longer true

for m > 1. As we shall see, the operator Q(D) with Q(z) = [i tu}, r €R,is

not decomposable on LF(R)?, even for p = 2. There is however an easily verifiable

5

degree condition available which, for the case N = | and m 2 2, is necessary
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and sufficient for the decomposability of Q(D); see Section 4. For N > 2 there
are, already in the case m = 1, examples of non-decomposable operators Q(D),
([3], Corollary 3.5). However, in the presence of an ellipticity property for the
characteristic polynomial and again a degree condition for the entries of @, we
still have decomposability of Q(D) in LP(RV)™.

As in [3], part of the theory can be done in the maore general framework of
(not necessarily bounded) multipliers on arbitrary locally compact abelian (l.c.a)
groups. So, let G be a l.c.a group with dual group I' and Haar measures ji,
respectively v, on G, respectively I', chosen such that the Plancherel theorem is
valid. We write MP(I'} for the algebra of all p-multiplier functions on I'. By &4P(I")
we will denote the algebra of all local p-multiplier functions on [, i.e. the algebra
of all (equivalence classes of) v-measurable functions u on I' with the property
that u € MP(T") for all compactly supported functions ¢ which are the Fourier
transform of an L'((')-function. Notice, for p = 2, that &4*(T') coincides with the
algebra L2 (T} of all locally bounded v-measurable functions on I".

If Ais any algebra, we write M,,, (A) for the algebra of all (1n x m)-matrices
with entries from .A. For a € M, (M?(I')} we will write T? for the corresponding
multiplier operator on LP(G)™; see [9]. Suppose a € M,,,(UP(I")). If f € LP(G)™
has the property that its Fourier transform Ff = fﬁ (computed component-wise)
has compact support and h € L'(G) is a function such that

(0.1) supp(;‘;) is compact and h=lina neighbourhood of supp(]?),

then we define S2f = T,::’af. This definition does noi depend on the particular
choice of the function A € L'(G) with property (0.1). It is easy to see that
the so defined linear operator S? is closable. Its closure is again denoted by
SP. As shown in Section 2, for 1 € p € 2, the domain of S? coincides with
D(S?P) = {f € LP(G)™; of € F(LP(G)™)} and

(0.2) SPf=F""(af) for f € D(SE);

the product af makes sense since, by the Hausdorff-Young theorem, F{L? (G)™) C
L#(T)™ where > + 1 =1.

In the case when a = @ is a matrix polynomial on ¢ = RY it turns out,
for 1 < p < oo, that D(S3) = {f € LP(RMY™: Q(D)f € LP(RV)™} and Sof =
Q(D)f, for f € D(S}), where Q(D)f is formed in the sense of distributions. In
the final two sections we shall discuss in detail the decompaosability of Q(D), for
p # 2, and the problem of obtaining functional calculi for Q(D).

Because of (0.2), it is necessary to investigate the local spectral properties
of matrix multiplication operators on L4(T)™. This will be done in the following
section.



MATRIX DIFFERENTIAL OPERATORS 5

1. MATRIX MULTIPLICATION OPERATORS IN LP-SPACES

As usual, a mcasure space (2, X, 1) consists of a non-empty set Q, a o-algebra ¥ of
subsets of Q and a o-additive measure p : £ — [0, 00]. Recall that a mcasure space
(S, 5, ) is a direct sum of finite measure spaces if there exists a family F C £ of
pairwise disjoint sets of finite measure such that a subset % of Q is in ¥ if and
only if ENF € T forall ' € F and p(E) = E p(FNE).

Every o-finite measure space is a (hrect sum of finite measure spaces. If
(2,2, i) is a measure space and Xy is the conditional o-ring of all sets in £ having
finite measnre, then (2, X, 1) is a direct sum of finite measure spaces if and only
if (2, Xo, ) is a direct sum of measure spaces in the sense of [24], Definition 3.1.
Iu that case (€, o, u) is localizable ([24], Theorem 3.2) and one has the duality
LY(p)* = L* (). Moreover, the algebra of all operators of multiplication by L%-
functions is a maximal abelian subalgebra of the Banach algebra £(L2%(u)} of all
bounded linear operators on L?(y); see [24], Theoremn 5.1. This fact will also be
needed for LP(p). For the sake of completeness we include the proof.

LEMMA 1.1 Let (2, £, i) be a direct sum of finite measure spaces. For cvery
p € [1,00) the algebra AL, = {My; ¢ € L®(p)} of ell multiplication operators
J = Myf=of in LP(p) by L-funclions ¢ is a mazimal abelian subalgebra of

L(L(10)).

Proof. Fix T € L(LP(1)) with TM, = M,T for all ¢ € L (). For every
F e F (with F as above) we denote by ji| 7 the measure g restricted to the algebra
N Y and consider LP(yi|F) as a closed subspace of LP(u) (via the embedding
[ — f where f f on F and f =0on Q\ F). For f € L™(ulF) C LP(u|F) we
have

T(f) =T(fxr) = fT(xp) = ij(XF)f:

showing that T(f) € L?(u|F). Since L (u|F) is dense in LP(u|F) it follows that
LP(p|I7) 1s invariant for T and the restriction of T to LP(u|F) is Moy ). This is
only possible if 7'(x ) actually belongs to L™(u]#) and |T'(x, Moo < [|T|]. The
function ¥ defined to be T'(x ) on F, for all F € F | is then measurable and satisfies
¥lloo = ﬁu’!;_HT(XF)”OQ < AIT| as well as My f = T(f) for all f € LP(p). 1

"€

Since we are 1mainly interested in spaces LP(u), where u is the Haar measure
on a l.c.a group ¢ we should notice that (7, B, u) is in this case a direct sum of
finite measure spaces, where 5 denotes the Borel subsets of (7; see [24], Theorem 5.2
for a proof. For the rest of this section, (Q, T, i) will always be a direct sum of

finite measure spaces.
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If m 2 1is an integer, @ = [a;x]]% =, s an (m x m)-matrix of measurable
functions on 2 and 1 € p < oo, then we define a closed linear matrix multiplication
operator Mf on LP(u)™ with domain D(MP) = {f € LP(u)™; af € LP(u)y"} by
the formula M2 f = of, for f € D(MP). Since m is fixed we do not indicate the
dependence of M? on m. We assume that each entry aji 1s finite-valued ji-a.e.
For ¢ € L™(y) we also consider the operator M‘P”, on LP(y)™ where @/ is the
diagonal (m x m)-matrix with ¢ down the diagonal. Thus, M}, € L(LP(1)™) and
(IMZ;1l = ll@lleo, for every 1 < p < co. If a is as above, we have My ML C MM,
Since D(M?) is dense in LP(;1)™ we must have

(1.1) (ME)™' My, = My (M)~

whenever T' = (M£)~! exists as a bounded linear operator on LP(g)™. In this case
T = [T5x]]=y with Tjx € L(LP(p)) for j, k = 1,..., m. Because of (1.1) we have
T;kMy = M,Tjy for all ¢ € L () which, by Lemma 1.1, implies that Tjx = My,
for some b;; € L®(p) and j,k € {1,...,m}. Accordingly, if b = [b;¢]}",=,, then
T = (M2)~' = M] must be a matrix multiplication operator with g-essentially
bounded entries. Because M2 M} = I on LP(u)™ it follows that b = a™!, p-ae,,
and det(b) = 1/ det(a), p-a.e. Since det(b) € L*(y), this is only possible if 0 ¢
ess-range(det(a)). Conversely, if a=! € My (L™ (1)), then MY_, € L(LP(p)™) is a
bounded inverse of MP?. A similar arguinent shows that M? € L(LP(u)™) if and
only if ¢ € M,,,(L®(ut)). If we define

E(a) = {) € C; 0 & ess-range(det(A — «))}

and C=CuU {0} we obtain from these considerations the following

LEMMA 1.2. For every mairiz mulliplication operator M2 on LP(u)™ the set
£(a) 1s contained in the spectrum g(MPF) of M¥. Moreover, if o(MZE) # C, then

o(MP) = {E(a), lf(l € Mm(L:(#‘))

(a) {0}, if a g Mm(L™(n)).
If m = 1, then £(a) = ess-range(a). Accordingly, for m > 1 we call £(a) the
essential spectral range of a. This name is also justified by the easily verified fact

that _
Z(a)= () U eld=)),

d€fa) €N

where [a] denotes the equivalence class of all measurable matrix functions d co-
inciding p—a.e. on § with a and ¢(d(z)) is the spectrum of the (1 x m)-matrix
d(z).
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In the special case that (Q,Z,p) = (T, B,v), where I' is a l.c.a group with
Haar measure v, and ¢ = [a;x]]%_; bclongs to M,,(C(T)), we have Y(a) =

U a(a(7)); here C(I') is the space of continuous functions on I
yel
Lemupa 1.2 (for a o-finite measure) can be found in [20], a paper which

considers the question of when the operators M? are infinitesimal generators of
various kinds of Cy-semmigroups and iuntegrated semigroups in LP (¢)™, 1 € p < o0;
see also [22].

Before investigating the local spectral behaviour of matrix multiplication
opcrators on LP(j)™ we recall some definitions. Let X be a Banach space and
C(X) denote the class of all closed linear operators on X. A closed subspace Y
of X is said to be wmvariant for T € C(X) if (D(T) NY) C Y. The restriction
operator T'|Y with domain D(7) NY is then a closed linear operator. The closed
opcrator T is said to be decomposable in the sense of C. Foiag ({10], [12], [26]) if,
for every finite open cover Uy, ..., U, of E, there are closed invariant subspaces
Yi,-.,Yuof Tsuch that Yy + - 4+ ¥, = X and o(T|Y;) C Uj for j=1,...,n.
We shall frequently use the following known facts.

LEMMA 1.3, Let T be a closed lincar operator on a Banach space X such
that C\o(T') # 0. Then T" is decomposable if and only if (\—=T)"" is decomposable
for some (all) X € C\ o(T).

Proof. Since T' is decomposable if and only if A — T" is decomposable, the
result follows from [4], Lemma 2.4. &

PROPOSITION 1.4. Let X be a Banach space and A bc a regular semistmple
Banach algebra with unit. If ® : M,,(A) — L{X) ts any unitel homomorphism,
then every operalor in the range (M, (A)), of ¥, is a decomposable operator in X.

