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Abstract. In this paper, a complete description of all weakly continuous
rank-preserving linear maps on nest algebras is given. As an application, we
get some results concerning local automorphisms of nest algebras.
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1. INTRODUCTION

The linear preserving problem is one of the most active and fertile subject in matrix
theory during the past one hundred years. In recent years, many authors have
taken interest in the linear preserving problem on operator algebras, especially on
B(H), the algebra of all bounded linear operators on infinite dimentional Hilbert
space, and many rich and deep results have been obtained. (see [3], [4], [5], [7],
[8]). It is worth to notice that the solutions of some linear preserving problems
on B(H) were reduced to the description of rank-1 preserving linear maps. For
example, in [3] the author recaptured and improved the related theorems in [2], [3],
[4] and [8] applying the representation of rank-preserving linear maps on B(H).
In this paper, we will describe rank preserving maps on nest algebras.

In order to state our main results, we need some symbols and terminologies.
In this paper, X will be a complex Banach space and B(X) will denote the collec-
tion of all bounded linear operators on X. ⊆ and ⊂ denote inclusion and proper
inclusion, respectively. For x ∈ X and f ∈ X∗ the rank-1 operator z → f(z)x
from X into X is denoted by x⊗ f , where X∗ is the dual Banach space of X.
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Definition 1.1. A nest of X is a chain N of closed (under norm topology)
subspaces of X containing {0} and X, which is closed under the formation of
arbitrary closed linear span (denoted by ∨) and intersection(denoted by ∧). AlgN
denotes the associated nest algebra, which is the set of all operators in B(X) such
that TN ⊆ N for every element N ∈ N . For N ∈ N , define N− = ∨{M ∈ N :
M ⊂ N}, N+ = ∧{M ∈ N : N ⊂ M}, and N⊥

− = {f ∈ X∗ : f(N) = 0}. We also
write 0− = 0 and X+ = X.

Throughtout this paper, we always assume that N satisfies 0 6= 0+ and
X 6= X−.

Definition 1.2. Let Φ be a linear map from AlgN into AlgN . We say
that Φ is a rank-k preserving map, if Φ(A) is a rank-k operator for every rank-
k operator A ∈ AlgN , where k is a positive integer. We say that Φ is a rank
preserving map, if Φ is a rank-k preserving map for every positive integer k.

In Section 2, a complete description of all weakly continuous rank preserving
linear maps on AlgN is given. We obtain that Φ is either of the form Φ(T ) = ATB,
A,B ∈ B(X) or Φ(T ) = AT ∗B, A ∈ B(X∗, X), B ∈ B(X, X∗). It is a natural
question that whether A and B are in AlgN when Φ(T ) = ATB. In general case,
the answer is negative (see Remark 3.3). But when Φ is surjective, the answer is
positive. In Section 3, we show that if Φ is a weakly continuous rank preserving
surjective linear map, then Φ is of the form Φ(T ) = ATB, A,B ∈ AlgN . In
Section 4, applying Theorem 3.1, we show that all weakly continuous surjective
local automorphisms on AlgN are inner automorphisms. When dim X < ∞ we
get that the set of automorphisms on AlgN is algebraically reflexive.

2. RANK PRESERVING LINEAR MAPS

For x ∈ X and f ∈ X∗, we define Lx = {x⊗g : g ∈ X∗} and Rf = {y⊗f : y ∈ X}.
For N ∈ N , x ∈ N and f ∈ N⊥

− , we define:

LN
x = {x⊗ g : g ∈ N⊥

− } and RN
f = {y ⊗ f : y ∈ N}.

We begin with some lemmas.

Lemma 2.1. If Φ is a rank-1 preserving linear map on AlgN , then one of
the following holds:

(i) For every N ∈ N and every x ∈ X, there exists y(x) ∈ X such that
Φ(LN

x ) ⊆ Ly(x).
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(ii) For every N ∈ N and every x ∈ X, there exists g(x) ∈ X∗ such that
Φ(LN

x ) ⊆ Rg(x).

Proof. We will devide the proof into two steps.

