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STATIONARY DENSE OPERATORS AND GENERATION
OF NON-DENSE DISTRIBUTION SEMIGROUPS
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ABSTRACT. We introduce the notion of stationary dense aperators and show
how they can be used to extend a result of V. Wrobel on the spectrum
and generation theorems for distribution semigroups due to T. Ushijima and
D. Fujiwara from densely defined operators to not necessarily densely defined
operators. Other applications are sketched.
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INTRODUCTION

Let A be a closed linear operator in a Banach space E. Then for each n € Ny
n

the space D(A™) supplied with the norm ||z||, := 3. [|A*2|| is complete, as can
k=0

shown by induction using the closedness of A. Thus the projective limit Do, (A)
of (D(A™), || - la), i.e. () D(A™) supplied with the family of norms (|  [|n)n, is a

Fréchet space. Moreover Ay, i.e. A restricted to Doo(A), is a continuous linear
operator in Dg,(A).

Instead of studying the behaviour of A in E we can study the behaviour of
Ao in Do (A) and hope that both are somehow related. For some properties and
under additional assumptions this is indeed the case. A quite natural assumption
seems to be that A is densely defined and has non-empty resolvent set p(A) since
in this case Dy (A) is dense in E (see [15] and [16]).

But in the last years when dealing with closed operators in a Banach space
there has been a growing interest in dropping the usually imposed densely-defined
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assumption. This has been the case for generators of integrated semigroups, then
for generators of regularized semigroups, and quite recently for generators of dis-
tribution semigroups (see [8]). But when A is not densely defined then a fortiori
Doy (A) is not dense in E, we “lose information” and in general it is impossible to
retrieve it. '

We give an example which we are especially interested in. For the generators
of distribution semigroups as introduced in [10], i.e. for the “dense case” (see
Definition 3.1), a result of T. Ushijima ([15]) relates the operators A in £ and A
in D, (A) in the following way.

THEOREM 0.1. (Ushijima) Let A be a closed operator in E. Then A gener-
ales a dense distribution semigroup if and only if A is densely defined with non-
emply resolvent set and Ay generates a Co-semigroup in Do (A).

In this theorem the conditions “dense” and “densely defined” can not he
simultaneously dropped (see Section 3); we lose “too much” information.

We therefore introduce in Section 1 the new notion staiionary dense for
closed linear operators in a Banach space. If A is stationary dense with p(A)
non-empty then the information lost in passing from A4 and E to As and D (A)
can be retrieved. We give some examples in the following sections. In Section 2
we extend a result on the equality of the spectrum of A and Ao due to V. Wrobel
from dense to stationary dense operators. In Section 3 we drop “dense” from
Theorem 0.1 and have to replace “densely defined” by “stationary dense”. In
the same way we extend a similar result of D. Fujiwara ({6]) that characterizes the
generators of exponentially bounded distribution semigroups which are exactly the
generators of exponentially bounded integrated semigroups. Further applications
are sketched. Throughout this paper E will denote a Banach space.

1. STATIONARY DENSE OPERATORS

DEFINITION 1.1. Let A be a closed linear operator in £. We define
n(A) :=inf{k € No;Vm > k : D(A™) C D(A™m+1)}

and call A stationary dense if n(A) is finite.

REMARK 1.2. (i) If Do (A) is dense in D{A™) for the norm of E then A is
stationary dense with n(A) € n. For n = 0 those operators have appeared in [15].

(i1) If A is densely defined with non-empty resolvent set then D (A) is dense
in E (see [15] or [16]), and according to (i) A is stationary dense with n(A) = 0.
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(iii) If A has non-empty resolvent set then
n({A) = inf{k € No; D(4*) C D(AF+1)}.

We want to remark that (ii) and (iii) are false in general if the assumption
p(A) # 0 is dropped, as the following example shows.

EXAMPLE 1.3. Let H be a Hilbert space with scalar product (-,-) and let
A be an unbounded closed linear operator in H which is densely defined. Choose
zo € H\D(A) and set B := (-, z0)zo € L(H). Then D(AB) = {z,}* and AB = 0.
Define for each n 2> 2 the operator A, in the Hilbert space E, := H" by

An($1) . 'yz‘n) = (xZ:z-':h - ‘,.’En_l,Bﬁn, Awl)

with D(An) := D(A) x H"~1. Then A, is a closed and densely defined operator
in E,, and for all k € {1,...,n— 1} we have

Aﬁ(xl, ey ®n) = (Zk4t,-..rTn-1, Bry, BAxy, BAz,, .. ., BAzk_y, Axy)
and D(AE) = D(A)* x H"~*. We further have
An(zy, ..., 2n) = (BAzy,..., BAz,_1, ABz,)

with D(A}) = D(A)"~! x {zo}*. Hence D(A?) is not dense in E,. Sup-
pose in addition that imALx,, which happens e.g. for H := [?, and A(y) =
(£2,0,264,0,38,0,4¢s,0, . ..) with maximal domain and zo = (0, 1,0,1/2,0,1/3,0,
1/4,0,...). Since BA = 0 with D(BA) = D(A) we then have A" = 0 from which
D(AE) = D(AR) for all k > n. Thus A, is stationary dense with n(An) = n and

Vi eNg: D(AE) # D(AE Y = k= n.

