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ABSTRACT. Partial actions of discrete groups on C*-algebras and the asso-
ciated crossed products have been studied by Exel and McClanahan. We
characterise these crossed products in terms of the spectral subspaces of the
dual coaction, generalising and simplifying a theorem of Exel for single par-
tial automorphisims. We then use this characterisation to identify the Cuntz
algebras and the Toeplitz algebras of Nica as crossed products by partial
actions.
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INTRODUCTION

Exel has recently introduced and studied partial automorphisms of a C*-algebra
A: isomorphisms of one ideal in A onto another ([5]). He has shown that many
interesting C*-algebras can be viewed as crossed products by partial automor-
phisms, and that these crossed products have much in cormnon with ordinary
crossed products by actions of Z. McClanahan subsequently extended Excl’s ideas
to cover partial actions of more general groups by partial antomorphisms, and
showed that, rather surprisingly, many important results on crossed products by
free groups carry over to crossed products by partial actions ([9]).

Here we give a characterisation of (reduced) crossed products by partial ac-
tions of discrete groups, which is similar in spirit to that of Landstad for ordinary
crossed products (see [7] or [12], 7.8.8), and which both generalises and simplifies
Exel’s characterisation of crossed products by single partial automorphisms ([5],
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Theorem 4.21). Our main result says that a C*-algebra B is a crossed product
by a partial action of G if and only if it carries-a coaction § of G and there is
a partial representation of G by partial isometries in the double dual B** which
induces suitable isomorphisms among the spectral subspaces of §; this result takes
a particularly elegant form when ' is the free group F,. We then use our clas-
sification to identify the Cuntz algebras O, the Cuntz-Krieger algebras (4, and
the Toeplitz or Wiener-Hopf algebras of Nica ([10]) as crossed products by partial
actions of F,,. We have not previously seen the canonical coaction of F; on O,
used in a serious way, so these ideas may have interesting implications for the
study of coactions of discrete groups.

We begin with a discussion of partial actions and covariant representations.
A partial action « of (- on A is a collection {D, : s € G} of ideals in A, and
isomorphisms a; of D,-: onto D, such that «o,; extends «, o ¢; from its natural
domain D;-1 Nay ! (D,-1). Calculations involving the domains can be tricky, so we
have taken care to make the various relationships explicit. A partial representation
of G is a map u of (7 into the set of partial isometries on a Hilbert space (or in
a C*-algebra) such that u,; extends w,u,, and a covariant representation (m,u) of
(A, G, a) consists of a representation 7 of A and a partial representation u of (¢
such that m(a,(a)) = u,m(a)u} for « € D,-1. McClanahan did not discuss partial
representations in their own right, so we have included a detailed discussion of
thermn and their relationship to covariant representations.

A key technical innovation in our treatment is the implementation of Hilbert-
module isomorphisms of spectral subspaces by multipliers of imprimitivity bimod-
ules, as introduced in [4]; the particular multipliers involved here will form the
partial representation of G in the double dual of the crossed product. We there-
fore recall in Section 2 some facts about multipliers of bimodules, relate them
to Hilbert-module isomorphisms, and discuss how in certain situations the whole
structure can be embedded in the double dual of a C*-algebra.

In Section 3, we construct the crossed product A x4 (7 of a partial action «,
as the C*-algebra generated by a universal covariant representation of (A, G, a)
in (A xq G)**. Associated to any faithful representation = of A is a regular
representation of A x, (7; up to isomorphism, the image is independent of the
choice of 7, and is called the reduced crossed product A x4, (. Of course, both
crossed products turn out to be the ones studied in [9], but our emphasis on
universal properties allows us to see quickly that they carry a dual coaction of G.
Our characterisation of the reduced crossed product in terms of this dual coaction

is Theorem 4.1.
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An ordinary action « of the free group F, is determined completely by the
n automorphisms a,, corresponding to generators {g;} of Fy,. It is quite easy to
construct partial actions of F,, from n partial automorphisms {[9], Example 2.3),
but in general even partial actions of F; = Z need not arise this way. So we con-
centrate in Section b on a family of partial actions « of F,, which are determined
by {a,,}; crossed products by such mulliplicetive partial actions can be charac-
terised in terms of the spectral subspaces of the dual coaction corresponding to
the generators of F,,. The main result here is Theorem 5.6 and its applications
to Cuntz algebras, Cuntz-Krieger algebras and Nica’s Toeplitz algebras are the

content of our last section.

1. PARTIAL ACTIONS AND COVARIANT REPRESENTATIONS

DEFINITION 1.1. A partial action of a discrete group G on a (*-algebra
A consists of a collection {D;}scq of closed ideals of A and isomorphisms «; :
D,-» — D such that

(1) De = A;

(i1) oy extends aya for all 5, € G (where the domain of .,y is o '(Dy-1),
which is by definition contained in Dy-1).

We suppose for the rest of this section that « is a partial action of G on A.
We shall frequently need to intersect domains of the partial isomorphisms, and
shall use without comment that the intersection of two ideals I, J in a C*-algebra
is the ideal IJ :=5p{éj : i € I,j € J}. Weshall also need to recall that the double
dual I** of an ideal I naturally embeds as an ideal in A*".

LeEMMA 1.2. Fors,t € G we have:

(i) @e = ¢, and a;-1 = @] L;

(ii) as(D3~1 Dt) = Dy Dyy;
(iii) oy 0 vy is an isomorphism of Dy—1 Dy—1,-1 onto DDy,

REMARK 1.3. Suppose instead of (ii) we had
as(Dy-1 D) C Dsy and  ag(z) = ayoq(z) for 2 € Dy-1 Dy-r -1,

so that o is a partial action in the sense of McClanahan. Then o would satisfy

(i1), and hence be a partial action in our sense. To see this, just note that

dom(a; 0 @) = at_l(Ds_1) = at'll(DtDs—x) C Dy-1 Dy-15-1,
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so the equation vy = a5 0 oy on Dy-1 Dy—1,-1 says what we need. Indeed, by part
(ii) of the lemma, this says ezactly what we need, so our definition is equivalent
to McClanahan’s.

Proof of Lemme 1.2. For part (i), observe that cv.cx, is defined everywhere
and equal to a., which is therefore the identity transformation on all of A. Because
@, extends o, -1 and a,-1q;, this forces a,—1 = a7l D, = Dis-1y-1 = D,-1.
For (ii), we note that ay—:(D;-1) is by definition oy-1(Dy Dg-1), and because oy
extends «scr;, we have

(1.1) ~1(DyDy-1} C Dyer Dy_zyos for all s, t.
Applying this with ¢=! replaced by ¢ shows
Ozt(Dt—x Dt—ls—l) C DtDt(t—1,—1) =DyD,_s,

and because o;-1 = ; !, this implies that we must have equality in (1.1). Since
the left-hand side of ( 1.1) is the natural domain of a,ay, and the range of a,q; is

the natural domain of o] ;! = @;-1,—1, part (iii) follows. 8

DEFINITION 1.4. For s € G, we let p, denote the projection in A** which is
the identity of D}*. :

The projections p, belong to the center of A**, and p, is the weak*-limit of
any bounded approximate identity for D,. We always have p, € M(D,), but p,
may not be in M(A), as shown by the following example.

EXAMPLE 1.5. Let A = Co(0,00) and G = Z. Define D; = {f € A | f(z) =
0 for z < 1}, and let a; be the identity map of D;. Then p; is the characteristic
function of (1, c0), which is not in M(A) because it is not continuous on (0, 0c).

