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OF TWISTED C*-DYNAMICAL SYSTEMS
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ABSTRACT. Let (A, G, w,u) be a twisted C*-dynamical system in the sense
of Busby and Smith. Then for any closed subgroup H of G, A Xo,u H is
Morita equivalent to Co{G/H, A) Xa,4 G, where (&, &) is the diagonal twisted
action. We show that the space of compactly supported bounded Borel func-
tions B.(G, A) can be given a natural pre-imprimitivity bimodule structure
which implements the equivalence, and use this to induce representations
from A Xa,u H to A Xq,u G. We prove an imprimitivity theorem for this
inducing process, and show how the inducing processes of Busby and Smith
and Mackey are special cases of ours.
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INTRODUCTION

Consider an action « of a locally compact group G on a C*-algebra A and a closed
subgroup H of G. Green ([7]) proved that the space Cc(G, A) of continuous,
compactly supported functions from G into A carries a natural Co(G/H, A) x; G
- A X4 H pre-imprimitivity bimodule structure, where @ is the diagonal action of
G on Co(G/H, A). Then he showed that A x, G maps into the multiplier algebra
of Co(G/H, A) x5 G, so that Rieffel’s Morita equivalence framework could be used
to induce representations of A x4 H up to A x4 G. These results were essential to
Green’s generalization of the Mackey apparatus, and have proved to be among the
most significant developments in the theory of C*-dynamical systems. Placed in
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the Morita equivalence context, the theory of induced representations has turned
out to be both powerful and elegant.

In the present paper, we prove analogous results for the twisted C*-dynamical
systems introduced by Busby and Smith in [1]. Roughly speaking, a Busby-Smith
twisted action of a group G on a C*-algebra A is a map « of G into Aut(A4) which
is allowed to be only Borel, together with an A-valued 2-cocycle u for G which
measures the extent to which « is not a homomorphism. These systems have
recently been studied from a representation-theoretic point of view by Packer and
Raeburn ([12], [13]), who showed among other things that their theory contains
that of the separable Green-twisted systems. Special cases of these systems appear
in the work of Zeller-Meier ([15], for discrete G) and Mackey ([11], for A = C),
among many others.

Our approach is modeled on that of Green, although technical complications
arise because of the Borel nature of the twisted actions. In [9] we used the stabiliza-
tion trick of Packer and Raeburn ([12]) to show that if (A, G, o, u) is a Busby-Smith
twisted C*-dynamical system and H is a closed subgroup of G, there exists a di-
agonal twisted action (&, ) of G on Co(G/H, A) such that Co(G/H, A) x45,a G is
Morita equivalent to A X4, H; in order for this to be useful, we need an explicit,
manageable bimodule which implements the equivalence. In Section 2 we show
that the space B.(G, A) of bounded, compactly supported Borel functions from
G into A can be given a natural right A x, , H-rigged space structure, and that
then Co(G/H, A) x5, G is isomorphic to K4x, ,#(B(G, A)). While B.(G, A)
has no natural left Co(G/H, A) x5 5 G-rigged space structure, we show in Section
3 that it does carry a left action of A x4 G, and that this is sufficient for inducing
representations of A X4 H to A X4, G. Taking advantage of the Morita equiv-
alence framework, we prove an imprimitivity theorem, describing exactly which
representations of A x4 G are induced from representations of A Xou H. Our
results also include a theorem on induction in stages: if K is a closed subgroup of
H, then inducing from A X4, K to A X4, H followed by inducing from A x4 4 K
to A Xqa,u G is the same as inducing from A »4 4 K t0 A X4,4 G in one step. Fi-
nally, in Section 4 we show that the original induced representations of Busby and
Smith ([1]) and the induced multiplier representations of Mackey ([11]) coincide

with certain special cases of ours.
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1. PRELIMINARIES

We begin by establishing our notation, conventions, and basic definitions. Through-
out this paper, A and B will be separable C*-algebras. The multiplier algebra of
A is M(A), with unitary group HM(A). If H is a Hilbert space, we use the
standard notations KH, B(M), UB(H) for the compact operators, the bounded
operators, and the unitary operators, respectively, on H. All groups will be sec-
ond countable, locally compact groups, and all integrals aver these groups will be
with respect to a left-invariant Haar measure. We denote the modular function
on a group G by Ag. If H is a closed subgroup of G, we define for convenience
vG(t) = (Ag(t)/Ar(t))/?, and we adopt the convention of [12] of writing { for
an element tH of G/H. For a Borel measurable function f taking values in a

C*-algebra, we use the Bochner integral to make sense of the expression [ f(s)ds;

G
for strictly Borel functions with values in multiplier algebras, the integral can be
interpreted strictly. See [12], Section 1 for a brief discussion and further references.

TWISTED DYNAMICAL SYSTEMS. A (Busby-Smith) twisted dynamical system is a
quadruple (A, G, a, u) consisting of a C*-algebra A and a group G, together with a
strongly Borel map o : G — Aut(A) and a strictly Borel map u : Gx G — UM(A),
such that:

(i) ae = id4 and u(e,t) = u(t,e) =14 for t € G;
(i1) as o ay(a) = u(s,t) ase(a) u(s,t)* for a € A and s,t € G;
(iti) ap(uls,t)) u(r, st) = u(r, s) u(rs, t) for »,5,t € G.

The pair (a,u) is called a (Busby-Smith) twisted action of G on A. (Cf. [1],
Definition 2.1; [12], Definition 2.1.)