Step 1. Let M be a fixed element in N and x0 ∈ M . Then Φ(LM
x0

) ⊆ Ly0

for some y0 ∈ X or Φ(LM
x0

) ⊆ Rg0 for some g0 ∈ X∗.
First we claim that dim Φ(LM

x0
) = 1 if and only if dim M⊥

− = 1. The suffi-
ciency is obvious, so we need only to show that the condition is neccesary. Since
dim Φ(LM

x0
) = 1, Φ(x0⊗ f) = α(f)y0⊗ g0 for every f ∈ M⊥

− . If dim M⊥
− > 1, then

there exist two linear independent elements f1, f2 ∈ M⊥
− such that x⊗ [α(f1)f2 −

α(f2)f1] is a rank one operator, but Φ[x⊗(α(f1)f2−α(f2)f1)] = 0, a contradiction.
Thus we may assume that dim M⊥

− > 2. If neither Φ(LM
x0

) ⊆ Ly0 nor
Φ(LM

x0
) ⊆ Rg0 , then there exist f1, f2 ∈ M⊥

− such that Φ(x0 ⊗ f1) = x1 ⊗ g1

and Φ(x0⊗f2) = x2⊗g2, where x1 and x2 are linearly independent, g1 and g2 also
are. It follows that x1⊗g1+x2⊗g2 is rank-2 and Φ[x0⊗(f1+f2)] = x1⊗g1+x2⊗g2.
But Φ[x0 ⊗ (f1 + f2)] is rank-1. This is a contradiction.

Step 2. We will show that the case (i) of Lemma 2.1 holds in the case
Φ(LM

x0
) ⊆ Ly0 .
We first show Φ(LM

x ) ⊆ Ly(x) for every x ∈ M . To do this, let M1 = {x ∈
M : Φ(LM

x ) ⊆ Ly(x)}. M2 = {x ∈ M : Φ(LM
x ) ⊆ Rg(x); dim Φ(LM

x ) > 2}. It is
easy to see that M1∪M2 = M and M1∩M2 = ∅. So it is enough to show M2 = ∅.
Otherwise, there exists a nonzero element x1 ∈ M2 such that Φ(LM

x1
) ⊆ Rg1 for

some g1 ∈ X∗. Obviously x0 + x1 ∈ M , so x0 + x1 ∈ M2 or x0 + x1 ∈ M1. If
x0 + x1 ∈ M2, then Φ[(x0 + x1) ⊗ f ] = y2(f) ⊗ g2 for some g2 ∈ X∗ and every
f ∈ M⊥

− . Since Φ(x0 ⊗ f) = y0 ⊗ g0(f) and Φ(x1 ⊗ f) = y1(f) ⊗ g1 for every
f ∈ M⊥

− , it follows that y0 ⊗ g0(f) + y1(f) ⊗ g1 = y2(f) ⊗ g2. Since x1 ∈ M2

then y1(f) and y0 are linearly independent for some f ∈ M⊥
− , hence g2 = bg1 for

some b ∈ C. Furthermore g0(f) ∈ {bg1 : b ∈ C}, that is dim Φ(LM
x0

) = 1. This is a
contradiction. If x0 + x1 ∈ M1, similarly one can get that dim Φ(LM

x1
) = 1. This

is also a contradiction. So we have shown that M2 = ∅.
Now let N be an arbitrary element in N . We also assume that dim N⊥

− > 2.
We will prove that Φ(LN

x ) ⊆ Ly(x) for every x ∈ N . In fact, if M ⊆ N , then
Φ(LN

x0
) ⊆ Φ(LM

x0
) ⊆ Ly0 . Thus Φ(LN

x ) ⊆ Ly(x) for every x ∈ N by the previous
proof. If N ⊆ M , then Φ(LM

x ) ⊆ Φ(LN
x ) for every x ∈ N . Since Φ(LM

x ) ⊆ Ly(x)

and dim Φ(LM
x ) > 2 for every x ∈ N , we have Φ(LN

x ) ⊆ Ly(x) for every x ∈ N .
Similarly one can show that the case (ii) of Lemma 2.1 holds in the case that

Φ(LM
x0

) ⊆ Rg0 .
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Lemma 2.2. If Φ is a rank-1 preserving linear map on AlgN , then one of
the following holds:

(i) There exist a linear map A from
⋃
{N ∈ N : N− 6= X} into X and a

linear map B from
⋃
{N⊥

− : N 6= 0} into X∗, such that Φ(x ⊗ f) = Ax ⊗ Bf for
every rank-1 operator x⊗ f ∈ AlgN .