To define covariant representations of partial actions, we need an appropriate
notion of partial representations of groups by partial isometries. The idea is that
uy should extend u,u,; for this to make sense, u,u; must be a partial isometry,
so we Insist that the range projections commute. The following Lemma describes
what we mean by “v extends v”, and is presumably standard.

LEMMA 1.6. We define a relation < on the set of partial isometries on a
Hilbert space H by
U X v <= uu* = uv*.

Then u <X v precisely when the initial space u*u(H) of u is contained in v*u(H),
and v = u on wu(H); we have u < v <=> u*u = v*u, and < is a partial order on
the set of pariial isomelries on M.
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Proof. Since uu* is self-adjoint, uu* = uv* implies vu* = vu*. But then
vu'u = (uu*)u = u implies that v = u on the range of u*u. In particular, this
implies that v* maps the range of u into the initial space of u, and hence uu* = uv*
implies

vru = u(uu)u = v (uv* e = (Wu)tu = vt u.
Conversely, u*u = v*u implies that v* = u* on the range of wu”, and hence that
v maps the initial space of u into the range of u; thus

ur® = u(uu)ut = w(uv)u* = (uu)vu* = vt
Finally, since u < v implies uv*v = u, it is easy to check that < is transitive, and
that u < v, v <uforceu=1v. 1

DEFINITION 1.7. A partial representation of (G on a Hilbert space H is a
map u : G — B(H) such that the u, are partial isometries with commuting range
projections, and

(1.2) ueuy = I;
(1.3) Uiy = uy—1us_, forall s € G,
(1.4) usuy <X ug; forall s,t e G.

We begin by listing some straightforward consequences of the definition.

LEMMA 1.8. Ifu is a partial represeniation, then

(1.5) ue = 1
(1.6) Uy =u,-1 foralls € G,
(1.7) Usts = Ustsuse for all 5,6 € G.

Proof. For (1.5), note that (1.2) and (1.4) imply that u. is an idempotent
coisometry. Since u} and u,-1 are partial isometries with the same range projec-
tion, and u,u,-1 < 1, we have (1.6). For the last part, we use the relation u < v
in the forms v = uu*v, uu* = wv*, and then v*u = u*u, to deduce that

Usthy = (Uste)(Ustey) " Uss = (usuuywy )(ustsuse)
= (usuguy, ) (st tse) = us(Ustlyptey U Ust

. * * *
= us(u, Uatustus)us Ust,

which equals u,u}us; because ulug, is a partial isometry.
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REMARK 1.9. Conditions (1.5)-(1.7) are stronger forms of (1.2)-(1.4); to see

this for (1.4), note that u,u} is a projection commuting with u,.u?,, and hence

(usu)uly = usujuguy, = (usu)ug) (U u,ul) = (wsue)(usu)”.

DEFINITION 1.10. Let « be a partial action of G on A. A covariant repre-
sentalion of (A, G, &) is a pair (7, u) consisting of a nondegenerate representation
7 of A and a partial representation u of (7 on the same Hilbert space, satisfying

(1.8) usuy = 7(ps);
(1.9) 7(a,( )) = usm(a)u; forae D,-.

LEMMA 1.11. Let o be a partial action of G on A, let 7 : A — B(H) be a
nondegenerate representation, and let w @ G — B(H) be a map satisfying (1.8)-
(1.9). Then the following are equivalent:

(1) u is a partial representation (and (w,u) is a covariani representation);

(i1) usus = ug for all 5,t € G;

(1i1) T(pse)usuy = m(py)uss for all s,t € G;

(iv) m(a)usu; = m(a)uyy for all 5,t € G,a € DyDy,.

Proof. Note first that by (1.8)-(1.9), the u, are partial isometries with com-
muting range projections, and u.ul = 7(p.) = 1, so (1.2) holds. Further, (iii) is
equivalent to (iv) since p,p,q is the identity of (D, Dy)** in A**, and Lemma 1.8
tells us that (i) implies (iii).

Assume (ii). We will show (1.6), giving (1.3), hence (i). First note that (1.5)
holds, since its proof only required (1.2) and (1.4). We have

woul = 7(ps) = 70 0y (py) = Ad g 0 7(py-)

= Uy~ 1 U1 Uy = UsUg—1Upy1 = Uyly—,
so that
(1.10) Uy Ui

Since the partial ordering < on partial isometries is conjugation-invariant, we get

1 we arrive at

uy < u,-1. Applying (1.10) with s replaced by s~
u < -1 < ud o

80 u; = u,-1, which is (1.6).
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Finally, assume (iii). To show (ii), we again need (1.5) and (1.6). (1.5)
follows from (1.2) and (iii). For (1.6), we have

Usthg—1 = T(Pssm1 ) UsUg-1 = T(Ps tgg—1 = usu;,
and the argument of the preceding paragraph shows u,-: = u}. We now show (ii):

Usus gy = UsT(Ps=1 )T (pe)uy = T 0 oy (Ps-1p1) = T(PsPst)
= T(PsPst)Ustuyy = T(PsPst)usuruy,
= U T(Pema Pe)UL Us Ur Uy = UsUsUyy. B
REMARK 1.12. The previous Lemma shows that our definition of covariant
representation is equivalent to McClanahan’s ([9]). So ours is actually a slight

“improvement over McClanahan’s, in that the conditions ulu, = m(ps-1) and u} =
u,~1 follow automatically.

2. MULTIPLIERS OF IMPRIMITIVITY BIMODULES

Recall from [4] that if X is a C — D imprimitivity bimodule, a multiplier of X is
a pair m = (m¢, mp), where me¢ € Lc(C, X) and mp € Lp(D, X) satisfy

meg(e)-d=c-mp(d) forceC,de D.

(Actually, Lemma 1.4 of [4] shows that adjointability of m¢ and mp is automatic.}
The set M(X) of multipliers of X is called the multiplier bimodule; with

c-m=meg(c) and m-d=mp(d),

M(X) becomes a C'— D bimodule containing X. The module actions of C' and D
on M(X) extend to M(C) and M(D), and the C- and D-valued inner products
on X extend to M(C)- and M(D)-valued inner products on M(X), which we
continue to denote by ¢(-,-) and (-, }p. For 2 € X and m € M(X) we have

(2.1 c{z,m) =mg(z) and {(m,z)p = mp(z).

LEMMA 2.1. Let X be a C — D wmprimitivity bimodule.
(i) There is a left Hilbert C-module isomorphism ¢ of X onto C if and only
if there is a multiplier m = (m¢,mp) of X such that

(2.2) c{m,m) =1pcy, (m,m)p = Ly(p)
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and P(z) = c{x,m) = mi(z) for allz € X.

(i1) Let m be a multiplier of X satisfying (2.2), and let p = mf 1 X — C and
@ =m} : X — D be the corresponding isomorphisms of Hilbert modules. Then
there is a C*-algebra isomorphism o« of D onto C such that o(d) = c{m -d,m)
and P = aop. We wrile « = Adm.