Let now I be a non-empty subset of N, denote by E; the {?-direct sum of the
spaces £;, 7 € I, and define

Ar = {((=5), (y;)) € Br x E;¥j5 €1:(x5,y;) € A;}.

Then Aj is a densely defined closed operator in E; satisfying

VkeNy: D(AY) £ D(AA Y = kel
Letting I = N we see that a densely defined operator need not be stationary dense.

EXAMPLE 1.4. Let m € Ny and £ := C™[0,1]. Let A := —d/ds with
D(A) = {f € C™*1[0,1]; f(0) = 0}. Then n{A) =m + 1.

We now give some lemmas to provide further examples of stationary dense
operators.
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LEMMA 1.5. Let A be a closed linear cperator in E. Suppose that there is
a sequence (A,) in p(A) with nlir{:o [An] = oo and there is a constant C > 0 and
an integer k = —1 such that |R(A,, A)|| € C|As|* holds for alln € N. Then A is
stationary dense with n(A) < k + 2.

Proof. We may assume |A,| 2 1 for all » € N. By the resolvent equation
there is a C" > 0 such that ||Ay R(An, A)z|| € C/||2||k41 for all n € N and z €
D(A*+1) 1f & € D(A**?) then A\, R(\s, A)x € D(A*¥+3) for all n and

[An B(An, A)z — 2| = [|R(An, A)Az(| < C'|An] (| A2 [lk41 € C|An] |2l k42

Hence z = nlir{.lo AnR(An, A)z belongs to the closure of D{A*+3), We are finished
by Remark 1.2 (iii). #

In Example 1.4 with m € N fixed we have n(4) = m + 1, ]0, c0[C p(A) and
[IR(X, A)l] € CA™=! for X > 1 as can be seen using (1.1) below, which is also valid
here. Thus the estimate n(A) € k + 2 can not be improved.

Moreover, the condition of polynomial growth in Lemma 1.5 is sharp as the
following example, inspired by Theorem 3 in [11], shows.

EXAMPLE 1.6. Let w : [0,00[—]l,00] be a continuous function with

lim r=*w(r) = oo for each k& € N. Then there is a Banach space E and a
r—o0

closed linear operator A in E which is not stationary dense such that all A € C
with Re 2> 0 belong to p(A) and satisfy

IR(A, A)|| < w([A]).

Indeed, we may construct inductively a sequence (M, )nen, of positive numbers
satisfying Mg = 1, M; > 1 and
ok
-
Vr20:) — <w(r); Vp,g€No: Mpy, > My M,
E
k=0

Let now
B,y = {f € C[0,1]; [|flla,y == sup M | F™)|oo < 00}

and A,y := —d/ds with D{(Aum,)) = {f € By f' € Equ,), £(0) = 0}. Define
for A € C the operator Ry by

(Raf)(t) = e f F(s)e ds.
0
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If Red > 0 and g := R,f then g(0) = 0 and Ag + ¢’ = f. Moreover g is a
C°-function with

n—1
(1) R ARED D CoV i A P CPILF

k=1 '
for all n € N, as can be shown by induction. Using ||¢llcc € ||fllc and
MM, _1_p € M,,_; for k € n— 1 we thus get

.

n—1
_ ALk AP
1y ,(n) < -1 (n—1) § _‘___l— (n—1—k} L .
Mn ”g ”00 = Mn-l”f ”00 + Man—l—k “f “00 + Mn ”flloo
k=1
Hence
o [A¥
llgflma) €D A 1 liaray < @(IADIS ll¢asn)-
k=0

Thus ¢ € E(p,), moreover g € D(A(n,)), and finally Ry = R(), A(n,)) with
IR(A, Ayl € w(|A]) for Re A 2> 0. From
D(Afyy,)) = {f € Ea,y ¥ €40, k= 1} : fOD € B, f99(0) = 0}
we get
D(Afy,)) C{f € Epr,y; Vi €40, k= 1} FU0) =0}
for each k € Ny. The function f : ¢ — t*¥/k! belongs to D(AE‘M")), but not to
D(AE“;,}i)) since f(¥)(0) = 1. Hence A(p,) is not stationary dense.

