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ABSTRACT. A classification of certain separable C*-algebras of real rank zero
with trivial K;-group is given. The C*-algebras considered are those that can
be expressed as direct limits of direct sums of matrix algebras, matrix algebras
over Cuntz-algebras and matrix algebras over corners of certain extensions
of Cuntz-algebras by the compact operators. C*-algebras in the class are
not necessary simple. They are, in general, neither finite nor purely infinite.
However, the class includes all AF-algebras and all separable nuclear purely
infinite simple C*-algebras with UCT and trivial K. It is closed under stable
isomorphism, quotients, hereditary C*-subalgebras, direct limits and tensor
products with AF-algebras.
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0. INTRODUCTION

Recently there are far reaching advances in the theory of classification of amenable
C*-algebras. In 1976, G.A. Elliott classified AF-algebras by their dimension groups
(Ko with a scale). However, it is around 1990, when G.A. Elliott’s work ([12]) on
classification of C*-algebras of real rank zero which are direct limits of circle alge-
bras (by their graded groups K, = Ko & K; together with a distinguished subset)
circulated, that the program of classifying amenable C*-algebras was initiated.
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Since then a number of classification results appeared ([2], [4], [7], [8], [9], [10],
(13), (14}, [15], [16], [17], [18], [18], [20] [21], [22], [23], [24], [25], [26], [27], (28], [29],
[30], [33], [34], [35], [36], [37], [38], [39], (41], [42], [43], etc. (it is not a complete
list)).

In the case of stable rank one, recent works of Dadarlat, Elliott and Gong
classify (simple) All-algebras of real rank zero with slow dimension growth. In the
purely infinite simple case, the recent works of Kirchberg ([24]) and Phillips ([34])
now classify all separable nuclear purely infinite simple C*-algebras with UCT. In
this paper, we consider a class of C*-algebras of real rank zero with zero K; which
are not necessary sumple. C*-algebras in this class are, in general, neither of finite
stable rank, nor purely infinite. However, it does contain all AF-algebras as well
as all separable nuclear purely infinite simple C*-algebras with UCT and zero K;.
C*-algebras in the class are those that can be expressed as the direct limits of
corners and quotients of matrix algebras over E,, with various n, where E, is the
unital essential extension of the Cuntz-algebra @, by the C*-algebra of compact
operators on a separable infinite dimensional Hilbert space first introduced by
Cuntz in [6]. Every hereditary C*-subalgebra of a C*-algebra in the class is still
in the class. The class is closed under stable isomorphism, quotients, direct limits
and tensor products with AF-algebras.

Since Ko(E,) = Ko(Em) =1 and K;(E,) = Ki(E,,) = 0, K-theory alone
is not a complete invariant. The invariant (V/(A), [La]) that we used for unital
case in this paper is the semigroup of Murray-von Neumann equivalence classes of
projections in matrices over C*-algebra A together with the class of the unit.

The key to the proof of our main result is the uniqueness Theorem 3.1. It
states in the unital case that two unital homomorphisms ¢ and % from My(E,)
into M¢(E,,) are approximately unitarily equivalent if and only if they induce the
same map V(M (Ey,)) — V(My(Epn)). In the case that the compositions of these
two maps with the quotient map from M;{E,,) onto M,(O,,) are injective the
statement follows from a very similar argument in [29]. For the case that both
homomorphisms map the ideal M;(K) into M;(K), we need to show that every
automorphism o on E,, is approximately inner if ¥ oo = 7, where 7 : E, — Oy is

the quotient map. The proof of this uses Brown’s Universal Coefficient Theorem.
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1. E-ALGEBRAS AND EXISTENCE OF HOMOMORPHISMS

REMARK 1.1. Let @, be the Cuhtz algebra, and call its standard generators
n

51, 82,..-,8,. Thus L = sfs; and 1 = 3~ s;8F, n 2 2.
i=1
Let E, (n 2 2) be the universal unital C*-algebra on the generators #;,
t2,...,¢n with the relation that ¢; are isometries with orthogonal ranges and
i

tit? < 1. Let I(E,) be the (only closed) ideal generated by the projection

i=1

1— 3"t} It is known that I(E,) 2 K, the C*-algebra of compact operators on
i=]
a separable infinite dimensional Hilbert space (see [6]). Let 7 : E, — Oy, be the

quotient map. Then 7(t;) = s;. We have the short exact sequence
0—-K—E, >0, —0.

So E, is a unital essential extension of @,, by K.

As discussed in the introduction, we will study the direct limits of finite
direct sums of matrix algebras over E,. If A is such a direct limit, we may write
A = lim (An, ¢n,n41), where each A, is a finite direct sum of matrix a}gebras
over s,z);n: Ex. If o ny1 is not injective, then a summand of the image of A,; could
be Oy, It is also desirable to include all hereditary C*-subalgebras. Therefore it
1s reasonable to allow A, to be a finite direct sum of corners of matrix algebras
over Ey, or O,,.

DEFINITION 1.2. A C*-algebra A is called an E-algebra if it is isomorphic to
pMi(E,)p for some projection p € My(B,), ot My(Oy,), where k is any positive
integer and n 2 2 is an integer.

A C*-algebra A is said to be in the class Q if it is a direct limit of finite
direct sums of E-algebras.

It is known that Ko(On) = Z/(n — 1)Z and K;(0,) = 0. It is also known
that Ko(E,) = Z and K1(E,) = 0. So K-theory can not distingush E3 from Es3.
Therefore, more information is needed to distinguish them. A reasonable choice is
the semigroup V(FE,).

REMARK 1.3. Let A be a C*-algebra, we denote by V(A) the Murray-von
Neumann equivalence classes of projections in the matrices over A. From [6], it is
easy to check that

V(En) =Z,U1Z,

where the addition in Z; and Z are the usual ones, if ¢ € Z, and § € Z then
z+y = ((1 —n)z+ y)". We will denote by I(V(E,)) = Z, the first part of
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the disjoint union. We will use z for integers in I(V(E,)) and Z for integers in
7= V(En) \ I(V(En))
We also have
V(0,) = {0y UZ/(n - 1)Z.

Let V be a finite direct sum of Z,,V(E,), V(O,) for various n. Suppose
that V; is a homomorphic image of V, ¥ is a homomorphic image of V4, ..., Viq1
is a homomorphic image of ¥, .... A fact will be used in the proof of Theorem 4.4
is that there is k¢ such that every homomorphism from V; onto Vi4; is an iso-
morphism for & > kg. One way to see it is to note that both Z and Z/(n — 1)Z are
noetherian.

REMARK 1.4. Let p be a (nonzero) projection in My(O,). Suppose that
[plo = Zin Ko(On). Then pMy(On)p = My(On) (or Mn_1)(D), if £ = 0). If p is
a (nonzero) projection in My(E,) and p ¢ My(I(E,)), then, from the above, [p] =
T€Z. Then p is Murray-von Neumann equivalent to the identity of My(E,) (in
My (En)), if £ # 0. Therefore pM;(En)p = My(E,), if £ # 0. If p € My (I(ER)),
then it is known that pMy (En)p = pMir(I(E,))p = M, for some £.

Lemma 1.5. (¢f Lemma 2.1 of [29]} Let A be o mairiz algebra over E, or
over O, and P be the set of all infinite projections in A. (So P is the set of all
projections in A\I{A) in the case that A = My, (E,), or P is the set of all nonzero
projections in A in the case that A = Mn(0,).) Then P salisfies the following
conditions:

(i) f p, g €P andpg=0, thenp+ g€ P,

(ii) if p€ P, p' € A such thatp’ ~ ¢, thenpe P,

(i) tf p,q € P, then there ezists P € P, p' ~p, p' L qandg—p €P,

(iv) tf ¢ € A is a projection such that ¢ 2 p for some p € P then g € P.

Furthermore, Ko(A) = {[p) € V(4) : p € P}. In pariicular, if [plo = [¢]o in
Ko(A) then [p] = [¢] in V(A).