A covariant homomorphism of (A, G, o, u) into a multiplier algebra M(C') is
a pair (m,U) consisting of a non-degenerate homomorphism 7 : 4 — M(C) and a
strictly Borel map U : G — UM(C) such that:

(1) m(as(a)) = U(s)m(a) U(s)* for a € A and s € G;
(i1) U(s)U(t) = w(u(s,t)) U(st) for s,t € G.

(Sometimes we write U, for U(s).) If C = K(H) for a (separable) Hilbert space
M, then we say that (m,U) is a covariant representation of (A, G, o, u) on H. (Cf.
[13], Definition 1.1; {12], Definition 2.3.)

For each twisted system (A, G, «,u) there is a crossed produci C*-algebra
A X4u G and a canonical covariant homomorphism (ia,ig) of (A4, G, a,u) into
M(A X4,y G) such that:
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(1) for any covariant representation (r,U) of (A, G, a,u) on a Hilbert space
M, there is a non-degenerate representation 7 x U of A X4 4 G on H, called the
wntegrated form of (w,U), such that (1 x U)oiy =7 and (x x U)o ig = U;
(ii) the set {ia x ig(z) | z € L'(G, A)} is dense in A X o,u G, where 4 X ig(z)
denotes the strictly defined Bochner integral [14(z(s))ig(s)ds.
G

The set of compactly supported bounded Borel functions from G into A
forms a #-algebra B.(G, A; a,u) when equipped with the twisted convolution and

involution given by:

Frolt) = j £(5) s (957 18)) (s, 5~ 8) d,
G
P = u(t, ™Y (£ Ac(t™).

The map f — i4 x ig(f) is a *-homomorphism, and thus identifies B.(G, A; o, u)

with a dense *-subalgebra of A x4 G. (Cf. {12], Definition 2.4, Proposition 2.7.)

MoriTa EqQUIVALENCE ofF TwisTED AcTIONS. Suppose (A,G,o,u) and
(B,G, B,v) are twisted dynamical systems, and X is an A-B imprimitivity bi-
module ([14], Definition 6.10]). We say the twisted actions (a,u) and (8,v) are
Morita equivalent if there exists a strongly Borel map v : G — Aut(X) such that:

(i) as(afz, ¥)) = a(ys(2),7s(y)) for 2,y € X and s € G;
(i1) Bs({=, y)B) = {7s(2), 7:(¥)) B for z,y € X and s € G;
(iil) vs o ye(2) = uls,t) - yse(z) - v(s,t)* forz € X and s,t € G.

(Here Aut(X) is the set of bicontinuous linear bijections ¢ of X which satisfy the
ternary homomorphism identity ¢(x - {y, 2)B) = ¢(2) - {¢(¥), ¢(2)}r.) We write
(A, G,o,u) ~x 4 (B,G, 3,v), and call (X, ) a system of timprimitivily implement-
ing the equivalence. (Cf. [2], Definition 2.1; [8], Definition 2.1.1; compare [5], [4],
[3].) Morita equivalent twisted systems have (strongly) Morita equivalent crossed
products ({2}, Theorem 2.3). In fact, Bc(G, X) is a B.(G, A; o,u)-B(G, B; 8, v)

pre-imprimitivity bimodule when equipped with actions and inner products de-
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fined by

fols) = / F@) (@) - v(t, = 1s) di
G

z-g(s)= /:c(t) Belg(t™ s)) vlt, t71s) dt

G

Bo(G, A;e,u){E, ) (5) = / alz(), v:(y(s71)) - v(s, s~ 1)) Ag(s™ ) dt
G

{z.9}B.(6,B;8,0)(5) = /v(t"lst)*ﬁt—l((w(t),y(tS))B)v(t"l,tS) dt.
G

2. THE IMPRIMITIVITY BIMODULE

Let (A, G, @, u) be a Busby-Smith twisted dynamical system, and let H be a
closed subgroup of G. In [9], we showed that there is a twisted action (&,a) of G
on Co(G/H, A) given by

& (f)(8) = as(f(s7'0)) and  (a(s,)f) (7) = uls,t) F(7),

and that then we have Co(G/H, A) x4,6 G ~ A Xa,u H. Our method there was to
produce a system of imprimitivity (A ® H, §) implementing a Morita equivalence
between (A, &7, o, u) and an ordinary system (A ® K, G, 8). (The specific formula
for §, which came from [12], Equation 3.1, is irrelevant here; we only need to know
that & interacts with (e, u) and (3, 1) as in conditions (i)-(iil) immediately above.
For example, we have §, o 6;(a ® £) = 8,1(a ® £) - u(s,¢)*.) This gave rise to two
equivalences:

Co(G/H,A) xau5 G~ Co(G/H,A®K) X5 G

and
(ARK)xg H~AxXqu H,

which are linked by Green’s result ({7], Proposition 3) for ordinary systems:
Co(G/H,A®K) x5G~(A®K) xp H.

The desired result was then obtained by transitivity; a corollary of this argument
is that the tensor product Y of the three bimodules involved implements the
equivalence. The goal of this section is to show that (a completion of) X =
B.(G,A)isalsoa Co(G/H, A)x5,4G — AXq,u H imprimitivity bimodule. Because
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its elements are only Borel, Xq carries no natural B.(G, C.(G/H, A); &, %)-valued
inner product, making our work a bit harder than one might have expected.

Let B = A x4, H, with dense subalgebra By = B.(H, A;&,u). Then X,
carries the natural right Bg-rigged space structure defined as follows:

290 = [ alrt) an(ol) ulre. ) 40 &
H

(e 0mlt) = [ u(s™0)" ayms (w(6) o0 (5™ 1) ) .
G

Our strategy will be to exhibit a right Bg-rigged space isomorphism of a dense
subspace Yo of Y onto a dense subspace of Xp. It follows that the completion X
of Xy is isomorphic to Y as a right B-rigged space, and therefore that Kp(X) =
Kp(Y) = Co(G/H,A) x4 G, as desired.