LEMMA 1.7. Leta > 0,n € Ny and A be a closed linear operator in E such
that the Cauchy problem for A has a unigue mild solution on {0,a] for all initeal
values in D(A™). Then A is stationary dense with n(A) < n.

Proof. Just as in the proof of Theorem 10.3.4 in [7] we can show that
a
Eqy = {/(p(t)u(t;x) dt;z € D(A™), ¢ € C* with supp ¢ C [O,a]} C Dy (A),
0

where u(-;z) denotes the unique mild solution of ' = Au,u(0) = = on [0,a}.
Hence by Remark 1.2 (i) the proof is done. 1

Note that Example 1.4 (n-= m + 1 here and u(t; f) = f(- — t)) shows that
the estimation n(A) < n can not be improved.

COROLLARY 1.8. Lel A be the generaior of a local n-times integrated sem:-
group. Then A is stationary dense with n{A) < n.

For the notion of (local) integrated semigroups we refer to [1] and [14] (see
also [12]).
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2. SPECTRAL PROPERTIES AND AN EXTENSION OF A RESULT OF V. WROBEL

PROPOSITION 2.1. Let A be a stationary dense operator in E with non-empiy
resolvent set. Let n:=n(A) and F be the closure of D(A™) in E. Then
(i) Ar 1is densely defined in F.
(i) p(A; L(E)) = p(Ar; L(F)) and for all A € p(A) holds

1RO, Alloeey € C+ AN (IR, AR)lleery + 1)-

(i) The Fréchet spaces Doo(A) and Do, (Arp) coincide topologically and
Aso = (AF)co. -
(iv) n(A) = inf{k € Ng; Do (A4) C D(A*)}.

Proof. From D(A"*') C D(Af) we get (i). Since F is invariant under the
resolvents of A, p(A; L(E)) C p(Ap;L(F)) holds. If A € p(Ar) then A — A is
injective, and (A — A)~1 is a closed extensicn of R(X, Ap). If we choose p € p(A)
then (A — A)™' = (g — A)*(A — A)~'R(y, A)*. Thus X € p(A) and

[tR(X, A)llLce)

(2.1) R
< (e = A" lepcam), B IR, AR)llzeparpllR{x, A)llLce,pany-

The resolvent equation yields for 2 € D{A")

IR\ Ap)zlln = 3 [|A* RO, Ap)al|
k=0

n k-1
<Y (l’\lk“R()‘:AF)”L(F)”‘E” +> |/\|’||Ak"1"mll)
k=0 j=0

which together with (2.1) implies (ii). By applying resolvents to D(A"t*) —
D((AF)¥) < D(AF) for k = 0 we get this relation for all k£ € Ny, hence (iii) holds.
(iv) follows from (iii). @

For the next section we note a simple consequence.

COROLLARY 2.2. Let the assumptions of Proposition 2.1 hold and A C C.
Then R(-, A) exists on A and is polynomially bounded there if and only if R(-, Ar)
ezists on A and ts polynomially bounded there.

As an application we prove the following generalization of a result of V. Wro-
bel (Theorem 3.4 in [16]).



STATIONARY DENSE OPERATORS 117

THEOREM 2.3. Let A be a stationary dense operator in E with non-emply
resolvent set. Then p(A; L(E)) = p(Aco; L(Doo (A)))-

Proof. We continue the notation of Proposition 2.1. By Proposition 2.1 (i)
and (ii} Ap is a densely defined closed operator in F' with non-empty resolvent
set. Hence p(Ap; L(F)) = p((AF)oo; L(Doo(Ar))) by Theorem 3.4 in [16]. Now
the theorem follows from Proposition 2.1 (i) and (iii). &

The next example shows that we cannot drop “stationary dense” from The-

orem 2.3.

EXAMPLE 2.4. Let E :=1[' and A(mn) )= (Zn41) with D(A) ;= {z € 'z, =
0}. Then A is a closed operator in E which is not stationary dense. Moreover
Deo(A) = {0} and p(Ae) = {A # 0}. For A € C we have (A — A) " }(y,) =

n—=1 .

(-— > )«”“‘kyk) which for [A| > 1 and (y») := (1,0,0,...) does not belong to
k=1

E and which for [A| < 1 defines a bounded operator in E with norm (1 — [A)~1.

Thus p(A) = {|A] < 1}.
3. EXTENDING RESULTS OF D. FUITWARA AND T. USHLJIIMA

DEFINITION 3.1. A distribution semigroup is a mapping G € D'(L(E)) with
support in [0, oof satisfying

(Hker G(p);p € Do} = {0} and Vo, ¢ € D: G(p)G(¥) = Gy *o ¥)

t
where ¢ * ¥(t) := [(s)¥(t — s)ds for all ¢, and Dy is the subset of D of all
0

functions with support in [0,00[. The distribution semigroup is called dense if
U{imG(¢); ¢ € Do} is dense in E. The generator A of a distribution semigroup
G is defined as

A:={{z,y) € Ex E;Vp € Dy : G(—¢)z = G(p)y}.