REMARK 1.6. From Remark 1.4 and Lemma 1.5, we can list E-algebras as
follows:

(1.1) Mi(En), k=1,2,..,n=2,3,...,

(1.2) Mp(0,), k=1,2,..,n=2,3,...,

(1.3) My, k=1,2,...,

(1.4) eEne, where e € E,, and [] =0, n = 2,3, ...

It should be noted that V(eEne) = V(E,) for [¢] = 0 by Lemma 1.5 (iii).
We would also like to point out that the C*-algebras in cases (1.1) and (1.4) have
a unique ideal which we will denote by I{(Mi(E,)) (= K) or I{eEne) (= K).
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LEMMA 1.7. Let p € E, \ I(E,) and k|[p] in Z, where k > 0. Then there
are mutually orthogonal projections p1,ps,...,px € En \ I(Ey) such that p1 +p2+
<+ pr = p and [p;] = [p]/k in V(E,).
Proof. Suppose that km = [p]. Find k mutually orthogonal projections
91,92, .., 9 € My(E,) \ Mr(I(E,)) such that [¢;] = . Set ¢ = i:l gi- By
Lemma 1.5, there is a partial isometry W € My(E,) such that

W*W =q and WW"=p.

So define p; = W, W*. 1
The rest of this section is to prove the following theorem:

THEOREM 1.8. Let A and D be finite direct sums of E-algebras. Let
a:(V(A),[14])) = (V(D),[1p])

be a homomorphism. Then there exists a homomorphism ¢ : A — D which induces
o, e P, = Q.

Proof. Write
n bl
A=PB, D=c¢;
i=1 i=1
where each B; and C; is an E-algebra. Let p;,ps,...,pn be the corresponding
minimal central projections in A4 and ¢y, g2, .., ¢m be the corresponding minimal
central projections in D. Let m; : D — Cj be the projection. It suffices to show
that there exists a homomorphism ¢; : A — Cj such that v;{14) = g¢; and
(¢5)x = (m3). 0 @ on V(A).
So we may assume that D = C}. We claim that there are mutually orthogonal
projections dy,ds, ..., d, € D such that 1p = f: d; and [d;] = a([p:]). We do have
i1

z; € V(D) such that z; = o([p;]) and Z z; = [1p]. Without loss of generality, we

may assume that «; # 0. Thus it is obv1ous that such d; exists in the case that
D = M, or D = My(Oy). For the case that D = My(E,,), ot D = pMy(En)p
with [p] = 0, we can apply Lemma 1.7.

From the claim, we see that it suffices to show that there are homomorphism
¥; @ By — d;Dd; such that o;(p;) = d; and (¢;)« = «|V(B;). In other words, we
reduce the general case to the case that both A and D have only one summand.

We point out that we do not need to worry about the case that A # M,
and D = My, since every homomorphism from V{(0,,) = {0}UZ/(n - 1)Z or from
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V(En) = Z; UZ into Z4 has to be zero map. The former case is trivial. For
the case that A = My(F,), note that the only map from Z into Z, is zero. If
z e V(I(E,)) =14, then

a(z) = a(z) + a(0) = o(((1 — n)z)") = 0.

Therefore o is zero.

If A= M; and D = M, or My(Oy,), the homomorphism ¢ is easily estab-
lished. If D = My(E,,), one can apply Lemma 1.7. The other cases will be dealt
with below.

(1) Take A = My, (E,) and D = M, (£,,) and a homomorphism o :
V(A) — V(D) with a(1,,,) = d and [p] = d, where 1, is the identity of M,,, (E,)
and p € My, (E),) is a projection. There is a homomorphism ¢ : A — D such
that o, = @ and ¢(1,4,) = p.

We assume « # 0.

Case (a). a(I(V(E,)) =0.

For any £ € Z C V(E,), if T is a nonnegative integer,

(1-n)a(®) = a((1 ~ n)z)") = oz +0) = a(z) + o(0) = a(F).

Since o can not map Z into I{(V(E,)}) 2 Z,, a maps Z into V(Em) \ I(V(En)).
Thus «(0) = 0. So the image of e, in this case, is {0} U {0}.
So [p] = 0. By Lemma 1.7, there are mutually orthogonal and mutually

my ~
equivalent projections ey, es....,em,, such that > e; = p € 1,,, and [e;] = O.
=1

There are u;; € M, (Em) such that

. . A
uju; = e and  uwgul =6, 4,5=1,2,...,m.

Since [e;} = 0, by Lemma 1.7, there are mutually orthogonal and mutually equiv-
alent projections ¢1,492,...,qn € €1 Mpm, (E,) such that [¢] = [e1d] = 0. Suppose
that v; € e1 My, (E,»)e; are partial isometries such that

* — . *— .
viv; =e; and v;v; = ¢;.

Then the C”-subalgebra C generated by v; is isomorphic to O, and the
C*-subalgebra B generated by u;; and C is isomorphic to M, (On). Now de-
fine ¢ to be the composition of the following:

Mo, (Bn) = M, (On) = B.
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One checks that the so defined map meets the requirements.

To save the notation, without loss of generality; from now on, we assumne
that m = 1.

Case (b). a(I(V(E,)} # 0 but a(I(V(E ) CI(V(ER)).

Let 1 € I(V(E,)) = Zy and 1 € V(E,) \ I(V(En)) = Z. Suppose that
a(1) = £ and o(1) = k. Then we must have

((1 = m)ey” = ((1 — n)k)™.

Let ¢ € K C pDp such that [e] = £ € I(V(Em)). Take ¢ € (p — e)D(p — €) such
that [¢] = 0 (see Lemma 1.5). Then fe +¢] = ((1 — m})” = ((1 — n)k)". Note
[p] = k. We obtain

[p~ (e +q)] =k — ((1—n)k)” =nk..

By Lemma, 1.7, there are mutually orthogonal and mutually equivalent projections
q1, 92, - - -1 gn < p — (€ + q) such that [¢;] = % and 2 g = p—(e+q). Set p; = qi,
i=1,2,...,(n—1) and p, = gn + ¢. Note that we have =k, pi Lp; i#7
and p— Z p; = €. There are partial isometries vj, j = 1,2,...,n such that

=1

* 4 — . L p— -
viv; =p and v;v; = p;j.

Then the C*-subalgebra C generated by v;, 5 = 1,2,...,n is isomorphic to E,.
Define ¢ : Ep — Mpm,(E,) by the isomorphism from E, to C. One checks that
the so defined ¢ meets the requirements.

Case {(c). « maps V(E,) into {0} U Z and o(I(V(E,)) # 0.
Suppose that a(1) = %. Then [p] = k. By Lemma 1.5, there are n mutually or-
7
thogonal projections p1,pz, . - -, Pn € PMpm, (Em)p such that p— 3 pi € Mm, (Em)\

i=1
M,(K) and [p;] = [p]. Therefore there are partial isometries vy,va,...,vn €

PMpm, (Em)p such that

* — * +
vivi =p and wvi =p;, j=12,...,n

Then the C*-subalgebra C generated by {v;} is isomorphic to E,. We let
@ : B, — C be the isomorphism which maps s; to v;. Clearly, ¢ meets the
requirements.
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(2) Take A = My, (On), and D = My, (£,,) and a homomorphism « :
V(A) — V(D) with a([1mm,]) = d and [p] = d, where p € D is a projection. Then
there is a homomorphism ¢ : A — D such that ¢. = a and ¢(1m,) = p.

It is obvious that the only nonzero homomorphism « is the one which maps
0 to 0 and maps 0 to 0. Therefore (2) follows from the proof of Case (a) of (1).

(3) Take A = M,,,(0y,) and D = Mp,(Om) and a homomorphism o :
V(A) — V(D) with o([1m,]) = d and [p] = d, where p € D is a projection. Then
there is a homomorphism ¢ : A — D such that ¢, = o and ¢(1m,) = p.

Note that V(A) = {0} U Ko(A) and V(D) = {0} U Ko(D). Thus this case
follows from 2.6 of [35].