(ii) There exist a linear map A from
⋃
{N⊥

− : N 6= 0} into X and a linear
map B from

⋃
{N ∈ N : N− 6= X} into X∗, such that Φ(x ⊗ f) = Ax ⊗ Bf for

every rank-1 operator x⊗ f ∈ AlgN .
(iii) There exist y0 ∈ X and a linear map λ(·) from

⋃
{LN

x : N ∈ N , x ∈ N}
into X∗, such that Φ(x⊗f) = y0⊗λ(x⊗f) for every rank-1 operator x⊗f ∈ AlgN .

(iv) There exist g0 ∈ X∗ and a linear map δ(·) from
⋃
{LN

x : N ∈ N , x ∈ N}
into X, such that Φ(x⊗f) = δ(x⊗f)⊗g0 for every rank-1 operator x⊗f ∈ AlgN .

Proof. We will prove that the case (i) or (iii) of Lemma 2.2 holds in the case
(i) of Lemma 2.1.

Claim 1. If dim {y(x) : x ∈ N, N ∈ N} = 1, then the case (iii) of
Lemma 2.2 holds.

Since dim {y(x) : x ∈ N, N ∈ N} = 1, there exists y0 ∈ X such that
y(x) = α(x)y0 and Φ(x ⊗ f) = y(x) ⊗ gx(f) = y0 ⊗ α(x)gx(f), where α(x) is a
complex number which is dependent on x. Hence we can define a linear map λ(·)
from

⋃
{LN

x : N ∈ N , x ∈ N} into X∗ such that λ(x⊗ f) = α(x)gx(f). So we get
Φ(x⊗ f) = y0 ⊗ λ(x⊗ f) for every rank-1 operator x⊗ f ∈ AlgN .

Claim 2. If dim {y(x) : x ∈ N, N ∈ N} > 1, then the case (i) of Lemma 2.2
holds.

First we observe that for every N ∈ N and arbitrary two linearly independent
elements x1, x2 ∈ N , y(x1) and y(x2) are linearly independent. Otherwise, there
exist M ∈ N and two linearly independent elements x1, x2 ∈ M such that y(x1)
and y(x2) are linearly dependent, say y(x1) = a1y0 and y(x2) = a2y0, thus we have
Φ(x1⊗f) = y0⊗a1g1(f) and Φ(x2⊗f) = y0⊗a2g2(f). Hence Φ[(x1 +ax2)⊗f ] =
y0 ⊗ [a1g1(f) + aa2g2(f)] for arbitrary a ∈ C. Since y0 ⊗ [a1g1(f) + aa2g2(f)]
is rank-1, g1(f) and g2(f) are linearly independent for every f ∈ M⊥

− . Now for
every N ∈ N and x ∈ N , we have Φ(x⊗ f) = y(x)⊗ gx(f). So Φ[(x1 + x)⊗ f ] =
y0 ⊗ a1g1(f) + y(x) ⊗ gx(f) and Φ[(x2 + x) ⊗ f ] = y0 ⊗ a2g2(f) + y(x) ⊗ gx(f)
for every f ∈ M⊥

− ∩N⊥
− . Since Φ preserves rank-1, y(x) ∈ {ay0 : a ∈ C}, that is

dim {y(x) : x ∈ N, N ∈ N} = 1, which is a contradiction.
Now for every N ∈ N and x ∈ N , we can define a linear map gx from N⊥

− into
X∗ by Φ(x⊗ f) = y(x)⊗ gx(f). We claim that dim {gx : x ∈ N} = 1. In fact, we
may assume that dim N > 2, then we can find two linearly independent elements
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x1, x2 ∈ N such that y(x1) and y(x2) are independent. Since Φ[(x1 + x2) ⊗ f ] =
y(x1 + x2) ⊗ g12(f) = y(x1) ⊗ g1(f) + y(x2) ⊗ g2(f) is a rank-1 operator, where
g1, g2 and g12 denote the maps defined by x1, x2 and x1 +x2 respectively, we have
g1(f) and g2(f) are linearly dependent for every f ∈ N⊥

− . Hence g1, g2 ∈ {ag12 :
a ∈ C}. It is obvious that y(x1) and y(x), y(x2) and y(x) must not be dependent
simultaneously for any x ∈ N . We may assume that y(x1) and y(x) are linearly
independent, then gx ∈ {ag12 : a ∈ C}. Let gx absorb a suitable constant and
denote it by BN⊥−

which is a linear map from N⊥
− into X∗. We also get a linear

map AN from N into X such that Φ(x⊗ f) = ANx⊗BN⊥−
f for every x ∈ N and

f ∈ N⊥
− .
Finally, for arbitrary two elements M,N ∈ N , we have Φ(x ⊗ f) = ANx ⊗

