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ABSTRACT. We construct a system of model commutative symmetric oper-
ator algebras (c.s.0.a.) in a Pontryagin space II; such that both the weak
operator and the uniform operator closures of any c.s.0.a. in II; can be de-
scribed in terms of the models found. We then use that representation to
obtain the theorem of bicommutant for a ¢.s.0.a. in II;.
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INTRODUCTION

Commautative symmetric operator algebras (c.s.0.a.) in Pontryagin space II; were
initiated by M.A. Naimark ([9], [10]) and later studied by A.I. Loginov ([5], [6]).
In [10] all the ¢.5.0.a. acting in II; space were divided into three non-intersecting
classes I, II, 1II. For every class, a system of models was constructed so that every
algebra of each class was equivalent to a certain model of this system. For the
algebras of class III those constructions suggested that the algebras were unital
and uniformly separable. A.l. Loginov found out the conditions of uniform closed-
ness (completeness) of model algebras of class 111. Modifying models of [10] and
introducing the notions of a fundamental regular (singular) algebra, he showed
that a complete regular (singular) algebra was necessarily a fundamental one, i.e.
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its components appeared to be independent. An analogous investigation for arbi-
trary general (i.e., those having a neutral invariant subspace) complete symmetric
operator algebras in space II; was made by V.S. Shul’'man ([12], [13]).

The present work deals with the description of the algebraic structure and
the weak and also the uniform closures of c.s.o.a. in space II;. We start with
considering the models for algebras of the classes I, IT ([10]), write them down in
a convenient form and give a description of the closures of these algebras. The
suggested models for class III essentially differ from those of [6] and [10]. Firstly,
they are constructed without supposing their uniform separability; our class of
regular (singular) algebras is larger than that of [10]. Secondly, the construction
of our models is made in such a way that the difference between the models of
regular and singular algebras appears only in the absence or, respectively, in the
presence of a certain anti-Hilbert space . Note that, contrary to [13], we do
not suppose that the considered algebras are complete. The constructed models
allow us to describe not only the uniform but also the weak closures of algebras of
class II1, that would be impossible in terms of the models of [6] and [10].

A key problem for symmetric operator algebras is the problem of relation
between the algebra and its bicommutant. The theorem of bicommutant was
proved for some classes of operator algebras in Pontryagin spaces ({1], [3], [4], [13]).
The last part of the present paper is devoted to the theorem of bicommutant, which
turns out to be always true for c.s.a.0. in II; as we show using the constructed
models and results of [13].

1. PRELIMINARIES

A Hilbert space (M, [-,-]) is called a Krein Space if another Hermitian form (-,-) =
[/ -,-]is given with J = Py — P_, P, an orthogonal projection, and P_ = I — P,.
Generally, the form (-,-) is not positive definite and is called indefinite. As a
consequence, positive definite, non-negative, neutral, non-positive, and negative
definite subspaces of H are naturally defined. Besides, the subspace L C H is
called non-degenerate (degenerate) if LN L+ = {0} (respectively, if L L* # {0}).

If we denote Hy = PyH, H. = P_H, then it is obvious that the direct
J-orthogonal decomposition H = H4 @ H_ holds where H is a positive definite
subspace and H_ is negative definite.

Let B(H) be the algebra of all linear operators acting in H which are con-
tinuous with respect to the Hilbert topology. For any operator A € B(H) there
exists a unique operator A* € B(H) such that (A¢,n) = (£, A*y) for any {,n € H.
An algebra R C B(H) is said to be symmetric if A € R implies A* € R.
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The algebras R(Y) and R(? in the Krein spaces (M1,(+,-)1) and (H2,(,)2),
respectively, are called equivalent, if R@) = URMU - for some J-unitary operator
U: Hl — 'Hz.

The topology in B(H) generated by the system of semi-norms p¢,(A) =
(A&, n)|, &, € H, is called the weak {opology and is denoted w. Obviously, this
topology coincides with the weak topology in B(H) generated by the Hilbert form.

If dim PyH = k < +oo, then H is called a Poniryagin space and is denoted
by Hk.

In the sequel we intend to use some well-known facts avoiding any reference.

The dimension of any non-negative subspace in Il does not exceed k ([2]).

The subspace L C II; is non-degenerate if and only if Il = L & Lt ([3]).

We will also need the following fact: any c.s.o.a. in II; has an invariant
non-negative subspace of dimension & {[7], [8]).

Below R is a c.s.0.a. in II;,& € II; is a non-negative, invariant under R,
vector, A(A) is the eigen-functional (e.f.) of R corresponding to &, which means
A€y = MA)&y for any operator A € R.

2. ALGEBRAS OF CLASSES I AND II

An algebra R is said to be an algebra of class I if there exists a positive, invariant
for R, vector &y. Let M(A) be the ef. corresponding to &. Let M = {£ € II; :
A€ = MA) for any A € R}, 5 = ML and A; = Al for A € R. f A; = 0 (for
A € R) implies A(A) = 0, then R is called an algebra of class L;; in the opposite
case it is called an algebra of class I,. R is said to be an algebra of class II if any
non-negative vector, invariant under R is neutral, but among them there exists
a & such that the corresponding e.f. A(A) is non-Hermitian. In this case R has
a neutral invariant vector 7 which is skewly linked with & (that is (€q,770)# 0)
((10]). We may suppose that (£g,70)=1 and define I, = {£o) + {no) (Below the
space II} is a space of II; type with a biorthogonal basis {£5,70}.), where (£o) is
used for the linear span of the vector £. Let $ = (II;)L and A; = A% for A € R.
Classes 11, and Il are defined analogously with the definition of the classes I,
and I.

If 9 is either a one-dimensional positive space or a space of II; type, then R,
is a ¢.s.0.a. in the anti-Hilbert space §. (The space (,(-,-)) is called anti-Hilbert
if (9,—(-,-)) is a Hilbert space.) Consider the x-algebra

GIZCXRl
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with the component-wise algebraic operations and involution. Define the mapping
Op; : G1 — B(Ily), where II; = M @ §H , and, for w = {}, 4} € Gy, the operator
A = Opy(w) acts in II; by the formulas

Anp=2An, Ah=Ah, n€M, heESH.