Proof. Let B = Mp,(A) and write ¥ : A — B for the canonical monomor-
phisii mapping « € A to the diagonal matrix with diagonal entries a. Then ¥(.A)
is contained in the centre of B. As in the proof of Corollary 3.14 in [2] one sees
that the assumptions for b in Theorem 3.7 of [2] are satisfied, for all b € B, and it
follows from this theorem that ®(b) is decomposable for all b € B. 1§

CoroLLARY 1.5. (a) If a € M,,(L%(n)), then MZ is decomposable in
LP(u)™, for allp 2 1.

(b) If a is an M, (C)-valued measurable funciion (possibly unbounded) such
that C\ o(MP) # 0, then M? is decomposable.

Proof. (a) is an immediate consequence of Proposition 1.4 since L®(u) is
a commutative regular unital Banach algebra. Part (b) is a consequence of (a),
Lemma 1.3 and the proof of Lemma 1.2. 1
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Since the operators of multiplication with L% (u)-functions are actually scalar-
type spectral operators on LP(u), in the sense of N. Dunford ([11]), one could con-
Jjecture that for @ € My, (L% (4t)) the operator MY would be at least generalized
scalar, that 1s, admits a ¢'°(C)-functional calculus. This i1s indeed the case for
m = 2 (cf. {10}, Chapter 6, Section 4). However, for m 2 3, there are examples
([5], IV, Example 2.3) where the entries of a are even smooth functions on C but
M? is not generalized scalar on LF(p)™ for any p 2 | (with respect to the planar
Lebesgue measure). The next result shows that M? is not always decomposable
(of course, by Corollary 1.5, a is then necessarily unbounded).

ProprosiTionN 1.6. If 1 € p < oo and a is a measurable M,,(C)-valued
function on Q such that MP is decomposable in LP (u)™, then o(ME)NC = T(a).

Proof. The sets , = {z € Q; |ajr(z)| € n, for j,& = 1,...,m} are mea-
surable and (£2,, X, 1|2 is still a direct sum of finite measure spaces (where
B = {ENQ,; E € £}). Since b, = a|Q, belongs to Mm (L% (11|Q0)), the op-
erator S, = an is bounded and decomposable in L¥ (u|§2,)™, for cach n € N. If
Ry ¢ LP(p)™ — LP(u|Q2,)™ is the canonical restriction mapping we have

(1.2) RaMP C SpRn, ne€N.

Assume now that M? is decomposable and fix an arbitrary A € € \ E(«a). Since
Z(a) is a closed subset in C there exist a bounded open neighbourhood U of A
and an open set H C C such that UUH = €, with A ¢ H and U N E(a) = 0.
Since MP is decomposable, there are closed invariant subspaces ¥7, Y3 for MP such
that Y1 + Yy = LP(p)™, with o(M2|Y:) C U, and A € o(M?P|Y2). We also have
by Lemma 1.2 and the boundedness of Sy, that o(Sn)} = £(b,) C E(«). By (1.2)
we have R,(MP|Y:) = S, Rn|Yi1, and hence, R, (Y1} = {0} for all n € N (by the
obvious extension of Corollary 0.13 in [23] to the Banach space setting). Hence,
for all f € Y1, we have f = 0, p-a.e. on U Q,, = Q. This shows that ¥; = {0}.

n=1

That is LP(u)™ = Y3 and A € o(MP). 1

CoOROLLARY 1.7. If a is a measurable Mpm(C)-valued function such that
o(M?)NC # X(a), then M? is not decomposable on LP(u)™ and o(M?E) = C.
T

L1
M? is not decomposable on LP(R)? for all p > 1. Indeed, since a is continuous, we

have ¥(a) = |J o(a(z)) = R. For A € C\ R direct computation shows that
zeR

2 ~
ExaMPLE 1.8. Define a(z) = | N } for x € R. Then o(M?P) = C and
‘ z

55 o
_ -1 _ | A(A-2z A(A=-2z
(* - a(=)) -[ - ]

LX0-2z) *(A-22)
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where not all entries are ess-bounded. So o{M?Y) = € properly contains X(a) U
{oo}. 1

An operator T' € C(X) is said to have the single valued cxtension property
(SVEP) if, for every X-valued analytic function f : G — X defined on an arbitrary
open sct (¢ C € with f(G) C D(T), we have (z —T)f(z) =0 on (7 iff f=0on G.
It 15 well known that decomposable operators have the SVEP.

Since, in the unbounded case, matrix multiplication operators need not even

be decomposable in LP ()™ for m 2= 2, the following fact is of some interest.

ProrosiTION 1.9. For every measurable My, (C)-valued function a on Q the
operator MY has the SVEP.

Proof. We introduce Q,,, Sp, Ry as i the proof of Proposition 1.6. Let f :
G — LP(u)™ be an analytic LP(y¢)™-valued function such that f(G) € D(MY)
and (A = M2)f(X) = 0 on G. Then 0 = Rp(A — ML) f(2) = (A — Su) Rn f(A). Since
A — Rnof()) is analytic on ¢ with values in LP(2|2,)™ and 5, has the SVEP
(heing decomposable by Corollary 1.5) we obtain R, f(A) = 0 on . Hence, for
every A € ¢, we have f(A, 2) = 0 for gi-ae. 2 € Q, that is, f(X) is a null function
forallde .

If T is a closed operator on a Banach space X and F' C Cis closed, we write
Xy (F) for the linear space of all z € X such that there exists some analytic X-
valued function f: C\F — X with f(C\ F) ¢ D(T) satisfying (A=7)f(A) =  on
C\ /. If T is decomposable, then the spaces Xo(F) are closed invariant subspaces
for 7" with o(7| X7 (")) C F 0 a(1); see for example [26]. An operator T' €
C(X) is said to have the weak property (8) if, for every locally finife open cover

{U,}52, of C, the space X coincides with the closed linear span of the union of
the submanifolds X (Un), n € N. If, in addition, all the spaces X (F) are closed
X, whenever F7 C Cis closed, we say that 7" has the Ljubich-Macaev property.
Thus, if T is decomposable and has the weak property (6), then T also has the
Ljubich-Macaev property. The class of unbounded closed linear operators with
the Ljubich-Macaev property is not comparable with the class of decornposable
operators ([3]).

LEMMA L.10. Ifa : @ — Mu(C) is measurable, then M} has the weak
property (6) in LP(p)™, for 1 € p < oo. Hence, M} has the Ljubich-Macaev
property whenever il is decomposable.

Proof. Let {Ux}$L, be any locally finite open cover of C and fix f € X =
LP(p)™. Let Q,, 5, and R, be as in the proof of Proposition 1.6 and consider the
spaces X = LP(p|Q,)™ as closed linear subspaces of X. Then Knf — f, as
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1 — 00, in X. Since S, is bounded and decomposable on X(n) (by Corollary 1.5),
there exists some k(n) € N such that X{") = Xé?(UJ-{-- : ~+J\'f5"'_)(Uk(,,)). Because

. _ k(n) _
of ,\'g’:)(Uj) C Xp(U;), with T = M? and 7 € N, we see that R,f € > Xr(Uj).
j=1

So, T = MY has the weak property (§). @

ProrosITiON 1.11. Let 1 € p < 00 and a : @ — M,,(€) be measurable.
If the malriz multiplication operalor M?P has the Ljubich-Macaev property, then
a(MPYNC = ¥(a).

Proof. Again let T = MP and €,,S,, R, be as in the proof of Proposi-
tion 1.6. Fix an arbitrary point A € C\ £(«a) and let U, H be an open cover of
C as in the proof of Proposition 1.6. By the Ljubich-Macaev property we have
X = LP()™ = Xp(U) + Xp(H). Fix an arbitrary f € Xp(U). By the defini-
tion of Xo(U) there exists an analytic X-valued function g : C\U — X with
g€\T) C D(T) and (z = T)g(z) = f on €\ U. Then

W= { 00 e N
'(4- - ‘Sn) k"nf, T E C \ J(‘S“)

is a well defined entire X-valued function vanishing at infinity (notice that 5, €
L(LP(42|2,)™) is decomposable and hence has the SVEP). Thus, by the Liouville
theorem, h = 0. This shows that. for all z € C\ 7 the function g(z) vanishes p-a.e.
on §,, for all » € N, that is, g{z) = 0 as an element of X = LP(x)™. Hence,
J = (2=T)g(z) = 0 on C\T. This shows that Xq(T) = {0}, that is, X = X¢(H);
notice that Xo(H) is closed in X. By the definition of X (H) this implies that
(A=T)D(T) = X. Since T has the SVEP (by Proposition 1.9), the operator A =T
must also be injective ([27]). Accordingly, A € o(T). 1

So, a matrix multiplication operator M¥ with o(A/2)NC # X(a) cannot have
the Ljubich-Macaev property. This applies, in particular, to Example 1.8.

N. Dunford and J.T. Schwartz characterized all bounded operators « €
M,, (L2(Q)) which are spectral operators in H™, where @ : & — L(H) is any
(selfadjoint) spectral neasure in a Hilbert space H; see [11], Section 9, Chap-
ter XV. These results can be adapted to characterize spectrality of operators
@ € M (L®(Q)) in X™ where Q : £ — L{X) is any spectral nieasure in a Banach
space X. However, we will restrict our attention to X = L?(1),] < p < 00, and
a specific spectral measure @ in LP(yc) since this setting suflices for our purposes
and because the results are more transparent than for arbitrary Banach spaces

X. So, in the remainder of this section we indicate how the Hilbert space results
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mentioned above can be suitably modified to the setting of matrix multiplication
operators in L'-spaces.