(4) Take A = M, (E,) and D = Mp,(Op) and o @ V(A) — V(D) with
o([1m,]) = d and [p] = d, where p € D is a projection. Then there is a homomor-
phism ¢ : A — D such that ¢, = o and ¢(1m,) = p.

Case (a). a(I(V(E,)) = 0. In this case « factors through {0} UZ/(n — 1)Z.
Therefore this case can be reduced to (3).

Case (b). a(I(V(E,)) # 0. From the assumption, m;|[p], there are mutu-
ally orthogonal and mutually equivalent projections g, 92, - - -, ¢m, € B such that

my .
3" gi = p. As before, in order to save the notation, without loss of generality, we
§=1

may assume that m; = 1. Now if 1 € I(V(E,), since o(1) # 0 and a(0) =0,
a(1) = a(1) + a(0) = a1 + 0) = a(((1 — »))") = (1 — n)d.

Note Oy, is purely infinite and simple. There are mutually orthogonal and mutu-
"

ally equivalent projections py,ps, ..., pn € pBp such that [p;] = [p) and p— 3 ps >
i=1

7
0. We have [p—- > p;I = (1—n)d. There are partial isometries vy, va, ..., vn € pBp
i=1
such that

vivj =p and vjv;x=p;, j=1,2,...,n
So we define ¢(s;) = v;, § = 1,2,...,n. One checks easily that so defined ¢ meets

the requirements.

(5) The case that A = eEne with [¢] = 0.

Let 1 be the identity of E,. Suppose that o([1]) = d'. It is easy to see
that there is a projection p’ € D such that [p'] = d’. By the cases that have
been established, there is a homomorphism % : E, — D such that & = . and
¥(1) = d'. Clearly [¢(e)] = 0 if D is a corner of M,(Em) which is not isomorphic
to a matrix algebra, or ((14)] = 0, if D & My, (Om). In all cases, if p € D with
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[p] = a([e]), then there exists a partial isometry w € D such that w*w = p and
ww* = p’. We define ¢ = w*hpw|A.

(6) The case that D = eMy,(Em)e with [] = 0.
This case follows the cases (1)-(5) by takingp=-e. &

2. AUTOMORPHISMS OF E,

Recall that an automorphism & on a C*-algebra A is said to be derivable if a =
exp(4) for some *-derivation § on A.
The following is an immediate consequence of 8.6.12 of [32].

LeMMA 2.1. (cf. 8.6.12 of [32]) Let A be a separable unital C*-algebra and
o ¢ derivable automorphism. Then « is approzimaiely inner.

Proof. It suffices to show that every derivation on A is approximately inner.
But that follows from 8.6.12 of [32]. &

REMARK 2.2. Let A be a separable (unital) C*-algebra and 7,75 : A —
M{(K)/K be two unital essential extensions. Suppose that [r1] = [r] in Ext(A, K).
By a result of Voiculescu ([45]) (see [1]), there exist unital essential trivial exten-
sions 73, 7¢’ such that 7 @ 7§ is weakly equivalent to 71 and 7, @ 74’ is equivalent
to 1o, We also have trivial extensions 75, and 7§ such that 7 @ 74, is weakly
equivalent to 15 @ 13;. We view 7, and 7§ as two homomorphisms from A into
M(K)/K. Note that both {@7{,®0 and 7§ ® 75, @0 arc essential nonunital trivial
extensions, by the same result of Voiculescu again, these two essential extensions
are weakly equivalent to 7§ @ 0 and 7§’ @& 0. This implies that 1, ® 0 is weakly
equivalent to 7, @ 0. It follows that there is a unitary W € M(K)/K such that

W*r(a)W = 1p(a) for a€ A

We will use this result of Voiculescu in the next lemma.

LEMMA 2.3. Let 7 : On — M(K)/K be a unital homomorphism and u €
M(K) be a unilary such that [n(u),a] = 0 for every a € 7(O0,). Then there is a
selfadjoint element h € M(K)}/K with ||h|| < 27 such that 7{u) = exp(ik) and

[h,a] =0, forall a€7(0,).
Proof. If sp(m(u)) # $', then n(u) = exp(ih) for some selfadjoint h in

C*-subalgebra generated by w(u) with ||h{| € 27. So [h,a} = 0 for all ¢ € 7(0,).
So now we assume that sp(m(u)) = S§*. Set ho = [(m(u) + 7(u)*/2)+]27 and



156 Huaxin Lin

v = exp(iho). Note that [hg,a] = 0 = [v,a} for alla € 7(0,). Let 7 : C(§1)®0,, —
M(K)/K defined by C*-subalgebra C*(n(u),7(0n)) and 7 : C(§8') ® O, —
M(K)/K defined by the C*-subalgebra C*(n(v), 7(0,)). Note that Oy, is sim-
ple and sp(m(u)) = sp(r(v)) = $', 7; is a monomorphism, ¢ = 1, 2. Therefore both
are unital essential extensions of C(§!) ® O, by K. We compute, by Kiinneth’s
formula, that

Ko(C($8")®0,)=Z/(n—1)Z, K (C(§)®0,)=Z/(n-1)Z

and the maps from K;(C(S8') ® O,) into K;(M(K)/K) induced by the maps
and 7, are zero. Note that 7 and 7 are two essential extensions of C(Sl) ® 0O
by K. From Brown’s Universal Coeffecient Theorem (see [3]), we compute that

[n], [r2) € ext3(Z/(n — 1)Z,2) = 2/(n ~ 1)Z.

From UCT again, there exists an essential extension o of C(§' ® O,) such
that

[0] € exty(Z/(n— 1)2,Z) =22 /(n — 1)1

and {o] is a generator for Z/(n ~ 1)Z. It follows that there are integer & and m
such that
klo] = [n] and mo] = [r].

Let ¢’,7{ and ) be the essential extensions of Oy by restricting ¢, 7 and 7 on
the C*-subalgebra C @ O,,. Since

we have

k[¢'] = m[c'].

If 7 is not trivial, we obtain
k = m(mod(n - 1)).

This implies that [r;] = [3]. Since both 71 and 7 are unital essential extensions,
by Remark 2.2, there is a unitary W € M(K)/K such that

W r(t; )W = 7(t;} and W oW =u.

In particular, u = exp(iW*hoW). Take h = W*hoW.
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Now we consider the case that 7 is trivial. We will show that if 7 is trivial,
7; is trivial too, 1 = 1,2. It then follows from Remark 2.2 that they are weakly
equivalent. The proof finishes as in the case that 7 is not trivial.

There is a strong unital trivial essential extension oq (meaning that there
is a wnital monomorphism j : O, — A which splits o, where A is the extension
determined by ¢¢). By Remark 2.2, there is a unitary W € M (K)/X such that

W*r{e)W = op(a)

for all @ € O,,. By considering W*rW, we may assume, without loss of generality,
that 7 is strongly unital.
As above,
[ri] € ext3(Z/(n — 1)Z,2).

Therefore, to show 7; is trivial, it is enough to show that
0— 2 — Ko(E(#)—Z/(n—-1)L =0

splits, where the C*-algebra E(i) is the extension determined by ;. To do this, it
is enough to show
Ko(E())=Z@®Z/(n— 1)L

Note that Ko(E(i)) has the form Z & G for some finite torsion group G. We have
[1] = (m,z), where m € Z and z € G. Let n be the map from Ko(E) — Z/(n—1)Z.
Then 5{(m, z)) = 1. If m = 0, then G has to map to Z/{n — 1)Z surjectively. From
the short exact sequence, we will conclude that G = Z/(n — 1)Z. So it is enough
to show that m = 0.

Let J : 1 ® O, — E be the unital monomorphism which splits extension

7. From the fact that 1 = J(1® 3 s,'s;-‘), we know that [1] must be torsion.
i=1
Therefore, m =0. &

LEMMA 2.4. In Lemma 2.3, for € > 0, there is @ unitary v € M(K) with
sp(v) # $* such that
[Ju—v|| <€

and
[7(v),a] =0 forall ae€7(0,).

