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ABSTRACT. The selfadjoint extensions of a closed symmetric operator S with
defect numbers (1,1) are described when 5 has a Q-function belonging to
the subclass N; of all Nevanlinna functions. With the associated triplet of
Hilbert spaces 41 C H C H-_1 all but one of the selfadjoint extensions of
S are interpreted as rank one perturbations of a fixed operator extension;
the exceptional extension corresponds to a proper relation extension. Each
nonexceptional selfadjoint extension gives rise to the same triplet of Hilbert
spaces. The exceptional extension is characterized in a similar way as the
Friedrichs extension of a semibounded operator.
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0. INTRODUCTION

In a Hilbert space § with the inner product [, -] we consider a closed, symmetric
operator S with defect numbers (1, 1). The assumption that the defect numbers are
equal implies that S has canonical selfadjoint extensions, i.e., selfadjoint extensions
which take place inside the Hilbert space $. If S is densely defined all its canonical
selfadjoint extensions are operators. If 5 is nondensely defined the adjoint S* is
a multivalued operator with dimmul S* = 1 (here mul.$* denotes the multivalued
part of S*) and all but one of the canonical selfadjoint extensions of S are operators.
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Let A be a canonical selfadjoint extension of S in $. For some p € C\ R we
choose a nontrivial element x(u) € ker(S* — u) and define

(0.1) X(€) = (I +(€~ p)(A =67 x(p), L€ p(A),

where p(A) denotes the resolvent set of A. Then ker(S* — £) is spanned by x(#).
In fact, in terms of x(£) and A, the operator .5 can be recovered as follows:

(0.2) S={{h kY€ A:[k—2Ch,x(£)] =0}, L€ p(A).
A Q-function of § and A is a solution of

Q) - QM)
(0.3) =

= [x(€), x(N)], &€ p(A).

»1@

This defines Q(¢) uniquely, up to a real constant. From (0.3) follows the operator
representation

(04) QO =QW) + (¢ —MI+ (€~ p{A— 0" Yx(u), x(1)], £€ p(A).

The theory of @-functions goes back to M.Gi. Krein. It was presented in a general
form in [15]. The identity (0.3) implies that Q(£) is a Nevanlinna function. The
interest in Q-functions lies in the fact that we can translate facts about the operator
S and its selfadjoint extensions into purely function-theoretic terms.

The class N of Nevanlinna functions is the set of all functions Q(£) which are
holomorphic on € \ R and satisfy Q(€) = Q(¢), ImQ(£)/Im£ > 0, £ € C\R. The
class N contains a subclass Ny of functions @(€) which belong to N and for which

o
[ImQ(iy)/ydy < co. The class N;, which was introduced by I.S. Kac, contains

1
the subclass No consisting of all functions Q(£) which belong to N and for which
sup Im Q(iy) < co. We refer for these classes and their integral representations to

[9] [10], see also [5], [13].

The canonical selfadjoint extensions of S are in one-to-one correspondence
with 7 € RU{o0}. If the Q-function Q(£) of 5 and A is normalized by Re Q(u) = 0,
then

Q) — r(Im Q(p))*
QU +1

is the Q-function of S and the canonical selfadjoint extension A(r) which corre-

(0.5) Q- (4 = 7 € RU {oo},

sponds to 7. It is normalized by Re@,(s) = 0. In [5] it is shown that there
is an alternative: either S has a canonical selfadjoint operator extension with a
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Q-function belonging to N; \Ng or Ng, in which case all but one of its Q-functions
belong to N; \Ng or Ng, respectively, or there is no canonical selfadjoint extension
of 5 with a @-function belonging to N;.

If there is a canonical selfadjoint extension A with a @-function in Ny, then
the restriction in (0.2) is a domain restriction, so that S is not densely defined,
and all other canonical selfadjoint extensions of $' with a @-function belonging to
Ny can be described as rank one perturbations of A, so that the domains are all
equal to dom A, while the exceptional extension is the only selfadjoint extension
of 5 which is not an operator, see [5] and [6]. If 5 is semibounded this exceptional
extension is the Friedrichs extension, cf. [3], [4], (11], and [12]. In the case where a
canonical selfadjoint extension A has a @-function in N\ Ny the restriction in (0.2)
is a graph restriction and S is densely defined. Now all other canonical selfadjoint
extensions of S with a @-function belonging to N\ My are described as graph
perturbations of A, cf. [6].

In the present paper we show that the case where a canonical selfadjoint
extension A has a Q-function in Ny \ Ny is similar to the case where a @-function
belongs to Ny, when the canonical selfadjoint extensions are extended by means

of a triplet of Hilbert spaces

(0.6) 941 CHCH_1,

generated by the operator |A|%. In this sense the restriction (0.2) is again a
domain restriction and all but one of the selfadjoint extensions — extended to
operators from $ 11 to $5_; — are rank one perturbations of (the extended) A. The
(extended) exceptional extension is the only extension which is not an operator.
We show an invariance property of the domains related to the nonexceptional
extensions and we characterize the exceptional exiension in the original space. If
S is semibounded, our description reduces to a known description of the Friedrichs
extension, see [14]. Another approach to generalize the Friedrichs extension by
means of sesquilinear forms is due to A.G.R. MclIntosh, cf. {17], [18], [19]. For our
use of triplets of Hilbert spaces we refer to [2], [7], [8], [16], and {20].
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1. Q-FUNCTIONS OF CLASS Ny

-Let S be a closed symmetric operator with defect numbers (1,1) and let A be a
selfadjoint operator extension of S. Let Q(#) be a Q-function of S and A. Then
Q(£) belongs to No if and only if Q(£) has the integral representation

(11) QO =7+ j L do(),

where the function o(t) is nondecreasing on R and satisfies [ de(t) < co. An
R

equivalent condition is that ker(S* — £) C dom A, for some (and, hence, for all)
£ € C\R. In this section we present in the language of Ng functions some known
facts (see [5], [6]), which will later be interpreted in terms of triplets of Hilbert
spaces when Q(£) belongs to N; \ Nj.

THEOREM 1.1. Let S be a closed, symmetric operator with defect numbers
(1,1) and let A be a selfadjoint extension of S. The following conditions are
equivalent:

(1) S and A have a Q-function Q(£) delonging to Ny.

(11) A is an operaior and there erists an elementw € § such that the operator

S is defined by

(1.2) domS = {h € dom A : [h,w] = 0}.
(i) S and A have a Q-function Q(£) with the operator representation
(1.3) QO =y +[(A-0 ], LeC\R,

where w € § and v € R.

(iv) dom S* C dom A.

In each of these cases, x(£) = (A -7 w, v = 1_1_1130 Q(iy) and S is not
densely defined. !