Let (2,2, v) be a measure space with v 2 0 a complete measure which is
the direct sumn of finite measures. Fix » € [1,00). For each £ € £, let Q,.(F) €
L{LT(#)) be the operator in L7 (w) of multiplicatiou by y, € L®(v). Theu the
mapping ¢ : ¥ — L(L"(v)) so defined is a spectral measure. The space 12 =
L™(Q) of all (equivalence classes of) L-measurable functions ¥ : @ — C s a
commutative semnisimple Banach algebra (with unit and involution) with respect,
ta the norm

”1/)”00 = i“f{”"/)Xpllc-o; rey, Q7(F) = I}; & LN(QT)'

Since the ¢)--null sets are precisely the v-null sets we conclnde that L™(Q,) =
L¥(v). Given th € L™(Q),) the operator [ d@Q,, defined via integration with
respect to the spectral measure @, (see [11]), is the operator in L7 (v) of wulti-
plication by 1 and || [ ¥ d@Q,{| = [|#|les. Moreover, V, = {[ % dQ,; ¢ € L=(Q,)}
is a strong operator closed subalgebra of L(L7 (1)) equipped with the involution
(fd@) = fﬁdQ,’. Accordingly, V, and V. are s-1somorphic as (*-algebras
via the mapping ¢ — [ d@Q,.

Pix an integer m 2 1. Since L{L"(¥}™) is isomorphic to M, (L(L"(v)))
we can (and do) identify M,, (V,} with a subspace of L(L"(r)"). Elements G =
(@)= of M,,(V,) are regarded as v-essentially bounded maps w w— @(w) of
Q into L(C™) =~ M,,(C). So, for w € 2, we have ||a(w)|| = sup{||[a(w)€]]z; € €
C"|I€l)z € 1}, where
fine

|2 denotes the usual Hilbert space norm in C™. We de-

il|eo = inf{sup{{ja(w)|]; w € £}; £ € £ is v—null}. The “same” arguinent
as in [L1], p. 1966 shows that M,,L(f@) is a unital Banach algebra with involu-
tion. Moreover, M,,(V;) and M,,L((A/,«) are #-isomorphic as Banach algebras via the
correspondence @ = [@;] 2, < a = [ [ asx er];I’lk___y

If @ € M,,,(V;), then @(w) is a linear operator in the finite dimensional space
C™, for w € Q. Accordingly, @(w) is a spectral operator of finite type (at most
(m—1)). Its scalar part will be denoted by f?&(w) and its nilpotent part by Na(w).
By I(-;d(w)) : B — L£(C™) we mean the resolution of the identity of @(w), where
B is the g-algebra of all Borel subsets of C. The spectral measure F(-;a(w)) is
supported by the finite set o(a(w)).

Elements « € M,,(V;), when identified as elements of L(L"(v)™), are pre-
cisely those matrix multiplication operators ML in L"(v)™ specified by matrices
d whose entries @;; € L°(v). Accordingly, the following two results characterize
spectrality of such matrix multiplication operators. Their proofs can essentially

be found in pp. 1976-1977 of [11], in the sense that the proofs given there carry
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over “ad verbatum” to the L7-setting after noting two points. First, the use
of Theorem XV.9.3 in the proof of Theorem 5 on p. 1976 of [11] uses ouly the
*-isomorphism between Mp,(V;) and 1\4,,,(17,) and not that it is isometric. The
second point occurs in the proof of Theorem 6 on p. 1978 of [11] where the isomet-
ric isomorphism between M,,,(V;) and Mm(‘iA/T) is used in the uniform boundedness
argument. An examination of this proof shows the isometric property is not es-
sential; it suffices to have a Banach algebra isomorphisin.

LemMma 1.12. Let m 2 1 be an infeger and » € [1,00). Let a € M, (V;)
salisfy

(i) sup{||F(o;@())]|eo; o € B} < o0,
and lct o(a) be the spectrum of a relative to L{L7(1)™). Then, for every bounded
Borel function ¢ : o(a) — C the £L{C™)-valued infegral
(1) W — / N dF(A; e(w)), we Q,
a(a)

is Qr-essentially bounded. Moreover, the M, (V,)-valued integral

(iii) o | Flo;a(w))dQ.(w), ¢ € B,
/

is a spectral measure in L(LT(v)™) and the identity

[ [ emarosaw )] 1w = [ o[ [ Faxaw))d.(w)
Q. g(a) o(a) Q

holds in M (V) C L(L"(v)™).

Using Lemma 1.12 it can now be argued along the lines of the proof in
pp. 1976-1977 of [11] to establish the following result.

PropPOSITION 1.13. Let m 2 1 be an integer and r € [1,00). If a € M (V}),
then the matriz multiplication operator M} is a spectral operator in L(L"(v)™) if
and only if

(i sup{[|F(c38())floo; o € B) < co.

When this condition is satisfied, ML is a spectral operator of type nol exceeding
(m — 1) with the resolution of the identity F(-;a) : B — L(L™(v)}™) given by

(i) Foio)= [ F(eiaw) Q. (w), 7e€B.

Q
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Moreover, for v-ae. w € Q the scalar part of a(w) 1s given by az(w) =
[ AdF(Xd(w)) with the funclions @z : w — ja(w} and N; : w — ﬁﬁ('LU)
o(a)
belonging to M,,,(f/,) and (Kf&)’” =0 MnL(Vr).
Let A = ff’l\a('w) d@Q,(w}) and N = fﬁa(w) d@r(w). Then A satisfies A =
2 0
[ AdF(X;a) with the operators AN € Mi{(V,) commuting, N™ = 0 and A +

a(a)
N = M7. In pariicular, A is the scalar part of ML and N 1s the nilpotent part of

M.

RiEMARK. Lel o e M,,,(V,), Since ecach operator f?IM d@, 1s just the opera-
tor of multiplication by @;; in L™(v), for all 5,k & {1,...,m}, it follows (for each
o € B) that

IF(o;a(w)) = Fo;a)(w), for v—ae w e Q.

2. BASIC FACTS ON MATRIX p-MULTEPLIERS

In this section we derive some hasic facts on matrix multiplier operators which will
be needed in the sequel and which can be forulated in the general framework of
Le.a groups. In the following, (¢ will be a l.c.a group with dual group I' and m 2 1
is an integer. We will also fix a bounded approximate identity {eq}aea of L' (Q)

satislying

(2.1 o 200n "and e, 2 0on (7, for all w € A,
(22) Heﬂ“Ll(G) = 1, o E A,

(2.3) supp(Ca) is compact, for all o« € A,

and

(2.4) 2, — 1 uniformly on all compact subsets of T';

see [L6], Theorem 33.12.
Since L'(GY™ N LP(G)™ is dense in LF(G7)™ for 1 € p < oo, we see (using

(2.2)) that the operator 7L of convolution with e, satisfies

(2.5) Tgﬂf =cq*f—f In LP((Y™, for all f € LP(GY™,
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where the convolution of e, with f is defined component-wise. Let f € D) = {g €
LP(G)™; supp(§) is compact}. For £ € D) and a € M, (U"(I')) we define S2f =
T%,f where ¢ € F(L'(G)) has compact support and ¢ = | in a neighbourhood

of supp(f). If {f.}5%, is a sequence in D®) converging to zero and SPf,, — ¢ in
LP(GY™, then

Ca g = lim eq*Shfn= dim 17 f.=0
n—0o n—ao A

(because of the continuity of Té:‘a). Irom (2.5) we conclude that y = 0. Hence,
Sh s closable. The closure will again be denoted by S?. A direct computation
shows that T} SE C S217, for all h € M,,(MP(')) commuting pointwise with «.
It follows that for, 1 < p <2 and all f € D(S}), we have ¢ # (Shf) =77 [ and

hence

Flew* (S} = teaf, foralla € A.

Since &, — 1 uniformly on compact subsets of I" we conclude that S? = F~af)

and thus

D(s8) C{f € LP(G)™; of € F(LP(GY™);

denote the latter set by D(S?). For the converse fix f € D(S?). Then, for ail

« € A, we have eq x F~af) = F~1(Caaf) = S2(cq * f). Since SP is closed,
[ € D(5%) and

(2.6) Stf=F Y af).

LEMMA 2.1, Let ) < p < oo. Then, for ella € M,,(U” (1)), we have (SE) =

SI., where a* is the {ransposed matriz of a and ’l, + $ =1.

Proof. Notice that (S%)* exists since S7 is a deusely defined, closed linear
operator. Obviously (T7)* = T, holds for all u € M, (MP(1)). Hence, by the
definition of 5%, we have (St f,g) = (f, 5,9}, for all f € LP () and g € LY(G) such
that the supports of f and g are comnpact. From this we conclude that (52)" 2 5%

Conversely, fix g € D((52)*). Then, for all f € D(S?) and o € A, we have

at”

(f, 5 (ea x9)) = {ea * SEF, 9) = (Sh(ea * £),9) = {fiea + (S5)79)

and hence SY,(eq *g) = cq *(S%)*g. Since S, is closed and e + ¢ — y we see that
g € D(SY,) and obtain S%, = (S¥)*. &
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LEMMA 2.2, Lel 1 < p < co and a € M, (47(L)). Then L(a) C o{ST)} and,
for adl X € C\o(5%), we necessarily have (A—a)™) € M,,,(MP(I')) C M, (L=(1')).

Proof. If A € C\ a(5F), then (A — 52)") = '6 a1 € L(LP{GY™); for
I € p < 2 this equality follows from (2.6), for p > 2 by duality using the preceeding
letima. Since 5’%’/\_“)_1 15 a bounded translation invariant operator, the entries of
(A = a)™" must belong to MP(I') and hence, be essentially hounded. 1t follows

that A & X(a). 1

ProrositioN 2.3, Let G be a lLc.a group with dual group I', 1 € p < oo and
a € M, (U7 (I')). [f the vperalor ST is decomposable, then
(i) o(5%) N C = E(a).
(1) oo € (r(b,’j) if and only of « & M, (L™(1)).

(ili) oo cannol be an isolaled poind of a(ST).

Proof. As E(a) = E(a'), by Lemma 2.1 il suflices to give the proof for
I <pg2

(1) For n e N, write Q,, = {x € I; I(L] (x) < nforj k=1,...,m}and define
Ry o LP(GY" — LYY, where —, + =1, by R, f = _/Tlﬂ,l‘ By the Hausdorll-
Young theorem, 12, is a hounded lmuu operator. Moreover, denoting by %), the
bounded linear operator of multiplication by «]$2,, on L4(€2,,)™, we have 12,,5% C
S Ry, for € N Using Lemima 2.2 we obtain, as in the proof of Proposition 1.6,
that ¢(55)NC C o(e). Conversely, if A € X(a), then (A —a)™!' & M,, (L (")) and
hence (A — ST)~! cannot exist in L(L"((1)).