We begin by reviewing the pre-imprimitivity bimodule structure for the three
components of which will make up ¥,. We will be concerned here with functions
into reversed modules. If Z is an imprimitivity bimodule, recall that the reversed
module Z = {Z | z € Z} is identical to Z as a set, but employs the reversed
actions and inner products. Accordingly, functions from a set § into Z differ only
in attitude from functions into Z. A function F : $ — Z will be written F when
we want to treat it as taking values in Z.

Let Ey = Bo(G,C(G/H,A);& @) and Dy = B.(G,C(G/H, A ® K); f).
Then B.(G,Ce(G/H,A®H)) is an Ey-D) pre-imprimitivity bimodule when
equipped with actions and inner products as follows:

F&(rd) = f 5, (2(s=r, 5714)) F(s, )" ds
G

2-G(ri)= [ Bu(Glsmr, 510" 2(s, B s
G
Bo{Z, 9)(r 1) = /(z(s, £), 6. (y(r Vs, 77 1)) 4 Ag(r1s) ds

G
(&, 9)po(r, i) = / Bo-1 (agic(z(s, si), y(sr, si))) ds.
G

(Here and throughout the paper we will identify functions from G into some space
of functions on G/H with functions on G x G/H.) Similarly, if Cy = B.(H, A®
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K; B), then B.(G,A® K) can be made into a Dy—Co pre-imprimitivity bimodule:

F.z(r) = /F(s,i‘)ﬁ,(m(s‘lr)) ds

G
29(r) = [ 2(r) Bulo(t) 2§ (O
H
pule ), = [ 2(r) B (057 7)) Agls™ )t

H

(z,9) ¢, (t) = /ﬂ,_l(z(s)*y(st)) ds 5 (t).
G
Finally, we have the Co—Byg pre-imprimitivity bimodule B.(H, A ® H):
f-a(h) = /f(t) (2 (¢ RY) - u(t, = h) db
H

z-g(h) = /:c(t) (gt~ h))u(t, ¢t~ h) dt

H

ol ) (h) = [ aoac(elt), Bu(u(h™ 1)) - i, ™)) Ar (™)
H

(@ Wma(h) = [ w0 i (a0, (eh) ) (e th) .

H

Now let Yy be the balanced algebraic tensor product
Yo = Bo(G,C(G/H,A® H)) Op, B-(G,A®K)Oc, B:(H,A®M);
by transitivity, Yy is an Eo—Bq pre-imprimitivity bimodule, and completes to give
Co(G/H,A) x55 G~y AXgu H.

For (F, f,7) in Bo(G,C(G/H,A®H)) x B(G,A®K) x Bc(H,A®H), define

eo(F, f,7) in Be(G, A) by

wo(F, f,7)(s)

= /</ﬂr (f(r—lst'l)*) < F(r,58)dr, b,-: (T(t)) >AU(St_1,t) AG(t_l)‘yg(t) de.
G

H

Then g is trilinear, and routine calculations show that it is balanced appropriately
in both spots. Thus there exists a map ¢ : Yo — Be(G, A) such that o(FQ f®7) =
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@o(F, f, 7). In order to see that ¢ is a Bo-rigged space isomorphism onto its range,
it suffices to check that it preserves the Bp-valued inner product and intertwines
the right action. The latter follows from straightforward calculations; to see the

former, we have the following computation. For t € H:

(FQFfRT,GR®g®a)p,(t)
= (1, {f,(F,G)p, - 9)co - 0)Bo(1)

=[] [y ah-x(<r(h),ﬁ,--x (£ e (nond P2, 25H),

G G GHH

Glen 2580y o(u™ 5k)) - 8u(o(6h0) -ulk, k™ h0)), )

u(h™Y, ht) v (k) dh dk ds dz dy

= [ [ [ ] ]ttt anes (G0, st (560)
G G

G HH
bymrg—r (F(z,28k)) -u(s™1,2™1)", By-1y (g(y™ sk)*)
84121 (G(zy, 28k)) - u(s™, 27 1)*) - S (o (k™1 ht)) - u(k, k‘lht)>A)

-u(h™Y, ht) y§(k) dh dk ds de dy
=/////“(h_l;}‘)* ah-*((ﬁrl(f(s)') -5,—13—; (F(:c,.'l:.ék)),r(h))‘:
G G GHH

(Bo=ry (g(y™ 2 5k)*) - 8,-15-1 (G(zy, Tik)) , 81 (o (k™ ht)) - u(k, Ic‘lht))A)

cu(h~, ht) yS (k) dh dk ds dz dy

=/////u(h'l,1z)‘ ap-r (u(s™ iz 2s) ) u(h ™, 57 ™)
GG

HiEa
apesymrams (B (F(5)) - Flo, i) , Sou(r(B));
(Boy (9™ sk)") - Glay, 2ék), beak (o(k™ R1))), Ju(h™?, 57 20"
oo (u(s™ 121, k) - (u(k, = AE))u(h ™1, ht)

v (k) dsdk dh dy dz
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which becomes, by the substitutions s — z~'sh™1, y s 2=y, k+s htk™!