Proof. Since 1 preserves the C-valued inner products, the inverse =1 : C' —
X is an adjoint for 1, and ¢! itself is in £o(C, X). Thus by Proposition 1.3 of
[4] there is a multiplier m = (m¢,mp) with mg = ¢~1, and then ¢(z, m) = ¥(=)
for all z € X. Thus for 2 € X we have

z=7y"lo(z)=¢~! (C(m,m)) =mg (c(:c,m))

=¢{z,m) - m=2z-(m,m)p,

and for ¢ € C we have
c=pop7l(c) = c(¥71(), m) = cle-m,m) = co(m, m),

from which (2.2) follows. It is easy to check that, given m € M(X) satisfying
(2.2), ¥ : z +— ¢{z,m) is a Hilbert module isomorphism with inverse ¢+ ¢ - m.
For part (ii), define & = 9 0 =1, and note that a(d) = ¢{m - d,m). Then «
is a linear isomorphism of D onto C; to see it is in fact a C*-isomorphism requires
only calculations using the properties of m. For example, for a,b € D we have

c{m-ab,m) = c(m-a{m,m)p b,m) = c{c{m e, m)m-b,m)
=¢g{m-a,myc{m-b,m). &

In the above proof we could have constructed « directly from 1: a Hilbert
module isomorphism induces an isomorphism of the algebras of compact operators,
and hence D = Ko(X) = Ke(C) = C.

Proposition 2.1 simplifies part of Section 4 of [5] where both % and « are
postulated, and 4 is postulated to be a € — D bimodule isomorphism rather than
just a left C-module isomorphism. Our approach also justifies Exel’s feeling that
Proposition 4.13 of [5] exhibits a kind of partial multiplier property: he is really
using a module multiplier in the sense of [4].

Now suppose B is a C*-algebra and X is a closed subspace of B such that
XX*X C X. Let C = XX* (caution: we use Exel’s convention that this denotes
the closed linear span of the set of products!) and D = X*X. Then C and D
are (C*-subalgebras of B, and X is a C — D imprimitivity bimodule. Let p and
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g be the identities of C** and D**, respectively, regarded as projections in B**.
Proposition 2.4 of [4] implies that we can identify M(X) with

{mepB™q|CmumD C X},

in such a way that the module actions are given by multiplication in B**, and the
inner products are given by, for example, ¢{m,n} = mn*. Fortunately, there is
no ambiguity between the various meanings of m*: the adjoint m* of m in B**
implements the adjoint of the module homomorphism ¢ +— ¢ - m, which is given
by z +— c(z,m) = zm*. Finally we observe that, if p is any faithful nondegen-
erate representation of B on H, then the canonical extension of p to a normal
representation of B** on H maps M(X) isomorphically onto

{z € p(P)B(H)o(q) | p(C)z U zp(D) C p(X)}.

3. CROSSED PRODUCTS AND THE DUAL COACTION

Suppose « is a partial action of a group G on a C*-algebra A, and (7, u) is a
covariant representation of (4, G, «) on a Hilbert space H. Let

C*(m,u) = Z (D Yuts.

SEG

A short computation using the relation «;(D,-1 D;) C Dy shows that for s,t € G,
a € D; and b € D; we have

m{@)usT(d)us = 7 0 as(ery-1(a)b)uge

and

(m(@)us)* = 7 0 ayoa(a*Yul,

so the closed subspace C*(,u) of B(H) is a C*-algebra, which we call the C*-
algebra of the covariant representation (m,u).

We would like to define the crossed product A x4 G to be the C*-algebra of
a universal covariant representation (7, u). The image (A} is a C*-subalgebra of
C*(7,u), but in general (as can be seen from Example 1.5 and Proposition 3.5)
the partial isometries u; need not be multipliers of C*(x,u). So to get a suitable
universal covariant representation, we shall have to work in the double dual (A x4
G)**, and we shall have to construct the algebra A x, (7 as an enveloping algebra.
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Following McClanahan’s development, let L. denote the vector space of func-
tions f : G — A of finite support such that f(s) € D, for all s € G. For a € D,,
let

P(a,5)(t) = { ift=s,

0 otherwise.

Then L. is the linear span of the F(a, s). (McClanahan writes aé; for our F(a, s);
we avoid the notation §; because it has other connotations for coaction freaks, and
call them m, instead. The precise meaning of m, will be made clear shortly.) The
+-algebra structure of L. is determined by

F(a,s)F(b,t) = F(as(a] (a)b), st),

and
F(a,s)* = F(a] (a"),s71).

Note that A embeds as a *-subalgebra of L, via a — F(a,e), so any *-represen-
tation II of L. on a Hilbert space restricts to a representation of the C*-algebra
A. Hence

NP (a, sPI? = 1B(F(a, 5)* D(F(a, 5))]
3.1) = [II(F (a7 (a*), s F(a, 5))|
= [|0(F (a7 (a"a), )l < [la; (a"a)|} = [la]®.

We deduce that the greatest C*-seminorm on L. is finite (it is in fact a norm,
although we do not need this), so it makes sense to define the crossed product
A X4 G as the C*-completion of L.. The double dual A** embeds naturally in
(A x4 G)**, so the projections p, are naturally identified with (no longer central)
projections in (A xo G)**.
Let
X, = {F(a,s) | a € D,}.

The calculation (3.1) shows that this is a closed subspace of A x4 G, and X, X* =
Ds and X; X, = D,-: as subalgebras of A C A x4 G, so X, is a D, — Dy
imprimitivity bimodule. The discussion at the end of Section 2 shows that

(3.2) M(Xs)={m € p;(A xo G)*p,=s | DomUmD,_. C X, ).
A calculation shows that the maps [ : Dy — X;, r: D -1 — X, defined by

l(a) = Fa,s), r(d)= F(adb),s)
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satisfy {(a) - b = a - r(b), and hence define a multiplier m, := (I,r) of M(X;)
([4], Lemma 1.4). The identification (3.2) allows us to view m, as an element of
ps(A Xo G)**ps-1, which by definition satisfies

a-m; = F(a,s) for a € D,, and m, -b = F(a,(d),s) for be D,-1.

Recall that the M(D,)-valued inner product is given on p,(A x4 G)**p,-1 by
p,{m,n) = mn*; thus for ¢ € D, we have

a(mymy) = ap,(ms,m,) = p {a - m;,ms) = p,(F(a,s),ms).

It follows from (2.1) that p,{F(a,s), m;) is given in terms of the adjoint of I :
D, — X, by I*(F(a,s)), which by an easy calculation is seen to be a. Thus
a(mym;) = a for all @ € D,, and mym? = 1ap,) = ps- Similiarly, we can
verify that mim, = p,-1. The multipliers m, therfore have the property (2.2) of
Lemma 2.1, and induce isomorphisms Ad m, of D,—: onto D;, characterised by
Admg(a) = p,(m; - a,m,). Another calculation shows that

Adm,(a) = p,{m; - a,ms) = I*(m, - a) = I*(F(a(a), 5)) = as(a),

so the elements m, of (A x, G)** are partial isometries implementing the partial
automorphisms c,.

We claim that the inclusion ¢ : A — A x, G and m form a covariant repre-
sentation (¢, m) of (A, G, a) in (A x4 G)**. To see this, let a € D, D,;, and let e;
be an approximate identity for D;. Then in the weak*-topology of (A x4 G)**, we
have ’
amsmy = limamge;m; = limeo, (o -1(a)e; )m,,

= as(as-1(a))my = ams;.

It now follows from Lemma 1.1 that (:,m) is covariant, as claimed.