(11) and (ii1). If co & o(S7), then $? is a translation invariant, bounded linear
operator and hence, « € M,,,(MP(I")) C M,,,(L™(I'})). For the converse direction
and for (iii) we observe lirst, by (i), that the point co can only be an isolated point
of o(St) if a € M,,( L‘“(l‘ Hence, assume that « € M, (L™ (). By (i) there
exists some A € C\ a(57). Since (A — S1)~! = SZ’,\ -1 is a bounded, translation
mvariant operator we must. have (A — a)™! € M,,,(L™(I')) and hence, we cannot.
have 0 € (A — a)~!). Therefore, 0 & o((A — S2)™1) = S((A — )~ 1) (by (i) since
(A =571 is decomposable, cf. [4], Lemrna 2.4) and thus oo € a(S7). #

Note that the proof shows that if « € M,,(M4?(I')) has essentially bounded

entrics and 5% is decomposable, then « € M,,,(M?(I)).

ExaMpLE. The function  — a(z) = el 2 € RY, is a local p-multiplier
function which is bounded on RY. Since a ¢ M?(RY) for p £ 2 (cf. [21], Lemn-

ma 1.3}, the operator ST st be unbounded and cannot be decomposable. 1
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For p # 2, the semisimple Banach algebra MF(T") is in many cases not
regular. However, there always exists a unique maximal, regular, closed subalgebra
RP(I') of MP(I') which contains all regular, closed subalgebras of MP(T'): see [1].

Corollary 2.4. The following fact is a direct consequence of Proposition 1.4.
LEMMA 2.4. For all « € My, (RP(I)), the aperator 5P is decomposable.

COROLLARY 2.5. Ifa € My (¥ (1)) and (A —a)™! € M, (RP(1)), for some
A e C\ E(a), then SE 1s decomposable.

Proof. From (A — a)™! € M, (R”(I")) we conclude A € C\ ¢(5%), that
(A—5p)~t = S;,)\—a)"l and that (A — 57}~ is decomposable (by Lennna 2.4).
Hence, by (4], Lemma 2.4, 52 must be decomposable. 11

In view of these two facts the following lemma is of some interest.

LEMMA 2.6. Let A be a regular Banach clgchra and let & : A — MP(T) be
an algebra homomorphism. Then $(A4) C RP(I').

Proof. Tt follows from [1], Theoremn 1.4 that the operators La(qy of left niulti-
plication with elements ®(a), a € A, are decorposable as operators in L(B), where
B = ®(A). By [6], Theorem 3.6, L; will be decomposable in £(8) for every b € B.
Hence, by [13], Theorem 2, B is a regular Banach algebra and thus contained in
RP(T). 1

Thus, for instance, BV(R) C R?(R) and F(LY(G)) C RP(I') and N*(RY) C
RP(RN) where A*(R") is the Mihlin algebra considered in [4], Lemma 1.3.

3. NON-SPECTRALITY OF SYSTEMS OF DIFFERENTIAL OPERATORS

Let @ = [Qjk]}’=, be a matrix whose entries @y : R — C are polynowials; the
algebra of all such polynomnals is denoted by Clx), ..., @n]. The natural domain
of the differential operator Q(D) (where D = (L2 —_— 2_))is

T 8r,? Jrp

’DZ — {f c LP(RN)m; Q(D)f € LP(RN)m},

where Q(D)f is formed in the sense of distributions. Write Q,( D) for the operator
with domain ’D’é given by Q,(D)f = Q(D)f. for f € D’é. Then Qp(D) is a densely
defined closed linear operator. A standard arguiment (nsiug regularization) shows
that @,(D) coincides with the operator Sg defined i the introduction.

The question of when Q,(D) is spectral was extensively investigated in [11],
Chapter XV, for the situation when p = 2 and n > 1. For the case of m = 1 and
p # 2 it was shown in [3] that @, (D) is spectral if and only if Q) is constant. In
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the case ™ 2 2 a similar statement would be expected. In this section we show
that this is indeed the case. The proof is however more involved and we do not
give a generalization to more general matrix multiplier operators of the form %
as was done for the case of m = 1 ([3], Proposition 2.4).

We begin with localized versions of Propositions 2.1 and 2.2 in [3]. Let Q be
a bounded open set in RY and p € [1,2]. Denote by X?(f2) the closure, in L? (RM),
of {f € LP(RV); bLl})])(f) C ©}. An essentially bounded function ¢ : @ — C is
satd to be a local p-multiplier for Q if ¢ agrees with the restriclion to € of some
p-multiplier ¢y on RY. Since X*() is invariant for ST, we may consider the
restriction, RE, of S to X?(Q). This definition of R, is independent of the p-
multiplier pgy and satisfies R, f = f‘l(cp]?), for [ € XP(RQ2). If ¢ satisfies %—}—5 =1,
then Young’s inequality implies the map B : XP(2) — L9(2) given by Bf = ﬂQ,
for f € XP(RQ), is bounded and injective. It satisfies

(3.1) BRI, = MYB,

where M$ is the operator in L¢(2) of multiplication by ¢. Moreover, My is a

scalar-type spectral operator with the resolution of the identity given by
(3.2) Ey(8) = Mysop, &€ B(C);

here B(C) denotes the o-algebra of all Borel subsets of C. The following state-
ment is an immediate consequence of (3.1) and (3.2) above, of Theorem 1.2 and
Corollary 1.5 in {3] and of Theorem XVI11.2.10 in [11].

LEMMA 3.1. Let 1 € p €2 and Q be o bounded open sel in RV, Lel @ be a
local p-multiplier for Q such that R, is a spectral operator in XP(S). Then RE, is
of scalar-lype and ils resolution of the identity F, is given by

(3.3) Fo(6)f = F~'f (poxs), f€X"(Q),6€BC).

Morcover, for every bounded Borel function v on C, we have
(34) ] W) AP ()] = FH (0 )T) = Ry f

Jor [ € XP(Q), and there is a conslant K, > 0 (independent of 1) such that

(3.5) g oplleerry) € Kplldlliemr)-

In addition, o(Rf,

wop) = ess-range(yo) with respect to the Lebesgue measure on 2.

The following result follows from (3.3) and the inclusion F(X*(Q)) € Co(RY).
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COROLLARY 3.2. Let @ be a non-constant local L-multiplier on a bounded
open sel Q@ C RN. Then R}p ts nol a speciral operator.

PROPOSITION 3.3. Lel Q be a bounded open sel in RN, Let 1 < p < 2 and
assume that p € C*(Q) is a non-constant local p-muliiplier on Q. Then RL, is not
a spectral operator on XP(Q).

Proof. For p = 1 this is clear. So, let 1| < p < 2 and assumne that Rf, is
spectral. Define v1(z) = Re(z), ¥2(z) = Im(z), and #3(z) = |z|®. Then, for each
n € N, the functions 7;,, = exp(int;), for j = 1,2,3, are local p-multipliers of
class C?(Q) satisfying [19;,n] = 1 on Q. Moreover, by (3.4} and (3.5), it follows
that [|[R). llc(xr(ay € K for all n € N. Fix any open disc B with B C Q such
that ¢ is non-constant on every (non-empty) open subset of 3. By [9], Lemma 5
there exist constants ¢; with je;| = 1 and vectors z; € RV such that 9 . (¢(y)) =
exp(iny;(p(y)) = cjexp(i{zj,y)), y € B, for each j = 1,2,3. Hence, on some
non-empty open disc I C B the functions #; 04, 1 € 7 < 3, must be affine linear.

This contradicts ¢ being non-constant on 2. 1
We now come to the main result of the section.

PROPOSITION 3.4. Letl € p< co withp # 2, and let Q€M (Cl1, ..., zn])
be a matriz polynomial. Then the operator Q,(D) is spectral in LP(RV)™ if and
only if Q s constant.

Proof. Since the dual operator to @,(D) is the operator éq(D) in LI(RN ™
with ’l, + % = 1, it suffices to prove the statement for 1 € p < 2. Assume now that
Qp(D) is spectral in LP(RV)™ (1 < p < 2) with spectral measure F. Since Q,(D)
is decomposable we must have, by Proposition 2.3, that

(3.6) o(@(D) = |J Q=)

zeRN

where the closure is taken in €.

As C[A\,z),...,zn] is a unique factorization domain {[28], Section 23) the
characteristic polynomial ¢(A, z) = det(A — Q(z)) of ) has a unique factorization
of the form ¢(A, z) = m (A, &)™ - - w-(A, )", where 7y, ..., 7, are irreducible and
have leading coefficient 1 with respect to A. Define go(}, z) = m (A, z) - 7.(A, x)
and denote by R(z) the resultant (cf. [28], Section 27) of g¢ and %9)% at x, where go
and %ﬂf are considered as polynomials with respect to A and coeflicients coming
from Clzy,...,zn]. Since gp and %qf are relatively prime, R is not identically 0 on
RN, cf. [28], Section 27. Here we used the fact that the unique prime factorization
of go in C[A,zq,...,zn] and in K[A] yield the same result, where K denotes the
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quotient field of Clxy, ..., zn]. This follows from [7], p. 377. Fix an arbitrary point
zo € RN with R(zy) # 0. Since R is a polynomial in z., ..., 2y, it follows that
R(z) # 0 for all z in some neighbourhood U of zy. Again from Section 27 in [28]
now applied, for fixed x, to gof-, ) and %?(‘,m), we see that

r vy
(3.7) wh ) =[] IO = Aeitz), zeU,
j=lk=1
with Ag;(x), for j = 1,...,7 and k= 1,...,v; being pairwise distinct. It follows

that
dqo

ﬁ(/\kj(a:),m) #0, forje{l,...,r}, ke{l,... vy}, z €l

By the implicit function theorem there exists a bounded neighbourhood V, of zg,
contained in U such that the functions Ag; : V — C satisfying (3.7) on V are
real analytic (cf. also Supplement S.3.1 in [7]). We may, in addition, assume that
the sets K; = W are mutually disjoint, compact subsets of C. Let T'; be
rectifiable systems of curves in C surrounding K'; and having K in the exterior
of I'y; for (s,t) # (k,j). Then, for 2 € V, the scalar part of the matrix Q(x) is
given by

r vy

A(:l.') = Z Z ’\kj (.‘L‘)Ekj(:l:),

j=lk=1

where the idempotents

Fyj(a) = 2171 /(: — Q) " dz

Uij

obviously have real analytic entries defined on V.