COROLLARY 1.2. The spectral measure do(t) and w € § are related by

ol = [ do(0)

R
Proof. 1t follows from (1.3) and the resolvent identity, that

yIm Q(iy) = v*[(A — iy) 'w, (A — iy) " w].

The result follows by taking y — oo in this identity. ®
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Note that the element w in (1.2) is a module element for S, i.e., for all
Le C\R,
ran (S —¢) +span{w} = 9.

The codimension of ran (S — £) is one, since we assume that $ has defect numbers
(1,1). So it is sufficient to show that w ¢ ran{S — £): if not, then w = (S - ) f
for some nontrivial f € dom S and it follows from (1.2) that 0 = [Sf, f] — £[f, f],
a contradiction. The adjoint 5* of S is given by

(1.4) S* = A+ ({0} @ span {w}).

Here the symbol + denotes the componentwise sum in £ @ $. We will describe
the canonical selfadjoint extensions of S as rank one perturbations of A4, in terms
of the decomposition (1.4).

THEOREM 1.3. Lel S be a closed, symmetric operator with defect numbers
(1,1) as in (1.2). The selfadjoint extensions of S in §) are in one-to-one corre-
spondence with r € RU {oo} via

1 1
(1.5) A(T)=A+%+7[-,w}w, ;+7¢0,
and
. 1
(1.6) A(r)=S+({0} @ muls"), —+7y=0

Moreover, the selfadjoint extensions A(1), /7 +v # 0, have a Q-function in Np.
When 1/ + v = 0, the Q-funciion of A(7) belongs to N\ N;. The resolvent
operator of A(1), T € RU {oo}, is given by

(L7 (A =87 = (A= = x(®) [,x(®), feC\R.

1

Q) + 7

It follows from (1.5) that dom A(7) = domA for 1/7 + ¥ # 0, while it
follows from (1.6) that for 1/7 4+ v = 0, dom A(r) = dom 5. The exceptional
extension coincides with the Friedrichs extension Sg of 8§, when S is semibounded.
This follows from the representation (1.6) and Theorem 2, {4], and the preceding
Lemma. In this case another representation of Sp can be obtained in the following
way. Assume without loss of generality that S > 0 and define on dom S a new
inner product by

[f,9ls =S+ Df,g], f, ge&dom5.

The completion of dom S in this new inner product is a Hilbert space, which we
denote by $5. The following result was proved in 3], [4].
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ProPoOSITION 1.4. Assume that S is a nondensely defined, closed nonnega-

tive operalor. Then the Friedrichs extension Sgp of S has the representation

(1.8) Sp={{f g} €5 : feHs}

This eztension Sp is the only selfadjoint extension H of S with the property
domH C $Hs.

A discussion of the canonical selfadjoint extensions of a densely defined non-
negative operator can be found in [7] and [14] via triplets of Hilbert spaces. In
the next sections we will prove similar results for densely defined symmetric, not
necessarily semibounded, operators which have a selfadjoint extension with a Q-
function in Ny \ Np.

2, SELFADJOINT EXTENSIONS IN TRIPLET SPACES

We recall a few basic facts about triplet spaces associated with selfadjoint op-
erators. Let A be a selfadjoint operator in a Hilbert space $ with inner prod-
uct [-,-]. On the Hilbert space $ we define a new inner product [-,-]-1 by
[fi9]-1 = [(U + |AD"'f, 9], f.g € $. The completion of £ with respect to the
inner product [+, ]_; is denoted by $_;. On dom fAI% we define the inner prod-
uct [, J41 by [f,gl41 = [£,9] + [|AI7£, 4] 3g], f,9 € dom|A[z. The subspace
dom|A|% provided with the norm [| - ||4+1 i1s a Hilbert space, denoted by $i41,
which is isometrically isomorphic to the graph of |A|3. The domain domA is
dense in 1. The mapping I + |A| is isometric from dom A onto 9, with respect
to the new topologies. The Riesz operator V, is the unique isometric extension
of I + |A| from $4, onto $i_1. The duality (-, ) between the Hilbert spaces £
and $_; 1s expressed by

(2.1) (f,0)=[Virfigl-1 = [, VE'9l+1, FEH, g€ H,
and, in particular,
(22) (f:g):[f)g]: fe'ﬁ-f"l: gEfJ

We define (g, f) = (f,g) when f € 541 and g € H_;. Clearly, the Cauchy-Schwarz
inequality is valid:

(23) I(f)g)l S ||f”+1”g”—1> f Eﬁ+lw g EYJ—I'
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The operator A is contractive, and has a unique contractive extension A from H41
into $_;. Also the identity operator on dom A can be uniquely extended to all of
$41- Hence, for any £ € C, the operator A — ¢ can be continuously extended to a
continuous operator (4 — £)~ = A— £, from $,; mto $H._,. Morcover,

(2.4) (A= 0f,9)=(f(A-TDg), f.9€Ht1, LEC,

which follows from (2.2}, (2.3), and the symumetry of A.
The symmetry of A can also be expressed in terms of the polar decompo-
sition A = U|A| and the spectral decomposition A = f{dE(t) of the selfadjoint
®

operator A:

(25)  (Af.g) = (f, Ag) = [U|A]?f,]A[7g) = / td((E(t)f,9)), f9 € Hy1.

This sesquilinear form is continuous on $1;. For £ € p(A), the operator R(£) =
(A —€)~" is bounded, and has a unique bounded extension E(£) from $_; into
$H4+1. Moreover,

(2.6) (R(0)f,9) = (£, R@®)9), fg€H_1, LEp(A),

which follows from (2.3) and [R(£)f,g] = [f,R(f)g], f.g € H. In addition. a
continuity argument shows that

1) (A= 0 Vs Voo = [P s, e o), foenn
R

I'he extensions A and R(£) are connected via R(£)(A — £) = Iy,,, (A — O)R(£) =

Iy_,. They satisfy the symmetry relation

(2.8) (f,9)=(A-0f R®g), fe€H11, g€H 1.

Moreover, for £, A € p(A)

(2.9) R(€) — R(A) = (£ = MR R(N).

It is useful to observe that A = AN H2, so that

(2.10) A={{fAf}: f €9, Af € 9).

Now we will consider rank one perturbations of a (not necessarily semi-
bounded) selfadjoint operator, in the sense of triplets. Let A be a selfadjoint
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operator and let ;1 C $ C H_1 be the assoclated triplet of Hilbert spaces.
Assume that w € $_; \ $ and define the restriction S of A as follows

(2.11) domS = {f € Hi41 : (f,w) = 0}.