BN⊥−
f = AMx⊗BM⊥

−
f for every x ∈ M ∩N and f ∈ M⊥

− ∩N⊥
− . We may assume

N ⊂ M , it easilly follows that AM |N = aMNAN and BN⊥−
|M⊥

− = aMNBM⊥
−

for
some 0 6= aMN ∈ C. Fix M ∈ N ; for every N ∈ N , we define:

ÃN = AN and B̃N⊥−
= BN⊥−

for N = M,

ÃN = aMNAN and B̃N⊥−
=

1
aMN

BN⊥−
for N ⊂ M,

ÃN =
1

aNM
AN and B̃N⊥−

= aNMBN⊥−
for N ⊃ M.

It is easy to verify that {ÃN : N ∈ N , N− 6= X} and {B̃N⊥−
: N ∈ N , N 6= 0} are

two compatible map varieties. Hence we get two linear maps A :
⋃
{N ∈ N , N− 6=

X} → X such that A|N = ÃN and B :
⋃
{N⊥

− : N ∈ N , N 6= 0} → X∗ such that
B|N⊥

− = B̃N⊥−
for every N ∈ N , which satisfy the requirement of Lemma 2.2.

Similarly one can show that the case (ii) or (iv) holds in the case (ii) of
Lemma 2.1.

Theorem 2.3. Let Φ be a weakly continuous rank-1 preserving linear map
on AlgN . Then one of the following holds:

(i) There exist A and C in B(X) such that Φ(T ) = ATC.
(ii) There exist A ∈ B(X∗, X) and C ∈ B(X, X∗) such that Φ(T ) = AT ∗C.
(iii) There exist a weakly-weakly star continuous linear map λ(·) from AlgN

into X∗ and y0 ∈ X such that Φ(T ) = y0 ⊗ λ(T ).
(iv) There exist a weakly-weakly continuous linear map δ(·) from AlgN into

X and g0 ∈ X∗ such that Φ(T ) = δ(T )⊗ g0.

Proof. Note that one of the four cases of Lemma 2.2 occurs under the con-
dition of Theorem 2.3.
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1◦ If the case (i) of Lemma 2.2 occurs, then the case (i) of Theorem 2.3 holds.
We may assume that 0 6= 0+, then the linear map B in Lemma 2.2 is from X∗ into
X∗. It is easy to show that B is a closed operator since Φ is weakly continuous.
Hence B lies in B(X∗, X∗) by the Closed Graph Theorem. Let C = J−1B∗J where
J is the canonical map from X into X∗∗, then C ∈ B(X) and Φ(x⊗f) = A(x⊗f)C
for every rank-1 operator x⊗ f ∈ AlgN .

Now we will show that the map A in Lemma 2.2 is bounded. Since Φ is
weakly continuous and Φ(x⊗ f) = Ax⊗Bf for every N ∈ N and f ∈ N⊥

− , then

‖Ax‖ ‖Bf‖ = ‖Ax⊗Bf‖ = ‖Φ(x⊗ f)‖ 6 ‖Φ‖ ‖x‖ ‖f‖.

Since B is bounded, sup{‖Ax‖
‖x‖ : N ∈ N , x ∈ N}‖B‖ 6 ‖Φ‖. Hence A is bounded

and can be extended to a bounded linear operator on X, still denote it by A. So
we have found two operators A and C in B(X) such that Φ(x⊗ f) = A(x⊗ f)C
for every rank-1 operator in AlgN . Recall one result in [10] that any finite rank
operator in AlgN can be represented as a sum of rank-1 operators in AlgN , we
have Φ(F ) = AFC for every finite rank operator in AlgN for Φ is linear. Recalling
another result in [9] that the set of all finite rank operator in AlgN is dense in
the strong operator topology. Since Φ is weakly continous,then Φ(T ) = ATC for
every T ∈ AlgN .

2◦ Similar to the proof of 1◦, the case (ii) of Theorem 2.3 holds in the case
(ii) of Lemma 2.2.

3◦ If the case (iii) of Lemma 2.2 occurs, then the case (iii) of Theorem 2.3
holds. Since Φ is weakly continuous and linear, the linear map λ(·) in Lemma 2.2
can be extended to a weakly-weakly star continuous map from AlgN into X∗ by
an argument analogous to that in 1◦.