Let T be the restriction of Q,(D) to X?(V)™. Since Q,(D) intertwines with
translations the same is true for the values of the resolution of the identity /' of
Qp(D); see [11], Corollary XVII1.2.4. Thus the values of ' are matrix-p-multiplier
operators and XP(V)™ is invariant for F. We conclude that 7' is spectral and
the restriction Fy of F' to XP(V)™ is the spectral measure for T Notice that, for
every § € B(C), the entries of the matrix symbols ﬁ(é) corresponding to F'(§) are
essentially bounded. It follows that the operators Mz? and M%(é) of multiplication

with @ and ﬁ(&), respectively, define bounded operators on L¢(V)™. Thus, Mg, 18
spectral on LI(V)" with spectral measure M%( y By Proposition 1.13, the scalar

part A, of ng) is the operator M} of multiplication with the scalar part A(x) of
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Q(z) on LI(V)™. Accordingly, by [3], Theorem 1.2, the scalar part § of T" is given
by Sf = f‘](Mf,‘f), for f € XP(V)™. Now A(x) is similar to the diagonal matrix

D(T) = (liag{/\“(a:), o .,)\]1(2.'},...,}‘,,,1, s ")‘les"'

ny ny

---:’\11‘)---a'\lr:--v;')‘u;r:---:’\u.-r}
~ )

nr Thr

and so A(x) = C(x)" ' D(2)C(x), where C{x) can be chosen to have real analytic
entries which are hounded m a ncighbourhood of V (usiug the fact that the eigen-
projections fvy; depend analytically on = and, if necessary, shrinking V). Since the
operator f — Sf = f"(Mﬁf) 1s a scalar-type spectral operator on NP(V)™ it
follows that f — ]—’"(D(')f) must have the same property. From this we con-
clude that the operator f — f‘l(/\kj(-)f) is a scalar-type spectral operator on
X?(V). Being real analytic in a neighbourhood of 17, the functions Ag;(+) are local
p-multipliers on V. By Proposilion 3.3, we see that Ar;{-) is constant on V for all
k,j. This shows that ¢(A, 2} = det(A — Q(x))} = ¢(A) is independent of . Hence,
by (3.6), o(Q@p(D)) = {A € €; ¢(A) = 0} is a finite subsct of C. In particular,
(1) must be hounded. This is only possible if all the entries of @ are bounded
on RV which implies that Q is constant. 8

4. A DECOMPOSABILITY CRITERION FOR CERTAIN SYSTEMS
OF DIFFERENTIAL OPERATORS

Before giving the criterion we first recall some facts from the theory of decompos-
able operators. Let X be a Banach space and 7" e C(X). If Q is an open subset, of
€ we write O(2; X) for the Frechet space of all analytic X-valued functions on Q2.
The operator 1" is said to have Bishop’s property (§) if, for every sequence {f, }o1,
in O, X) with f,(Q) € D{T) and z — Tf,(z) € O, X), for all n € N, and
satisfying (z — 7")f,,(2) — 0 uniformly on compact subsets of € as n — oo, also
fo(z) tends to zero uniformly on compact subsets of £ as n — oo, [8). If T is
decomposable, then 7" necessarily has property (8)}; see [26], Lemma 1V.4.16. If
T has property (), then for all closed sets F' C é, the linear subspace XNp (") is
closed and invariant for 7" (¢f. the proof of [26], Corellary 1V.4.18) and satisfies
o(T)Xr(F)) C I (by [26], Proposition 1V.3.8). Hence, T'is decomposable if and
only if T has property (8) and the following property {8): for each (finite) open
cover {Uy,...,U,} of C there exist closed subsets F3 C U; (1 €7 € n) such that
X =Xr(F)+ -+ Xp(F).
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ProOPOSITION 4.1. Let m 2 1 be an inieger. Let Q = [Qji] =, be a malriz
of polynomials in N real variables such thai, for some A € C,

(i) the characteristic polynomial z — ¢(A, x) = det(A— Q(x)) of @ is ellipiic
in RY with respect to 2, and

(1) the degree (with vespect 1o ) of cach minor of A — Q(x) does not cxceed
de(g(A, ))-

Then the differential operator Q,(D) is decomposable on LP(RNY™, for all
P € (1,00).

Proof. Fix A € C satisfying (1) and (ii). Because of the ellipticity condition
(1), the set N(g,\) = {2 € RY; ¢(),2) = 0} must be comnpact. Henee, for
some r > 0, N(¢g,)) C Up(0) = {z € RY; |z| < r}. Fix ¢ € C¥(RY) with
supp(p) C g (0) and Ur(0) N supp(l — @) = B. If F is any closed subset
of RN, we write £P(F) for the closed subspace {f € LP(RN)"; supp(f) C F}
of LP(RN)™. Obviously, £P(F) is invariant for Q,(D). Notice that ran(S%) C
EP(supp(p)) C D(Qu(P)) and ran(ST_ ) € &7 (RN \ U,(0)). Hence, LP(RY )™ =
EP(supp(p)) + E(RY \ U,(0)). In the first two steps we prove that the restricted
operators 0, (D)€ (supp(p)) and Q,(IN|ERN \ U, (0)) are deconposable. In a
third step we will then derive the decomposability of @, (D) from these facts.

(a) To verify decomposability of Q,(D)[E"(supp(p)), fix & > N/2. The
unital Banach algebra (k(m) consisting of all k-times continnously dif-

ferentiable functions on Ur4)(0) whose partial derivatives of order not exceed-
ing k extend continuously to m, 1s obviously semnisimple and regular. For
h € My (C¥(Urs1(0))) we define W(h) € L(E(supp(p))) as follows. Fix ¢ €
C*(Uyp41(0)) with supp(y) C Ur41(0) and supp(p) Nsupp(l — ) = @. The op-
erator W(h) = 51, |E7 (supp(p)) does not depend on the special choice of % with
these properties. Continuity of ¥(h) is easily obtained from the Mihlin multiplier
theorem. The so defined ¥ : C*¥(U,4,(0)) — £¥(supp(p)) is a continuous uni-
tal homomorphisin. By Proposition 1.4, every operator in ran(¥) and hence, in
particular ¥(Q) = Q,(D)|E? (supp(yp)), is decomposable.

(b) To establish decomposability of Q,(D)|EP(RV \U,(0)), note first that the
function 2 — ¢(A, 2) has no zeros in RY \ U,(0) and hence, (A — Q(x))~! exists in
RN\ N(g, ) which is an open neighbourhood of RV \ U,(0). By Cramer’s rule and
(i1) the entries of this imatrix function are of the form q(+5 where h is a polynomial
of degree at most deg(¢(A, -)). Direct computation shows that, for any function p €
Co(RN) with supp(l — p) C U, (0) and supp(p) N N (g, A) = 8, the function —£~

9(>,")
belongs to the Mihlin algebra A*(RV). Hence, by the Mihlin multiplier theorem,
A=, 'Z(A—Q)—‘ belongs to L(LP(RY)™). Moreover, £P(R™ \ U,(0)) is invariant for

A and we have the identities (A — Q(D))A|EP (RY \ U, (0)) = 1{€P(RV\ U, (0)), and
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A = Qu(D)ID(Qy(D)) N EPRN \ U (0)) = 1]D(Q, (D)) N EXRN \ U, (0)). This

shows that.

(4.1) A|EPRY\ U, (0)) = (A — Qp(D))

PRV U,(0)).

The mapping « — S2|EP(RY \ U,(0)) defines a homomorphism @ from
M, (VE(RM)) to LIEP(RN \ U (0))). Since A|EMRN \ Up(0)) € ran(©) we see
as in (a) that A|EP(RN \ U,(0)) is decomposable. By (4.1) and [4], Lemma 2.4,
the decomposability of Q,(D)|EP(RY \ 17,(0)) follows.

(c) To verify the decomposability of Q,(D) it suffices, as mentioned he-
fore, Lo establish properties {#) and (8) for @, (D). To praove (8) let Q C C be
open and {f,}52, be a sequence in O(S2, LP(RV)™) such that z — Qpu(D)fu(z) €
O(Q, LP(RMY™) and f,(R) C D(Qp (DY), for all w € N, and (2 — Qp(D)) fu(z) — 0
uniformly on cotupact subsets of Q. By continuity of 5%, and S’f_w it follows that
the two sequences of functions

S Sp('- Qu(IN)fulz) = (= = Qp(D))S{;fn(:‘:)

and
Z= "3'1)—w(3 = Qp(D)) fulz) = (2 = Qp(D)}ST_ i fn( )

tend uniforinly to 0 on compact subsets of 2, as n — oo, Since Q,()|EP (supp(p))
and Qu(D)|E7 (RN \ U, (0)) are deconiposable they have property (). Accordingly,
SELu(z) — 0and S’;_wf.,(z) — 0 and hence, also f,,{2) — 0 uniformly on compact
subsets of Q, as n — co. This shows that Q,(/f)) has property (). Since hoth
Qp(D)E¥ (supp(e)) and Qu(D)ET (RN \ U, (0)) have property (&) we conclude that
(2, (12) must have property (8) and the proof is complete. 1

REMARK. In the special case that there exists some A € C\ S(Q) satislving
(i) and (ii), the proof is somewhat easier. Indeed, direct computation shows, with
k> N2, that (A = Q)" € My (N*RM)). Hence, (A — Qu(2))~" ‘)f’/\ Q)
exists and is decomposable hy the remarks at the end of Section 2. However, for
the general case the partition of unity argminent in the preceding proof is needed,

0 w+iy

Y
we have ¢(A, (2,y)) = A* — (= + iy) which shows that $(Q) = C. Nevertheless,

conditions (1} and (ii) are fulfilled for A = 0 and Q,(D) is therefore decomposable

since it may happen that S(Q) = C. For example, with Q(x,y) = [

by Proposition 4.1.