In order to consider selfadjoint extensions of & in the triplet, we introduce some
terminology. The Cartesian product of £, and $., denoted by H,, x H_1, is
provided with the usual topology. The duality ( -,-) between $i41 and $H_; induces

the notion of adjoint in the following way. Let T be any subset of the Cartesian
product $41 x $.-;. Then the adjoint T* of T is defined by

T = {{h,k} € D41 X H_1:(g,h) = (f, %) for all {f, ¢} €T}.
This is a closed linear subset of H1 x H_;. The relation 7" is called symmetric
if T C T* and selfadjoint if T = T*. In the following lemma {0} x span {w}
denotes the Cartesian product of {0} in $;; and of span {w} in $_,. The symbol
+ denotes a componentwise sum in f41 X H-1. The next result and its proof arc

paralle] to the case of a nondensely defined symmetric operator acting in a Hilbert
space, cf. (2.4) and (2.8).

LEMMA 2.1. The opemtorg is closed, symmetric and its adjoint is given by

§* = A+ ({0} x span {w}),
where A is a selfadjoint operator. Moreover, w € $H_1 \ O is a meodule element
for iy ‘
ran (S — &) + span {w} = H_,, L€ C\R,

where the sum is direct.

The following lemma is a straightforward generalization of known results for
selfadjoint relations in a Hilbert space to the case of a triplet associated with |A|3.

LEMMA 2.2. Let H be a selfadjoint extension of S in 541 X 9_1. Then
ker(H —£) = {0}, ran(H -8 =9H_;, ¢€C\R.
In particular, (ﬁ 0)~Y £ € C\R, is a bounded linear mapping from $H_, into

Ht1- IfH s an operator then dom H = dom A and if H is not an operator then
dom H = dom S.

Now we give an explicit description of all selfadjomt relations H in Hr1 X H_
which extend the symmetric operator .S', SCH Forwe H.1\H we
define the function x(£) by x(¢) = R(f)w, é E C \ R, and the function Q(¢) by
Q(8) = (R(€)w,w), £ € C\R. It follows from (2.6) and (2.9) that Q(¢) = Q(£) and

Q) — QN
5 - x(£), x(M)},

so that Q(€) is a Nevanlinna function.
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THEOREM 2.3. The selfadjoint extensions of S in Hy1 X H-_y arc in one-lo-
one correspondence with T € RU {co} via

(2.12) Ar) = A+7(- ,ww, TER,
and
(2.13) A(oo) = S+ ({0} x span {w}).

The extension Z(oo) is the only selfadjoint exlension which s not an operaior.
For each 7 € RU {co}, the operator (A(T) — £)~!, £ € C\R, is given by

_
Qo)+ L

Proof. By Lernma 2.1 every linear relation I in the Cartesian product $4; x
H_1 with the property S ¢ H C S§* is automatically closed. If, in addition, it
is a proper symmetric extension of .S, a dimension argument shows that ﬁ is
selfadjoint.

Now, 1t is easily verified that A('r) given by (2 12) and (2.13), respectively, is
symmetric and a proper extension of S. Hence, A(7), 7 € RU{c0}, is a selfadjoint

214) (AM-07'=(A-0"" = x(®) (-, x(®), teC\R.

extension of 5.

Next we prove the converse. Let I be a selfadjoint extension of S. Choose
a fixed element {h, k} € H\ 5. It follows from Lemma 2.1 that k = Ah + cw for
some ¢ € C. The symmetry of H gives

(2.15) 0= (Ah + cw, h) = (h, Ah + cw) = e(w, h) — (h,w)e.

If ¢ = 0, then clearly {h,k} € A. This implies that H = A, which corresponds to
r=0. If ¢ £ 0, then (2.15) shows that (I,w)/e € R. We denote this number by
ljr, 7€ RU{oo} 7 # 0. In the case 7 € R\ {0} we sec that {h, k} € A(r) and we
conclude A = A(T) In the case 7 = co we have (h,w) = 0 so that {h,k} € A(o0),
which gives H = A( ). Hence, we have shown that cach selfadjoint extension H
of S is of the form (2.12) or (2.13), respectively. Clearly, A(co) in (2.13) is the
only selfadjoint extension of S which is not an operator, see Lemma 2.2.

In order to prove (2.14) we first assume that 7 € R. For f € 41 we
define g = (Z(T) —£)f. Then g € $H-1 and it follows from (2.12) that g =
(A= 0)f +7(f,w)w. Hence, f = R(£)g — 7(f,w)R()w and (f,w) = (R{f)g,w) —
7(f,w)(R(f)w,w). This gives

(R()g,w)

) = T Rtoe)
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On the other hand f = (A(r) — £)~'y. Now, using the symmetry condition (2.6)
we obtain (2.14).

Next we consider the case 7 = co. For g € H_; we define f = (z(oo)—ﬁ)_lg,
of. Lemma 2.2. Then {f, g+£f} € A(c0), so that f € dom S and g+4f = Af+cw
for some ¢ € C. Thus g = (4 — O f + cw with (f,w) = 0, which gives with (2.8)

(2.16) (g, R(Ow) = (A = 1), RO)w) + e(w, RO)w) = e(R(f)w, w).
It follows that
217 (A-07'g=f+c(A-0 7w = (A(c0) — O g+ (A - £)Nw.

Solving ¢ from (2.16) and substituting the result in (2.17) we obtain (2.14) for
T=0. 0

3. Q-FUNCTIONS OF CLASS N; \ Ng

Let S be a closed symmetric operator with defect numbers (1, 1) and let A be a

selfadjoint operator extension of 5. Let Q(#) be a Q-function of S and A. Then

Q(£) belongs to N; \ Np if and only if Q(¢) has the integral representation (1.1)

where the function ¢(t) is nondecreasing on R and satisfies f(1+[¢t])~!de(t) < o0
®

and [ do(t) = oco. Moreover, v is a real number satisfying v = lim Q(iy), see
R y—oe

[10]. An equivalent condition is that ker(S* — £) C dom|A|z \ dom A, for some
(and, hence, for all) £ € C\ R, see [5] and Proposition 1.2, [6]. We translate these
conditions in terms of the triplet of Hilbert spaces $41 C $ C H_,, associated
with the extension A.

THEOREM 3.1. Let S be a closed, symmeiric operator with defect numbers
(1,1) and let A be a selfadjoint extension of S. Then the following conditions are
equivalent:

(i) S and A have a Q-funclion Q(£) belonging to Ny \ Np.
(ii) There ezxists an elementw € H_1\ H such that the operator S is given by

3.1 dom S = {h € dom A : (hw) =0}
(iii) S and A have a Q-function Q(£) with the operator representation
(3.2) QW) =7+ (A-0"w,w), £cC\R,

wherew € H_1\ H and v €R.
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(iv) dom.S™ C domw [A]7, dom $* ¢ dom A.
In each of these cases x(8) = (A — 0)~'w, v = lim Q(iy) and S is densely
Y—+ o0
defined.