It is clear that Op; is an injective *-homomorphism from G into B(I1).
Furthermore, let & be a #-subalgebra in Gt such that:

(1) {41 :w € &) = Ry;
(i1) for any A; € R, there exists a unique A = A(A1) such that {A A} € &,
and A(A,;) is not an ef. of R;.

If [[I1 1s a space of II; type with a biorthogonal basis {£, 70}, then we can
consider the *-algebra

Gu=CxCx Ry

also with the component-wise algebraic operations, and the involution given by
{1, A1} = {f, X, At}. Define the mapping Opy; : G — B(I;) so that II; =
I, & H, and, for w = {A, 1, A1} € Gy, the operator A = Opy;(w) acts in II; by
the formulas

Ao = Ao, Ano = pno, Ah=A1h, hen.

It is clear that Opyy is an injective *-homomorphism from Gyy into B(II;).
Let &1 be a +-subalgebra in Gy such that:

(1) {A1 :w €&} = Ry;
(it) there exists a non-Hermitian function A : Ry — C such that, for any
{A, 1, A1} € &, we have X = M\(A1), p = A(4}).

The following theorem gives a model representation for the c.s.0.a. of classes
I and II (cf. [10}).

THEOREM 2.1. The following conditions are equivalent:

(i) R is a c.s.0.0. of class I, (I, I15, 1I1,);

(i) R = Opy(&1)
(Below the equality R = R' means the equivalence of the algebras.) (respectively,
Opi(G1), Opy{€ur), Opi(Gu)) for some ErrespectivelyGr, £, Gt

We shall call &1, G1, &1, Gip definable manifolds of the corresponding algebras.
Let us study now the closures of the described models. Let & C Gp and
&1 C Gu be respectively the definable manifolds of c.s.0.a. of classes I and II.
Denote
Gr=CxR; and Gy=CxCxR,.
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Then the following inclusions hold:

(2.1) Opy(£1) C Opy(Gr) C Op,(Gh)

(2.2) Opyi(£u) € Opp(Gu) C Opi(Gr).

It is easy to verify the following.
LemMa 2.2. Opy(Gi) and Op”(én) are w-closed algebras,

From the definition of operations in Gy and Gy we can see that, for algebras
of classes I, and II;, the arising function A : By — C is a character.

LEMMA 2.3, Let B(f}) D M be a *-algebra and let A be ¢ non-zero character
on M. Then X is w-continuous if and only if X is an eigenfunctional of M.

Proof. Suppose that X is a w-continuous character on M. Let X be the
continuous extension of A to the W*-algebra A = M . Its kernel M = Ker X
is a w-closed two-sided ideal in A, therefore there exists a central projection E
in A such that M = EA. Tt is easy to see that G = 14 — E is an atom in
A, i.e. there exists no projection G; € A such that 0 # G; < G. Therefore
GA = {¢G : p € C} and X(G) = 1. Consequently, for any GA = uG € GA, we
have 1 = A(uG) = MGA) = AA), ie. GA={A(A)G : A € A}. Consider now
0# g € GH. Then, forany A € M, we get Ag = AGg = GAg = X(A)Gg = A(A)y.
Thus, A is an ef. of the algebra M. The converse assertion of the lemma is
obvious. &

The next lemma follows immediately from the definition of the x-algebra &
and Lemma 2.3.

LEMMA 2.4. If the algebra R = Opy(&1) ts such that the corresponding char-
acter X is not identically zero, then X is w-discontinuous on Ry.

THEOREM 2.5. (i) If the algebra R = Op((&1) is such that the corresponding
character ) is not identically zero (respectively = 0) on Ry, then R" = Opi(Gr)
(respectively, R' = 0@ R, on M H);

(ii) Op(&w)” = Opp(Gu).-

Proof. First we prove (ii). Note that the corresponding character A can not
be w-continuous on R;. Indeed, otherwise A extends to a w-continuous (conse-
quently, u-continuous) character on the C*-algebra RY which must be Hermitian
by the Gelfand-Naimark theorem which would contradict the non-Hermitianity of
A on R;. Thus, A is a non-Hermitian (consequently, non-zero) w-discontinuous
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character on R;. Consider another character g on R; defined by pu(A;) = A(A})
for Ay € Ry. Then, obviously, u is also w-discotinuous and different from the
character A on R;. Therefore the subspaces H) = Ker A and H,, = Ker y do not
coincide and are w-dense in R;. Let us show that A\; = AMH, and Ay = A|H,
are w-discontinuous. Indeed, let, for example, A; be w-continuous on H,,, and let
the net {Dg}aea C Ri w-converge to D € R;. Since X and p are different on
Ry, M1(B) # 0 for some B € H,. Then DyB — DB and, from the fact that
Hy is an ideal in Ry, we get A(DaB) — A 1(DB), or M(De)Ai(B) — A(D)A1(B),
hence A(Dq) — A(D). Further, A; and Ay are w-discontinuous characters on H,
and H,, respectively, R C F:: and R; C H, and, for any Ao,z € C, A, € Ry,
we find nets {(Ba)1}aer C A7 (Ao} N Hy and {{Ca)iteea C £~ (o) N Hy, such
that (Ba)1 — Ay, (Ca)1 — 0. Then, for the net {(4a)1 = (Ba)1 + (Ca)1}, the
properties {(Aq)1} C Ri, (Aa)1 — A; and A((Aa)1) = Ao, #((Aa)1) = po hold
for any a € A. It is easy to see that the net

{OPn({A((Aa)1), M(A)D): (Aa)1 P} aen C R

w-converges to the operator Opy({}, 1, 41}) € Opy(Gur). Thus, taking into ac-
count Lemmas 2.2 and 2.3, we get R = Opu(én)-
(i) is proved similarly by using Lemma 2.4. @

Now taking into account (2.1) and (2.2), from Lemma 2.2 and Theorem 2.5
we obtain the following:

COROLLARY 2.6. Opl(&)W = Op(Gy), Op”(é‘n)w = Opn((N}‘n).