Next, let (7, u) be a covariant representation of (A4, G, «). Then (, u) defines
a representation of L., which extends to a representation 7 x u of A x, G by
definition of the enveloping norm, and hence also to a normal representation, also
denoted m x u, of (A xo G)**. Applying 7 x u to t(a) = F(a,e) gives n(a), and
for a € D,—: we have

7 x u(m, )(m(a)h) = 7 x u((m;a)h) = 7 x u(F(ay(a),s))h
= m{as(a)yush = usw(a)uiush = usm(a)m(ps)h

= usm(ap,)h = us(w(a)h),
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so m x u{m,) = u;. Thus
(3.3) (rxu)or=7 and (7xu)om=u.
If we want to avoid extending to (A x, G)**, we need to rewrite (3.3) as
(m x u)(am;) = 7(a)u, fora€ D;.

That covariant representations extend to A x4 G in this way characterises the
crossed product.

PrOPOSITION 3.1. Let (m, u) be a covariant representation of (A, G, a). Then
7 X u s fatthful if and only if for every covariant representation (p,v) there ezisis
a homomorphism @ : C*(w,u) — C*(p,v) such that

0(w(a)u,) = p(ayv, fora€ D,.

Proof. Applying the hypothesis to the canonical covariant representation
(¢,,m) of (A, G, &) In (A x o G)** gives an inverse & for ™ x u. 1@

Although this is not a deep result, it does give the easiest way of recognising
the full crossed product. However, it is difficult to see how to turn this into
a convenient categorical definition of the crossed product, as is often done for
ordinary actions. For example, even if 7 x w is faithful on A x, G, we do not know
if the canonical extension to a normal representation of (A x, G)** is faithful on
the C*-algebra generated by A and mg. Thus for all we know, C*(A U mg) and
C*(m(A)Uug) could be essentially different even though A x4 G and C*(7, u) are
isomorphic. For a partial solution of this conundrum, see Proposition 3.3 below.

ProrosiTION 3.2, Let o be a partial aciion of a discrete group G on a
C*-algebra A. Then there is a unigue coaction & of G on A X, G such that
a(am,) = am, ®s fora € D,.

Proof. Define maps 7 and u from A and G, respectively, to (A xo G)*"* ®
C*(G) by
7(a) =a®1 and u, =m,®s.

Then u is a partial representation (being a tensor product of two such). We have

usU: = msm: @1l=p;®1= W(Ps),

1

UsUUF Uy = MMy ) & stt71s7 = mymym?, ® 1 = usuiuly,
s S

and
Adusom{a) = Adm,(a) ®1 = a,(a}® 1 = 7o a,(a)
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for a € D,-1, so (m, u) is a covariant representation of (4, G, o) by Lemma 1.11 (ii).
Clearly C*(7,u) C (A xo G) ® C*(G).

Define 6 : (A x4 G) @ C*(G) — A Xo G by 8(z @ s) =z for s € G. This is
well-defined on the minimal tensor product because it is the tensor product of the
identity homomorphism of A x 4 G and the augmentation representation of C*(G).
We have

G o (m x u)(am,) = #(am, ® s) = am, forac€ D,.

Hence, @ = 7 x u is a faithful homomorphism of 4 x4 G. Nondegeneracy of & as
a homomorphism into (A X, G) ® C*(G) and the coaction identity are obvious. ¥

As a first application, we use the dual coaction & to show that in a faithful
representation 7 X u, u is as faithful as m is.

ProOPOSITION 3.3. If # x u is a faithful representation of A xo G, then

uy = ug implies my = my.
Proof. Suppose u, = u;, and suppose first that D, D; # {0}. Then for any
nonzero a € D, D, we have

(7 x u)(amy) = w(a)u; = r(a)ue = (1 x u)(amy),

so am, = am; by hypothesis. Since a # 0 implies am, # 0, applying the dual
coaction & gives am, ® s = am; ®t, so s and t are linearly dependent elements of
C*(G), forcing s = t and m, = my. If D, N\ D, = D,D; = {0}, then p,p; = 0, and

usuy = Ui uuy = w(ps)m(ps) = 7(pspr) = 0,

forcing us = 0. But then 7 x u{am,) = w(a)u, = 0 for all @ € D,, and because
7 x u is faithful this implies D, = {0} and m, = 0. Similarly, u; = 4, = 0 implies

m; = 0, so again we have m, = my, as required. W

Recall from [15] that if 6 is a coaction of G on a C*-algebra B, then for s € G
the associated spectral subspace is

B,={be B|6(}) =b®s}.

If x, is the characteristic function of {s}, regarded as an element of B(G) =
C*(G)*, then 8, = (¢ ® x;) o 6 is a projection of B onto B;.
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PRrOPOSITION 3.4. The speciral subspaces for the dual coaction & on a partial
crossed product A X, G are given by (A xo G)s = Dym; = myDy-1.

Proof. Let @, : A x4 G — (A xa G);s be the canonical projection. Clearly
Dym, C (A Xo G)s. On the other hand, any z € (A x4 G), can be approximated
by a finitely nonzero sum Y a;my, and then

:

z = a,(z) = &, (Eatmg) = a,m;.
i
Hence (A x4 G)s C Dymy,, proving the first equality. The second equality follows
from the covariance of (¢, m):

msDy-1 = myDycipeas = myDimymy = as(Ds-1)my = Dymg. 8

PROPOSITION 3.5. For s € (7, consider the following conditions:
(i) ps € M(A);
(ii) D, = Ap;,;
(i) M(D,) C M(A);
(iv) my € M(A x4 G).
Conditions (i)-(ii1) are equivalent, and are implied by (iv). Moreover, if (i) holds
for both s and s™1, then (iv) holds as well.

Proof. That (i) implies (ii) must be a well-known general fact about ideals of
C*-algebras, but we lack a reference. Let A act via its universal representation on
‘H. It suffices to show that any state w of A annihilating D, also annihilates Ap,.
There exists £ € M such that w(a) = (a€,£). Since p; is in the weak* closure of D,
(ps&,€) = 0. This forces p,€ = 0, so for any a € A we have w(ap,) = (ap,£,£) =0,
as required.

The chain (ii) implies (iii) implies (1) is routine.

Assuming (iv), we have p, = mym} € M(A x, () also. Since &(p,;) = ps ®1,
we get

Ps € M(A xXa G)e = M({(A X¢o G)e) = M(Deme) = M(A).

Finally, assume (i) holds for both s and s™1. Since A xo G = m and
mi = m,-1, (iv) follows from the following computation for a € Dy: t
amyms = myerz—1 (a)psms
= ay(oy-1{a)psymum,  since ay-:(a)ps € Dy D, ‘
= ay(ag-1{e)ps)mes  since az(ay-1(a)ps) € Dy Dy
€ Dyymy; CAxa G B
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McClanahan ([9]) constructs a regular covariant representation (#”,u"), of
(A, G, ). We give a description which is more convenient for our purposes. For
s € Glet & : A — M(D,) be the canonical homomorphism extending «; :
D,-1 — Dy; also let x, be the characteristic function of {s}, and A bé the left
regular representation of G. Let 7 be a faithful and nondegenerate representation
of A on H. Then (#",u") acts on H ® {*(G), and is determined by

7" x u"(am,) = EW(&t_l(a)) ® xtAs forac D,
t

where the sum converges in the strong*-topology. The reduced crossed product. of
(A, G a)is A Xqr G=C*(n",u").

The following result characterises the reduced crossed product as the canoni-
cal image of A x, G in the multipliers of the double crossed product (Axq G) x5 G.