Proof. (1} = (u) Assume that Q(€) belongs to Ny \Ng. Then A is an operator
and x(€) € d0m|A|2 \dom A for all £ € C\R. Fix p € C\ R and define w = (A-
p)x (), so that w € H_,\H. For h € dom 4 it follows from (2.2) and the symmetry
condition (2.4) that [(A—TDh, x(1)] = ((A—p)h, x{g)) = (h, (A=p)x(1)) = (h,w).
"Therefore (3.1) follows from (0.2).

(i) => (iii) Assume that S is given by (3.1) with w € $.) \ $. Let x(p) =
(A~ p)~'w. 1t follows from the definition (0.1) of x(£) and the resolvent identity
(2.9) that

_ R - R

X=X~ (47 x) = (A= O (F - 7o = 5T

£~y
This gives x(£) = R(f)w and since [(A — £)h, x(€)] = (h,w), it follows that x(£) =
Fi(f)w maps onto the defect subspace ker(S* —£), £ € C\ R, of 5. The resolvent
identity (2.9) and the symmetry condition (2.6) give

(R(Ow,w) = (RN)w,w)

T = (RN R(f)w,w) = [R(Ow, R(AWw], £XeC\R.

Hence the function Q(¢) = v+ (R(f)w,w), £ € C\R, with v € R satisfies (0.3) and
therefore it 1s a Q-function of S and A.

(i) = (i) Assume that Q(¢) has the representation (3.2). Let w = Vi),
where x € $41 \ dom A. Denoting do(t) = (|t] + 1)2 d([E(t)x, x]) we have

q do(t
(33 [ / 4+ D (). ).
R
The last integral is finite as x € dom|A|? and, furthermore
[ o = [+ 17aE@x ) = 00
R R

since ¥ € dom A. Therefore, it follows from (2.7) that

Q) =7+ (A= 07 "Vy1x, VaiX)
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has the integral representation

(3.4) Q) = 7+ft—i—£ do(d),

R d e
with |{ m% < co and l{da(t) = o0o. Thus, Q(€) € N; \ No.

Since (1) is equivalent to ker(S* —¢) C dom | A3 \dom A for some (and, hence,
for all) £ € C\ R, it follows from von Neumann’s formula that (iv) is equivalent
to (1).

The equivalence of (i), (ii), (iii) and (iv) has been established. The last
statement follows by applying the dominated convergence theorem to the second
term on the righthand side of (3.4). 1

We amplify that the @Q-function @(€) in Theorem 3.1 has the operator rep-
resentation (3.2) and the integral representation (3.4), with { ('f.[lﬁ de(t) < oo and
®

J do(t) = co. Here do(t) = (Jt]+1)?d([E(t)x, x]) and w = Vy 1 x with x € ;1. By
Qefnition of Vi1 and [-,-1», we obtain [lo]2; = [l[% = £(Itl+ 1) (B0 xD.
By applying (3.3) we arrive at the following result. i

CoROLLARY 3.2. The spectral measure do(t) and w are related by
de(t)

2 - f_
iz = | ot
.4

THE HILBERT SPACE $)s. Assume that S has a selfadjoint extension A with a
Q-function in N; \ Ny. Since the operator S is a restriction of the contraction A,
we have (|Sfll-1 < (|fll+1, f € dom S. Let £i5 be the closure of dom.S in H41.
Then S has a unique contractive extension S from Hs nto H_q.

LEMMA 3.3. The Hilbert spaces $s and H4, are related by
(35) Hs = {}I € N4 (h,w) = U}

In particular, dim$4,/Hs = L.
Proof. Since (h,w) = [h, V] 'w]y, it follows from (3.1) that

domS = {h € domA : [k, V_;llw]H =0}.

Now take closures in the Hilbert space H.;. 1
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Let S be a densely defined, closed symmetric operator with defect numbers
(1,1) and let A be a selfadjoint extension of 5. Assume that the Q-function Q(£)
of 5 and A belongs to Ny \Ng as in Theorem 3.1 with Q(¢ )= (A -8 'w,w). It
follows from Lemma 3.3 and identity (2.10) that § = 5N $?, so that

(3.6) S={{h,5h}:hEHy, Shen}

We have domS* C $H41 and, hence, it follows from the definitions that 5* =
5* N $7%. Therefore the adjoint S$* in $ can also be written as:

(3.7) §* = {{h, Ah + cw} : h € H4y, Ah+cw €H, c€C).

This makes it possible to translate Theorem 2.3 into a description of all selfadjoint
extensions of S in the original Hilbert space $.

. THEOREM 3.4. Let S be a densely defined, closed symmetric operator with
defect numbers (1, 1) and let A be a selfadjoint ezlension of 5. Assume that the Q-
function Q(€) of S and A belongs to N \Ny as in Theorem 3.1. Then the selfadjoint
extensions of S in § are in one-to-onc correspondence with 7 € RU {oco} via

(3.8) A(r)={{f,ﬁf+1 w} f €941, Af+1 S )weﬁ}-

when 1/ 4+ v #0, and

(3.9) A= {{f,5f +cw}: feNs, Sf+eweD, ceC},

when 1/747 = 0. The sclfadjoini exlensions A(1), 1/7+v # 0, have a Q-function
in Np \ Nog. When 1/t 4+ = 0, the Q-function of A(7) belongs 1o N\ N;. The
resolvent operator of A(T), 7 € RU {00}, s given by

(3.10) (A -0 =(A-07 —x(®) =—— [, xD)], LeC\R

Q(f) + 7

Proof. Without loss of generality we take y = 0, so that 1/7 4+ = 0 corre-
sponds to 7 = oo.

It can be verified directly that A(7) in (3.8) is a closed symmetric extension
of S. In order to show that A(7) is selfadjoint, we verify that A(7) is a proper
extension of S, i.e., that A(7) # S. By Lemma 2.2 and Theorem 2.3 the resolvent
operator (A(7)—£)~} maps H_; continuously onto $4;. Since 5 is dense in H_1,
we conclude that dom A(7) is dense in $41. By Lemma 3.3 this proves the claim.
Therefore, each A(7) in (3.8) defines a selfadjoint extension of S.
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Next we show that A(co) given by (3.9) is a selfadjoint extension of S.
Clearly, S C A(oo) and the symmetry of A(oc) follows by using Lemma 3.3.
Again, to show that A(oo) is selfadjoint we verify that A(co) is a proper extension
of S, i.e., that A(co) # 5. For this it suffices to show that there exists f € §5 such
that Sf + cw € § for some ¢ # 0, cf. (3.6). Observe that ran (S — £), £ € C\R,
is not dense in $_; while £ is dense in $_;. This implies that there exists a
nontrivial element v € § \ ran (S — £), £ € C\R. According to Lemma 2.1 we can

write

v:(g—ﬂ)f+cw, fehs, ceC e#0.