(FoforGogea)p,(t)

= [ [ [ [ [ummr anes(uths™, by i hs
G

G HHG

oyt ((ﬁx (™ sh™1)*)  F(x,5), Sy (T(R)))s By (9y™ " sth™1)")

Gy, 81),, Syuams (0(R))), )ulh™, hs™)" apos (u(hs™", stk™7)
~u(htk™t k) u(h™t RS (htk~ ) Ag(h" Ay (k™) ds dk dh dy de

l!!!//u(s_i,s)as-;(u(sh‘l,h)*) a,—l((ﬂx(f(xnl-s’l_l)*)

HH
F(2,8), e (W)Y (By (o™ stE™)") - G0, ), Bpaems (0(R))), )
a1 (u(stk™ E)) u(s™!, st) Ac(h_l)'yg (h) Ac(k"l)yg(k)

1% (t)dh dk dsdz dy
= /u(s, 5T ay-1 (p(F @ F @ T)(5)" (G ® g @ a)(st))u(s™?, st) ds 7§ (t)

G
={p(Fofor), p(Go®gd o)), (1),

which proves the assertion. The equality at { follows from two cocycle calculations

included here separately:

u(h™ B) a—i (u(hs™, sh™ Y Yu(h™! hs™ 1)
= u(h™, h)* u(s™t, sh™1) :
=u(s™h 8) u(h™ ks ap-a(u(hs™, ) u(s~t, sh™)”
=u(s7h 8) w(h™" s~ 1) u(s™t, sh™)* a1 (agp-1 (u(hs™L, 5)))
=u(s7, )" oy (u(sh™, hs™ ) ap-r (u(hs™t, 5)))

= u(s™h, 8)* e - (u(sh™t, A)*);

w(h™ hs™ 1) i (u(hs™, sth™ ) u(htk™ k))u(h™?, ht)
= u(h™1 hs™)* apor (-1 (u(stk™ !, k) u(hs™1, st)) u(h™?, ht)
= oy~ (u(stk™ k) u(h™! hs™H)* a1 (u(hs™!, st)) u(h™1, ht)
= a1 (ulstk ™1 k) u(s™, st).
We now want to show that ¢(Y;) is dense in X. We will need the following

lemma regarding the norm on X, induced by the Bg-valued inner product.
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LEMMA 2.1. Suppose {fn} is a sequence in B.(G, A) such that ||fal; — 0
and there exisls a positive constant M and a compact set K C G with ||fulleo < M
and supp f, C K for alln. Then ||fallp — 0.

Proof. Let {f,}, M, and K be as above. Then simply compute: *

1£all = II{fas fa)BollB € {fn: fr) Ballr(ar, 4y

/ (s, 8)* atyes (fuls)" fn(sh))u(s‘l,sh)ds” dh

i
/I,
<f ] w8 (51 s s
H G

- / Xac-sae(8) [ Aol ds
G

H
< (K~ K O HY M || falls — 0.

Note that pp(K~1K N H) < oo because K~1K N H is compact in H.

We will also need the following technical lemma. The proof is an adaptation
of the proof of [10], Satz 1, which also appears in the appendix of [13].

LEMMA 2.2. Let H be a closed subgroup of a locally compact group G, and
fix g € LY(G). For each € > 0, there exists § € L\(H) such that

lg — g *u fll, <e,

where g x5 f(s) :I{g(st"l)f(t) dt.

Proof. For h € H and g € L'(G), define Ry(g)(s) = g(sh™'). Then it is easy
to check that Ry is an isometry of L'(G) which satisfies for each f € L'(H)

Ra(g % f) = g #u Ba(f) and gy f = / Ri(g)f(t) dt.
H

Now h +— Rp(g) is Borel from H into L!(G), so it is continuous on some compact

set K C H of positive measure. A standard compactness argument gives an open

set U C H with positive measure and compact closure such that ||Ra(g) — R.(g)|,

< ¢ for h,t € U. Let w be the characteristic function of U in H, normalized so

that [w(t)dt =1, and put f = R;'(w), where h is some fixed element of U. (So
H
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f is in fact the normalized characteristic function of Uh™!, a relatively compact
open neighborhood of e in H.) Then

lg = g% Slly = IRa(9) = 9+ Ra(H), = | Ras) - / Re(g) w(t) e
H
= | [ Rat0) - Reto) wity o],
H
< [1Ra0) - Rl () dt <.
H

THEOREM 2.3. Let (A, G, a,u) be a lwisted dynamical system, and let H be
a closed subgroup of G. Then the completion of the right By = B.(H, A;a,u)-
rigged space Xo = B(G,A) is a Co{G/H,A) xa4 G — A Xou H imprimitivity

bimodule.

Proof. Thus far we have shown that there is a right Bo-rigged space isomor-
phism ¢ of Yj into Xo; as outlined in the beginning of this section, the theorem
will follow if we can show that the range of ¢ is dense in Xo. For this, it suffices to
approximate functions g ®4 a of the form s — g(s)a,(a) for g € B.(G) and a € 4;
of course this approximation will be done in the sense of Lemma 2.1. So, fix ¢ and
a as above, and let K = suppg. Fix relatively compact open neighborhoods U’ of
ein G and V' of e in H. For each ¢ > 0, we will construct an element F @ f ® 7
of Yy such that:

(i) lg®aa—p(FOfRT1 <é

(i) lo(F ®© £ @)l < Il flolle

(111) suppp(F @ f@ 1) C KU'V".

Given this, we can select a sequence {¢(F, ® fr ® )} in Xo such that {g @, a —
@(F, ® fn ® o)} satisfies the hypotheses of Lemma 2.1, and therefore o(Fn ® frn ®
) — § ®a a in Xo.