COROLLARY 2.7. (i) If R is either Op(G1) or Opy(Gu), then R = R" if
and only if Ry = E‘lv;

(ii) for R = Opy(&ur), w-closedness is equiavalent o R=0® R, on M H
together with Ry = R‘lﬂ;

(iii) there are no w-closed algebras of the class 11,.

If we denote Gy = CxR; and G = C x CxR, then, obviously, the following
propositions concerning the closure of c.s.0.a. of classes | and II in the uniform
topology are true (cf. [10]):

THEOREM 2.8. Let R = Opy(&1). Then:

(i) if the function X is u-continuous on Ry, then R° = Op;(£1), where {A, :
wE 51} = _1?11 and X is the continuous ezlension of A to I—Blf;

(ii) if the function X is u-discontinuos on Ry, then B = Opy(G1); if R =
Opy(&n), then R® = Opyy(Gr).
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COROLLARY 2.9. OpI(GI)u = Opy(Gr), Opy(Gr) = Opyi(Gu)-

CoroLLARY 2.10. (i) If R is one of the algebras Op{(G1), Opy(Gu), or
Op1(&) then R= R" if and only if By = R‘f;
(ii) there are no u-closed algebras of class 11,.

3. ALGEBRAS OF THE CLASS III

An algebra R is said to be of class III if it is not in any of the classes I and IL
It is easy to see that for an algebra of class III there exists a unique invariant
neutral subspace {(£p) ([10]). Let A(A) be the ef. (Hermitian) on R corresponding
to £o. If 70 is some neutral vector from II; such that (&, n0) = 1, TI; = (€0} + (10},
H= (H;)J', M = Ker A, and 7 is the projection from II; = Hfl @ § on H, then the
cs.0.a. M} = TM7 does not depend on the choice of 5y up to equivalence, and
any operator A" € M acts on II; = II’1 @ 9 by the formulas

(3.1) Abo=0,An=vyyb+hy,Ah=(hhy)o+ Arh,

where h € ), 4+ € C, hy = 7A'no and A; = 7A'm € My ([10]). It follows
immediately from (3.1) that

(3.2) Ajhg = Byh,,

(3.3) (hAI s Bl' ) = (hBI s AI'

for any :AI, B’ € M. If E is the main unit of M, 14 is the identity operator in 9,
G=1y— Eand P = EH, Q = GH, then § = P & @, and the system (3.2}, (3.3)
may be rewritten in the form

(3-4) App = Bipy,

(3.5) (Pas Ppr )+ (g4, US: )= {(pp’ 1Dy )+ a5, Q4 )

for any A', B’ € M, where PaPg € Pand gy, qg € Q aresuch that py+g,r =
h, and ppr +qg = hg.

Below we assume that the space II; is separable. Then M, is a commutative
W*-algebra which acts in the separable anti-Hilbert space P. Making use of a
well-known' theorem ([11]) we decompose P into a direct integral of separable
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anti-Hilbert spaces {P(t), t € T'} over some compact T" with the second axiom of

countability and a regular Borel measure o:
@
P= / P(t)do(t)
T

such that the algebra _Aﬂ' is equivalent to the algebra of the multiplicators {LX( "
A(t) € Loo(T, o)} acting on this direct integral.

It is easy to see that if we substitute the algebra M; by some equivalent
algebra, then the resulting c.s.a.o0. will be equivalent to R. Therefore we do not
distinguish between the algebras M; and {L i’ A(t) € Leo(T, o)}, and instead
of M7 we write simply Loo (T, o).

Denote by A(t) the element of Lo, (T, o) corresponding to the operator 4; €
M, and write A; = A(t). Let A(t) be a class representative of A(t) € Loo(T, o).
We denote by the symbols u, w etc. the topologies in Lo (T, &) corresponding to
the appropriate operator topologies in M, .

LEMMA 3.1. The condition (3.4) is satisfied if and only if there exists a
measurable function {(t) defined o-a.e. on T with values in P(t) such that p,(t) =
A(t)(t) o-a.e. on T for any A' € M.

Proof. For the beginning let us suppose that Aijpy = Bipy, or, equiv-
alently, A(t)pg(t) = B(t)p, () o-ae. for any A, B € M. By the lemma of
separability ([11]) we can fix the sequence {A,}° C M such that me =M.

Since {(A )1} = {7ALn} =n{A,} m=7M 7w=7nMnr =M, and M,
is equivalent to Loo (T, @), it is easy to see that for the sets B, = {{ € T : A(t) #
0}, n =1,2,..., the equality a( U En) = o(T) holds. Let N be a subset of T
with #(N) = 0 and "

(3.6) Ap®par (1) = An(Dp4 (1)

for any & and m, on T\ N. Then it follows that (3.6) hold for K = G (En \ N)
n=1

and o(K) = o(T).

Define the function {(t) on K by

W = Pan®
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if t € E, \ N. Then ((t) is well-defined because if ¢ € (£, N E,)\ N, then (3.6)
implies ﬁﬁpA;(t) = #(t)p,p ,(t). Thus, the formula

3.7) pa (8) = A

holds on E, \ N. Show now that it is true everywhere on K. Indeed, if t € K\ (£ \
N), then there exists a number n' # n such that ¢t € E_» \ N. Then A_/(t) # 0
and, in addition, A,(t) = 0, so (3.6) with k = n,m = n implies p, (t) = 0 and
again p, (1) = An(t)¢(t). Therefore the formuias (3.7) hold for an§ tin K, 1e.
g-ae onT.

Let now A" € M and take a net {4,} C {4,} with A, — A'. From (3.1),
considering the decomposition $ = P & ¢}, we obtain

(3.8) (Aa)1 = A1 and py — pyr weakly in P.