Hence, the vector h = v+ £f belongs to $ and satisfies h = Sf+ecw, c#0. This
proves the claim A(co) # S. Therefore, A{oo) in (3.9) also defines a selfadjoint
extension of S.

Next we prove the converse. Let H be a selfadjoint extension of S and
choose a fixed element {h,k} € H\ S. By (3.7) k = Ah + cw for some ¢ € C. The
symmetry of H gives 0 = ¢(w,h) — (h,w)é. If ¢ = 0 then & = Ah € $ and hence
{h,k} € A(0). Since H and A(0) both are selfadjoint this forces H = A(0) = A.
If ¢ # 0, then (h,w)/c € R. We denote this number by 1/7, 7 € RU {o0}, 7 # 0.
In the case 7 € R\ {0} we see that {h,k} € A(7) and conclude that H = A(7). In
the case 7 = 0o we have (h,w) = 0 and hence h € §g, i.e., {h, k} € A(0c0), which
implies that H = A(co). Hence, we have shown that every selfadjoint extension
H of S'in § is of the form (3.8) or (3.9), respectively.

If - € R, then f € domA(r) is equivalent to (A(r) — £)f € $ so that
(A(7) — £)~! is the restriction of (A(r) —£)~! to $. Similarly, (A(co)—£)~! is the
restriction of (Z(oo) —£)7! to $. Hence, the identity (3.10) for the resolvents of
A(T) follows by restricting the formula (2.14) to §.

The statements about the @-functions of S and A(7) follow from the bilinear
transform, see [5]. 1

The exceptional extension can be characterized in terms of the Hilbert space
Hs. In the next section it will be shown that $Hs (as a topological space) is
independent of the choice of the nonexceptional extension A of S.

ProrosiTION 3.5. Let S be a closed symmetric operator with defect numbers
(1,1). Suppose that S has a selfadjoint extension A whose Q-funciion Q(£) belongs
to Ny \Ng. Then the exceplional selfadjoint exiension is given by

(3.11) Sp={{hk} €S heHs}.

It is the only selfadjoint extension H of S with the property that dom H C $s.
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Proof. We will show that A(co) = T where T is given by
(3.12) T ={{h,k} € S5 :(h,w)=0}.

Since dom $* C $4, the representation (3.11) is a direct consequence of (3.12),
cf. Lemma 3.3. Now let 1/7 4+ = 0. Then the selfadjoint extension A(7) in (3.9)
has the property dom A(7) C $s, and hence, A() C 7. The identity (3.7) implies
that 7" is symmetric. We conclude that T = A(r). Clearly, if H is a selfadjoint
extension of 5 in $ such that dom H C Hs, then H C T. Since both operators
are selfadjoint, it follows that H =7 1§

Let S be a densely defined symmetric operator with defect numbers (1, 1) and
assume that S is semibounded. We show that there is a selfadjoint extension whose
@-function belongs to N;, cf. [5]. Let A be a selfadjoint extension of S, different
from the Iriedrichs extension Sgp. Without loss of generality we assume that both
and A have a nonnegative lower bound. Then |A| = A and the topologies generated
by S+ I and |A] + 7 coincide on dom 5. Therefare, the Hilbert space $is in
Section 4 is the completion of dom S with respect to the inner product [(S+1) -, ]
and coincides with the space $5 as introduced in Section 1. If H41 = Hs, then
domA C $H5 N domS* = dom Sr implies that A = Sp, a contradiction. Since S
has defect numbers (1, 1), we conclude that dim$.,.,/$s = 1. Therefore S 15 a
restriction of A of the form (3.1) and Theorem 3.1 implies that the @-function of A
and S belongs to N; \ Ng. Note that the exceptional extension in (3.11) coincides
with the Friedrichs extension of S.

Let S be nondensely defined and let A be a selfadjoint operator extension of
S. Then the results of this section parallel the results of Section 1, when suitably
interpreted. Let the space fis be the closure of dom.S in fi41. When 5 is also
nonnegative, s coincides with the space defined at the end of Section 1. The
analog of Proposition 3.5 now takes the following form.

ProrosiTioN 3.6. Let S be a closed symmelric operator with defecl num-
bers (1,1). Suppose that S has a selfadjoint extension A whose Q-function Q(£)
belongs to No. Then the ezceptional sclfadjoint extension S+ ({0} & mul $*) is
gwen by (3.11). It is the only selfadjoint cztension H of S with the property that
domH C $Hgs.
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4. INVARIANCE PROPERTIES OF EXTENSIONS ASSOCIATED WITH N

Let 5 be a symmetric operator with defect numbers {1,1). By Theorem 1.1 the
operator S is not densely defined if and only if there is a Q-function Q(¢) of S
belonging to Ng. If S is nondensely defined, then all but one of the selfadjoint
extensions of S are operators whose domains coincide. In fact these domains are
all equal to dom S*, ¢f. Theorem 1.3. This property is characteristic for this
situation. Let 4y and A, be two different selfadjoint extensions of S. Applying
von Neumann’s formula and a dimension argument, we see that S* C A; + Az;
in particular dom S* € dom A; 4+ dom A;. Hence, if we assume that dom A4, =
dom A,, then dom5* = dom A4;, 4 = 1,2, and Theorem 1.1 shows that S is not
densely defined.

The Q-function Q(€) of S belongs to N if and only if dom S is not dense in
41, cf. Theorem 3.1. We give invariance properties for the domain domIA(‘r)l‘;‘,
when A(7) is not an exceptional selfadjoint extension.

THEOREM 4.1. Assume that the Q-function Q(£) of S and A belongs to Ny
and let v = lim Q(iy}. Then
Y- 00
) 1
(4.1) dom|A(7)]? = dom 4|5, TeRU{o0}, —+7#0.

Proof. Assume that 1/7+v #£ 0, 7 # 0, and let 9 € dom|A|3. Then
= (A - p e H_1 and according to (2.14)

(4.2) (A(r) ) p = (E—e)“lso—x(f)g(’g-%-
We claim
(43) (A(r) = &)"p € dom | A(T)[%.

Since the Q-function of A(7) and S belongs to N; we have also x(£) € dom |A(7)]%.
It then follows from (4.2) (with £ = p) that 4 = (A — y)~'¢ € dom|A(7)]2. This
shows dom |A|? C dom [A(r)|3.