So, fix € > 0. Let £ be a unit vector in H, and let 7 € JC(H) be the operator
defined by T'(¢) = (¢, €)#&. For any 7 > 0 we can find elements & and ¢ in a norm 1
approximate identity for A such that ||ja — ¢*b*a]| < 7. Thus [|a — (z,p)all < n,
where z = b® T - (c®¢) and y = a ® £; note that [|z]| < 1 and [|y|| = [|al]-

Now the action § of G on A ® H is strongly Borel, so the map s — &,(y)
of G into A ® H is Borel. It follows from the generalised Lusin’s Theorem ([6],
11.15.15) that there is a continuous function D : G — A®H and aset E C G with
w(E) < n and D(s) = 6,(y) for s e G\ E.
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Next, Lemma 2.2 (taking G itself for the closed subgroup) provides a nor-
malized characteristic function ny of a relatively compact open neighborhood U of
e in G such that ||g — g 5 ny|]; < 7. A compactness argument shows that U may
be taken small enough to also guarantee that ||D(s) — D(r)|| < » whenever r € K
and r~'s € U. Of course we may take U smaller still to ensure that U C U’

Similarly, use Lemma 2.2 (with H for the closed subgroup) to find a normal-
ized characteristic function ny of a relatively compact open neighborhood V of ¢
in H such that {jny — ny *» nvll; < 9. V may also be chosen so that V C V',

Finally, an application of Urysohn’s Lemnma provides a function N € Co(G/H)
which is identically 1 on the image of KU in G/H.

We make the following definitions:

F(r,3) = g(r) N(3) 6, (c ® €)

f(S) = nU(s) o
7(t) = nv (1) 6u(y) Do (G (™).

Then F € B.(G,C.(G/H,A®™MH)), f € B(G,A®K), and 7 € B.(H, AQH).
Moréover, we can compute:

g ®aa—o(F & fRT)h

= [ Js9aut@) - o(F & 18 )] ds

G

- f lo(s) ) - / g NG) ( / nar (151 ny (8) dt) (8 (2, 6,(y))a dr| ds
G G H

< [1a)

G
+ 160 = [ oty N nu(19) dr| 18:(2), 6l ds
G G

as(a) = {8:(2), 8- () | ds

+ [ 1o N nu(=19)] 164(2) = 8. (2), (3Dl drds
G G '

+ [ [la) NG [0~ [ ol st )y ny @) @] 16 (@), 8,0l dr s
G G H

<lla= (@ v)all [ lo(s)lds
G

+ lall ol / l9(s) — g %a nw (5)] ds
G
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+||y||/ /|g(r)ny(r_ls)| |D(s) — D(r)|| drds

G\E G\E
+2lalll [ [lo)notr19) drds
G\E E
2l [ [ lotr ) ards
E G\E

+2lallol) [ [ lotr) mo=t9)] drds
E E

Hlell il [ 1961 ér [ nw(s) = sy (5] s
&) G

< 7llglls + allell gl + wllzll gl + 6nllzll Izl llglleo + nlizlH Iyl llgll2
= n(llglly + {lall + 21|l ligll, +6lall lglle)-

Thus by a judicious choice of 4 we may ensure that {|g @, a—p(F @ f@ 7)1 < €.
Also, we have

sup |le(F @ f @ 7)(s)l
SEG

= sup " /g(r) N(s) (/nu(r_lst_])nv (t) dt) (6,(2),6:(¥))a d'r“
G

3€G S
<lellslllslior | [ o167y ()] dtar
G H
= llall lgll.

Finally, one can check that supp ¢(F ® f®7) is contained in KUV C KU'V'.
As described abave, the theorem now follows from Lemma 2.1. 1

3. THE IMPRIMITIVITY THEOREM

In this section we use Theorem 2.3 to define a process for inducing representations
of AXqu H to A Xqu G when H is a closed subgroup of G. We then prove an
imprimitivity theorem, which describes which representations of A X4 G are in-
duced from A x4 H. The section concludes with a theorem on induction in stages.
We will retain the notation of the preceding section; in particular, £ denotes the
imprimitivily algebra Co(G/H, A) xaa G and Ey denotes its dense §ubalgebra
B.(G,C.(G/H, A); &, &), identified with a subalgebra of B.(G x G/H, A).
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ProposiTioN 3.1. There ezisis a non-degenerate x-homomorphism ¢ of
A Xay G into M(E).

Proof. For each f € B.(G, A;«,u) and F € Ey, put

(ANFYs,1) = [ £0) o (P, r )l 7 1s)
G

and

(Fe())(s, t) = /F(r, t) o (F(r~18)) u(r, r1s) dr.
G

Then it is easy to see that ¢(f) determines a multiplier of Ey (the cocycles do not
disrupt the continuous second variable), and thus an element of M(E). Indeed,
@(f) is just the element of B.(G, Cy(G/H, A); o, u) C M(Ejp) given by o(f)(s,%) =
f(s); this makes it clear that the map f — ¢(f) is a *-homomorphism.

It only remains to show that ¢ is non-degenerate. Let {ex } be an approximate
identity for A, and let {é;} be the sequence of functions defined by &.(f) = e,
which converges strictly to 1 in M(Co(G/H, A)). Then an approximate identity
for Bc(G, A; o, u) constructed from the {ex) as in the appendix of [13] is carried
by ¢ to an approximate identity constructed from the {&;} for Eo. Thus ¢ is
non-degenerate as claimed. &

Suppose we have a non-degenerate representation # x U of A x4 H on a
Hilbert space H. Then we get the induced representation (7 x U)X of £ on HX,
which extends to M(E). Composing with ¢, we thus obtain a non-degenerate
representation (1 x U)§ = (7 x U)X o of A x4 G on H§ = HX; we say that
(7 x U)§ is induced from A xou H. The map which sends each representation
7 X U of A Xa,u H to the representation (7 x U)§ of A x4 G induces a map on
unitary equivalence classes, which will be denoted by Indg.