Proof. For 0 < 6 € 1/2, set 7 = exp(ih(1 — 8)). Then if § is small enough,

_ £
lIm(a) = 31l < .
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Furthermore, sp(7) € {e'* : 0 < ¢t € (1 - 6)27}. Let w € M(K) such that 7(w) =7
and

£
[Ju —w|| < 3

We assume that £ < 1. Set v = w|w|~!. Then
flu—v| <e,

v is a unitary and m(w) = v. Since the essential spectrum of visin {e'* : 0 < t €
(1=6)2n},if X € sp(v) N(S*\ {e* : 0 < ¢t € (1 — §)27}) then A can only be an
isolated point in sp(v). Therefore sp(v} # §*. 1

THEOREM 2.5. Let
0=-K—-FE—=0,—10

be a unital essential extension. Let o be an aufomorphism on E. Suppose thal

nooa=m, wherem: E — O, is the quotient map. Then o is approzimately inner.

Proof. 1t is well known that there is a unitary u € M(K) (= B(£?)) such
that

a(r) = u zu
forall z € E. For any ¢ > 0, by Lemma 2.4, there is a unitary v € M(K) such that

£
g

- <
o~ ull < &

(2, 7(v)] = 0
for all a € 7(E) and sp(v) # $*. Define f(z) = v*zv for z € E. Since [a, 7(v)] = 0,

£ is an automorphism on £ and
€
o =8l < 5

There is a continuous function F defined on sp(v) such that F(v) € M(K)/K is
selfadjoint and exp(F(v)) = v. Note [w(F(v)),a] = 0 for all ¢ € 7(E). Define
L(z) = F(v)x — zF(v) for = € E. Since F(7(v)) commutes with 7(E), L is a
*-derivation of E. So # = exp(L). It follows from Lemma 2.1 that 3 is approxi-

mately inner. Therefore « is approximately inner. &
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DEFINITION 2.6. Let A and B be C*-algebras, let G be a finite subset of
A, and let ¢ and 9 be two homomorphisms from 4 to B. We say that ¢ and ¢
are approzimately unitarily equivalent to within €, with respect to G, if there is a
unitary v € M(B), the multiplier algebra of B (if B is unital, M(B) = B) such
that
lle(e) — vi(g)e’|l < €

for all g € G. We abbreviate this as
w~1 onG.

We say that ¢ and 7 are approzimately unitarily equivalent if o ~ ¢ for all € > 0.
(Of course, this notion does not depend on the choice of G.)

The following is a result of M. Rgrdam and N.C. Phllips.

THEOREM 2.7. (Theorem 5.1 of {35] and [33]} Let D be a unital C*-algebra
of real rank zero containing a proper infinite full projection. Let ¢ and 1 be two
unilal homomorphisms from O, — D. Then ¢ and v are approzimately unilarily
equivalent if and only if [p) = [¢] in KK(O,, D). In particular ¢ and 3 are
approzimately unitarily equivalent if K;(D) = 0.

Proof. Note, as remarked in Remark after 6.5 in [36], that D satisfies the
condition 1.3 in [36]. So the case that n is even was proved in 5.1 of [35]. By 4.6
of [33], the “decoy Cuntz algebra” @, (in 2.1 of [20]) is isomorphic to O, for all
positive integers > 2. The case that n is odd then follows from 8.1 of [36] (and 4.6
of [33]).

LEMMA 2.8. Let 1, @3 : A — B be two unital homomorphism, where A =
Mp, (Ep) or A = eEne for some [¢] = 0 and B = Mp,(Em) or B = dEnd
for [d] = 0. Suppose that ¢y and @, induce the same homomorphisms on V(En).
Suppose also that ¢ and @y map the ideal I(A) into the ideal I(B). Then ¢y is
approzimalely unitarily equivalent to ps.

Proof. If ¢i(I{A)) = 0, then both maps factor through M;(O,) for some k.
Suppose that ¢; = 9; o, where  : A — M (0,,) is the quotient map and ¥, and
15 are two monomorphisms from My {0,,) into M, (E,,) or dE,.d. It follows from
Theorem 2.7, since K1{E,,) = {0}, that 9; and ¢, are approximately unitarily
equivalent. Consequently, @1 and ¢, are approximately unitarily equivalent.

So now we assume that both ¢; and s, are monomorphisms. We first con-
sider the case that A = M, (E,). The case that A = eE, e will follow. It is easy
to see that we can reduce the general case to the case that that m; = 1.
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Let @1(t;) = y and ¢a(t;) = z, § = 1,2,...,n. By the assumption,
k13
ei(l— E tjt3) are in I(B) and they are Murray-von Neumann equivalent. There-

fore they are umhanly equivalent, by Lemma 1.5. So we may further assume that
1- Ely_,yJ =1~ Ezj 7.

Let 7 : B — B/I( ) 2 Mi(Om) be the quotient map (k = mg, if B =
Mp,(Em), and k = (m — 1) if B = dEnd for [d] = 0). We now have two
homomorphisms from Oy to Mpm,(On), given by s; = 7(y;) and s; — 7(z;).
Since both maps agree on the identity, they induce the same map on Ko{O,).
Since K (7(p) Mum, (O )7(p)) = 0 for any projection p € My,(Or), the Universal
Coefficient Theorem ([40], Theorem 1.18) implies that they have the same class in
K K-theory. Let § > 0 and 7 > 0 be small numbers (to be chosen below; § will
depend on 7). By Theorem 2.7, there is a unitary v € M (On) such that

lo* w250 = 7(a5)l] < 3

for j =1,2,...,n. Since U(Mi(Oy,)) is connected, there is a unitary u € B such
that 7(u) = v. Then there are a; € I(B) such that
lu"zju — (y; +a;)ll < &

forj=1,2,...,n
If 6 is sufficiently small, then by Lemma 1.3 (2) of [29] there are isometries
Y; € E, with orthogonal ranges such that =(y;) = n(y;) and

Ny +a; —gill <n
for j = 1,...,n. It follows that
‘||y; - u*zull < 940

Let H be an infinite dimensional separable Hilbert space. We now identifying
B with a C*-subalgebra of B(H) which identifies I(B) = K with K(H). Now we
have a representation of E,, ¢ : E, — B — B(H) which is defined by the
composition of ¢, with the above identification. Define the second representation
o' : En — B(H) by sending t; to y; (and then using the above identification; but

n
we will identify y; with the element in B(H)). Suppose that cr(l - t,—t;‘) has
i=1

k1)
rank k. So does u* (1 -3 z,-z})u. Let p: E, — B(H) be the unique irreducible
j=1
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faithful representation (which is the representation that maps I(E,) (= K) onto
K(H)). We are going to use Voiculescu’s Theorem, as stated in Arveson’s paper
([1]), to prove that ¢ and ¢’ are approximately unitarily equivalent.

Note that

n

n
1—Zy§(y})* —u*(l—szz}‘)u
i=1 j

i=1

< n(n+9),

n
and recall that 1 — 5" z;z} is a rank & projection in K(H). If n+ 6 is small enough,
71=1

n
it follows that 1 — 3 ¢t; t7 is also a rank k projection in (). Since it is not zero,
i=1

o is a faithful representation of E,. Let Hy = o(I(E,))H, the essential subspace
n
of ¢|J.. Note that it is a reducing subspace for ¢. Since cr(l -3 tjt;f) has rank
. 7=1

k, we conclude, by standard results in representation theory, that (¢|I(E,))|Ho

is a direct sum of k copies of the {(unique) faithful irreducible representation of

I(E) = K. Standard results in representation theory now imply that o(—)|Ho,

the essential part of o is unitarily equivalent to the direct sumn of k copies of p.
n

Similarly, since 1 — 5° #}(t;)* is of rank k, we conclude that the essential part of
j=1

o’ is unitarily equivalent to the essential part of 4.