In order to prove the claim (4.3) we note that A(7) satisfies the (resolvent)
identity (2.9) by continuity (cf. Theorem 2.3). Hence the mapping (A(r) =)~ 1y
satisfies (0.1) and defines a symmetric restriction Sy, of A(7) whose defect sub-
spaces are thus spanned by (ﬁ('r) — €)1, of. (0.2). Our claim is equivalent to
saying that the corresponding @-function of A(7) and S; , belongs to Ny, cf. (0.3).
This means

(4.4) I(A(T) —iy) ™" ol|? € L1 (1, 00).



TRIPLETS OF HILBERT SPACES 171

2)
By (2.3), I, x(=ig))| < llell-sllx(=iy)l|l+1. Observe that with x = Vij'w €
dom |A|3

To show (4.4) we note that it follows from (4.2) that

(e, x(9)

(4.5) I(A(T) = )7 Tpl* < 2 (II(A =07 el + lIx(OI* 00+ 1

(It + 1)°

o d([E{t)x,x]) € M <00, ye]l, o0),

Ix(—ig), =

compare (2.7). Since w, p € H_; the functions
X = (A — i) wlf?, [I(A = i)~ ell?,

helong to L1(1,00). Furthermore, l_i‘,n;a Ry} + 1/7 # 0 and hence (4.5) im-
plies (4.4). !

The converse inclusion dom}A(T)ﬁ C dom |A|# follows from the fact that
hoth A and A(7) have a Q-function belonging to N; so that their roles above can
be interchanged. 8

As a consequence of Theorem 4.1 we observe the following. Let S be a densely
defined syminetric operator with defect numbers (1, 1) and let A; and Ay be two
selfadjoint extensions of .5 in . Assume that the corresponding @-functions @ ()
and @Q2(£) belong to N;. Then it follows from (4.1) by applying the closed graph
theorem, that the topologies of the spaces $41(A;) and H11(As), and of the spaces
H-1(A1) and $5_1(A,), are the same. Hence Theorem 4.1 implies that the space
triplet associated with A, as well as the space $g, do not depend on the choice of
the nonexceptional extension.

It is shown in the following theorem that the invariance result in Theorem 4.1

characterizes the class Nj. We prove this converse result in a slightly stronger form.

THEOREM 4.2. Let S be a closed symmetric operator in § with defect num-
bers (1,1) and let « 2 0. If for two different selfadjoini operator exlensions A;
and Az of S the inclusion

d0m|A1|% D dom|A2|%+" or dom A; D dom |Az['t?,

is satisfied, then all but one of the sclfadjoint extensions A(T) of S in $H satisfy
the identaly

dom |A(7)]? = dom|A;|7 or dom A(r) = dom A,
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respeclively. Moreover, the Q-functions of these exiensions of S all belong 1o M
or to Ng, respectively.

Proof. Assume that for the selfadjoint extensions 4; and Ay of S the indi-
cated inclusion is satisfied and let R(£) and Ra(£) be their resolvent operators.
With A; we associate the mapping x(£) as in (0.1) and let Q(£) be the correspond-
ing Q-function of A; and 5. By Krein’s formula

[h,x(f)] _ - .
(4.6) EORATI x(8) = Ry(O)h — Ro(O}h, heH, r#0.

Since JA5|® is a selfadjoint operator it is densely defined and hence we may select
h € dom |A3|® such that for a fixed £ € C\ R, [h, x(£)] # 0. Then we have

Rl(f)h E domA] C dOmlAllé’ Rz(ﬂ)h E domlAzll'{"Ct C (101’11[,42!';""“.

By assumption, dom lAg|%+“ C dom ]Allé and dom |A2]'*®* C dom A;. Hence, by
the above selection of h, it follows from (4.6), that x(£) € dom |A]7 or x(¢) €
dom A;, respectively. This means that Q(€) & N or Q(£) € Ng, respectively. Now
the claims concerning the domains associated with the selfadjoint extensions of .5
follow from Theorems 4.1 and 1.3, The last statement follows from Theorems 1.1
and 3.1. 1

The invariance properties mentioned in Theorem 4.2 can be used to strengthen
the characterization in Propositions 3.5 and 3.6 of the (generalized) Friedrichs ex-
tension: it is the only selfadjoint extension H of S for which dom HE C $g for
some (and hence for all} k& > 1.

5. MULTIPLICATION OPERATORS

In this section we consider a real-valued nondecreasing function p on R and as-
sociate with this function the Hilbert space $ = L?(dp). The inner product on
L*(dp) is denoted by [-,-], and by abuse of notation we shall denote the inte-
gral ff(t);(—t—)dp(t) also by [f, g] whenever fg is integrable with respect to dp.

®
Multiplication by the independent variable:

A={{f,gyen?:g=1tf},

is a densely defined selfadjoint operator. Now let w be a measurable scalar function
on R and consider the restriction S of A defined by

(5.1) dom S = {f €dom A : [f,w] =0}.
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It can be shown (see [6]) that 5 is a closed symmetric operator with defect numbers

(1,1) if and only if w does not vanish altost everywhere with respect to dg and

/|w(t)|2 d”(t)l < 0.
3

2+

The Q-function Q(£) of S and A is given by
Q(ﬁ)—a+/ L L Y wlRdpt), ack
) = ¢ Py B S w(t)|“dp(t), « .
R

It belongs to N; if and only if

dp(t)
(.2) im/[(.u(t)|2 |—£|—-_-|_-—1— < 00

Note that the @-function of S and A belongs to Ny if and only if w does not vanish
almost everywhere with respect to dp and w € L?*(dp), which is the case if and
only if S is not densely defined. In this case all hut one of the canonical selfadjoint
extensions of S are rank one range perturbations of A as in Theorem 1.3.

We are interested in the case that the Q-function Q(£) of .5 and A belongs
to N \ Ng. The triplet structure associated with A can be described explicitly.
The Hilbert space $_; is a weighted L?-space, consisting of all scalar functions f
on R for which

2 dp(t)
_Rfif(t)t T <o

and is provided with the inner product

dp(t)
tH+1

gl = R/ FOID

The Hilbert space $4, is a weighted L2-space, consisting of all scalar functions f
on R for which

J 1R e+ Do) < oo,
and is provided with the inner product

gl = / FOTD (] + 1) dp(t).
R
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The Riesz operator Vi from $41 to -1 is given by

Vil f(t) = (It]+ 1) f(t), [ € H4,

and the duality (-,-) between $..; and §., has the form

(f,9) :ff(t);’(T)dP(t)a FEH, g€ H.
R

Note that fg € L'(dp) when f € $41 and g € $-1. The extension A from H41
to $-1 1s given by

Af(t) =tf(t), fE€Hp.
It coincides with the multiplication operator in the Hilbert space $5—;. The exten-
sion S from $Hg to §H_, is given by

(5.3) domS = {h € dom 4 : (h,w) = 0}.