One can deduce from the definition that (7 x U)$ is the integrated form of
the covariant representation (7, U§) defined for a € 4, s € G, and 2@ € € H§
by

m3(@) (@€ =(e-2)®¢ and UF(s)(z®E) ="'z ®¢,
where (a-z)(t) = az(t) and *z(t) = a,(z(s™'t))u(s, s~'¢). Thus (7 x U)$ is given
for fin B(G, A; o, u) by

(rx DFHHE®E = (f+2)®E,

where * is the usual twisted convolution in B.(G, A; a, u). These formulas will be
useful in Section 4, and in the proof of Theorem 3.3. First, we have the following
imprimitivity theorem for Ind$:
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THEOREM 3.2. Let (A, G, a,u) be a twisted dynamical system, and let H
be a closed subgroup of G. A represeniation (v x U) of A Xqu G on a Hilbert
space H is induced from A Xqou H if and only if there is a representation p of
Co(G/H,A) 54 G on 'H such that

7 x U(f) p(F) = p(f - F)
forallf € AXq G and F € Co(G/H, Ay x5,4G. (By f-F is meant the product
o(F)F in M(E), which will be an element of E.)

Proof. The theorem is immediate from Theorem 2.3, Proposition 3.1, and
[14], Theorem 6.29. 1

THEOREM 3.3. Let (A, G, a,u) be a twisted dynamical system and suppose
H and K are closed subgroups of G with K C H. Then for each covariant repre-
sentation (m,U) of (A, K, a,u), (7 x UYEG is unitarily equivalent to (m x U)%.

Proof. Fix a covariant representation (m,U) of (A, K, &, u). In order to show
that ((7 x U)E)G is equivalent to (7 x U)%, it suffices by [14], Theorem 5.9,
to show that Be(G,A) ®ax, .u B:(H,A) is isomorphic to B.(G,A) as a pre-
Hermitian A X o4 K-rigged A X4 G-module. Let 1) be the map determined by
the rule ¥(z ® f) = z - f, treating f in B.(H, A) as an element of A x4y H. In
other words, for z in Bo(G, A), f in B.(H, A) and s in G, define

Pz @ fi(s) = /z(st) as(f(E7Y) u(st, t™1) *;/f’;-(t) dt.
H
Then it is clear from the definition that i intertwines the left action of
A Xqu G, and it is straightforward to check that it also intertwines the right
action of A X4 4 K. To sec that 1) preserves the A X4 K-valued inner product,
fix z and y in Bo(G, A), f and g in B.(H, A), and k in K, and compute:
(@ fy® 9 axy .k (k)
= {f (=, y)Axa,..H “9)a X, uk
= /u(h, A=) o (F(h™Y)" ({2, ¥) axauir - 9)(BTUR)) ulh, h1k)
H
B () Ag(h~') dh

= //u(h,lz"l)* an (f(R™1) (2, ¥y axe a() oy (gt~ R E)) u(t, i AT E))
H H
u(h, hTE) Y E (k) 7S () Ag(h~ ) dt dh
:///u(h,h"')* an(f(R 1) u(s7t,5)" g (z(s) y(st)) u(s™1, st)
HHG

(gt AT u(t, T RTYE)) w(h, AT k) v (k) v5 (8) Ap(RT!) dsdt dh
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2
- / / / w(h, A7) an (b)) o (u(s™, 8)") ulh, 5=1) ame—s (2(s)" y(58))
H H G

u(h, sTH" ap(u(s™!, st)) u(h, 1) an(g(t A7) u(h, 1)

“an(ut, T RTR) u(h, AT k) YE(E) G () Ag(hm ) dsdt dh

which becomes, by the substitutions s — sh, { — A~ 1kt

:///u(h,h_l)* an(f(R™1)) an(u(h™ s~ sh)* Y u(h, A= s™")
HHG
- a1 (w(sh)*y(skt)) u(h, A 157 g (u(h™ st skt)) u(h, R™kt)
cake(g(t1)) u(h, ATk an(u(h kt, ¢ 1)) u(h, A k)
YR (k)75 (h™ kt) Ag(h™') Ag(h) ds dt dh
:///u(s_l,s)* ay-r(u(sh, ™) u(s™, sh) an(F(R™1)* ) u(s™, sh)*
HHG
~ary-r (2(sh) y(skt)) u(s™", skt) ar(g(t™1)) u(s™", skt)* oy (u(skt, t~1))
cu(s™', sk)vG(ht) vE (k) ds dt dh

= /u(s‘l,s)* a,-x((/ z(sh) asn(F(h™")) u(sh, k=) vG (h) dR)”
G H

[ Wk a7y okt ) 150) a0) (s k) 5 (K) ds

H
= [ s, e (8 © 1)) $(y © 0)(ok) (5™, 5k) 7 (1) ds
G

={P(z® f), V(Y ® 9)) axe  k (k).

It only remains to check that the range of  is dense in B.(G,A). This
follows from the fact that an approximate identity for B.(H,A;a,u) is also an
approximate identity for the right action of B.(H, A; @, u) on Be(G, A). &

4. BUSBY AND SMITH’S AND MACKEY’S INDUCED REPRESENTATIONS

In [1], Busby and Smith discuss two related inducing processes. The more general
process consists of inducing from a C*-algebra A to a twisted system (A, G, a, u);
a special case yields a process for inducing representations of a closed normal
subgroup up to the larger group. In this section we show that Ind$ can be used to

produce representations equivalent to Busby and Smith’s in these two situations.
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We also show that Indf, produces representations equivalent to Mackey’s induced
multiplier representations of groups [11], Section 4.