We have now verified the hypotheses of Theorem 5 (iii} of [1): ¢ and o'
have the same kernel (namely {0}), their compositions with the quotient map
from B(H) to the Calkin algebra have the same kernel (namely 7(E,)), and the
essential parts are unitarily equivalent. That theorem yields a unitary W € B(H)
such that

W'y, W —yill<n and W'yW -y} € K(H)

for j = 1,2,...,n. Since y; — y; € K(H) and W*y; W — y; € K(H), we obtain
y; — W'y;W € K(H), whence W*y; W € B. Let E be a C*-subalgebra of pBp
generated by X(H) and y;. Then F is a unital essential extension of O, by K.
Furthermore, from the above,

a(z) = W*sW for z€ E

1s an automorphism on E. Since 7 o a(y;) = w(y;), ® o @ = . By Theorem 2.5,
there is a unitary Z € E C B such that

127y 2 — W*y; W < 6
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for j =1,2,...,n. We can then combine with earlier estimates to obtain
127y; Z — u”zjul| < 2n+ 26
for j = 1,2,...,n. Therefore
1z p1(t;) 20" — pa(t; | < 27+ 26

for j =1,2,...,n. We then let 2+ 26 < €.

For the case that A = eF,e or B = dF,,d, we show that this case follows
the case that we have just proved.

If A = eFEe, define &; = 1d@p; : Ma(A) — M3(B). Clearly, & and §&; induce
the same homomorphism on V(A). By Lemma. 1.5, there is a projection g € M3(A)
such that ¢ > e and [g] = 1 in V(A). So gMa(A)g = E, and A C gM;(A)g. By
what we have established, @;|gM2(A)g are approximately unitarily equivalent. It
follows that ¢; are approximately unitarily equivalent. &

Note that the part of the proof above using Voiculescu’s result is taken from
the proof of Lemma 2.2 in [29].

3. UNIQUENESS OF HOMOMORPHISMS OF E-ALGEBRAS

In this section, we will show the following:

THEOREM 3.1. Let ¢y,¢2 : A — D be two unital homomorphisms, where
A= M, (En) or A= eEye for some projection e with [e] = 0 and D = M,,,(E)
or D = dEn,d for some projection d with [d] = 0. Suppose that @1 and @y induce
the same homomorphism on V(E,). Then ¢, and @, ere approzimately unitarily
equivalent.

n
There are two cases. The case that both p; (1 -3t t;) are in I(D) follows
=1

n
from Lemma 2.8. In this section we will consider the case that boih ¢; (l -5 t; t;)
iz

are not in I(D).
This case follows the proof of 3.3 of [29]. The algebra D used in [29] is purely
infinite simple. It turns out that proof works for D = Mp,,(E,) or D = dEn,d

n
under the assumption that ¢; (1 -3 tjt;) is not in the ideal Mp,,(K). We will
i=1

explain why it works.

The following two definitions are the same as corresponding definitions in
[29].
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DEFINITION 3.2. Let A be any unital C*-algebra, and let D be a C*-algebra.
Suppose that the set P of infinite projections in D is not empty and satisfies con-
dition (i)-(iv) as in Lemma 1.5. Let ¢, : A — D be two homomorphisms, and
assume that ¢(1) € P and [¥(1)jo = 0 in Ko(D). We define a homomorphism
@@ : A — D, well defined up to unitary equivalence, by the following construc-
tion. Choose a projection ¢ € D such that 0 < ¢ < ¢(1) and [g]s = 0. Since ¢(1)
and g are in P, (1) — g # 0 and [(1) — glo = 0, there are partial isometries v and
w such that vv* = (1) — g, v*v = (1), ww* = ¢, and w*w = ¥(1). Now define
(p®¥)(a) = ve(a)v* + wy(a)w* for a € A.

DEFINITION 3.3. Let D be a C*-algebra as in Definition 3.2, let A be an
E-algebra, and let ¢ : A — D be a homomorphism. Then ¢ is approzimately
absorbing if for every ¢ : A — D such that [¢] = 0 in KK°(4, D), the homomor-
phisms ¢ and @@ are approximately unitarily equivalent.

D =My,/(E)), or D=dE.d for some projection d with [d] = ﬁ, then
[wl = 0 in KK°(A, D) if and only if the image of ¢, on V(A) is {0} U {0}.

ProrosITION 3.4. (Compare 1.7 of [29]) Let D = My, (Ey) or D= dEd
for some projection d with [d] = 0 and let A = My, (Ey) or A = eEne for some
projection e with [e] = 0. Let o, A — D be two monomorphisms such thal
¢(1a) and ¢¥(14) are unitarily equivalent. If [p] = (¢] = 0 in KK°(E,, D), then
w and ¥ are approzimately unitarily equivalent.

Proof. First we point out, by conjugating by a unitary, without loss of gener-
ality, that we may assume that ¢ and 1 agree on 14. By considering ¢(14)Dp(14),
we then assume that ¢ and % are unital.

We will first consider the case that A = M,, (E,). The other case will follow.
By conjugating another unitary, without loss of generality, we may further assume
that ¢ and v agree on M, (C). By considering ejipei1n, erntber; and ey Deys
(2 My (Em)), we may also assume that m; = 1. The proof is almost the same
as that of 1.7 of [29]. The condition that {¢] = {¢] = 0 in KK®(E,, D) implies
that o, and v, map V(E,) to {0} U {0}. In particular, both map I(E,) into
zero or both map I(F,)\ {0} into D\ I(D). The case that both homomorphisms
map I(E,) into zero follows from Theorem 2.7. So we now assume that both
homomorphisms map I(E,) \ {0} into D\ I(D). We will proceed as in the proof
of 1.7 of [29].

Instead of writing [¢] = [¥] = 0 in Ko(D) we have [p(1)] = [#(1)] = 0 in
V(D). The assumption we have made implies that {g] = 0. We also note that
K,(D) = {0}. The proof of 1.7 of [29] works without any further changes.
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Now we will show that the case that A = e¢E,e follows from the case that
has been proved. The argument is the same as that used in the end of the proof
of Lemma 2.8. Define & = id ® ¢ : M3(A) — M3(D) and p=id@: Mj(A) —
M3(B). There is a projection g € My(A4) with e € g and [¢) = 1. So gMy(A)g =
E,,. We then apply the established case to |gMo(A)g and $lgMa(A)g. 1

LemMMA 3.5. (Compare 1o 2.3 of [29]) Let D = My, (£,), E = dE,d for
some projection d with [d] = 0, or D = My, (Orm), let A = My, (Ey,) or A= ele
for some projection e with [¢] = 0 and let ¢ : A — D be a monomorphism. Suppose
that o(I(A))) NI(D) = {0}. Then  is approzimately absorbing.

Proof. We will only consider the case that A = M,,,(£,). The other case
will follow exactly the same way as that at the end of the proof of Proposition 3.4.

The proof is almost the same as that of 2.3 in [29]. Replacing D by ¢(1)De(1),
we may assume that ¢ is unital. Since it is clear that any nonzero homomorphism
of My, is approximately absorbing, we may assume, without loss of generality,
that my; = 1. If D is purely infinite, then the lemma follows from 1.7 of [29]. So
we now assume that D = M,,,(En) or D 2 dE,d.

Since ¢ = (p(l - _Z]tjt;) is in A\ I(Mp,(Ex)), by Lemuma 1.5, there are
J=

n + 1 mutually orthogonal nonzero projections puy1,Pn42,---, P2, ¢ € ¢lDg and
1sometries ‘f’n+1,?n+2, ..., t2n € D such that ?J?; =pjforj=n+1,n+2...,2n
Now let A C D be the C*-subalgebra generated by ¢(¢;) for j =1,2,...,n and ¢;
forj =n+1,n+42,...,2n. Then A is isomorphic to £,,. By Lemma 2.2 of [29], for
any € > 0 there is a projection f € A and unital homomorphisms ¥, : Oz, — fDf
and ¥ : B3y — (1 — f)D(1— f) such that [f] = 0 in K(A) (and hence in Kq(D)),
with
lkp(ts) = (ba(s) + )l < 5

for 1< j<nand

I = (Wa(s;) + b2t < 5

for n4+1 < 7 < 2n. Define @1, g2 : B, — Dby p1(t;) = ¥1(s;) and 2(t;) = ¥2(t;)
for j =1,...,n. Note that [¢;] = 0 in KK°(E,, D) by Lemma 1.2 of [28].