4◦ If the case (iv) of Lemma 2.2 occurs, similar to the proof of 3◦, one can
show that the case (iv) of Theorem 2.3 holds.

Applying Theorem 2.3, we easily obtain the following result:

Corollory 2.4. Let Φ be an weakly continuous rank-1 preserving linear
map on AlgN . If there exists T0 ∈ AlgN such that rank Φ(T0) > 1, then one of
the following holds:

(i) There exist A and C in B(X) such that Φ(T ) = ATC.
(ii) There exist A in B(X∗, X) and C in B(X, X∗) such that Φ(T ) = AT ∗C.

Theorem 2.5. If Φ is a linear map on AlgN , and there exists T0 in AlgN
such that rank Φ(T0) > 1, then Φ is a weakly continuous rank-1 preserving map if
and only if one of the following holds:
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(i) There exist an injective operator A ∈ B(X) and a dense range operator
C ∈ B(X) such that Φ(T ) = ATC.

(ii) There exist an injective operator A ∈ B(X∗, X) and a dense range oper-
ator C ∈ B(X, X∗) such that Φ(T ) = AT ∗C.

Proof. The sufficiency is easily obtained. We only prove the necessity. Under
the condition of Theorem 2.5 one of the cases of Corollary 2.4 holds. If the case (i)
of Corollary 2.4 occurs, then the operator A in Corollary 2.4 is injective. Otherwise,
there exists x ∈ X with x 6= 0 such that Ax = 0. Let f ∈ X∗ such that x ⊗ f ∈
AlgN , then Φ(x ⊗ f) = Ax ⊗ C∗f = 0. This is a contradiction. Similarly one
can show that C∗ is injective. Hence the range of C is dense. The case (ii) of
Theorem 2.5 holds in the case (ii) of Corollory 2.4.

Theorem 2.6. Φ is an weakly continuous rank preserving linear map on
AlgN if and only if one of the following holds:

(i) There exist an injective operator A ∈ B(X) and a dense range operator
C ∈ B(X) such that Φ(T ) = ATC.

(ii) There exist an injective operator A ∈ B(X∗, X) and a dense range oper-
ator C ∈ B(X, X∗) such that Φ(T ) = AT ∗C.

Proof. By Theorem 2.5, we need only to prove that the condition is sufficient.
If the case (i) occurs, then for an arbitrary rank-n operator F ∈ AlgN there exist
two linearly independent sets {xi : 1 6 i 6 n} ⊆ X and {fi : 1 6 i 6 n} ⊆ X∗,

such that F =
n∑

i=1

xi ⊗ fi and xi ⊗ fi ∈ AlgN for 1 6 i 6 n. Since A is injective

and the range C is dense, A and C∗ are injective. Hence Φ(F ) =
n∑

i=1

Axi ⊗ C∗fi

also is rank-n. If the case (ii) occurs, similarly one can show that Φ is a weakly
continuous rank preserving linear map.

By Theorem 2.5 and Theorem 2.6 we can get the following result:

Corollary 2.7. Let Φ be weakly continuous. Then Φ is a rank preserving
map on AlgN if and only if Φ is a rank-1 preserving map and there exists T0 ∈
AlgN such that rank Φ(T0) > 1.

Remark 2.8. When N is trivial, the associated nest algebra AlgN is just
B(X). Hence we get the main results in [3].
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3. RANK PRESERVING SURJECTIVE MAPS

Lemma 3.1. Let Φ be an injective linear map on AlgN such that {Φ(x⊗f) :
x⊗ f ∈ AlgN} = {y ⊗ g : y ⊗ g ∈ AlgN}, N0 denotes N \ {N ∈ N : N = N− 6=
N+}. Then one of the following holds:

(i) For every element N ∈ N0 and x ∈ N , there exists y(x) ∈ N such that
Φ(LN

x ) = LN
y(x).

(ii) For every element N ∈ N0 and x ∈ N , there exists g(x) ∈ N⊥
− such that

Φ(LN
x ) = RN

g(x).
The case (ii) will not occur when N is nontrivial.

Proof. First we verify some claims.