REMARK 3.2. (i) If G is a distribution semigroup then its generator A is a
closed linear operator in £ which is densely defined if and only if G is dense (see
[8]).

(it) If A is a closed linear operator in E, D denotes D(A) supplied with the
graph norm, and I denotes the inclusion D — E then A is the generator of a
distribution semigroup if and only if there is a fundamental solution G for the
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convolution operator Py := § @ I - § ® A € D'(L(D, E)), i.e. a distribution
G € D'(L(E, D)) with support in [0, oo satisfying

PA*G=6®IdE and G+ Py =86xIdp

(see [10] and [8], for the convolution needed here see also [13] and [5]).

From (ii) and Theorem 1.6 in [2] we get the following characterization of the
generators of distribution semigroups.

- THEOREM 3.3. (Chazarain) Let A be a closed operator in E. Then A gen-
erates a distribution semigroup in E if and only if there are constanis o, 8,C > 0
and an inleger k such that for all

AeA:={&+in;€ > alog(l +In]) + 8}

the resolvent operator R(A, A) ezists and satisfies [|R(), A)|} < C(1 + |A])F.
Combining Theorem 3.3, Lemma 1.5 and Corollary 2.2 we get the following.

PROPOSITION 3.4. Let A be a stationary dense operaior in E, n := n(A)
and F the closure of D(A"™) in E. Then A generates a distribution semigroup in
E if and only if Ap generates a distribution semigroup in F.

This proposition will be used in the proof of our generalization of Theorem 0.1
(Ushijima’s result).

THEOREM 3.5. Lel A be a closed operator in E. Then A generates a dis-
tribution semigroup in E if and only if A is siationary dense with non-empty

resolvent set and A generales a Co-semigroup in Dy {A).

Proof. If A generates a distribution semigroup in E then A is stationary
dense with non-empty resolvent set by Theorem 3.3 and Lemma 1.5. Letting
n := n(A) and F := D(A"), Ar generates a distribution semigroup in F by
Proposition 3.4 which is dense since by Proposition 2.1 A is densely defined in
F. Thus by Theorem 0.1 (AF)o, generates a Cp-semigroup in Dy (AF), and by
Proposition 2.1 (iii) one direction is proved.

If A is stationary dense with non-empty resolvent set and A, generates a
Co-semigrooup in Do, (A) define n and F as before. By Proposition 2.1 and The-
orem 0.1 Ar generates a distribution semigroup in F'. Hence the other direction
1s implied by Proposition 3.4. n
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Example 2.4 shows in combination with Theorem 3.3 that “stationary dense”
can not be dropped from Theorem 3.5. Another example is furnished by taking
(M) = (n!) in Example 1.6. The operator A, is not stationary dense and hence
docs not generate a distribution semigroup, but since all functions in E, are
real-analytic we have Do, (A(ny) = {0}

For a further application we recall the following notion: A Cy-semigroup (77)
in a Fréchet space Y is called quasi-equiconiinuous if there is an @ 2 0 such that the
set {exp(—a-)Ty;t 2 0} is equicontinuous. If @ = 0 is possible then (T3) is called
equiconlinuous. In the same way as Theorem 3.5 but using a result of D. Fujiwara
([6]) instead of Theorem 0.1 and Theorem 6.1 in [10] instead of Theorem 3.3 we
can prove the following.

THEOREM 3.6. Let A be a closed operator in E. Then A generales an ez-
ponentially bounded distribution semigroup in E if and only if A is stationary
dense with non-empty resolvent set and Ao generates a quasi-equicontinuous Cp-
semigroup in Do (A).

Similar results can be proved for distribution semigroups of finile growth
order, i.e. those that belong to exp(a(-)?)S'(L(E)) for some ¢ > 0 and p > 1,
by using results due to I. Cioranescu ([3], [4]) and more generally for distribution
semigroups of growth M, i.e. for those that belong to K%;(L(E)) where M is a
growth function (see [9]), i.e. a continuously differentiable function [0, co[— [0, oof
with strictly increasing derivative satisfying M(0) = M’(0) = 0 and M’(o0) = o0
(growth order p corresponds to M(t) = t* /p).

THEOREM 3.7. Let A be ¢ closed linear operator in E and M be a growth
function. Then A generates a distribution semigroup of growth M in E if and
only if A is stationary dense with non-emply resolvent set and Ay, generales a
Co-semigroup (Ty) in Do (A) such that {exp(—M(at))Ti;t > 0} is equicontinuous
for some a > 0.

We could also state our results in the notion of (local) integrated semigroups
instead of distribution semigroups (see [8] and [9]).
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