The @-function of S and A belongs to Ny \ Np if and only if w € H_1 \ H. In this
case

av =7+ [LOL a0, yer
R

The following result is a translation of Theorem 3.4, sec [5], [6], where these results
were obtained without reference to the triplet structure.

PROPOSITION 5.1. Assume that the function w salisfies (5.2) and that
lim Q(iy) = 0. Then all canonical selfadjoint extensions A(T) of the symmet-
y—o0

ric operator S in (5.3) are given by A(0) = A and for 7 # 0, 7 # 0, by
A7) = {{ftf +rlf wlw} : £ € L3(dp), fw € L'(dp),

(5.4)
tf +7rlfww e Lz(dp)},

while for T = co the ezceplional canonical selfadjoint extension is given by

A(co) = {{f,1f +cw} s £ € L(dp), fw € L'(dp),[f,0] =0,
tf+ewe L?(dp)}.

Proof, Let {f Af 4+ v(f,w)w} be an element in A(r) as in (3.8), so that
f € Hy1 and Af + 7(fiw)w € H. Now f € $Hy1 implies that Af = ¢f and
also that f € L2(dp). Since w € $.; it follows that fw € L'(dp). Hence,

(5.5)
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Af + 7(f,w)w = tf + 7[f,wlw. We conclude that {f, Af + 7(f,w)w} belongs to
the righthand side of (5.4).

Conversely, let {f,tf+7[f,w]w)} be an element in the righthand side of (5.4).
Then f € L%*(dp), fw € L*(dp) and ¢ = if + 7[f,wlw € L*(dp). It follows from

el A < LFOHgOI + 7], IO (),

that the lefthand side is integrable with respect to dp. Hence f € §.4; and we may
write tf = Af and If,w] = (f,w). We conclude that {f,tf -+ 7[f,w]w} belongs to
A(r) as given by (3.8).

Now let {f, gf—i—cw} be an element in A(co) as in (3.9), so that f € Hs and
Sf+cwe H. By Lemma 3.3 it follows that f € $,; and that (f,w) = 0. Hence
fw € L*(dp) and [f,w] = 0. Moreover Sf = Af = tf so that tf + cw € L%(dp).
Hence {f, Sf + cw} belongs to the righthand side of (5.5).

Conversely, let {f,tf + cw} belong to the righthand side of (5.5). Then
f € L¥(dp), fw € LY(dp), [f,w] = 0 and g = tf + cw € L?(dp). It follows from

AP < LFOHa@+ et LF ()]

that the lefthand side is integrable with respect to dp, so that f € H4;. Moreover
(f,w) = [f,w] = 0, so that by Lemma 3.3 f € fis. Therefore tf = Af = Sf and
{fitf +cw}={F, Sf+ cw} belongs to A(oo) as given by (3.9). This completes
the proof of the proposition. #

6. CONCLUDING REMARKS

In this final section we constder some special problems concerning graph pertur-
bations and triplets, the subclass N, of Nevanlinna functions and a description of

the exceptional extensions in terms of von Neumann’s formula.

GiRAPH PERTURBATIONS. We will give an equivalent formulation of Theorem 3.4
in which no reference is made to the triplet structure; in this way we interpret the
canonical selfadjoint extensions as graph perturbations of the original extension
A, of. [6].

In Theorems 3.1 and 3.4 appears the element w € $; \ H. It characterizes
the symmetric operator S in (3.1). We will now decompose this element, which
allows us to interpret the canonical selfadjoint extensions in Theorem 3.4 as graph
perturbations of A in the original Hilbert space .
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LEMMA 6.1. Letw € $5_1\9 be as in Theorem 3.4. Then there exist elements
¢ €541 \dom A and ¢ € § such that

(6.1) w=Ap—1.

The pair {¢, v} 15 determined uniquely modulo A. Conversely, if p € $4,\ dom A
and ¢ € ), then w defined by (6.1) belongs to H_1 \ $.

Proof. Since A—¢ maps 41 in a one-to-one way onto $_;, there exists a
unique element h € $4; such that w = Ak — £h. With ¢ = & and ¢ = £h, the
existence has been demonstrated. As to uniqueness, assume that w = Avgo,- — i,
@i € H41, %i €9, i =1,2. Then A(p; — 3) = 1, ~ 5. Hence with h = ¢, — @y
and k = 1 — 9, it follows that £ € § and k = AR, so that A € dom A and
k= Ah, cf. (2.10).

We now present a formulation of Theorem 3.4, which does not refer to the
triplet structure. This formulation brings out clearly the fact that in the N; \ N
situation the symmetric operator S is obtained via a graph restriction of A. The
following result, based on the polar decomposition A = U|A| of the selfadjoint
operator A, was derived in a different way in Proposition 6.3, [6].

PROPOSITION 6.2. Assume that ¢ € dom |A|7 \dom A and v € H. Let S be
the resiriction of A, given by

(6.2) domS = {h € domA: [Ah,¢] — [h,¢] = 0}.

Then S is a densely defined, closed symmetric operator with defect numbers (1, 1),
and the Q-function of S and A belongs to Ny \ Ny. Assume that Il.rf}o Qiy) = 0.
The canonical selfadjoint extensions of S in H are in one-to-oneycorrespondence
with 7 € RU {oo} via

A(r) = {{f,A(f+cgo)—c1/)}:f+c<p € dom 4,

(6.3) o
c=7(WIABf 141l - [£,4]) |,
and
A(c0) = {{f,A(f+ cp)—cy}: f+ecp € domA,
(6.4)

[U1AIE £, 141 0] - [, 9] = 0}

Proof. Define w by w = /Lp — 4, so that w € H._; \ H, ¢f. Lemma 6.1.
The restriction .S defined by (6.2} then coincides with the symmetric operator in
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(3.1). Hence, to describe the canonical selfadjoint extensions of S, we may apply
Theorem 3.4. Let {f,Af + 7(f,w)w} be in A(7) as in (3.8). Then f € H,; and
Af 4+ 7(f,w)w € . Let ¢ = 7(f,w), so that

Zf+r(f,w)w =A(f+cp)—c.

Since ¢ € £, it follows that Z(f + cp) € 9, or equivalenily, f + cp € dom A, cf.
(2.10). Moreover, since f € f41 and ¢ € H, it follows from (2.5), that ¢ can be
written as

e =7 (WIAl 141k6) - [5,9])

Hence, {f, Zf + 7(f,w)w} is contained in the righthand side of (6.3). Conversely,
consider an element {f, A(f + c¢) — ¢4} in the righthand side of (6.3), so that
f+ecpedomAandc=r ([U|A|%f, |AlZ g} - [f, 1/;]). Since @ € H41 it follows
that f € 4. This together with ¢ € $ implies that ¢ = 7(f, Ap ~ ). From
ft+cpedomA, ¥ € $H and

Alf+ep)—cth=A(f+cp)—cp = Af + 7(f,w)w,

it follows that Af + 7(f,w)w € . Hence, the righthand side of (6.3) is contained
in A(T) as given by (3.8).
Now let {f, Sf+ cw} be an element in A(oc) as in (3.9). Then f € $Hs,
§f +cw € H and ,
Sf+ew= f—l:(f+czp) — .