Claim 1. Let N ∈ N0 such that dim N⊥
− > 1. Let x0 ∈ N such that N is

the smallest element containing x0 in N0. If Φ(LN
x ) ⊆ Ly(x) for every x ∈ N , then

there exists M ∈ N such that y(x) ∈ M and Φ(LN
x ) = LM

y(x) for every x ∈ N .
Let M be the smallest element containg y0 in N0. We first show that y0 ∈

M and Φ(LxN
0 ) = LM

y0
. Otherwise, {g(f) : f ∈ N⊥

− } ⊂ M⊥
− . We can find

g0 ∈ M⊥
− \ {g(f) : f ∈ N⊥

− } and y′⊗ g′ ∈ AlgN such that Φ(y′⊗ g′) = y0⊗ g0. So
Φ(y′⊗g′+x0⊗f) = y0⊗[g0+g(f)] for every f ∈ N⊥

− , hence y′⊗g′+x0⊗f is rank-
1. Since dim N⊥

− > 1, we must have that x0 and y′ are linearly dependent. Let
y′ = αx0 and g′′ = αg′, then y′ ∈ N , g′′ ∈ N⊥

− and Φ(x⊗g′′) = Φ(y′⊗g′) = y0⊗g0.
Thus g0 = g(g′′) ∈ {g(f) : f ∈ N⊥

− }. This is a contradiction.
Now for arbitrary x ∈ N , we may assume x 6∈ {αx0;α ∈ C}. For every

f ∈ N⊥
− , we have Φ(x ⊗ f) = y(x) ⊗ gx(f) and Φ(x0 ⊗ f) = y0 ⊗ g0(f). It

follows that y(x) ⊗ gx(f) + y0 ⊗ g0(f) is rank-1. So g0(f), gx(f) or y(x), y0 are
linearly dependent. Since x and x0 are linearly independent, y(x) and y0 are
linearly independent. We must have g0(f), gx(f) are linearly dependent, therefore
{gx(f) : f ∈ N⊥

− } = {g0(f) : f ∈ N⊥
− } = M⊥

− . Hence Φ(LN
x ) = LM

y(x). Let Nx

and Mx are the smallest element containing x and y(x) in N0 respectively, then
LM

y(x) = Φ(LN
x ) ⊆ Φ(LNx

x ) = LMx

y(x). Since Mx and M are in N0, we have Mx ⊆ M ,
hence y(x) ∈ M .

Claim 2. y0 ∈ N .
If y0 6∈ N , then N ⊂ M . Since N ∈ N0, we also have M⊥

− ⊂ N⊥
− . By

Claim 1, we can get {Φ(x ⊗ f) : x ∈ N, f ∈ N⊥
− } 6⊆ {y ⊗ g : y ∈ N, g ∈ N⊥

− }.
Thus we can find z ∈ N , g ∈ N⊥

− \M⊥
− and y 6∈ N , f ∈ L⊥

− ⊆ N⊥
− (here L is the

smallest element containing y in N , it is easy to see N ⊂ L and L⊥
− ⊆ N⊥

− ) such
that Φ(y⊗ f) = z⊗ g. Thus Φ(x0⊗ f + y⊗ f) = y0⊗ g(f) + z⊗ g is rank-2. This
is a contradiction.
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Claim 3. Not only y0 ∈ N , but also Φ(LN
x0

) = LM
y0

= LN
y0

. Furthermore
y(x) ∈ N and Φ(LN

x ) = LN
y(x) for every x ∈ N .

If LM
y0

6= LN
y0

, then M ⊂ N and N⊥
− ⊂ M⊥

− . Since Φ−1(LM
y0

) = LN
x0

and
Φ−1 has the same property as Φ, using Claim 1 and Claim 2, we have x0 ∈ M .
Hence N ⊂ M . This is a contradiction. By Claim 1 again, we get y(x) ∈ N and
Φ(LN

x ) = LN
y(x) for every x ∈ N .

When dim N⊥
− = 1 and Φ(LN

x ) ⊆ Ly(x), it is easy to see N = X, hence
y(x) ∈ N and Φ(LN

x ) = LN
y(x). Now we have proved the case (i) of Lemma 3.1

holds in the case (i) of Lemma 2.1.
If the case (ii) of Lemma 2.1 occurs, similarly one can show the case (ii) of

Lemma 3.1 holds.
Finally, we need to show that the case (ii) of Lemma 3.1 does not occur

when N is nontrivial. Since N is nontrivial, there exists N ∈ N0 such that N 6= 0
and N 6= X. If Φ(LN

x ) = RN
g(x), we can find M ∈ N0 such that N ⊂ M and

M⊥
− 6= 0, then Φ(LM

x ) ⊆ Φ(LN
x ), hence RM

g(x) ⊆ RN
g(x). Thus M ⊆ N . This is a

contradiction.
In the following part, we always assume N is nontrivial.