The next fact shows that the degree condition in Proposition 4.1 is gnite
natural.
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LEMMA 4.2, Let ) € My (Clzy, ..., 2n]), | € p < oo and assume there
exists A € C\ 0(Q,(D)). Then the degree condition of Proposition 4.1 (ii) must be
salisfied al A,

Proof. This follows by means of Cramer’s rule after noting that the entries
of (A= Q(x))"" are bounded (by Lemma 2.2).

EXAMPLES 4.3. We consider the following examples, to be found in [14] and

(17], [18], [19], where they are studied from the point of view of semigroup theory:

- 0 0 0 0 —z3  my ]
0 O 0 X3 0 —I
- d 0
Alary, ay, mg) =1 0 0 0 vz
0 rz —La 0 0 0
—&y 0 1 0 0 0
L 22—y 0 0 0 0 J
0 0 0 (u-}-b)%xl (a+b)%wz
0 0 0 u%wl —(!%172
Bxy,my) =1 0 0 0 (L%llig asz
(a + b)%u,'l azy;  adme 0 0
(a+ 1))%;1:3 —(L%:L‘Q a%;z:l 0 0
: X T3 2y — 1y
Clay, oy, y) = — ~
(2, 2, 35) : 2+ Ly —ida
Ex) = —cia:‘? + 1da.

The operator A(D) is related to Maxwell’s equation, for «,b > 0 the operator
B(D) is related to elastic waves in a 2-dimensional homogeneous medium, C(D)
is related to the Neutrino equation, and E(D) is related to the linearized Korteweg-
de Vries equation, where ¢,d € R\ {0}. The characteristic polynomials are given
by

4a(hm) = N2 + o),

g, 2) = A2 + a2 DA + (2a + b)|z[?),

ge(A, 2) = A+ |z)?, and

gr(A,2) = A +i(e2® - da),
and hence, are elliptic in 2 for A # 0. Direct computation shows that the degree
condition is satisfied for A # 0. Hence, Proposition 4.1 tells us that A, (D), B,(D),
Cp(D) and [, (D) are decomposable in LP(R*)®, resp. LP(R?)®, resp. LP(R%)%,
resp. LP(R), for every p € (1,00). The case of E,(D) also follows from [3]. %
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In the case N = 1 we can give a complete description of all decomposable
matrix differential operators in LP(R)"™. For this we shall need the following fact.

LEMMA 4.4, Let ¢ € C[A, ] be a polynomial in fwo variables of the form
d—1 _
g(h2) =24+ ij(;r:))\J,
F=0

where po, ..., pa-1 € Clz]. Then N(q) = {X € C; ¢g(A\z) = 0 for some 2 € R}
has planar Lebesgue measure zero.

Proof. Note that ¢ has a representation of the form ¢ = qf‘ gk with
irreducible polynomials ¢, ..., ¢, which are again monic in A. Obviously N(¢) =

-
U N(g;). Hence, without loss of generality, we may assumne that, ¢ is irreducible.
i=1

Let R(z) be the resultant of ¢ and %‘{- and lel @y, ..., w, be the finitely many zeros
of R (cf. the proof of Theorem 3.5). If A is any subset of R we define A(A) =
{A € C; g(A ) =0 for some z € A}. With this notation we have N(¢) = A(R).
Obviously, A(A U B) = A(A) U A(B) holds for all subsets A and B of R. Since
A({z1,...,2,}) is a finite set and R\ {z,,...,2,} can be writien as a countable
union of coinpact sets it suffices to show, for each compact set A C R\ {uy,...,2,},
that the set A(A\') has planar Lebesgue measure zero. So, fix an arbitrary compact
set X C R\ {xz;,...,2,}. If u € K, then as in the proof of Theorein 3.1 we can

find an open neighbourhood Viwy of u and finitely many real analytic functions
1

AM()ie o A() on V(u) such that g(A,2) = [J(A = A;(=)), for all & € V(u). It
i=1

follows that A € A(V(u)) if and only if A = A;(z) for some = € V(u) and some

¢
€L, ...t} Hence, A{V(w)) = [J A;j(V(u)) has planar Lebesgue measure zero
=1

by the “Mini-Sard”theorem; see [15], Appendix I. Since & is compact there are
T

finitely many uy,...,us € I such that K C [J V(). 1t follows that A(K) C
j=1

CJ A(V(u;3)) must have planar Lebesguc weasure zero and the proof is complete. 8
i=t

PrROPOSITION 4.5. Let 1 € p < co. For a malriz polynomial Q € M (Clx])
in one veriable the following statements are cquivalent:

(1) @p(D) is decomposable in LP (R)™,

(i) o(@p(D)) N C = S(Q).

(i) o(Qp(D)) # €.

(iv) For all X € C\ B(Q) the degrec (with respect to z) of each minor of
(A = Q(x)) does not cxceed deg(go(A,-)), where go(X, ) = det(A — Q(x)).
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(v) There exists some A € € \ 2(Q) satisfying the degree condition in (iv).
(vi) For each minor Ajp(X,z) of (A — Q(z)), the mawimal degree de(Ajg)
does not exceed dp(qq), where dy(Aj) = max{deg(A;x(A,")); » € C}.

Proof. (i} = (ii) follows from Proposition 2.3 and (ii) = (iii) is a conse-
quence of the preceding lernma (which shows that £(Q) must have planar Lebesgue
measure zero and hence cannot equal C). The implications (i) = (iv) and (iii)
= (v) follow from Lemma 4.2 (together with Lemma 2.2 in the second case).
To prove (iv) = (vi) notice that £(Q) # C, by Lemima 4.4, and that the sets
Uik = {A € C; deg(Ajr(A, ") = du(Aji)}, for gk = 1,...,m, and U = {X €
C; deglaq(A, ) = de(qq)} are dense in C. Hence, there exists some A € (C\

m
T@nnun 'DlUjk. Since the degree condition is satisfied at A, we obtain (vi).
1K=

m
If (vi) holds, then for every A € (C\S(Q))NUN () Ujk, the degree condition
1,k=1
is satisfied and we obtain (v). Finally, {v) = (i) is true by Proposition 4.1 (after

noting that the ellipticity condition in Proposition 4.1 (i) is always fulfilled for
N=1) 1

SXAMPLE 4.6. Consider the matrix polynomial Q given by

Q(flﬁ) —_ _ible - 21)2‘" - l’bl _ibzd72 + 2013: - lbg )

—2bg —ibaz? — by
where by,02,b4 € R\ {0} with 8, # bs. The characteristic polynomial of Q has
degree 4 in x, whercas the minors of A — Q have degree < 2 in 2. Hence, by
Proposition 4.5 the operator Q,(D) is decomposable for each p € [I,00). It has
been shown in [17], pp. [2-13 that Q,(D) does not generate a strongly continuous
or even an (exponentially bounded) integrated semigroup. We shall see in the

following section that Q,(D) admnits a rich functional calculus.

For N = 1 Proposition 4.5 shows that the equality o(@,(D)) NC = £(Q)
is necessary and sufficient” for @, (D) to be decomposable. In the case of several
variables (N 2> 2) this is no longer true. As an example, consider the 2-variable
oh (.’L‘, y) 0

0 Qa(x,y)
@+ iy and Qa(x,y) = ¢ — y*. Suppose p # 2. Obviously £(Q) = C and hence
a(Qp(D)) N C = X(Q). Since Qp(D) = Q1,(D) & Qa,(2) and Q2 ,(D) is not
decomposable ([3], Corollary 3.5), it follows that Q,(22) cannot be decomposable.

matrix polynomial @ given by Q(z,y) = , where Q1(z,y) =
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5. A FUNCTIONAL CALCULUS FOR CERTAIN SYSTEMS OF MATRIX O.D.E.'S

In this section we construct a functional calculus for ordinary matrix differential
operators (with constant coeflicients) in L?(R)™. To a large extent we follow the
ideas of C. Apostol ([5]}, where a functional calculus was constructed for opera-
tor matrices of the form [f;x(T)]._, with T" being a bounded generalized scalar
operator and the functions f;i are analytic in a neighbourhood of a(T).

Every square matrix A € M,,(C) has a unique representation of the form
A = D+ N, where D is similar to a normal matrix and N™ = 0. So, we have a nat-
ural C(™=1)(C)-functional calculus ¢ — w(A), extending the analytic functional
calculus, given by

m=1

i 1.
(5.1) @ p(A) = Z} a;(o) V.
]:

Hence, given a matrix polynomial @ € M,,(C[z]) il is natural to attempt to
formulate the functional calculus

(5.2 0 Blp) = Sq),

where o(Q)(x) = @(Q(z)), for « € R, is defined via (5.1). The class Ag of
adinissible functions ¢ in (5.2) has to be prescribed in such a way that the matrix
function x — ©(Q(z)) is an element of M,,(MP(R)). In order to do this it turns
out that the critical points of @ cause some difliculties; in particular, C""(E) may
not be admissible for (5.2). For example, if

| 22
(5.3) Qe)=11 iz 1 ,
0 -1 -z

and p € C®(C) is any function satisfying ¢(z) = 7 in a neighbourhood of 0,
then it is shown in [5] that the matrix function z — @(Q(z)) is not bounded near
x = 0 and hence, does not even define a local matrix p-multiplier function. For

this example,

7oA, z) = det(A — Q(z)) = (A% — z%)}(\ —ix)
and we see that Q satisfies condition (vi) in Proposition 4.5. Therefore, Q,(D) is
decomposable for all p € [1, c0) and o(@,(D))NC = £(Q) = RUIR. The difficulties
illustrated by this example can be overcome if we require (complex) analyticity
for ¢ near the eigenvalues corresponding to the critical points of Q.
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For a given matrix polynomial @@ € M,,(C[z]) we write qo = g1 - -q, where

q1,...,qr are irreducible and qg(A,z) = det(A — Q(z)) = ]_[ g (A, .L)L , with

ki,..., kr € M. The set AQ of critical poinis of Q) is then the set of zeros of
the resultant R of go and 222, We also have to take care of the behaviour of
Q near oco. With the uotatlon as in the proof of Lermima 4.4 we define Ag =
A(Ag) U A({oo}) U {oo}, where A{{oo}) is the set of zeros of the polynomial
qoo(A) = Tli}'n T %q(M 2), A€ C, and o = de(gg) is the maxiwal degree with
respect, to 2 ng qg. So, A({oo}) is a finite set, possibly empty. Accordingly, Ag is
a finite subset of €. We now define the algebra

Ag ={p € C’"(@);  analytic in a neighbourhood U, of Ag};

see also [5], p. 1513, Let {&,}5%, be a sequence of compact subsets in C satisfying

(€]
int(K,) D Knpr D ﬂ K; = Ag,
J=1

and define, for n € N, the set Ag(K,) = {¢ € C™(C ) flint(X,) is analytic}.
Then Ag(Kn) is a closed subspace of the Banach space C™(C) and hence, is itself a
o0

Banach space. Since Ag = |J Ag(K.) we may endow Ag with the corresponding
n=\

natural inductive limit topology Ag = ind Ag(K,), and note that the algebra
12—
Ag is quasi-admissible in the sense of [26], Definition 1V.9.2.
For the construction of the functional calculus we shall need the following:

LEMMA 5.1, Let Q@ € Mn(Clz]) be @ non-constant matriz polynomial and
let U be an open neighbourhood in C of the set A({oo}) U {oo}. Then there exists
¢ > 0 such that, for all z € R\ [~¢, c], we have o(Q(z)) C U.