Now let ¢g : E, — D be any homomorphism with [po] = 0 in K K°(E,, D).
Without loss of generality, we may assume @o(1) < ¢1(1). Then ¢, L ©1®po by
Proposition 3.4. Therefore

ef3 ef3 ~ 3 ~
0L o1+ 02 L (01800) + 0 L B0 on G,

50 ¢ ~ p®po on G as desired, where G is the standard generators of £,. 1
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DEFINITION 3.6. Let ¢ : E, — D be a homomorphism, where D = M, (Bm)
or D =2 dF,,d for some projection d with {d] = 0. Let p; = @(tt]) forj=1,2,....
Suppose that o(I(E,))NI{D2) = {0}.So go(l— > i‘jt;) € D\I(D). By Lemma 1.5,

i=1

there are gn—1, gn € D such that
n
Inein—i = 9(1),  gn-ifn_; < so(l - tht;-), i=0,1
j=1
and
n
o(1=30:13) = gn-183-1 — 9a53 ¢ (D).
i=1

Define @ : E,, — (1 — p1 — p2)D(1 —p1 — p2) by
B(t;) = (i )(L —p1 — p2)
forj=1,2,...,n—1and
P(th—i) = gn-i, 1=0, 1.

Hyo: Mp,(E,) — D, we may write ¢ = ¢1 @2, where ¢ isa horomorphism
from M,,, ®C — D and ¢; is a homomorphism from B, into ¢(e11)Dip(e11), {ei;}
being a matrix unit for M,,,. We define g = ¢1 ® @5

I ¢ :elpe — D, we first extend it to & = id ® ¢ : Ma(A) — My(D). Then
take a projection g € M3(A) with e < ¢ and [¢] = 1. Let @1 = 3|gMa(A)g. We
define 7 = 3, |A.

LEMMA 3.7. Let ¢ and P be as in Definition 3.6, and set
Do =[1& (1 —ps—p2)]M2(D)[1® (1 —p1 —p2)].
Then the direct sum
e®p: A~ Dy
satisfies [p ® P} = 0 in K K°(A, Do).
Proof. Clearly [(¢®®)(1)] = 0 in Ko(Do). The result is now immediate from
Lemma 1.2 of [29]. 0

7T
Proof of Theorem 3.1. By Lemma 2.8, we may assume that ¢; (1— Zl tjtj*-) ¢
J:

1(D).
We follow the notation of Definition 3.6. By Lemma 1.5, there is a partial
isometry W € Ma(D) such that

WW=1¢(1-p—p2}®1l and WW =100 0.
Since both [p @ @] and [§ @ 9] are zero in K K°(E,, D), Lemma 3.5 implies that

/2 ef2
oLl wesevyw Ly
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4. UNIQUENESS AND EXISTENCE THEOREMS

The following is a well known result.

LEMMA 4.1. Let ¢, ¥ : My — D be two nonzero homomorphisms such that
@. = % on V(M,). Then they are unitarily equivalent.

LEMMA 4.2. Leip, g € A be two (nonzero) projections with [p] = [¢) in V(A)
where A = My(E,) or A= eEpne for some projection e with [e] = 0. Suppose that
both 1 —p and 1 — q are not zero and both 1 —p and 1 — ¢ are or both arec not in
I(A). Then p and q are unitarily eguivalent.

Proof. Suppose that 1 — ¢ and 1 —p are in I(E,). Then
0+[1-pl=0+[1-q)=((1 -k,

since [p] = [¢]. This implies that {1 — p] = [1 — ¢q] in V(M,(E,)). Therefore p and
g are unitarily equivalent.

Suppose that 1 — p and 1 — ¢ are both in A\ I{A). Then 1 —p,1—¢€P. 1t
follows from Lemma 1.5 that [l —p]=[1—4¢]. #

LEMMA 4.3. Let A and B be finile direct sums of E-algebras. Let ¢ and 9
be two homomorphisms from A into B. Then ¢ and ¢ arc approzimately unitarily
equivalent if and only if they induce the same map V(A) — V(B) and o(1a) is
unilarily equivalent to Y(14).

Proof. If ¢ and 1 are approximately unitarily equivalent, then they induce
the same maps V(A) — V(B) and (1) is unitarily equivalent to #(1). Suppose
that @ and  induce the same maps V(A) — V(B) and ¢(1) and 9(1) are unitarily
equivalent. By conjugating with a unitary, if necessary, we may assume that
©(1) = 9(1). Since a corner of an E-algebra is still an E-algebra, replacing B by
©(1)By(1), we may further assume that both ¢ and % are unital.

Write .
a=do.
L=1

where each Cy is an E-algebra. Let J, : Dy — A be the natural inclusion and
P1,P1,---,Pr be the minimal central projections in A, so that pe = Je(1).
We claim that ¢(p,) and %(p,) are unitarily equivalent. We write
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where each Dy, is an E-algebra.

Let 7, : B — D, be the projection. To prove the claim, it is enough to
show that 7, o @(pg) and 7y, 0 9(pg) arc unitarily equivalent. By the assumption,
[mm 0 ©(pr)] = [Tm 0 ¥(pe)] in V(Dy,). So it is enough to show that both are unital
or both are not unital in Dy, and satisfy the condition that if D, = Mip(E,),

‘1p,, — Tm o @(p¢) and 1p, — 7 o (p,) are both or are both not in I(Dy,), by
Lemma 4.2. If one of them is unital, say, m, o ¢(pg) is unital, then 7, o ¥(p,) has
to be unital too. If it were not, then, since 1 is unital,

7rmo1p(l—Zpi) £1p. — T o @(pe) # 0.
i2L

mmop(1=3 pi) =0

izt

However,

since T, 0 Y(pe) = 1p,,. Therefore we would have

[so(l-;pf)] . [w(l-;pi)]

in V(B). So Tm o ¥(pe) has to be unital.
We now assume that both 7, o ¢(p¢) and 7m o ¥(ps) are not unital. Since

Tm [90(1 - ZP:‘)] = [Wm ° 1/)(1 - Zpi)]
i#e i#L
and both ¢ and 1 are unital, 1p_ — mn 0 p(pe) and 1p,, — Tm 0 9(pe) both are in
I{(Dy,) or both are not. This proves the claim.
We may therefore assume that ¢(ps) = ¥(p¢) for each £ It is now clear
that it suffices to show that, for each £ and m, 7, o ¢ o j; and 7 © 9 © j, are
approximately unitarily equivalent. The assumption implies that

(7rm o ojt)* = ("Tm o Ojg),,,

on V(C¢). Therefore the result follows from Theorems 3.1, 2.7 and Lemma 4.1. 1

THEOREM 4.4. Let A and B be two C*-algebras in § and let ¢ and 1 be
two homomorphisms from A inlo B salisfying the following:

(1) if A is unital, p(1) is unitarily equivalent to ¥(1), or

(ii) if A ts not unital then B is also not unital and

[p(en)] = [¥(en)l,
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1 n n
where {Z ei}, {Z <p(e¢)} and {‘z 1/1(6.-)} are approzimate identilies for A and
i=1 =1 i=1
B consisting projeciions.
Then @ and ¥ are approzimately unitarily equivalent if and only if they induce
the same map V(A) — V(B).

Proof. If ¢ and ¥ are approximately unitarily equivalent, then they induce
the same maps V(A) — V(B). Suppose that ¢ and  induce the same maps
V(A) — V(B). Write

A= GA,‘, B = D B,
[E=3) n=1

where Ay C A3 C - C A, By C By C---C B and each A; or B, is isomorphic
to a finite direct sum of E-algebras. It suffices to show that the restrictions of ¢
and ¢ on A; are approximately unitarily equivalent for every i.