Since pA;(t) = Ay(t)((t) for every o o-a.e. on T we get (pA.', (t), Am(D)p(t)) =
(Am () A ()¢ (), p(t)) = (Aa(t) Am(t){(2), p(t)) for arbitrary p(t) € P and m.

Passing to the limit with respect to a, by (3.8), we get (p 4/ (t), Am(t)p(t)) =
(A@)Am(t)¢(t), p(t)) for any p(t) € {:, hence Am(t)py (1) = A(t)Am (2)(t) o-a.e.
on T for any m. Since o(T) = a‘(mU1 Em) = a(mﬁl{t €T : An(t) # 0}) we

have

(3.9) pa(t) = A()(2)

o-a.e. on T for any AeM.
Finally, note that, by construction, the function {(t) is measurable and de-
fined o-a.e. on 7.

The converse assertion of the lemma is obvious. 1§
It is easy to verify that pa:(t) = A(t)¢(t), A" € M, s-ae. on T implies
(P4 P~ ) = (pp' P4~ ), therefore

(310) (qA' ydgr ) = (QB‘ ’ qA"_)’

for any A', B e M.
Finally, denote L = {g Al A" € M}. As in [10] we can state the following

proposition:
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LEMMA 3.2. Condition (3.10) is satisfied if and only if for any A" € M,
g, = Vgu where V is some anti-isometric operator from L onto L such that
Vi=1.

DerintTION 3.3. If the main unit E of the algebra M does not coincide
with 14, i.e. G # 0, then the algebra R is called singular. In the opposite case
(G = 0), it will be called regular. It is clear that two equivalent ¢.s.0.a. of class III
are simultaneously singular or simultaneously regular.

From now on we assume that R is a singular algebra with the unit 1. Let
A€ R.Then A = A— MA)1 € M, and from (3.1) together with Lemmas 3.1 and
3.2 and the decomposition H = P & @, we get

(A=A =0,

(A= XMA)D)no = y4:&0 + AX(E) + a4,

(A= A(A))p = (p,p 4= Yo + Arp,

(A - A(A)1)g = (g, Vs )éo + Arg = (¢, Vg )o,

or, denoting AM(A) = A, v4r =7, ¢y =1,

Ao = Mo, Ano = vbo + Ano + A()C(H) +1,
G1) A0 = [AQCOC0)d &+ (4G + V),
T

Agq = (g, Vo + Ag,

where pe P, ¢ € Q. _

Let us denote du(t) = (¢(2),¢(2))da(t), M(T) = Loo(T, o) N La(T, ), L = L,
Gs = CxCxL x M(T) and & = {w = {\, p, 1, A(t)} : A € R}, where v € C,
e L and A(t) € M(T) (it follows from the definition of M (T") that M; C M(T))
are the components which correspond to A € Rin (3.11). In general, the measure
¢ is infinite on T. We call the set £5 a definable manifold of the algebra R.

It is easy to verify that if in G's one considers the component-wise addition
and scalar muitiplication as well as the following multiplication and invelution

{’\1 » Y1, 111 Al(t)} . {)‘27 Y2, 121 Az(t)}

= {Mda,dema dan + [ Ax(04a(0) e+ (1, V),
(3.12) T

Ab + Az, M As(t) + daAr(t) + Ar(D)As(0) ],
AL AR = (X7, VL AD),
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then the mapping Opg : Gs — B(HI;) with I, = ].'I'1 ® P & @ and the operator
A = Opg(w), w = {X, 7,1, A(t)} € Gs, acting in II; by (3.11) is an injective *-
homomorphism from the algebra €5 into B(II1), and R = Opg(€s). Consequently,
Es is a *-subalgebra in Gg with the unit {1,0,0,0}. Note also that

(1) {7 :w € &5} = C (see [10]);
(3.13) (i) {l:weé&s}t=1L;
(iii) if My = {A(t) :w € s}, then M, = Lo (T, o).

Let now R = Opg(&s) for some #-subalgebra £ C G5 such that the conditions
(3.13) hold. Let us show that then R" = Opg(Gs) for the corresponding manifold
Gs. First, the following can be easily verified:

LeMMA 3.4. The net {Opg({Av,Yv,lv, Au(t}})}ver C Ops(Gs) converges
weakly to the operator Opg({A,v,1, A(t)}) € Ops(Gs) if and only if the following
conditions hold:

B A=Ay -

(i) 1, — 1 weakly in Q;

(i) Ay (1) -2 A(t);

() 4O, (1) do — [ AOPO,C0) do for any 51 € P.

LEmMA 3.5. Opg(Gs) = Opg(Gs).

Proof. Let Opg(Gs) 3 A, = Ops{{A, 7w, lv, Au(t)}) — A € B(II;) and let
A€o = ako+ Pno+p(t) +g, where p(t) € P, ¢ € Q. Let us show that A € Op5(Gs).
Without loss of generallity assume that A = A* (since the involution is continuous
in the weak topology and mw is a *-algebra). Using (3.11) we get 8 =
(Ao, £0) = im(A,éo,&0) = 0, (p(t), #'(1)) = (Ao, #'(1)) = lim({Ay&o,p'(1)) = 0 for
any p(t) € P, hence p(t) = 0. Analogously, we get ¢ = 0. Therefore A(&) C (éo),
and the corresponding eigenvalue is

(314) A=a= (Aﬁo, 7]0) = hgn(A,,Eg, ’QQ) = llgnAp

Since A = A* it follows from A{£o) C (o) that A{&)}t C (o)*. But, since
(€}t = {£0) @9 with § = P @, for any h € §, there exists a number 7 such that
Ah = 7€+ Arh, where A; = wAm, 7 is the projection of II; onto §3. Therefore,
for p = p(t) € P, by (3.11) and (3.14), we get

((A1 = \)p,p) = ((A — A)p, p} = lim(A, p, p} - lim A, (p, p)
= lim((A, ~ A,)p, p) = lim(A, ()p(t), (t))-
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Now {A4,(¢)}ver C Loo(T, @) implies Ay — A € Loo(T, o).
If we denote A; — A by A(t), then

(3.15) A(t) = At).