ProrosiTioN 3.6. Let a be a partial action of a discrete group G on a C™-
algebra A, and let jax, ¢ be the canonical embedding of A xo G in the crossed
product by the dual coaction. Then there is an isomorphism 0 : jax ,c(A %o G) —
A Xor G such that

¢ oij,G =a" xu".
Proof. Let M be the representation of ¢g(G) by multiplication operators on

1?(G). By Lemma 2.2 of [15] the following calculation shows (7" x »",1® M) is a
covariant representation of (A x4 G, G, @): for a € D,

(7" x u")(am: ) (L @ x¢) = Z m(0p-1(a)) ® XrAs Xt

= 3" m(@-1(a)) ® XrXaths
= (1 ® xs1)(7" x u")(ams).

Since (77 x u")|(A Xq G)g = (7" x u")|]A = 7" is faithful, Proposition 2.18 of [15]
shows ker(n™ x u") = ker jax.q, and the result follows. B

REMARK 3.7. The above proposition shows A X4, G is independent up to
isomorphism of the choice of faithful representation of A, so Proposition 3.4 of [9] is
a corollary. By Proposition 2.8 (i) of [13] and Proposition 2.6 and Theorem 4.1 (2)
of [16] ker jax,c = ker(t ® A) o & Thus we also obtain alternative proofs of
Lemma 4.1 of {9] and the half of Proposition 4.2 of [9] stating that if G is amenable
then A xo G =Axq,G.

A coaction § of GG on a C*-algebra B is called normal ([14]) if jp (or equiv-
alently, (+ ® A) o §) is faithful. The coaction Ad(jg ® ¢)(wg) on jp(B) is always
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normal, and has the same covariant representations and crossed product as 6 ([14],
Proposition 2.6); it is called the normalization of §, and denoted ™. The previous
proposition allows us to view the normalization &® of the dual coaction & as a

coaction on the reduced crossed product A x4, G.

COROLLARY 3.8. Lel (m,u) be a covariant representation of (A,G,«). Then
ker(m x u) = ker(n” x u") if and only if 7 is faithful and there is a normal coaction
§ of G on C*(m,u) with 6o (r xu) = ({7 x u)@¢)o Q.

Proof. This is immediate from our Proposition 3.6 and Corollary 2.19 of
[(15]. =

4. LANDSTAD DUALITY

Let § be a coaction of the discrete group G on a C*-algebra B. For s € G let
B, ;= {b € B | §(b) = b® s} be the spectral] subspace, and let D, = B;B; :=
sp{bc* : b,c € B,}. Then D, is an ideal of D, = B,, and D,—: = B} B,. Let p,
denote the identity of D?* regarded as a projection in B**. B, 1sa Dy — D,
imprimiﬁvity bimodule with inner products p,{z,¥} = 2" and {z,¥)p,_, = z"y.
By the discussion at the end of Section 2, the multiplier bimodule can be identified
as

M(B,) = {b € p,B* ps-1 | DybUbD,-s C B, ).

Fortunately, when s = e this coincides with the usual multiplier algebra M (B.) of
B,.

The following result is Landstad duality for partial actions. Condition (4.2)
below was motivated by Proposition 4.16 of [5].

THEOREM 4.1. Let & be a normal coaction of a discrete group G on a C*-
algebra B. The following are equivalent:
(i) there is a partial action « of G on a C*-algebra A such that (B,6) is
isomorphic to (A x4 G,8"),
(ii) there is a partial representation m of G in B** such that

(4.1) m, € M(B,) and m,m; =p, fors€G;

(iii) there is a collection ¥, : B, — D, of left Hilbert D;-module isomor-
phisms such that

(4.2) VYse(2y) = Ys(2e(y)) forz € Bs,y € B
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Proof. The construction in Section 3 shows that (i) implies (i1}. We next show
that (ii) implies (i). Since m is a partial representation, we have mim, = p,-1.
By Lemma 2.1, there are isomorphisms «, := Adm, : D,-1 — D,; we claim that
a is a partial action of G on B,. Clearly D, = B,. We must show

as(Dg-1 D) C Dy,
and
g0y = (tg; on Dya Dy
For the first,
ay(Dy-1Dy) = my Dy DyD,—m) C BBy B BY C B, B!, = Dyy.

For the second, since m is a partial representation, {4.1) and Lemma 1.8 imply
am,m; = amy, for all @ € D;D,y, or equivalently mya = memia for all a €
Dy-1Dy—1,—1. Thus for such a we have

asi(a) = myamy, = memeam;m; = asoq(a),

as claimed.
The pair (:,m) is a covariant representation of (B.,G, @), and we have
C*(¢t,m) = B because B =) B,. For a € D, we have
S

6o (¢ x m)(am,) = 8(am,;) = am; ® s = (¢ x m) @ Y(am; ® 5)
= ((¢ x m) ® ¢} o &(am, );
since ¢ 1s faithful, (i) now follows from Corollary 3.8.
Now we show that (ii} implies (iii). By Lemma 2.1, #,(z) = zm! defines a
left Hilbert-module isomorphism v, : B, — D,. Let = € B, and v € B;. Then
there exist ¢ € D;-: and b € D, with £ = m,a and y = bm;. We compute:

Ysi(zy) = mgabmym}, = mgabmim;mym?, since ab € D,

*

= mjabm;

mymymym; = mgabmym;m’
= zym;mg = ¥, (29:(y)),
giving (4.2).
Finally, to see that (iii) implies (ii}, Lemma 2.1 gives m, € M(B,) such that

msm; =p, and mim, = p,
and it remains to verify (1.4). But (4.2) implies
amsbmymy, = am;bmymim, fore € D,,be Dy,

and letting @ and b run separately through bounded approximate identities for D,
and Dy gives mym,m}, = mymymimi. 1
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Landstad ([7], Theorem 3) originally characterised reduced crossed products
by ordinary actions of a locally compact group. When the group is discrete,
Landstad’s characterisation is the special case of the above theorem in which p, = 1
for all s € G: 6 is equivariantly isomorphic to the dual coaction on a reduced
crossed product by an ordinary action of (7 if and only if there is a homomorphism
s +— m, of G into UM (B) such that §(m;) = m, ® s for all s € G.

5. PARTIAL ACTIONS OF F,,

McClanahan ([9], Example 2.4) and (for the case n = 1) Exel ([5]) show that
certain partial actions of the free group F, can be reconstructed from the gener-
ators. We shall show that, for such partial actions of F,, our Landstad duality
(Theorem 4.1) can be recast in terms of the spectral subspaces of the generators.
This will give both a generalisation and a simplification of Exel’s characterisation
([5], Theorem 4.21) of crossed products by certain partial actions of Z = F.

Throughout these last two sections we shall denote by g1, ..., gn a fixed set
of generators for the free group F,,. A word in F,, is reduced if it is the identity
or a product s;5---5; in which each s; is either g; or gj_l for some j, and no
cancellation is possible. When we say 5,59+ 51. is a reduced word it is implicit
that each s; has the form gj*lA

DEFINITION 5.1. A partial action « of F,, is multiplicative if for every re-

duced word 51 - - 55, we have a5, = 5, -+ s, -

Thus for any multiplicative partial action we have ay,; = o, whenever s,
are words for which there is no cancellation possible in si. The key issue is that
the domains of definition must coincide, and we shall see in the next Lemma that
it is relatively easy to decide whether this happens.

LEMMA 5.2. A partial aclion o of F,, is multiplicative if and only if D, ,...;,
C D,, for every reduced word sy - - - 5.