Let G be a finite subset of A; which contains its generators. It is enough to
show that, for every £ > 0, there exists a unitary u € B such that

lu™o(f)u —w(ll <e

forall fe G Let G = {f1,f1,...,fm}. For any é > 0 there are g1,92,-..,9m,
91,95, - -, 9 € By for some £ > 0 such that

lgi — e(fi)ll <6 and |lg; —¥(fi)ll <6

i=1,2,...,m. It follows from 1.3 of (28] and 5.7 of [31] that, if § is small enough,
there are unital monomorphisms ¢’ and ¢ from A; into B, such that

lle(f) = #'(Fll < 5

and
(5 = ¥ (5l < -
We have,
(plAsd = o = (Pl Ai)w = 9

as maps from V(A4;} into V(B). Let anx : V(An) — V(4s) and fax : V(Bn) —
V(By), where k > n, be the homomorphisms induced by the inductive systems.
By choosing a larger I, since V(4;) is finitely generated, we may assume that
wh 0 a; 0o(V(A;)) C V(B;). By Remark 1.3 there is an integer k such that Beir,c0
is injective on fp,¢4x(V(Be)). Denote by o the inverse of Be4r 00 restricted on
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Bre4x(V(Br)). Then oo ¢, = o o ¢}. By choosing an even larger £ and changing
notation, without loss of generality, we may assume that

oo =Y.
as maps from V(4;) into V(B,). If both A and B are unital, we may assume that
14, = 14 and 1p, = 1p for all i and n. Since, in this case, (1) and (1) are
unitarily equivalent, we may assume, by conjugating with a unitary in B, that
p(1) = ¥(1). Since (1)Bep(1) is still in Q , we may further assume, from the

beginning, that both ¢ and 3 are unital. Therefore, in this case, we can apply
Lemma 4.3. We obtain a unitary v € By C B such that

Wu*o(fi)u— o' (£l < g

Therefore ¢ ~ 4 on G.
Now we consider the case that both A and B are not unital. It is enough
to show that the restriction of ¢ and % on p,Ap, are approximately unitarily
n

equivalent for each n (and i), where p, = ) en. There is a partial isometry
wy € B such that =

wiwy = p(pn) and  wiwi = PY(en),
by the assumption (ii). By considering plenAen, witwileqAen, enAen and
w(en)Bip(en), and applying the unital case that we have just established, we con-

clude that ¢lenAe, and wiywi|e,Ae, are approximately unitarily equivalent.
There are partial isometries w; € B such that

wiw; = plenyi) and wiw] =Plenss), 1=1,2,....

&0 k k
Set w = 3 w;. Since both {Z cp(ei)} and {z ¢(e,~)} are approximate identities
S i=1 =1
for B consisting of projections, it is standard to check that the sum converges
in the strict topology of B and w € M(B). So the above implies that ple,Ae,
and Adw o ¥|e, Aey, are approximately unitarily equivalent. Thus plenAen and
thlen Aey, are approximately unitarily equivalent. 1

THEOREM 4.5. Let A and D be two C*-algebras in . Suppose that
a:V{(A) - V(D)

is a homomorphism. If A is unital and a([1a]) = [p] for some projection p € D,
then there exisis a unital homomorphism ¢ : A — D which induces o, t.e. px = &
such that ¢(14) = p.
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If both A and B are nonunital and o(fe,)) = [dn] # 0, where {z e,-} and
i=1

n
{E d,-} are approrimale tdeniiiies for A and D respectively, consisting of projec-
=1
tions, then there ezists a homomorphism ¢ : A — B which induces o such that
oleq) = dn.

Proof. In the case that A is unital, by considering pDp, we may assume that
[a(14)] = [1p]. We consider the unital case first. Let

AlﬂAlf_’jAs_ﬁ...

be a sequence of finite direct sums of E-algebras with limit A. Let f; : A; — A

be the canonical homomorphism given by the direct limit. Since f;(A;) is also a
finite direct sumn of E-algebra, by replacing A; by fi(A;), we may assume that

A1 CAC- A

oo
and A = {J A;. Similarly, we also assume that
'.:1

e
D=|J)D;, DiCcD;C---D

i=1

and each D; is a finite direct sum of E-algebras. Since each V(A4;) is finitely
generated, by passing to a subsequence and changing the notation we may assume
that a|V(A;) C V(D;). Furthermore, in the unital case, we assume that 14, =14
and 1p, = 1p.

The homomorphisms

ao(fi)e: V(A) — V(D)

are induced by a unital homomorphisms v¥; : A; — D; by Theorem 1.8. The
two homomorphisms ;41 |A:; and ¢; from A; into D;4; induce the same maps
V(Ai) — V(D;41). From our construction, they are both unital. Hence they
are approximately unitarily equivalent by Lemma 4.3. It follows that there are
unitaries u; € D so that the system
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is a one-sided approximate intertwining in the sense of Elliott:(Remark 2.3 of [11]),
see also Lemma 2 of [44].
Put

v = idD, Ui+l = Vi © Ad(u:)

Then the sequence {vx o ¥x(a)}e; is Cauchy in D for every ¢ € N and every
a € A; (see [44]). Let ¢;(a) be the limit of this sequence. Then ¢; : 4; = D is a

homomorphism and
Ai — Ait1

@i\ / Piv1
D

commutative. Thus we get a homomorphism ¢ : A — D making the diagram

A;
fi/ N P
A AN D

commutative. If e € A; is a projection, then since vy is inner and by the choice of
Y1, we have

[vx © r(e)] = a0 (fi)u([e])

for all k. Since near by projections are unitarily equivalent, this implies that

lpi(e)] = oo (fi)u(le]).

From the commuting diagram above, it is seen that [¢(e)] = «f[e]) for every
projection e in

U fi(A) C A

Since every projection in A is unitarily equivalent to some projection in this dense
subset of A, it follows that ¢. = «.

i
For nonunital case, we let A; = p;Ap;, where p; = 3 ex and D; = ¢;Dy;,
k=1

: i
where ¢; = Y di. We will repeat the proof of the unital case with some changes.
k=1
We use the conclusion of the unital case to obtain %; : A; — D; which also

maps p; to ¢;, ¢ = 1,2,.... To obtain a unitary u; € M(D), we notice that
oo (fiy1)w(eir1) = [dit1]. So [Yit1(pit1 — pi)] = [diy1]. This implies that ¥:(p:)
is unitarily equivalent to ¥;4+1(p;) in D;yq1. By Theorem 4.4, v; is approximately
unitarily equivalent to ;41|A;. Thus u; (€ M (D)) exists. To obtain ¢ : A — D
which induces «, we follow the rest of the proof in the unital case.
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To obtain a homomorphism ¢' which not only induces @ but also maps e,
to dy, we let df, = p(en). Then [d]] = [dn]. So there are partial isometries v, € D
such that

* — .*__.‘ —_—
vovg =dn, and vl =d,, n=12,....

(e

Set v = 3 vn. Let B be the hereditary C*-subalgebra generated by {d}. It is
n=1

standard to check that v*bv € D for allb € B and vdv* € B for alld € D. Then the

homomorphism ¢’ defined by ¢(a) = v*¢(a)v for a € 4 meets the requirements.
5. CONCLUSIONS

PROPOSITION 5.1. (Proposition A in [36) see also [11]) If A and B are two
separable C*-algebras and there are homomorphisms ¢ : A— B and ¢y : B — A
such that v o ¢ is approzimately unitarily equivalent {0 ida and ¢ o ¢ is approz-
tmately unilarily equivalent 1o idg, then A and B are isomorphic. Furthermore,
there is an isomorphism ¢ : A — B such thal ¢. = . as maps from V(A) onto
V(B).

Proof. This follows from Proposition A in [36]. Note that ¢ could be chosen
as the pointwise limit of {Advy o ¢} (see the proof of Proposition A in [36]).
Therefore, if p € A is a projection, ¢(p) is equivalent to ¢(p). &

THEOREM 5.2. Let A and B be two unital C*-algebras in Q. Suppose that

there s an isomorphism

a: (V(A),[1a]} = (V(B), [18]).

Then there is a tsomorphism ¢ : A — B which induces o, 1.e. w. = a.