Let now Ang = v€o + 6no + pa(t) + 1, where ps(t) € P, 1 € Q. Then § =
(Ang, &) = lign(A,,no,fg) = lifn)\,, = A. Analogously,

(3.16) ¥ = lilfn'y,,,
and for any p(t) € P we have

(3.17) (A (£)C(2), (1)) — (palt), p(2)).

Moreover, for any ¢ € @ we have (I,q) = (Ao, ¢} = lim{A,70,¢) = lign(l,,, q), 80
¥
{€L and

(3.18) I, — ! weakly in Q.

Prove that pa(t) = A(¢){(¢} o-a.e. on T. From this, in particular, it would
follow that A(t) € M(T). Let B(t) € M(T), that is B(¢)((t) € P. Then, by
(3.15), (A, ()BEX(), (1)) — (AEBE)CE),p(1) for any p(t) € P. Now, by
(3.17) we have (A, (1)B()C(1), p(2)) = (A, (C(8), BEOP(E) — (palt), BO()) =
(BOpa(t), p(t)).

Thus, (A(t)B(t)((t),p(t)) = (B(t)pa(t), p(t)) for any vector-function p(t) €
P, hence A(t)B(t)((t) = B(t)pa(t) o-a.e. for any B(t) € M(T). Since M(T)" =
Loo(T, o), as in the proof of Lemma 3.1 we obtain pa(t) = A(t)((t) o-a.e. on T.

Now we consider the operator B = Opg({),¥,{, A(t)}) € Opg(Gs). Using
(3.14)—(3.18) and Lemma 3.4 we get A, —— B. Hence A= B ¢ Ops(Gs) and,
consequently, m“] =0ps(Gs). 1

If M is an algebra, then by &A™ we shall denote the linear envelope of all
products of n elements of A'. We need the following known fact.

LEMMA 3.6. Let N be a subalgebra of a W*-algebra M, such that N* = M.
Then N = M for any n.

Proof. It is easy to see that N is a two-sided, w-closed and symmetric
ideal in M. Hence N7 = eM for some central projection e € M. Let g=1—¢e
and ¢ = a” € N. From a" € N" it follows that ga® = 0 or (ga)® = 0. Hence
0 = (ga)*(ga)" = ((ga)*ga)™, thus 0 = (ga)*ga = (ga)? and ga = 0. Consequently,
ga = 0 for any a = ¢* € N. From the symmetry of A it follows that ga = 0 for any
a € M. Further, since g € M and M = N" | we have g = 0. Thus, N*" = M. 1
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Since, by (3.13), for My = {A(t) : w € &5}, we get M;" = Leo(T, ), the
next result follows.
COROLLARY 3.7. M;" = Leo (T, o) for any n.

REMARK 3.8. Below we assume that:
(i) ¢(t) # 0 o-a.e. on T}
(i) fdp = —o.
T
After the proof of the main result of the section it will be shown that we can
impose these restrictions without loss of generality.

LEMMA 3.9. Let N be a w-dense subalgebra in M(T). Then

(B)C(t) : B(t) € M(T)} ¢ TAQRQ) - AQ ENT .

Proof. Let B(t) € M(T). Consider a net {A,(t)}aer C N such that A(?) =
B(t). Now take some net {Cg}gen C N w-converging to 1 € Leo(T, o) (such a net
exists since Loo(T,0) = My C M(T) = N"). Then for any 8 € A and p(t) € P
we obtain (A«(£)Ca()C(t), B(L)) — (B)Ca()C(®), p(t)) = (Cot)BE(2), p(t)).

On the other hand (Ca(t)B(t){(¢),p(t)) — (B(t)((f), (1)), so the point
B(t)¢(t) belongs to the weak closure of the set {A(1){() : A(t) € N}. Note
that this set is convex and hence its weak closure coincides with the closure in the
norm of the space P. 1

Denote now M, (n > 2) the set of all such A(f) € M(T) there exists a

sequence {Ag(t)}5° C M7 satisfying:
(i) |[Ax()| € O(T) o-a.e. on T for each &k and some function C(t) C
Loo(T, o) with [ C(t)dp > —oo;
T

(ii) Ax(t) = A(t) and

(iii) (| Ak (£)¢(@) — A@)X(@llp — 0.

Then, obviously,

(3.19) M} C Mo C M(T) C Loo(T,0), n>2.

LEMMA 3.10. M, is a *-ideal in Loo(T, ).

Proof. Let A(t) € My, B(t) € Loo(T, ), [|B(?)|lc € 1. Since, by Corol-
lary 3.7, Ww = Ly (T, o), using the Kaplansky density theorem, we find a se-
quence {Bi(t)}$° C M} such that ||Be(t){leo < 1 for any k and Bi(t) — B(1).
Further, we fix a sequence {A;(#)}° C M with a majorant C(t) integrable with
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respect to the measure p such that Ay (t) — A(t) and ||Ax(£)¢(t) — A @)||p —
0.
Then {Ar(t)Be(t)}° C MP, Ar(t)Br(t) = A(t)B(t) and |Ar(t)Bi(t)| <
[Ar (@) | Be(t)lloo < C(t) 0-ae. on T for any k.
Now,
146 (2) Be (2)C(8) — A B (®)]lp
< M) B ()¢ (2) - A(f)Bk(t)C(i)HP + 1A Be($)C(t) — A)B()((B)llp
< 1Be()lloo 146 (£)C() — AR + [-(1Bi(2) — BE)PA@)C(1)), AR (2))7
converges to 0 because the both summands converge to zero: the first by assump‘
tion, and the second one because By(t) — B(t) implies |Bi(t) — B(t)|> ——

Thus, A(t)B(t) € My, for B(t) € Leo(T,0) with ||Bi(t)|lee € 1 which means that
M, 15 an ideal in L, (T, ¢). The symmetry is immediately verified. 1

Let us denote £ = {w € £5 : A = 0} and M = Opg(£2).