Proof. The “only if” direction is clear. For the other direction, it suflices to
show that oy,..sp = 5, 005,...5,. Write s = 53, t = sp+--5,. Then because ayy
is an injective map which extends a;qy, it is enough to show they have the same

range. But
range sy = Dy = D;Dyy by hypothesis

= ay(D;'D;) by Lemma 1.2
= ;0¢(Dy-15-1Dy-1) by Lemma 1.2
= range oy,

as required. @
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LEMMA 5.3. If & ds a multiplicative partial action of F, on a C*-algebra
A, then the partial representation m of Fp, in (A xq F)** salisfies m;,. .5, =
mg, + -y, for every reduced word s, - - - 55.

Proof. Again write s = sy, t = s3---5;, and it is enough to show that
the partial isometries my; and mym,; have the same rangc projection. But since
Dy = Dy Dy = ag(Dy-112,), we have

* - __*
Dst = O‘S(ps—lpt) = MgPs-1PyMmyy = MMMy My . |

In t}{c above situation, D, .., = asl(Ds;l Dy,..s1), s0 e is a free product,
of n partial actions of Z in the sense of McClanahan ([9], Example 2.3). In fact,
a partial action of F,, is multiplicative if and only if it is the free product of n
multiplicative partial actions of Z. This brings up a minor inconsistency between
the partial actions of Exel and McClanahan’s partial-actions of Z: a partial action
of Z in McClanahan’s sense ([9]) is a partial action in Exel’s sense ([5]) if and only
if it is multiplicative. Exarnples of nonmultiplicative partial actions of Z are easy
to come by:

EXAMPLE 5.4. Suppose  is an {ordinary) action of Z on A. Define ideals

{Dp}nez of A by
D. — A if nis even,
"L {0} if nisodd.

Then define o, = 8,{D_,,. To see that « is a partial action, the only nontrivial
condition is an(D_nDi) C Dypyr. This is trivially satisfied when n + k is even,
and if n 4k is odd then n or k is odd, and an(D_, D) = {0}. This partial action
is not multiplicative since Dy = A ¢ {0} = D;.

It is easy to check whether a partial action of Z is multiplicative.

LEMMA 5.5. A partial aclion o of Z is multiplicative if and only if D, C Dy
for allmn > 0.

Proof. It suffices to show that if D,, C D; for all n > 0 then D_,, C D_; for
all n > 0. This is proven inductively by the following computation:

D_pn=0a_n(Dn) = a_pn(D1D,)
a_p1(D_1Dp1) = a1-n(D_1Dp-1)
= C\’l—n(l)n—llj—l) =Dy 2D nCDi_,. 1

THEOREM 5.6. Let § be a normal coaction of F,, on a C*-algebra B. Then
there is an multiplicative partial action o of F), on a C*-algebra A such that (B, §)

is isomorphic 1o (A xor Fp,@") if and only if:
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(i) B is generated by B, U By, U---U By_;
(i1) for each s = g1,...,gn there exists my, € M(B,) such that

mem, =ps, and mimg = p,-1.

Moreover, (i) can be replaced by:
(iii) for each s = g1,...,gn there is a left Hilberi D;-module isomorphism
Yy : By — D,.

Proof. First of all, Lemama 2.1 tells us that (ii) is equivalent to (iii). If « is
a multiplicative partial action of F,, on A and B = A x4, Fpn, we know (ii) holds.
To see (1) it suffices to show that if sy - - - s; is a reduced word then

(5.1) Bs,...s, = B, -+ By,
and by mduction it suffices to show
Bs, .5, = By, Bsyos -

Letting s = 57, t = s5- - - sg, and using Lemma 5.2, we have

Byt = Dyymyy = Dy Dyymyg, = “'s(Da"lDt)nlst
= as(oy-1(Ds)Dy)mye = DymyDymy = B By,

as desired.

Conversely, assume that § is a normal coaction of F,, on B satisfying (i) and
(i1). We first show that if s; - - - s; is a reduced word then (5.1) holds again. Every
z € By, .5, 1s approximated by a sum of terms of the form & - --z;, with z; € By,
and t; € {e,gF!,...,g%'}. By applying the canonical projection of B onto Bj, ...,
to this sum, we see that we can assume that each z; ---2; € B, ...;,. This forces
ty---t; = s1---5p. Since the latter product is reduced, we can insert parentheses
in the former product so that the 7th chunk of ¢’s multiplies out to s;. Hence,

Ty = B-’l ...Bsk,
verifying (5.1).
To apply Theorem 4.1, we need a partial representation m of F,, in B** such

that for each s € F

(5.2) m, € M(B,) and m,m; =p,.
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We are given m; satisfying (5.2) for s = g1,..., gn. Define

*
me = 1, m,-1 =My,

and

Mgy...5, = My, My, for any reduced word sy - -- 5.

For s = e,g7",...,¢;! it is clear that (5.2) holds. Note also that m} = m,-1 for
all s € F,. To see that (5.2) remains true for all 5 € Fp,, by induction it suffices
to show that if it holds for s = », ¢ and there is no cancellation in rt, then

(5.3) _ Mey € M(Br1);

(5.4) MMy, = Prs.
For (5.3) we need

(5.5) Myt € preB™ Pr-1,-1;

(56) Dﬂmrt U m”D,_:,._l C Bflt-

For (5.5) choose nets {z;} in B, and {y;} in B; converging to m, and m, strictly
in M(B,) and M(By), respectively, hence weak* in B**. Then
Myy = memy = weak™ limlim z;y;
i

and z;y; € BBy C Byt C prtB**py-1,-1, so (5.5) holds. For (5.6), recall from
Lemma 2.1 that (5.2) implies Bfm, = D,-: and D, = B,m,. Since we have
already verified that (5.1) applies, we deduce that

Dyimyy = Bry Byymemy = B, By B B}m,m; = B, Dy D,-1my
= B, D,-»Dym; = B, B; = By,
and similarly for mps Dy-1,-1.

For (5.4), since m, and m; are partial isometries with commuting domain and
range projections, my,; = m,m; is a partial isometry. Since m,; € M(B,), we have
My, < ppr. For the opposite inequality, it suffices to show D.ym.mymim; =
D,;, and again we use (5.1):

Dpymemym;m, = By By,m.pym, = B, By B; B} m,p;m,
= B.D;D,-1pim; = B, D,~1 Dypymy
=B, D,-1Dym; = B, D D.—am
= B.ByB{ By = D,4.
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Thus (5.4) holds, and we have proved (5.2) for all s € F,,.

We still need to verify that m is a partial representation. (1.2) and (1.3}
are obvious, so it remains to show (1.4) for all 5,{ € F,,. Let 5 = s;---5; and
t =1y - -1; be the reduced spellings. Then the reduced spelling of st is of the form

st =81 - 8itp_iy1 - 1 for some ¢ € k.

Let

U=$8y---8, V=841 S, and W=t _jp1° L.
Then s = uv, t = v~'w, and st = uw, with no cancellations, so

*

* Kk __ I . * * *® %
MMMy M = My My =24y My 1, Mgy = My My G Mgy My, My Mgy T,

= My Ty My My Mgy, MLy, = My My =14y My, = MgTE,.

REMARK 5.7. When n = 1, the above theorem includes Theorem 4.21 of
[5], and our proof in this case is simpler than his since we can use the multiplier
bimodule to go straight to the partial isometries m;,.