Since ¥ € 9, it follows that A(f + c) € $, or equivalently, f + cp € dom A, cf.
(2.10). Moreover, by Lemma 3.3, f € Hs means that f € fi,4; and (f,w) = 0.
Since f, € 41 and ¥ € H, this last identity can be written as [U]A]3 f, |A|Z ] —
[f,¥] = 0. Hence, the righthand side of (3.9) is contained in A(oo) as given by
(6.4). Conversely, consider an element {f, A(f + ¢y) — ¢4} in the righthand side
of (6.4), so that f +cp € dom A and [U|A|Zf, |Al2¢] ~ [f, %] = 0. Since ¢ € H 11
it follows that f € $H41. This together with ¢/ € $ implies that (f,w) = 0, in other
words f € fig. Moreover, A(f +cp)—cy = ;f + cw € H. Hence, the righthand
side of (6.4) is contained in A(oc) as given by (3.9). €

THE SUBCLASS N, oF NEVANLINNA FUNCTIONS. We define the class N,, 0 < p <
2, as the set of functions Q(£) which belong to N and for which

/Mdy@o_
y/’
1
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This class has been introduced in various sources, see for instance [9], [10], and
[20]. It coincides with the functions Q(£) with the integral representation

(6.5) Q) =+ ot + ../ (5 7y) 0.

where & € R, 8 2 0 and o(t) is a nondecreasing function which satisfies
do(t)
/53 i <
®

If0<p<1, then lim Q(iy) exists as a real number and the representation (6.5)
y—o0

reduces to the representation (1.1).

Let S be a closed symmetric operator with defect numbers (1, 1) and let A
be a selfadjoint extension of 5. The Q-function of S belongs to N, if and only if
x(£) € dom|A|'~%* for some (and, hence, for all) £ € C\R, cf. [5] and [6]. Now
assume that 0 < p < 1. Then for each 7 € RU {00}, 1/7 + v # 0, the Q-function
Q:(£) associated with A(r) in (6.3) belongs to N,, cf. (0.5). If 1/7 + v = 0, the
corresponding function Q; (£} of the selfadjcint extension A(7} in (6.4) belongs to
N\ N;. Now it is easy to see that in this case counterparts of Theorems 4.1 and
4.2 are valid. For example, apart from the exceptional extension, the domains
dom |A|l'%” of all the selfadjoint extensions of S are the same. The same can be

said for the triplets associated with dom |A|1=3.

FRIEDRICHS EXTENSIONS AND VON NEUMANN’S FORMULA. Now we come back
to Propositions 3.5 and 3.6 and we characterize the exceptional extension via von
Neumann’s formula. Let S be a closed symmetric operator with defect numbers
(1,1). Let x(p) € ker(S* — p) and x(5) € ker(S* — ), 1 € C\R, be defect vectors
with the same norm. The following characterization follows from von Neumann’s
formula (see [1] and [3]).

PROPOSITION 6.3. There ts a one-lo-one correspondence between the unil
circle and all canonical selfadjoint extensions of S via

(6.6)  A(¢) =S+ span {x(®) = {x(n), Ax(R) — Cox(w)},  I¢] = L.
Let A be any selfadjoint extension of S and let () € ker(S* — p), p € C\R,
be a nontrivial defect vector. Let the function x(¢) be defined by (0.1), so that

x(€) € ker(S* —£). Then x(f) — x(1) € dom A and x(f) and x(p) have the same
norm. Now suppose that we are in the N; situation. With these defect vectors
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x(f) and x(p) we characterize the value of ¢ in (6.6) which corresponds to the
exceptional selfadjoint extension. This answers a question of the late E.A. Cod-
dington, who asked to characterize the Friedrichs extension in this way when 5 is
semibounded.

If A happens to be the exceptional selfadjoint extension, then, clearly, the
corresponding value ¢ in (6.6) is given by { = 1. If A is a nonexceptional selfadjoint
extension, then its @Q-function Q(£) belongs to Ni. In the next proposition we
use 'Theorem 3.1, [5], where the connection between von Neumann’s formula and
Krein’s formula was made explicit.

PrOPOSITION 6.4. Assume that S has a selfadjoint exiension A with a Q-
function belonging to Ny and assume that vy = lim Q(iy) = 0. Then the value
Yoo
Q(1)/Q(u) on the unit circle corresponds via (6.6) to the exceptional extension
of S.
Proof. The mapping ((7), 7 € RU {co}, defined by
_Qem+1
Q)+ £

gives a one-to-one correspondence between R U {co} and the unit circle. Hence,

(6.7) (r)

according to von Neumann’s formula (6.6) there is a one-to-one correspondence
between R U {co} and all canonical selfadjoint extensions of .S, given by

(68) A(r) = S+ span {x(7) — ((r)x(), Bx(B) — {(Mx(w)}, 7€ RU{oo}.

In [5] it is shown that the resolvents of A(r) in (6.8) are parametrized by

~1
69 (An-H7=(4-07 - (Q0+1) L@, 7ERU (e}

Comparing (6.9) with (3.10) we see that the valne 7 = oo corresponds to the
exceptional extension of S. In (6.7) this corresponds to the value Q) /Qr). B

In terms of the defect vector x(x) and (the continuation of) the selfadjoint
extension A determined by x (), the exceptional value can be written as

(A = )X, X))
(A = m)x(r), x (1)
A more geometric proof of Proposition 6.4 can be based on Lemma 3.3 and von

Neumann’s formula (6.6). Assume that Q(€) € N; \ Ng has the representation
Q(f) = ((A - £)"'w,w) and that x(£) = (A —£)7'w. It is clear that

(6.10) x(0) € H11\ Hs, L€ C\R,
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since otherwise Q(€) = (x(¢),w) = 0, which is impossible. Since x(x) and x(%)
span-a two-dimensional subspace in $41, and since by Lemma 3.3, dim 41 /%s =

1,

it follows from (6.10) that there is a unique ¢ € C satisfying

x(7) — {x{p) € Hs.

This implies that 0 = (x(7) — Cx(),w) = Q(F) — (R, ie., ¢ = QUE)/ Q).
Clearly, ¢ = Q(&)/Q(y) gives the only selfadjoint extension A({) of S in (6.6) such
that dom A(¢) C $g, cf. Proposition 3.5. In case @(£) € Ny the above arguments

jest

ust be suitably interpreted.
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