Proof. If this where not the case, we could find a sequence {z,}3%; in R,
with |&,| — oo, such that for each n € N the matrix Q(z,) has an eigenvalue
AeC \ U. Since ¢ \ U is a compact subset of C, by passing to a subsequence, if
necessary, we may assume that the sequence {A, }n_I is convergent to some point
i€ C\ U. Because of 0 = go{dn, Tn)zn d=(00) doa(gt) we see that € A({o0}),
contradicting p € € \U. 1

PROPOSITION 5.2. Let | < p < oo and ) € M, (C[z]) be a non-constant
matriz polynomial in one variable satisfying the degree condition (vi) in Proposi-
tton 4.5. Then the mapping @ : Ag — L(LP(R)™) defined by (5.2) is a conlinuous,

unital, algebra homomorphism with the following properties:
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(1) @ eziends the analytic funciional calculus, in the sense that if p € Ag
coincides with an analytic function h in some neighbourhood of 0(Qp (D)) = S(Q)U
{00}, then ®(p) = h(Qp(D)), where the operator h(Q,(D)) is formed by means of
the analytic funclional calculus.

(it) supp(®) = o(Qp(D)).

(i1l) For all ¢ € Ag we have ®(p)Q,{D) C Qp(D)P(p).
(iv) If ¢ € Ag has compact suppert contained in C, then Qp(D)®(p) =
d(ide - ).

Proof. Fix n € N and ¢ € Ag(K,). If u is any point in R\ Ag then, as
in the proof of Proposition 3.4, there exists a bounded open neighbourhood V, of
u such that z — D(z) is real analytic in V,,. Here @Q(z) = D{z) + N(z) is the
canonical Jordan decomposition for Q(z) and D(z) = C(z)~'diag(x)C(x) where
diag(z) is a diagonal matrix. Moreover, diag(z) and C(z) depend real analytically
on z. So, if ¥ € C*(R) satisfies supp(} C V,,, then we obtain (by (5.1) and direct
computation) for the entries b;(2) of ¥(2)e(Q(z)} that supp(b;jz) € Vi and

(5.4) bs: (@)l iy € Coellellomegy = Cv.allellagurn):

Let now u € Ag be asingular point. Since z — o(@Q(2)) is upper semicontin-
uous there exists a hounded open neighbourhood Vi, of u such that o(Q(#)) C W
for all = € V,,, where W is a bounded ncighbourhood of A(Aq) with W C int(Kn).
if ¥ is any function in C*(R) with supp(¥) C ¥, we sce that (A — Q(z))~! exists
for all z € V,, and all X € int(K, \ W). Hence, if [ is a finite system of closed
rectifiable curves in int(K,) surrounding W, we see that
= Y2 [ o000 - ) ax

r

P(z)e(Q(2))

We note that ¢ is analytic in int(K,), which contains ¢(Q(z}) for x € V,, and
w — p(Q(z)) is an extension of the analytic functional calculus. Since (A, ) —
(A — @(z))~! is analytic with respect to A and real analytic with respect to z in
(C\ W) x Vi (by Cramer’s rule} we see that the entries of #(x)p(Q(z)) are in
C'(R) with compact support contained in V, and satisfy an estimate of the type
(5.4).

Finally, for © = oo, by the preceding lermma we can find a neighbourhood Vo,
of oo such that o(Q(xz)) C int(Kp4) for all z € V. Using the analytic functional

calculus for unbounded domains containing e{@(=x)) we see that, for all ¢ € Cm(ﬁ)
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satisfying supp(¥) C Voo and 4i(2) = 1 for all |z| > R (where R is a constant with
{z €R; |z| 2 R} C Vi) we have

(55)  $=)p(@) = b [pleo)l ~ 5 [ eI - Q) ],
r

Here I' is a finite system of closed rectifiable curves in int(K,,) having K, 41 in its
exterior. Since () satisfies condition (vi) in Proposition 4.5, the set of all A € C
for which the degree, with respect to z, of one of the minors excceds dz(gg) is
at most finite. So, we may assume that I' avoids these “bad points” and hence
that for all A € I' the entries of (A — @(z))~" are rational functions in z with the
property that the degree of the denominator is greater or equal to the degree of
the numerator. It follows from (5.5) that the entries b;(z) of ¥{(2:)p(Q()) satisfy
an estimate of the form

165 xllar (my = sup ;1 ()] + sup |26 (2)] < Cy, @ sup lel M < Cyellellagny

where N'(R) is the Millin algebra; see Section 2.

Using the compactness of the l-point compactification R and a partition of
unity argument we see that the mapping ¢ — (@) is a continuous, unital homo-
morphisin from Aq(K,) to My, (MN(R)), for all . € N. Since h — $? is a con-
tinuous, unital homomorphism from N(R) to L(L*(R)), by the Mihlin multiplier
theorem, we conclude that ¢ is indeed a continuous, unital, algebra homomor-
phisin from Ag into L(LP(R)™), for all p € (1, c0).

(i) For every function h € Ag which coincides with a rational function 7 in a
neighbourhood of o(Q, (D)) = £(Q) U {co} we must have $(h) = 5}, o = SF, o =
r(Qp(D)). By the continuity properties of the analytic functional calculus and the
mapping @ this implies that @ extends the analytic functional calculus.

(ii) If ¢ € Ag vanishes in a neighbourhood of ¢(@,(D)) then, by the proof
of (1), <I>(<p) = 0. Hence, ® vanishes on C \ cr(Qp(D)) (,onversely, assume that
K C Cis a closed set such that & vanishes on € \ /. Fix A € C\ U. Then there
exists ¢ € Ag such that A & supp(p) and supp(l — ) N K = @. It follows that
i€ — C defined by

Wz) = { x5, forz €€ supp(y)
0, for z € (C\ supp(e)) U {cc},

belongs to Ag and satisfies

(D(h)(’\ - QP( ))f - S'z(Q) S)J\_Qf = 'S'Z(Q)()\_Q)f = ng = S‘ff =1
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for all f € D(Qp(D)), and

(A = Qr(D))®(h) = S, _0y5h0) = Shr-amey = %6 = L

Hence, A € E\O’(QP(D)) showing that ¢(Q,(D)) C K. This implies that ¢(Q, (D))
is contained in the support of @ (i.e. the smallest closed subset of C such that ®
vanishes on its complement).

(iii) follows from the fact that ®(p) = '.'Z(Q)’ that ¢(Q) € M,,(MP(R)), and
that ¢(Q) commutes pointwise with @, for all p € Aq.

(iv) is straightforward. &

For m = 2 it was noted in [10], Chapter 6, Section 4, that the functional
calculus ¢ — (@) for matrix functions is particularly transparent. Fix @ €
M2 (C{z]). Then

go(X, z) = A — trace(Q(x))A + det Q(z)
and, for @ € R, the eigenvalues of Qz) are given by
(5:6)  M(x) = ag() - (bo(@)? and Ae(z) = ag(z) + (bo(x))F,

where ag(z) = Strace(Q(z)) and bo(x) = ag(#)? — det@(z). With this notation
we have, for ¢ € C(Qg), where Qg is an open set in C containing £(Q), that

(X (2) 1+ LRER=eBa @D () — Ay (x)1), if M(z) # Aa(x)

e(Q(z)) = { e (@)1 + F20 (@)Q(x) — M(z)), if A(z) = Aa(x),

where %3‘\3 = % (aTae%\j — ial_im%d) .

We now restrict ourselves to the setting where dg(z)} £ 0. Then bg has only
finitely many zeros in R, say z;,..., %4, and we have for all z € R\ {z1,..., 24}
that

- p(ha(2)) — p(M(2)) .
(BT #(Qe) = (EN1+ = e Q) = M),

To obtain a functional calculus for Qy(D} the algebra of admissible functions ¢

needs to be chosen in such a way that the entries of (5.7) are in MP(R).

We will require the following version of Mihlin’s multiplier theorem; it fol-
lows from the standard version ([25], Chapter IV, Section 3) by translation and a
partition of unity argument.
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LEMMA 5.3. Let F be e finite subset of R. If b € CYR\ F) is a bounded
Junction such that [M/(2)| < B Y |z —«|™}, for x & F, and some B > 0, then
uel

h € MP(R) for every | < p < 0.
As a consequence we have the following application.

a1 ‘“2] € M(Cla]) satisfy bo(x) Z 0. Let Qo C C
421 q22

be open with X(Q) C Qq. Then, for every compact interval J such that the finite

LEMMA 5.4, Let @} = [

sel ' = 05‘({0}) is contained in int(J), there czists a constant B > 0 such thal,
Jor all p € CEHQg) and z € J\ F, we have

() oo ) @) < B(Z e —ul~)fle
ueF

(ii) ’ d [(<p°§z:s:10 /\1)qjk] (a,)‘ < B(Z lz — u|_]'){|</’||c,f(ﬂq) for all

ciag) fork=12

ug
jke{12),
o | d [(pods—pold) —1
(i) |5 | £ g -] )] < 8(5 1o =l lelleziag
forji=1,2. '

In particular, p(Q) € M, (U?(R)), for every 1 < p < co.