Lemma 3.2. Let Φ be an injective linear map on AlgN such that {Φ(x⊗f) :
x⊗f ∈ AlgN} = {y⊗g : y⊗g ∈ AlgN}. Then there exist two bijective linear maps
A from

⋃
{N ∈ N0, N− 6= X} onto itself and B from

⋃
{N⊥

− : N ∈ N0, N 6= 0}
onto itself, such that Φ(x⊗f) = Ax⊗Bf for every rank-1 operator x⊗f ∈ AlgN .

Proof. Under the condition of Lemma 3.2, only the case (i) of Lemma 2.1
occurs by Lemma 2.2 and Lemma 3.1. To prove Lemma 3.2, we need only to show
AN is a bijective map from N onto N and BN is a bijective map from N⊥

− onto
N⊥
− for every N ∈ N0, where AN and BN⊥−

are as in Lemma 2.2. First, the range

of AN and the range of BN⊥−
are in N and N⊥

− respectively, by Lemma 3.1 and the
definitions of AN and BN⊥−

. Second, note that Φ is bijective when Φ is restricted
to the set of all rank-1 operators in AlgN , it is easily verified that AN and BN⊥−

are bijective by Lemma 3.1 and the construction of AN and BN⊥−
.

Note that
∨
{N : N ∈ N0 and N− 6= X} = X and

∨
{N⊥

− : N ∈ N0 and
N 6= 0} = X∗, we have the following theorems analogous to Theorem 2.3 and
Theorem 2.6.

Theorem 3.3. Φ is an weakly continuous rank-1 preserving injective linear
map on AlgN such that {Φ(x⊗f) : x⊗f ∈ AlgN} = {y⊗g : y⊗g ∈ AlgN} if and
only if there exist invertible operators A and C in AlgN such that Φ(T ) = ATC.

Theorem 3.4. Φ is an weakly continuous rank preserving surjective linear
map if and only if there exist invertible operators A and C in AlgN such that
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Φ(T ) = ATC. Here A and C are unique, respectively, in the sense that A and αA

(α ∈ C and α 6= 0) are regarded as the same.

Remark 3.5. If we omit the condition “Φ is surjective”, then the conclu-
sion of Theorem 3.4 will not hold. For example, let H be a separable complex
Hilbert space, {e1, e2, . . . , en, . . .} be an orthogonal basis of H. Let N0 = 0,
N1 = span{e1}, . . ., Nn = span{e1, e2, . . . , en}, . . ., N = {N0, N1, . . . , Nn, . . . ,H},
then N is a nest of H. The associated nest algebra

AlgN

=

T =


x11 x12 x13 · · ·

x22 x23 · · ·
x33 · · ·

· · ·

 ; xij ∈ C, 1 6 i 6 j < ∞, and T is bounded

 .

Let

A =


0 0 0 0 · · ·
1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
...

...
...

...
. . .

 B =


0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .

 .

Define a map on AlgN by Φ(T ) = ATB. Then Φ is a rank preserving map, but
φ is not surjective. And Φ is of the form Φ(T ) = ATB, but A is not in AlgN .

Remark 3.6. All of the theorems in Section 2 and Section 3 hold when X

is reflexive and Φ is strongly continuous.

4. LOCAL AUTOMORPHISMS

In [6] the authors obtained the description of surjective local automorphisms of
B(X). Here, when N is non-trival, we can easily get the description of surjec-
tive local automorphisms on AlgN by Theorem 3.1. Since an automorphism on
AlgN is inner (see [10]), then a surjective local automorphism is a surjective rank
preserving map, and maps identity into identity. Hence we obtain the following
theorem:

Theorem 4.1. Φ is an weakly continuous surjective local automorphism on
AlgN if and only if there exists an invertible element A of AlgN such that Φ(T ) =
ATA−1. Furthermore, all weakly coutinuous surjective local automorphisms on
AlgN are inner automorphisms.
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Corollary 4.2. If dim X < ∞, then the set of all automorphisms on AlgN
is algebraically reflexive.
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