6. APPLICATIONS AND EXAMPLES

(o) CuNTzZ ALGEBRAS. The Toeplitz-Cuntz algebra TO, is the universal C*-
algebra generated by n isometries s; such that 3 s;s7 is a proper projection; Cuntz

showed that any n isometries S; on Hilbert spacze generate a faithful representation
- of TO, if ) S;Sf < 1 ([2]). The Cuntz algebra O, is similarly generated by any

family {S;} of isometries satisfying 3 .5;SF = 1 ([2]). If g; are generators of F,,
then s; ® g; € 7O, ® C*(F,,) is also a Toeplitz-Cuntz family of isometries, and
hence there is a faithful, unital homomorphism 6 : 70, — 70, ® C*(Fy) such
that 6(s;) = s; ® g;. Since

(1Q6,)08(s:) =i @0, (i @) =5 ®9: D g: = (6 ® )0 8(s:),

6 is a coaction of F,, on 7O,,. Since {s;® A, } is a Toeplitz-Cuntz family, (i®X)o§
is faithful, and 6 is normal. There is a similar coaction on (?,,. We intend to apply
Theorem 5.6 to these coactions.

We first recall some standard notation and facts about the Toeplitz-Cuntz
family {s;}. If = (1, g2, . . ., p4y)) is a multi-index, we write s, for the isometry
Sy = SuySuy - Spy,, in TOp, and g, for the word g, g,, " guy,, In Fn, so that
8(sp) = sy ® gu. If we realise 7O, on Hilbert space, the isometries s; have
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orthogonal ranges, and hence satisfy s¥s; = 0 for i # j; it follows that every non-
zero word in the s; and 57 collapses to one of the form s,s}, for which we have
8(su85) = susy ® gugy'. A product (5u5,)(5a55) is non-zero if and only if the
multi-indices v and « agree as far as possible; in particular, we have

susy v = (o, ) Yigl+1s - - - o))
(susp)(su8,) =< 0 if v; # p; for some ¢ < min(|gl, |v|);
susp M= (v, Vs s Bl )-

It follows that ) = 5p{s,s;} is a commutative C*-subalgebra of 70, which is
called the diagonal subalgebra. By convention, we write s = 1, so that [J contains
the identity of 7Q2,,.

COROLLARY 6.1. There is a multiplicalive parlial action o of F,, on the
diagonal subalgebra D such that (TO,,,8) is isomorphic to (D x oF,, &). Similarly,
O, 15 isomorphic to the partial crossed product of ils diagonal subalgebra by a
maultiplicative partial action of F,,.

Proof. Let B = 70,. Since the words 5,5} span a dense subspace of B,

and the projections onto the spectral subspaces B, are continuous, the equation
0(su55) = suspy % g9, implies that for each s € F,,,

By = 55,55 - gu0 = o).
In particular, B* = B, = D, and
By, =sp{sisus,} =sD=D =D, By, = Dgi_x,

as Hilbert D-modules. Since the isometries s; themselves generate B, it follows
from Theorem 5.6 that there is a multiplicative partial action « on I such that
(B,8) = (D Xg,pFp,am).

To sec that D xoF, = D x,,F, iu this case, note that since D is generated
by {ps}seF., 12 xo Fy is generated by {ms}ser, . Since the partial action « is
multiplicative, it follows fromn Lemma 5.2 that D x, F, is actually generated by
the Toeplitz-Cuntz family {m,,,...,m, }, and by Cuntz’s Theorem is therefore
isomorphic to 70Q,,. Thus any representation 7 xv of D x o F,, in which Sovvl £ 1
is faithful, including the regular representation whose image is D Xa,r Fn. The
proof for O, is similar. &

Much the same arguments show that the Cuntz-Krieger algebras are partial
crossed products; to avoid repetition, we shall merely realize them as reduced
crossed products.
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CoroLLARY 6.2. If A is a {0, 1}-malriz satisfying condition (1) of [3], then
the Cuniz-Krieger algebra O 4 is isomorphic {0 a partial crossed product D XearFa.

Proof. Let n = |A|, and let {s;} be a family of partial isometries generating
O, and satisfying the Cuntz-Krieger relations

7
sisi= Y Ali, )5
j=1

The universal property of @4 implies that the map s; — s; & ¢; extends to a
coaction § : Oq4 — O, & F,, with spectral subspaces

By, =80 {sisus), : A(i, ) = A(p, peyr ) = 13,

*

and D := B, = §p{sys),}. Since 5; = 2 5i5j5; is in By, the spectral subspaces

generate Q4. The ideals D o= By Bql are given by
Dy—v =5p{sus), : A(i, 1) = Alper, 1) = 1},

and sis,5}, & S} sis,s), = 5,5}, is a right Hilbert D y_x -module isomorphism of By,
onto ) —1. Thus the Corollary follows from Theorem 5.6. ®

EXAMPLE 6.3. We now give some related examples of systems which are not
dual to partial crossed products. First of all, we claim that O, is not a crossed
product by a partial action of Z in such a way that the gauge action o of T agrees
with the dual action. The spectral subspaces B, for the gauge action are given by

B =8p{sus, : [ul = [v] = n},

and all the ideals D, := B, B}, are equal to the AF-core B of O,,. If (O, a) were
the dual system of a partial crossed product D X4, Z, then the spectral subspaces
would be isomorphic to B® as Hilbert B¥-modules; but

By = 5{susl ¢ lul — Iv| = 1} = 5p{sit : t € B}

is mapped isomorphically to the Hilbert B%-module (B*)" via the map r —
(sir,...,sn7), which has inverse ({1,...,t,) — > s;t;. That O, is not a partial
crossed product by Z underlines that stabilisation is an essential ingredient in
the comment at the top of page 4 of [5] to the effect that the crossed products by
endomorphisms studied by Paschke ([11]) fit the mould of [5]. (Cuntz’s description
of O, as a crossed product of the UHF-core 4 by an endomorphism does not
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obviously fit the pattern because the range of the endomorphism is not an ideal
in the simple algebra A (see [1], Example 3.1)).

More generally, the coaction of F,, on @, induces a coaction of any quoticnt
G of Fy, but arguments like those in the previous paragraph show that these
are not typically the dual coaction on some decomposition O, 2 A x4, G as a
partial crossed product. For example, if ¢ : F3 — Fy = {0, b2) is the quotient
map which identifies the first two gencrators (say q(g91) = ¢(g2) = b1, ¢(g3) = b2),
then the composition (i & ¢) 0 6 : O3 — U3 & C*(F3) has the Hilbert B.-module
By, = 8p{sit : 1 € B.,i = 1,2} isomorphic to B2 rather than B,.

While it is nol an immediate application of our earlier results, it is interesting
to note that similar ideas give a complete characterisation of the Cuntz algebras
in terms of the canonical coaction.

PROPOSITION 6.4. Suppose that B is a C*-algebra with identily, carrying a
coaclion 6 : B — B C*(F,) of Fry = {g1,...,9n). Assume that:

(i) the spectral subspaces By, are isomorphic to B as right Hilbert B’-
modules;

(i1) By, By, =0 for i # j;

(iii) the spaces By, generate B as a (*-algebra.
Then for every word p in the semigroup generated by {g;}, B, Bj, is an ideal in
B®; as a C*-algebra, each By B}, has an identity which is a projection p, in B°
(We understand py to be the identily of B%.) Assume further that:

(iv) B® =5p{p, : pu is a word in the i}
Then B is isomorphic 1o TO,, or O,,.