Since by assumption the unit of Gg, which is equivalent to {1,0,0,0}, belongs
to &5 and {A(t) : w € &5} = My we have {A(t) : w € £2} = M;. Considering
M3 = Opg((£2)%), by the formulas (3.12) we get

(3.20) M3 = Opg ({w ={o, / A(t) 4,0, A(1) } : A(t) € Mf’}) .

T

In addition, we have
(3.21) M® C M C R=Opg(€s) = Ops(Gs) = Ops(Gs) .

Consider the *-algebras
M® = Opgw = ({w = {o, /A(t) dp,0, A() } : A(t) € M,.}), n>2.
T

Note that [ ]Ag(t) — A(t)|2du — 0 (see the definition of M, ) implies that
T

the sequence {Ax(t)} converges to A(f) in the measure p. Then existence of a

p-integrable majorant from Lo (T,e) for {Ar(¢)} implies, by Lebesgue Theo-

rem, that A(t) is p-integrable on T and f|Ax(t) ~ A(¢)]dp — 0. In particular,
T

[ Ax(t) du — [ A(t) dp.
T T

Since M? C Ms (see (3.19)) the inclusion M® ¢ M) holds. Making use of
Lemma 3.4 one immediately verifies that

(3.22) M® c "
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LEmMA 3.11. If R = Opg(&s) , then B = Opg(Gs).

Proof. Following [6], we shall prove this in several steps.

Step I. Let us show that MA" 3 0p({0,1,0,0}). Since, by Lemma 3.10,
5" is a *-ideal in Loo (T, o), there exists a maximal family of pain&ise orthogonal
projections {Xg, (t)}5° C M3. Let Xg = sup Xg(t). f Xz # 1 = Xp, then X # 0,
where G = T'\ E, that is o(G) > 0. Suppose that there exists A(t) € M3 such that
A(t)XG(t) # 0. Then |A(t)|>Xg(t) # 0, so there exist a measurable set ¢ ca
and a number ¢ > 0 with 0(G') > 0 and |A(t)[2Xz/(t) > eXg(t). Consider the
function
f(t)={'T1”F e
0 teT\G.

Then f(t} € Leo(T, ¢) and since M3 is an ideal in Lo (T, ¢), and by symmetry
of M3 it follows that |A(t)|* € M3, we have X4 (1) = f(t)|A(t)|* € M. Because
we have ¢(G' N E) = 0 this contradicts the maximality of the family {Xg, (1)}.
Consequently, A(t)X¢(t) =0 .a—a.e. for any A(f) € M3 and therefore, by Mz =
Loo(T, o) (see (3.19) and Corollary 3.7), Xg(t) = 0, ie. a( G E,,) =o(T) or

n=1

00
p( U1 En) = a(T) by the definition of the measure u.
n=

According to the assumption (Remark 3.8}, the measure p is infinite on
oo o0

T, therefore —oo = p(T) = u( U E,.) = Y p(E,) and we can construct the
n=1 n=1l

following sequence of pairwise orthogonal projections in Ms :

e, (t) = i Xe,(8), p(G1)<-2,

n=1
ni

Xe,()= Y Am,(t), n(G2)< -2,
n=ni+l

X, (t) = f‘: Xe, (1), w(Gi)<—2%....

n=ng_i1+1

Since {Xg, (¢)}7° C M(T), we have u(Gr) > —oo for any k. Further, for any
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0Q

n, we put fu(t) = (0)}1° C Ms, || fa(t)lleo < 1 and

/ fa(t)dp = /Z (G )Xck(t)du
-Z/#(Gk) p=n, n=12,....

Besides,

2yd— [ 5L ) 1 _
qu"(t)d”_’}/;y(@k)zxak(t)d“_kz (G)> sz_

k=1

Now we consider the sequence

_ 1t 0 Ve
R

According to the Lemma 3.4, A, — Opg({0,1,0,0}), that is

Ops({0,1,0,0}) € M®)"

Step ILI. We show now that Opg({0,0,0, A(#)}) € M®  for any At) €
M(T). Let A(t) € M(t). Applying (3.19) and Corollary 3.7, by Lemma 3.9 we find
a sequence {An(t)}{° C Ms such that A,(£)¢(t) — A()¢(2).

Denote Gp, ={t € T: [A(t) — An(®)| <1}, Fo, =T\ Gp; n=1,2,... . Then

0> [dn> F/ JA(E) - An(OP dp > T[ A(t) = An@I? du

= —[IA@)X(®) — An ()OI — O,

and so

(3.23) / dg — 0.
Fy

If we exclude from our consideration the trivial case ||An(¢)||cc = 0, then we can
assume |[A,(t){lc # 0 for n = 1,2,... and denote

An(t)

Ba(t) = An ()Xo, + i

Xr (), n=12,....
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By Lemma 3.10, {B,,(t)}cc C M3. Further, we have

1Ba(t)] = |40 (1)1 X6, () + Xr, (8) < (1 + A6, (1) + Xr. () < 1+ |4n (oo,
ie,

(3.24) [1Bn(D)lloo < 14 || An(®)lleo

for any n. Also,

A () — Ba(t)¢(@)llp

< AW — 40D X OO + | (40) - T

n{Blloo
< [JA@K(E) — An(BCEIP + [|A@) Xr, (SN2 + |

)xp,.(txu) ]

Anlt)
Tan (@l 7 (t><(t)l|,,

Here all the summands converge to zero: the first one by the choice of {A,(t)};

A XF, (OSOIP = —fA(t)lzdu < IIA(f)IIf.o/dﬂ
Fp

Fy

converges to 0 by (3.23), and

“ [l An (t)lloo

[

converges to 0 also by (3.23).