Proof. Tix u € I'. 1t follows from (5.6) that

NG
(5.8) A{z) = ag(x) — #((J))(bq(.z]) .

(SEd

If u is a zero of order k for bg, then it is of order (k — 1) for by and it
follows that « — %’@ and hence also (z — «)A](z) is bounded near u. Using

the chain rule we sce that (z — u)(¢ o A1)/ (z) must be bounded near u. A similar
argument applies to Ay in place of A; and (1) follows.

To establish (1) and (iit) note first that As(2) — A (z) = bo(z)'/? and that
the function 2 — h{x) = %%ﬂ

Fix again an arbitrary point « € /. Then, for 2 € R\ F, we have

is bounded in modulus by ||<p||c3(ﬂq).

(2~ )= (- g50)(x) = (2 = wh(2)afa(e) + (2 — W ()gs(2)

and

(z — u)d(—;(h, A lz) = (2 — wh(e) A (a) + (2 — u)h'(@)ra ().
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Since the terms (z — u)g;,(z) and gjr(z) and Ai(x) and (z - u)A(z) are all
bounded near u (the last expression by the proof of (i)), it suffices to estimnate the
term

oy (z—w) d (= —ullig(z) .,
6.9 (2= (@) = = e = po h)(e) = g rF—ba(2)Eh(e)

b
near u. As seen before, |A(z)| < |l@llcz(ng) and --%# is bounded near u.

Hence, we have only to consider the first expression on the right-hand-side of (5.9)
which (via the chain rule and (5.8)) is the sum of

(2 — u)
bolz)?

e dyp ——
+ (S0t - @) aQ(x)]

s(x) =

(520ue) - 20D dete)

and

R C )] )
‘@)= bo(z)*

%2 (raf@) + L i) “L
(Go0aten + 3

: : AT
+ ((;_i(/\z(x))'l'%“l(z))) ¢ )}.

Applying a mean value argument to s gives

ls(x)| € Cuqlz —ul- lpllcang), forz €R\F.
For 1 we have

T—u) dbé(x)
boa)s  dr ¥

6@)] <4 Ieliczng) -|

where the factor

(z-w) dbj(z) a '(z - u)bQ(m)‘
is bounded near u by the proof of (i). 1

Lemma 5.4 shows that to determine, for a given function ¢ € C7(Qg),
whether the matrix function z — w(Q(z)}) belongs to Ma(M(R)), 1 < p < o0,
reduces via Lemma 5.3 to checking that estimates of the kind (1)-(ii) hold near
infinity. The following result shows that such a condition on ¢ (less restrictive
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than analyticity near A({co}) U {co}) can be easily formulated if the matrix @
satislies a certain degree condition.
Ciiven an open set Q C C we define

2 _ v . P . > Qf ()(P
44@) = { € G el = lellezem +sun 121 (50021 + | 556G

) <o}
This is a Banach algebra with respect to || - [jo,; and is quasi-adnussible in the
seuse of [26}, Definition 1V 9.2,

qii g1z

q21 22
such that bg £ 0. Let Qg C C be open with X(Q) C Qq. Q'upposf that

PROPOSITION 5.5, Let Q = [ } € My (Clz]) be a matriz polynomial

(5.10) max{deg(¢i — quz), deg(qi2), deglgey)} € 5 deg(by).

Then @ @ A3(Qy) — L(LP(R)?) defined by P{p) = ‘)W(Q), for v € A{(S2q), is a
conlinuwous, wnital homomorphism having the properiics (1)-(1v) in Proposition 5.2

(with Aq replaced by A%(82q)).

Proof. 1t is clear that & will he a wnital homomorphism if ®(Af(2g)) C
M (MP(R)). To prove this inclusion and the continuity of ® it suffices to obtain
estimates of the type (1)—(iil) near co. That is, we have to show that there exists
R > 0 such that, for all 2 € R\ (=R, ), we have (with the notation as in the
prool of Lenuna 5.4), that

lz(p o A ) ()] € Crollells,, for j = 1,2,

{(i)oo a::%:(qikh)(;z:) < Crollellz, for distinet j, k € {1,2}, and
! . . .
(iii)oo .1:(—1(;(/)((1“ - /\l))(az)l < Crollellzy, Tor j =1,2,

for some constant (‘g o independent of v and z. For (I)e, we note, via the
n,Q

clhiain rule, that

35 st (| G| + [320s6a1)]) < 53 el

l(pod;) ()] <

s bounded near infinity. Il det@ = 0

Thus we have only to prove that la ~L(——l

the proof of (i)a, is trivial, Direct compumtion {using by = aé—- det() shows, for
det) # 0 and |z| > max{w; det@Q(u) = 0}, that
wag () 3 by (2)
5.11) aq(x) = bo(2)F  20q(x) (ag(w) — bo(x)?)
. _wM(x)  wdet{Q) (x)(ag(z) + bo(x)?) 3 zag (@)

S ‘Zdet(Q(:z:))bQ(:U)% bo(e )7
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zAilz)
Ay (r)

is bounded near co. For the case deg(bg) > 2 deg(ag) the expression on the

If deg(bg) < 2 deg(ag) it is clear from the left-hand-side of (5.10) that

right-hand-side of (5.11) shows that %((S_‘)Z is bounded at co. A sunilar argument
applies to %?(%2 . This completes the proof for {i)e,.

Suppose w is a polynomial with deg(w) < deg(bg). Direct computation
shows that

LA w(x)  d
de(u) h)(.ﬂ)—mma((po)\g—goohl)
(.12) d {w
+($00A2—(p0,x1) :Ea*:(—r)(.l)
£ bé

Since é—c%g,l,; and hence, also a:f;(;}-‘};(m)), are bounded near co (by the degree
Q

condition) we see by (i}, that, for sowe sufficiently large £ > 0, we must have

1
(5.13) |u:ﬁ(u).h)(m)[ < Cusllellzy, for Jz] > R,
where the constant Cy g does not depend on ¢. From (5.13) and (5.10) we now
obtain (ii)e, with w = gjx (where 7,k € {1,2} and j # &). Also (iii)e, fol-
lows i a similar way by replacing w by Aj(z) — ¢;j(2) in (5.12) and noting that
ﬁzlb_’q_)(;_;‘z;g_"l = :F(‘“;bz(;‘;f’,” + l) is bounded near co by (5.10) and hence, also
;c(f—x(ﬁif?’-)(x) = 0O(}), for |z] — c0.

Proposition 5.5 is applicable to the class of matrix differential operators listed
in Example 4.6. Hence, these operators all have an A3 (Q)-functional calculus, for
1 < p < oo and every open set Q O E(Q).

The following example shows that condition (5.10) cannot be weakened to

k
? 10 } , where k 2 1

is some fixed integer. Then go(A,z) = A* + 2* and condition (vi) in Proposition
4.5 is fulfilled. Let Qg = {z € C; |Re(z)| < 1}. If gy € CE(Qg) is a function such
that @o(z) = sin(:};) for |Im(z)] > 1, then po € A21(Qg). However, the (1,2)
entry of wo{Q(2)) is (1 — iz*/?}sin((ia*/2)~1/2) which is not even bounded near
oo. It may be of interest to note that even in this case we can still obtain a rich

the degree condition (vi) in Proposition 4.5. Let Q(x) = [

functional calculus based on the algebra

{p € CHS); 2(p(2) — p(=2)), 54 (2) — #'(2)), and
(@' (2) + ¢'(—2)) are O(1) at co},
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instead of A%(Qg).

So far we have restricted ourselves in this section to the case of N = 1. In
the case of several variables the construction of sufficiently rich functional calculi
is in general not so straightforward. A general result like Proposition 5.2 is not
possible and the set of critical points will no longer be discrete. We conclude with
a class of exatnples where a particularly nice functional calculus is possible.

If ¢ € MP(RY) and A = [ajk]=1 € Mm(C), then we define SpA =
[ajkSh]ay € L(LP(RNY™); we identify L(LP(RY)™) with M, (L(Z”(R"Y)) in the

usual natural way.

ExamMpLe 5.6. Let Ay,.. ., Axy be N commuting diagonizable matrices
M, (C). The joint spectrum o(Ay,..., Ax) consists of » (< m) joint ecigenval-
N

ues Aj = (Aj1,...,Ajn), for j = 1,...,r. Moreover, Q(zx) = Zl r;A; coincides
7=
.

N
with (Z /\jkwk) Pj, z € RV, where Pj is the joint eigenprojection for Aj. We
=1

j=1

"
note that Y P = 1, is the unit matrix in M,,(C) and P; P, = 0 for j # k in
j=1

N

{1,2,...,m}. The functionals z — Lj(x) = > Ajrex are real lincar. Theorem 2.2
k=1

of {4] shows that cach operator (L;),(D), | € j < 7, has a nice functional calculus.

As in [4], for any integer & > [ denote by H* the regular, semisimple Banach
algebra of all those 2 € C(C) N C?*(C \ {0}) salilsfymg

Wil = 35 817" sy Je 2 C,éﬂ(g

BE(k,k)

Now, for i € BV, define ®(h) = Z S(loL 3P It follows from (4}, Theorem 2.2

that @ is a continuous homomor plusm with the following properties:

(i) For all h € HN with compact support ®(0)Q,(D) C Qp(D)P(h) =
$(h-ide).

(i1) There exists a sequence {pn}3%, n C°(C) € KN such that ®(p,) — I,
as 1. — o, in the strong operator topology. Morcover,

D(Q,(D)) = {f € LP(RNY™; nlimm ®(py, - ide)f exists in LP(RV)™)

and Q,(D)f = n]i;{[ol;g ®(p, -ide)f, forall f € D(Q,(D)).

(iii) Q,,(D) is decomposable, has the Ljubich-Macaev property and satisfies
a(Qp(D)) = QRN = supp(®), where the closure is taken in C.

(iv) Every operator in the range of ® is generalized scalar. In particular,
(A=Qp(D)™! =25 ldc) is gencralized scalar whenever A € C\ o(@Q,(D)). 1
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Matrix differential operators of this type occur in [9].
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