Let us begin by recalling the method for inducing from a C*-algebra to a
twisted system. Suppose (A, G, ¢, u} is a twisted dynamical system and 7 is a
representation of A on a Hilbert space H. Define the maps # and U™ of A and G,
respectively, into B(L?(G,H)) as follows:

(#(a) f) (s) = 7 (e () f(5)
(W™ (&) £) (s) = 7 (u(s, 1)) f(st) Aa(t).

Then (1], Theorem 4.1 states that (%, U”) is a covariant representation of
(A, G,a,u) on L}(G,H).

We also can induce representations from A to (A4, G, o, u), using Ind$ with
H = {e} and the fact that in this case A x,, H = A. More explicitly, let
7 : A — B(H) be a representation of A, so that defining U(e) = 1g(x), (7,U)
is trivially a covariant representation of the restricted system (A, H, «,u). Then
Indg provides the induced covariant representation (¢ U¢) of (A, G, «,u) on
the completion HE of B.(G,A) @4 H. The operation on elementary tensors is

calculated as follows:

a)(fof)=a fof
US(sHf®€)="fRE,

where * f(t) = a,(f(s~1t))u(s, s~ 11).

PROPOSITION 4.1. Let (A, G, o, u) be a twisted system. Then for each repre-
sentation m of A on a Hilbert space H, Busby and Smith’s induced represenialion
(#,U™) of (A, G, a, u) is unitarily equivalent to (7, UY).

Proof. Define ¢y : B.(G, A) x H — L*(G,H) by
Pol£,€)(5) = m(as(f(s™1)uls,s™)) € Ag(s)™ 5.

Clearly (g is bilinear, and maps into L?(G,H) since f is bounded with compact
support. Thus there exists a map ¢ : Bo(G, A) ® H — L*(G,’H) such that

p1(f © &) = polf, ).
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We will show that ¢, extends to a unitary map between the completions of
the spaces. First compute:

(f@&gen) = (n({g, ), )
= (o [ uts™, o) s alo)" F) (s 5) ),

G

= [ (ratr6™ uts, ™ )e mantals™ ) s, 7 n), Acs™) ds
J |

- ] (1 (F ®E)(s), p1(0 ® 7)(s)) ds
G
= (p

1(f ® &), p1(9 ® M) z2(a,m)-

It follows that ¢ is isometric, and so extends to a unitary operator ¢ provided it
has dense range in L2(G, H). To see this, note that ¥(f)(s) = o, (f(s71))u(s, s71)
defines an automorphism ¢ of B.(G, A), so that functions of the form s
e1{¥~1(g) ® &)(s) = m(g(s))€ (for ¢ € B.(G, A)) are in the range of ¢;. But
functions of this form have dense span in L*(G,H), because 7 is non-degenerate.

Thus far we have established the unitary equivalence of the Hilbert spaces in
question. We need only to check that ¢ intertwines the induced representations.
Compute, for a in A, f in B.(G, A), € in H, and s,t in G:

P(7%(a)f ® €)(s) = ¢(a- f @ E)(s)
= m(ay(af(s™1))u(s,s71)) € A(s)™*
= m(as(a))m(es (F(s™1))u(s, s71)) € Aa(s)™
= #(a)p(f ®E)(s).
Also:

eUC(t)(f @E)(s) = o('f @ E)(s)
= (e (*F(s™))uls, 7)) € Ag(s)*
= m(as(on(FE s ))ut,t7 57 1))u(s, s71) € Ag(s) ™5
= m{u(s, t)a,,(f((st)_l))u(s, " ag(u(t"l,t‘ls"l))u(s, s'l))ﬁ A(;(s)"%
= w(u(s, s (F((st)~1))u(st, (st) 1)) € Ag(st) "3 Ac(t)™*
= n(uls, 1))e(f ® E)(st) Ag(t)™?
= UT(t)(o(f ® €))(s)-

This completes the proof of the proposition. &
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In order to induce representations from a closed normal subgroup N of a
group G, Busby and Smith essentially define a twisted action (8,v) of G/N on
C*(N) such that C*(N) xg, G/N = C*(G), and then use the process described
above to induce from C*(N). They show ([1], Theorem 4.2) that the representa-
tions induced in this way are equivalent to Mackey’s. Now our process can be used
to induce representations from C*(N) to C*(() by applying ind$ to the trivially
twisted system (C, N,id, 1). In this special case our inducing process is essentially
Rieffel’s, which was shown in [14], Theorem 5.12, also to produce representations
equivalent to Mackey’s. Thus we see in a roundabout way that indg reproduces
the induced group representations of Busby and Smith, and Mackey.

More generally, Mackey described in [11], Section 4, how to induce multiplier
representations from subgroups. A multiplier of G is a Borel function o : G x G —
T such that o(s,e) = o(e,t) = 1, and

o(s,t)o(r,st) = o(r,s)o(rs,t} ¥rsteG.

A o-representation of GG on a Hilbert space H is then a Borel map U : G — UB(H)
such that U, = id and
UUy = o(s, t)Us;.

(This definition is actually conjugate to Mackey’s.} Thus the multiplier is just a
twist for the trivial action of G on C, and a o-representation is just a covariant
representation of the twisted system (C, (7, id, o).