Therefore ||A(£)((t) ~ Ba(t)((t)||» — 0. Using the separability of the space
P and the boundedness of the sequence {B,(t)} (see (3.24)) we can choose a
subsequence {By, (1)} C {B.(t)} such that B,,(t) — B(t) € Leo(T,0). In
this situation we can assume that Bn{t) —— B(t) € Leo(T, ). Moreover, we
have the convergence B(t){(t) — A(t){(t) in the norm of the space P. Hence,
for any function C(t) € M(t), we get (Bn(t)C(1)¢(2), p(t)) — (B(t)C(1)((t), p(t))
and also (Bu()C{)C(1), 5(8)) = (C(O)Ba(tX(®),p(1)) = (Ba(t)C(0), COR(D)) —
(A@t)C(2), C(t)p(t)) for each vector-function p(t) € P. Therefore B(t)C(t)¢(t) =
C(t)A(t)((t) for any C(t) € M(T). Since by the assumption (see Remark 3.8)
¢(t) # 0 o-a.e. on T it follows that B(t)C( ) = C(t)A(t) o-a.e. on T for every
C(t) € M(T), hence, noting that M(T)" = Loo(T, o), we get A(t) = B(t) o-a.e.

Thus, we proved that for each A(t) € M (T} there exists a sequence {B,(¢)} C
M3 such that B,(t) — A(t) and ||B.{t)¢(t) — A()(t)|lp — O.
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Further, we introduce the sequence

{B. = Op({O,/Bn(t) dp, 0, Bn(t)})}:o cM®,

T

It follows from Step I that {An = B, — B, = Ops({0,0,0, B, OHIe
M®" and, by Lemma 3. 4, Ay — Ops({0,0,0, A()}). Therefore

OpS({Oi‘OJ OzA(t)}) - Ww

for any A(t) € M(T).

Step IIL By (3.22) from Steps I and II it follows that for every v € € and
A(t) € M(T) the operators Opg({0,7,0,0}) and Ops({0,0,0, A(t)}) belong to
M®" and hence to R" (see (3.21) ) Let us show now that for any [ € L the oper-
ator Opg({0,0,,0}) belongs to R . It follows from (3.13) that for all I € L there
exists a sequence {I,}{° C {l : w € £} such that I, — { weakly in Q. Given some
i CC, {m)f° C €, {An()}f° C M(T) we have {{An, %, In, An(t)}}$° C &,
therefore {Ops({An,n,n, An(t)})}° C R C R". Since by the assumption the
unit Ops({1,0,0,0}) € R C R, {Ops({}s,0,0,0})}¢° C R", and having also
{Ops({0,7,0,01)} c B" and {Ops({O 0,0, An(£)})}5° C R", we assert by lin-
earity that {Opg({0,0 I,,,O})}l C R", and, by Lemma 3.4, Ops({O 0,1,0}) =
w- llmOpS({O 0,1,,0}) € R". Therefore, forany A,y € C,1 € L and A(t) € M(T),
we have that Opg({A,0,0, 0}) Ops({9,7,0,0}), Ops({0,0,1,0}) and
Ops({O 0,0, A(t)}) belong to R", and so, by Lemma 3.4, we conclude that

= Ops(Gs), where Gs = C x CxLxM(T). 1

Now we formulate the fundamental result of this section. Let I} be a two
dimensional II;-space with the biorthogonal base {€0,70}, T a compact with the
second countability axiom, ¢ a regular Borel measure on 7', {P(t),¢ € T} a family
of separable anti-Hilbert spaces defined o-a.e. on T, {(t) a measurable vector-
function with values in P(t), @ a non-zero separable anti-Hilbert space, L a closed
subspace in Q and V an anti-isometric operator from I onto L such that V2 = 1.

Denote
P =/@P(t)da, I=I,&P&Q,
T
du(t) = (C(£), <(£))dC(),
M(T) = Loo(T, ) O Lo(T, )
and

Gs=CxCxLxM(T).
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The addition and scalar multiplication in Gs = {w = {A,v,; A(t)}} are
defined to be componentwise while multiplication and involution — by (3.12). Let
us define the mapping Opg : Gs — B(Il;) such that, for any w = {),v,1, A(t)} €
Gs, the operator A = A(w) € B(II;) acts in I; = [} & P & Q by (3.11). Let &5
be a x-algebra in s with a unit such that the conditions (3.13) are satisfied.

THEOREM 3.12. R is a singular c.s.0.a. with a unit in a separable space II;
iff R = Opg(&s) for some manifold £5. Moreover, R = Ops(Gs) and R =
Ops(Geu), where Goy = C x CxLx(M(T)N'M,) C Gs.

Proof. We have already shown (see Lemmas 3.1, 3.2 and further on), that if R
is a singular c.s.0.a. with unit in a separable space II;, then for some
x-algebra £ C G with unit, the equality R = Opg(€s) holds and, in addition,
for £s, the conditions (3.13) take place. Moreover, as it was previously obtained,
for any x-algebra £ C Gs with unit and satisfying the conditions (3.13), we have
Ops(&s) = Ops(Gs). Further, exactly by the scheme of [6] it can be proved
that Ops(&g)u = Opg(Gsy). Thus it remains only to prove that if R = Opg(€s)
for some manifold £s described above, then R is a singular c.s.0.a. with unit and
acting in the separable space II;.

From the definition of the mapping Opg and the operations in G it follows
immediately that R is a ¢.s.0.a. in II;. The unit is the element Opg({1,0,0,0})
and the separability of the space II; follows from the separability of the spaces
{P(t) : t € T}, the second countability axiom for 7' and the separability of the
space Q.