Proof. Let 8 : (V(B),[1g]) = (V{A),[L4]) be the inverse of a. By Theo-
rem 2.4 there are unital homomorphisms ¢’ : A - Band ¢ : B — A withg, =«
and 3, = . We note that 1 o ¢’ and ¢’ o ¢ induce the identity maps on V(A)
and V(B), respectively. It follows from Theorem 4.4 thai 1 o ¢ is approximately
unitarily equivalent to id4 and ¢’ o ¢ is approximately unitarily equivalent to idg.
It follows from Proposition 5.1 that there exists an isomorphism ¢ : A — B which

induces a. 1
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THEOREM 65.3. Let A and B be twe nonunital C*-algebras in Q. Let {eq}
and {dn} be approzimate identities for A and B, respectively, consisting of projec-
tions. Suppose that there is an isomorphism

a:V(A) - V(B)

such that o([en—en—1]) = [dn—dn_1] (€0 = do = 0). Then there is an isomorphism
p: A— B which induces a, i.e. p, = o such that p(e,) = dn.

Proof. Let B : V(B) — V(A) be the inverse of a. It follows from Theorem 4.5
that there are homomorphisms ¢ : A ~ B and % : B — A such that ¢, = ¢,
wlen) = dn, ¥« = B and ¥(d,) = e,. It follows from Theorem 4.4 that g o ¢
and id4 are approximately unitarily equivalent, v o ¢ and idg are approximately
unitarily equivalent. Then, by Proposition 5.1, A is isomorphic to B.

Suppose that ¢’ : A — B is an isomorphism. Let d, = ¢'(e,). By Proposition
5.1, we may assume that {d], —d/,_,] = [d, —dn_1] (dg = d} = 0). Therefore there
exists a sequence of partial isometries w, € B such that

wp(dn —dnoy)w, =d, —d,_; and wyu(d, — di_)wl = dy — dn_1,

[oa] o
n=12....8 w = z wy. Then it is standard that ) w, convergences

n=1

in the strlct topology and w € M(B), the multipier algebra of B. We define
e =Adw'y’. 1

PropPosITION 5.4. Ewvery quotient of a C*-algebra A in Q is in Q.

Proof. We may assume that 4 = U A, where each A, is a finite direct

=1
sum of E—algebras and A, C Apyi. Let ¢ A — A/I be a quotient map. Then
A/l = U #(An). Since each ¢(A,) is a finite direct sum of E-algebras, A/I €Q. §

n=

THEOREM 5.5. Q s closed under direct limits.

Proof. Suppose that A = lim (An, fn,n41), where each A, € Q. Let f, :
A,, — A be the canonical homomorphism induced by the direct limit. By Propo-
sition 5.4, fu(An) € Q. We may then assume, by by replacing An by fn(An), that
A= U Ay and A, C Apyi. Suppose that 4, = U B(") B(") C B,(c’l)l and every

n=1 n=1
B,(C") is a finite direct sum of E-algebras. Let {a,} be a dense subset of the unit
ball of A. Let G1 = {g1,92,...,9m,} be a (finite) set of generators of B;y. There
are kg, ng and G} C B,(C:’) C An, such that ||g; — g|| < e for i =1,2,...,my and
dist(ay, B{") < 1/2. If follows from 1.3 in [29] and 5.1 of [31}, if & is small enough,
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that there are a C*-subalgebra Ci, C B,(C':‘) and an isomorphism ¥, : Cy, — B;
with .
llg: = (gl < 5, 1=1,2,...,m1.

Let G2 = 11(G)) U F3, where Fy is a (finite) set of generators of B,E:’). By

repeating the above argument, we obtain a monomorphism ¥ : B£’:’> — B,(C':’)
such that

1
lo = v2(o)ll < 5
for all ¢ € G and

dlst({a.l, az}, B("’)) 4.

After defining ¢ : BU*) — BOY we let Gy = 9u(Ge—1) U Iy, where Fy

kz 1
is a (finite) set of generators of B,(c:“). We then obtain a monomorphism gy :

B,(c':‘) — B,(c':ﬁ‘) for some kgy; and ngyq such that

lo— et < (3)

for all g € Gy and

¢
dist({a1,as, ..., ae}, B'(“?::l)) (;) .

Thus we have the following one-sided approximate intertwining system:
B, X B Y2, pin)
il 2l ja l

A 1dA A id AA A N

where j; is the inclusion. Set B = lim (B"™) 4n). Then B € Q. As the
m—00 ™

argument used in the proof of Theorem 4.5, the sequence

{jm o 1/)m °¢’m—1 o °¢l(b)}

define a homomorphism ¢; from B,(c':“) into A. Furthermore, we get a homomor-
phism ¢ : B — A from ¢;. We claim that ¢ is surjective. For any € > 0 and an,

there is b, € B,(:‘) such that
t
1 £
||am - bg“ < (5) < Z
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We also have
Eos\ 4+ N,
[lFm+k © Ymak © Ympr—1 0 0 Pe(be) — by < Z (§> < (5) <3

i=1

This implies, by identifying b; with the image of it in B, that

€
[lo(be) — bell € 2
Therefore
[lam — e(be)|| < + <ée.

Since {a,} is dense in the unit ball of A, the above nequality implies that ¢ is
surjective. Since B € 2, by Proposition 5.4, A€ . 1

COROLLARY 5.6. Every hereditary C*-subalgebra of a C*-algebra A in Q is
i Q.

Proof. Suppose that B is a hereditary C*-subalgebra of A. Then, since A has
real rank zero and is separable B has an approximate identity {e,} consisting of
projections. So B = U enAey. Clearly, every e, Ae,, € Q. Therefore the corollary

follows from Theorem 5 5.1

CoROLLARY 5.7. The class Q is closed under tensor products with any AF-
algebras.

Proof. Let A C © and B be an AF-algebra. Write B = lim (Bn, ¥nn+1),
1—00
where each B, is a finite direct sum of matrices. Clearly, A® B = lim (A®

n—+oo

B, 1dsA®@n nt1). Since every A® By, is clearly in € we conclude that AQB € Q. 1

As we pointed earlier, we know that C*-algebras in Q are typically neither
stably finite nor purely infinite. E, is a typical example. However, in extreme
cases, it contains all AF-algebras and all separable nuclear purely infinite simple
C*-algebras with UCT and trivial K;.

PROPOSITION 5.8. Every AF-algebra is in Q.
Proof. This is because every matrix algebra is an E-algebra. 1

REMARK 5.9. A separable nuclear C*-algebra algebra is said to satisfy UCT,
if for any separable C*-algebra B the short exact sequence

0 — Ext} (K.(A), K.(B)) - KK*(A, B) - Hom(K.(A), K+ (B)) — 0
holds.
By [40], every C*-algebra in the “bootstrap” class has UCT.
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ProposiTION 5.10. Every nuclear purely infinile simple C*-algebra with
UCT and with trivial Ky-group ts in 2.

Proof. 1t is clear that Oy € Q. It certainly contains all Cuntz-algebras O,
(even or odd). Therefore, by 3.8 in [29], for any countable abelian group G and
an clement g € G, there is a purely infinite simnple C*-algebra A € Q such that
(Ko(A),[La]) = (G,g). (Actually, 3.8 of [29] deals only with the casc that G has
no even torsion. But that is because that the paper was written before [33] and
we did not deal with even Cuntz-algebra. The proof of 3.8 in [29] certainly works
for even torsion too.) Furthermore, there is a nonunital purely infinite simple
C*-algebra B € Q such that Ko(B) = G. It follows from the recent result of E.
Kirchberg ([24]) and N.C. Phillips ([34]) that every nuclear purely infinite simple
C*-algebra with UCT and with trivial K-group is isomorphic to one of the purely
infinite simple C*-algebra described above. &

We end the paper with a few more words about the invariant V(A). Let V
be the set of direct limits of finite direct sums of semigroup V(E,), V(Op) =
{0} U Z/(m — 1) and Z,. Then we have by Theorem 1.8 (and its proof) the
following conclusion:

PROPOSITION 5.11. Let V € ¥V be a semigroup and v € V. Then there ezists
a unilel C*-algebra A € Q such that

(V(A),[14)) = (V,v}.
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