Now fix a multiplier & of 7, a closed subgroup H of (7, and a o-representation
U of H on H. In what follows we outline Mackey’s construction for inducing
o-representations, based on the formulation in [6], XI.10.9, for ordinary group
representations. Choose a quasi-invariant measure ;¢ on G/H; by [6], 1I11.14.5
and 7, we can take u = p¥ (sce [6], 111.13.8), where p is an everywhere positive
continuous rho-function on ¢, Thus by [6], II1.13.2,

p(sh) = (Au(h)/Ac(h))p(s) Vs€G heH,

and by [6], 111.13.10, we may normalise the Haar measures on H and G so that

/f(s)p(s)ds: / /f(sh)dhdpt(.é) Vf e B.AG).
G

G/H H

Then the space K of Borel functions f : ¢ — H satisfying

f(sh) = a(s, U (f(s)) Vse G heH
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and such that [ {f(s), f(s)}» du(8) < oo is a Hilbert space (identifying functions
G/H
which are equal almost everywhere), with inner product given by

(o) = f (F(), 9()) ¢ Au(3).

GIH

The representation V' of G induced from U is given on K by

Vi(F)(2) = (s, s~ 10 f(s712) (P(;(_t)t)) 3 .

The next proposition shows that Mackey’s induced o-representations are
equivalent to the representations we get by applying indf, to the twisted system
(C,H,id, 0). We are grateful to the referee for suggesting this possibility. Here we
consider only multipliers which are normalised in the sense that o(s,s™*) =1 for
all s € G since an arbitrary multiplier is always similar to a normalised one, this
causes no loss of generality.

ProrPOSITION 4.2. Let ¢ be a normalised mulliplier of a group G, and let
H be a closed subgroup of G. Then for each o-representation U of H on a Hilbert
space H, Mackey’s induced representation V' of G is unitarily equivalent 1o U§.

Proof. Define vg : Bo(G) x H — K by

Yo(f,€)(s) = /f(sh)a(s‘l,sh)Uh(g)p(sh -3 dh.
b4

Then g is clearly bilinear, and each ¥p(f, £} is a Borel mapping of G into H; thus
o determines a map ¢; of B.(G) ® M into the space of all Borel functions from
G into H. To see that 3; maps into K, we need to check that each 1 (f ® £)
transforms properly, and we must verify the norm condition. For the former,
compute:

nlf @ik = / F(skh)o(k™"s™, skh)Un(€)p(skh) ™7 dh
H
Ak / F(shyo(k='s™1, sh)Up-1p(E)p(sh)~ 7 dh
H
- / flshyo(k™ s, sh)a(k=1, R)Uy-1Un(€)p(sh)™ % dh
H
= U};—l (/ f(sh)a‘(s, k)()’(s"l , sh)Uh(f)p(sh)“% dh)
H

= a(s, lc)Uk"1 (1 (f @ €)(s)) .
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For the latter, we have the following calculation, which also shows that %; is
isometric, and so extends to an isometry ¥ of H into K.

(f®&g0nys =(U ({9, Foany) (€)mn
= /((9,f>c*(H)(k)Uk(€),n>H dk

H
= / f (@ F(sk)o(s~, skYUL(E), mynvG (k) dk ds
G H

= / / /(f(shk)a(h'ls_l,shk)Uk(I;'),y(sh)n)up(sh)‘lvg(k)dkdhdp(é)

G/H H H
[ [ [ 5(6Roth 157 s, o R mheslsh) )
G/HH H
dk dh dp(s)
= / / / (F(sk)o(h"s™2, sk)o(hT, EYUL(€), g(sh)Un(mymp(sh)™ 3 p(sk)~3
G/H H H
dk dh du(s)
= / </ F(sk)o(s™", sk)Us(€)p(sk) ™ dk
GIH H
/ g(sh)o(s™, sh)Un(m)p(sh) ™% dh) du(s)
H
- / (W1(F @ E)(5), v1(g ® )(s))m Ap(3)
G/H

= (i (f®E), Mg @M.

To see that 9 maps onto K, and therefore implements an isometric isomor-
phism between H$ and K, we show that w(H$ )L = {0}. Suppose we have g € K
such that (¥(f ® €),g)}x = 0 for all f € B.(G) and £ € H. Then:

0= / (W(F ®E)(s), 0(5)) dpu(3)

G/H

= [ [urtshe shyua©p(sh) ™ g(s)n dhduté)

GIH H

- / /f(Sh)(E,0(8",sh)U{l(y(S)))HP(sh)"%dhd#(é)

G/H H
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= / / F(sh){E, 75T shya (s, Wg(sh))xp(sh)=3 dh du(s)

G/H H

= / / F(sh)E, g(sh)ywp(sh)™ T dhdp(s)

G/H H
= / p(5)} F(s)(€, 9(s)) e ds.
G

Since p is everywhere positive and f € B.(G) was arbitrary, this implies that
for each £ € H, the function 5 — (£, g(s))» = 0 almost everywhere in G; hence
g(s) = 0 for almost every s, which isto say g = 0in K.

It only remains to show that ¢ intertwines U§ and V. For this, simply
compute:

WUSU(S )(s) = ¥(T ©E)(s)
= [ 5s)o(s™ sV E)plsh)
H

:/f(r"lsh)a(r,r‘lsh)a(s‘l,sh)Uh(g)p(sh)—%dh
B

o™
TN
=
-
—~ '
NS
&»
p—
S
o=
jo B
o

/f(r Ra(r, 7 s)a(s™ r, v~ sh) U, (€)p(r~1sh)™

. rls p(r1s)
= otrrieyis @ e ~'s) (L
= KB OO, ¥
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