Let us show now that R is algebra of type III, i.e. that any of its invariant
non-negative vectors is neutral and the corresponding e.f. is Hermitian. Denote
A(A), A € R, the ef. of algebra R, corresponding to the invariant vector €. Let Eé,
be a non-negative vector from II; which is linearly independent with £, and invari-
ant under R. The e.f. of R corresponding to & is denoted p(A). Then (&, &) # 0,
otherwise a two-dimentional non-negative subspace would exist in II; which is
impossible, so we have u(A4)(€,€0) = (Aky,60) = (60, A%0) = (€0, M(A")6o) =
M(A*)(&y, &) which implies p(A) = M A). Further, let (£;,£;,) > 0 and § =
aéo + Bno + p(t) + ¢, with o, 8 € C; p(t) € P, ¢ € Q. Then (§;,§{,) =af + fa+
(p(t), (1)) +(g,9), hence a # 0, § # 0, otherwise (€, &) = (p(t), p(t))+(2,9) < 0.
Without loss of generality assume that 8 = 1. Since p(A) = A(4) wehave A §;, =0
forany A’ = Ops({0,7,1, A(t)}) € M = Ker A(A). Therefore 0 = Aty = A'(abo+
B+ 2(0) +0) = 760+ AW(D) +1+ [ AD((E), <)) doto + AW)PE) + (2, VDEo

(see (3.11)), and, in particular, it follows that A(f){(t) = —A(t)p(t) for any
A(t) € My = {A(t) : w € Es}. Since, by our assumption M, = Loo(T, o), we get
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¢(t) = —p(t), which contradicts the condition (ii) of Remark 3.8. Thus, (€5,6,) =0
and p(A) = A(A) is a Hermitian functional, i.e. R is an algebra of class III. The
singularity of R (see Definition 3.3) follows from P ¢ @ # P, since Q # {0}, and
P is the main unit of M; because M, = Loo(T, o). This completes the proof. 1

Let us show now that the conditions (i) and (ii) of Remark 3.8 do not lead

to the loss of generality in any of the previous propositions.

LemMMA 3.13. If R = Opg(Es) and ((t) is the corresponding measurable
vector-function, po(t) € P = [@P(t)do, then the algebra R is equivalent to the
T

algebra R = Opg(Es) with {(£) = C(2) + po().

Proof. Consider the vector 7o = ng — Lp—°(-ﬂ§1"—(ﬂl -€p + po(t) € II;. Then
(o, 7o) = 0 and, consequently, 7o is a neutral skewly-linked vector with & . Con-
struct a new realisation of the algebra R by changing the vector 7, to the vector 7.

We get the algebra Op 5(55) which is equivalent to R (see [10]) and for any
A =0ps({0,7,1, A(t)}) € Opgs(Es) = Opg(Es) we have

A= (1+ [ A0 (po(),¢(0) 40 )60 + AGNCE) + po(®) +1,

T

hence {(t) = ¢(t) + polt). ¥

If R = Opg(&s), then one of the two cases can occure: either ({t) € P or
¢(t) € P,ie. fdy = —co. In the first case, by Lemma 3.13 we can assume that
T

¢(t) = 0 (po(t) = —C¢(?t)), and all the formulas and proofs become simplier while
the general scheme remains the same. For example, proving Theorem 3.12 we get
0= A'¢y = v¢o + 1+ A(D)p(t) + (g, VI)¢o which implies I = 0 and, consequently,
v = 0, which would contradict (i) from (3.13). If [dpu = —co, then, introducing
the set Tp = {t € T : {(¢t) = 0} and taking po(t) g P with restriction po(t) # 0,
t € Tp, by Lemma 3.13, we may assume that {(¢) # 0 c-a.e. on T.

At the end of the section let us consider the regular i.e. such cs.o.a. R of
class IIT for which the main unit ¥ of the algebra M; = #M=, M = Ker A(A4),
coincides with 14 (see Definition 3.3).

Similarly to Gs, £ and Opg : Gs — B(Il;) we define G,,&, and Op, :
G, — B(Ily) assuming additionally that Q = {0}.
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THEOREM 3.14. R is a regular c.s.0.a. with unit in a separable space Il if
and only if R = Op, (&) for some manifold £,. Moreover, R" = Op,(G,), and
R = Op,(Gru), where Gpy = C x C x (M(T)NM) C Gy

The proof of this theorem follows the scheme of that of Theorem 3.13. We
should only note that, instead of M3 we consider M2, and instead of M and M3
we take M7 and My, respectively, wherever they appear.

4. THE THEOREM OF BICOMMUTANT FOR A C.5.0.A INTI

In [13] it is shown that, for an arbitrary general complete symmetric operator
algebra in IIy, the theorem of bicommutant is not, in general, true. However, for
a ¢.s.0.a. in II;, the following holds.

THEOREM 4.1. Let R be a c.s.0.a. with a unil in a separable space Il;. Then
R =R".

Proof. Let K be a regular algebra of class III such that the corresponding
function ((t) € P. Then, as we noted at the end of Section 3, we can assume that
¢(t) = 0, and, consequently, by Theorem 3.14,

_wz{(;\( g) :A,‘yEC}@M

in M{® P (see 3.11), where M = L (T, 0), and therefore

R'=("I§w)'={(;\, g) :A,'yEC}’EBM':{(i g) :A,’)'EC}GBM’

and

R”:{(:/ 2) :/\,'rEC}GBM":{(i g) :A,‘fEC}EBM:RW.

The theorem for the algebras I or II can be proved similarly on the base of
results of Section 2.

Let R be an algebra of class III such that if R = Op,(&;), then (({) € P.
Then, by Theorems 3.12 and 3.14, R° = Ops(Gs) ( or Op,(G,)) is a weakly
closed general symmetric algebra in Iy, with the property that for A € R from
A; = wAm it follows that A(A) = 0; and, as it easy to verify, from A; = 0 does not
follow A = 0. Therefore, R belongs to class I of [13], and do not coincide with its
bicommutant iff B(Hr) ¢ My, where Hp = {h4 = mAng : Ay = 0, ha- = 0} ([13)).
IfR" = Ops(Gs), then Hp = {A( () +aa : A(t) = —X(A) = 0, A@)((t)+qa- =
0} ={ga:Vga =0} ={0}.I{R" = Op,(G,), then Hr = {A(t)((t) : A(t) = 0} =
{0}. Therefore, for R the inclusion B{(Hr) C M; always holds. Thus, R =R"
and the theorem is completely proved.
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