Proof. We begin by observing that the first two assumptions give a copy of
Op or TO,, inside B. If v; : B® — By, is the isomorphism guaranteed by (i), then
si = 1P;(1) satisfies

S’;si = (si)si)Bﬁ = (1,/)5(1), 1/),‘(1))35 = (1, 1)B& = 1,

and hence is an isometry. Since v;(b) = 9;(1b) = s;b, we have B,, = s;B®. Thus
(ii) forces s¥s; = 0, and {s;} is a Toeplitz-Cuntz family.

We next claim that B, = By, --- By, = s, B’ for all words s in {g;}. For
any s,t € F,,, we have B;B; C By, so the problem is to show that B,, C B,B,
for all words p, v in {g;}. Note that B} B, = B, because s%s, € B:B, and BB,
is an ideal. Thus

Bu, = By BB, = Bu,B,-1B, C B,,,-1B, = B,B,,
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establishing the first equality. For the sccond, note that we certainly have s, B C
By. To see that sﬂB’s is all of B?, note that for any ¢, B%s; is contained in the
spectral subspace B,,, which we know is 5; B%. Thus, from the first equality, we

have

< é ] b
By=B, B = 5., B, B "'Su|,.|B

Ml

5 5 _ §
C Sy Sz Sy, B = 5, B°,

Justifying the claim.
It follows from the claim that B, B = s,,B‘ss’:“ which has identity s, s}, and
hence (iv) says precisely that B® = §p{s,s}}. Thus (iii) implies that the isometries

s; generate B, and B is either 70,, or O,, depending on whether > s;57 < 1 or
Yosisi=1. 1

(B) WIENER-HOPF C*-ALGEBRAS. We now consider the quasi-lattice ordered
groups ((7, P) of Nica ([10}). Thus P is a subsemigroup of a discrete group ¢ such
that PN P~! = {c}, and the (right) order on (7 defined by s <t <> st € P
has the following property: if s1, sg, . .., s, have a common upper bound in P, they
also have a least upper bound s; Vsa V.-V s, in P. The individual elements of
G which have upper bounds in P are precisely those in PP~! = {pg~! : p,q € P},
and we follow Nica in writing o(s) for the least upper bound in P of s € PP,
and 7(s) for s7'o(s). In general, there are many ways of writing a given element
of PP~1 (pg=! = pr(¢gr)~" for any r), and one should think of s = o(s)7(s)™"
as the most efficient. We refer to Section 2 of [10] for the basic properties and
exaniples.

The Wiener-Hopf C*-algebra of a quasi-lattice ordered group is the -
algebra W((7, P) of operators on {?(P) generated by the isometries {W, : p € P},

~lq) if p~lq € P,
ORI

otherwise.

where

It turns out that the family {W, W, : p,¢ € P} spans a dense subspace of W((/, P)
({10}, Proposition 3.2). The diagonal subalgebra is D = Sp{W, W} (see (10],
Section 3).

PROPOSITION 6.5. There is a normal coaction § of (G on W((G, P) such that
(6.1) s(WpWy) = W’,,W;Qopq_l forp,q € P.

Proof. By Theorem 4.7 of [14] it suffices to show there is a reduced coaction
8" of G on W((, P) such that

(6.2) S(WWi) = WoW/ & Ayy- forp,ge P
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Since W(G, P) is by definition a subalgebra of B({?(P)), the minimal tensor prod-
uct W(G, P) & C2(() by definition acts on I*(P) @ (*(() = 13(P x (7). We define
an operator We on I2(P x () by (Wp&)(p,s) = &(p,p~'s); Wp is unitary with
Wp =Wg Y given by (Whé)(p) = &(p, ps). An easy calculation shows that

. " 4 ]-1 ,)—IS if -1( c P,
(Wp (W, 0 1)W5E)(g,5) = {%(7 g, p7's) ifp 4
0 otherwise;

(6.3)
= (Wp 0 X )(€)(g, 5).

Siuce the elements W, W span a dense subspace of W(({#, P), the isometric map
T — Wp(T % 1)W; extends to a unital homomorphism 6" : W(G, Py — B(I*(P x
(7)) with range in W((i, P)®CF((), and (6.3} implies (6.2). The coaction identity
(67 @ i) od" = (i éF) o8 follows easily from (6.2). 1

THEOREM 6.6. Let W(G,P) = C*(W, : p € P) be the Wiener-Hopf C*-
algebra of a quasi-lattice ordered group. Then there is « partial action «« of G on
the diagonal subalgebra D such that the cosystem (W((G, P), (7, 6) of Proposilion 6.5

"y

is isomorphic to (D x o, G, G, &™)

Proof. Let B denote W(({, P). We aim to apply Theorem 4.1, so we need a
partial representation m of (7 in B** satisfying (4.1). For this, we need to identify

the spectral subspaces B;.
LEMMA 6.7. The spectral subspaces of § are given by
B, = { Wo)PW(,y s € PP,
0 otherwise.

In particular, the fizxed-point algebra B® = B, is the diagonal subalgebra D.

Proof. Because W((7, P) = Sp{W, W7}, (6.1) and the continuity of the pro-
jection 85 = (7 ¢ x5) o & onto B, imply

s =

_ {—SF{WPW; 5]0(]"1 = 5} ifse PP,

0 otherwise.

Hence, B, is precisely the subspace T, described in Section 3.4 of [10}, so the

lemina follows from Section 3.5 of [10].
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For s € G define
* . -1
ms — {WU(S)W7-(3) lfs E PP 3
0 otherwise.

The above lemma tells us that the ideals D, = B, B} of D are given by

7k : -1
D, = W‘,(s)'DWU(_,) ifse PP,
0 otherwise,

50
\ {W,(,)W;(s) if s € PP,
msm, =

0 otherwise;
= Ps-
In particular, (1.2) holds. Since

oo = Wa(,_x)m’:(’_,) ifse PPY,
0 otherwise;
_ W‘r(s)W;(,) ifs € PP_1,
- 0 otherwise;

*

mg,

(1.3) holds as well. Furthermore, the above formulas imply (4.1). It remains to
verify (1.4): for s,t € G we must show m,m; < m,;. We may assume s, 1, s~ e
PP~1 since mymy = 0 otherwise. Then

*

msmy = Wa(s)W:(,)Wa(a) (%)
= Wo(s)r(s)=1(r(s)vo(t) Wrto )= (s(t)vr(s))
by equation (5) of [10], while

mst = Wo(syWrtan)-
Since W, W; < W,W; whenever p,q,u,v € P, pg~! = wv~!, and u € p, the
inequality follows.
Thus Theorem 6.6 follows from Theorem 4.1. &

REMARK 6.8. Nica also associates to each (G, P) a universal C*-algebra
C*(G, P) whose representations are given by representations V of P as isometries
satisfying the covariance condition

- VoveVovy 1 pV g exists,
AR

0 otherwise.
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IfV: P — C*(G, P) is the universal such representation, the map s — V, ® s is
also covariant, and hence there is a coaction 6 : C*(G, P) — C*(G, P) ® C*(G)
such that 6(V;) = V,6s. It is not obvious that this coaction will be normal, and its
normalisation could coact on a proper quotient of C*(G, P). However, the theory
of [10] suggests that in many cases of interest the Wiener-Hopf representation
induces an isomorphism of C*(G, P) onto W((G, P); a general theorem along these
lines is proved in [8], from which Cuntz’s Theorem ([2]) and other related results
follow.
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