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Abstract. In this paper rational operator functions of type
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k=0

λkAk +
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1

λ− ak
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are considered. With the aid of a linearization of L results on the complete-
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given. The results are extended to certain meromorphic operator functions.
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1. INTRODUCTION

In the first part of this paper we consider rational operator functions of type

(1.1) L(λ) := I −
n∑

k=0

λkAk +
m∑

k=1

1
λ− ak

Hk, λ ∈ Ω,

Ω := C\{a1, a2, . . . , am}, where the coefficients Ak and Hk act on a Banach space
X and satisfy some further conditions. In Section 2 we linearize the operator
function in the sense of [10] by using a linearization of [14] for the polynomial part
of (1.1), and by using a refinement of a linearization of the rational part of (1.1)
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given in [19]. This means that there exist operator functions E,F : Ω → B(XK)
with invertible values such that

L(λ)⊕ IXK−1 = E(λ)(IXK − T− λH)F(λ), λ ∈ Ω.

From this representation basic spectral properties of L in Ω are derived. Fur-
thermore with the aid of a further linearization of the same type for an operator
function connected with L we prove that the eigenvalues λ ∈ {a1, a2, . . . , am} of
L and L(λ) := IXK − T − λH, their geometric multiplicities, their partial null
multiplicities, and their null multiplicities coincide; the connections between the
eigenvectors and Jordan chains of L and L (which are used in the subsequent sec-
tion) are described in detail. In Section 3 we use the results of Section 2 to prove
in the Hilbert space case that the eigenvectors and associated vectors correspond-
ing to eigenvalues λ ∈ C of L are complete, and we give some asymptotics of the
eigenvalues. In Section 4 we consider meromorphic operator functions of type

(1.2) L∞(λ) := I −
n∑

k=0

λkAk +
∞∑

k=1

1
λ− ak

Hk, λ ∈ Ω∞,

Ω∞ := C\ {a1, a2, . . .}, where the coefficients Ak and Hk again act on a Banach
space X and additionally satisfy some further conditions. We extend the lineariza-
tion of the rational operator function L of Section 2 to the meromorphic operator
function L∞ under certain convergence conditions, and we establish analogous re-
sults for L∞ which correspond to the results for L in Section 2. In Section 5 by
using the results of Section 4 also the completeness of the eigenvectors and asso-
ciated vectors corresponding to eigenvalues λ ∈ C of L∞ is shown under certain
convergence conditions. Furthermore we give some asymptotics of the eigenvalues.

Starting with the paper of Keldysh ([13]) there are many contributions to
the completeness of eigenvectors and associated vectors and spectral asymptotics
of operator polynomials (especially Keldysh pencils) and other operator functions
(cf. [18]). Also rational and meromorphic operator functions are considered (cf.
[1], [2], [3], [4], [5], [6], [7], [17], [19], [20], [21], [22], [23]). But our results differ from
the others by our method of linearization and the consideration of the eigenvalues
aj in the sense of [12], [8], [9] under the poles of the rational and meromorphic
operator functions. We also extend a result in [19] on rational operator functions
of type (1.1).
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2. LINEARIZATION (THE RATIONAL CASE)

Let X be a (complex) Banach space with norm ‖ · ‖. We denote by B(X) the
Banach space of all linear and bounded operators on X. The identity operator
on X is denoted by I. Furthermore we denote by B∞(X) the Banach space of
all linear and compact operators on X. For A ∈ B(X) let N(A) denote the null
space, and let R(A) denote the range of A. The resolvent set of A is defined by
ρ(A) := {λ ∈ C : A−λI has an inverse in B(X)}, and the spectrum σ(A) is defined
by σ(A) := C \ ρ(A). λ ∈ C is called an eigenvalue of A, if there is f 6= 0 such that
Af = λf . For an operator function L̂ : Ω̂ ⊂ C → B(X) we denote by ρ(L̂) the
resolvent set of L̂ defined by ρ(L̂) := {λ ∈ Ω̂ | L̂(λ) has an inverse in B(X)}, and
we denote by σ(L̂) the spectrum of L̂ defined by σ(L̂) := Ω̂ \ ρ(L̂). Furthermore
the notions eigenvalue, null multiplicity, pole multiplicity and multiplicity of an
eigenvalue of L̂ are used as in [9], [12], [8].

Let integers n ∈ N ∪ {0}, m ∈ N be given. Let Ak ∈ B(X), k = 0, 1, . . . , n,
0 6= Hk ∈ B(X), k = 1, 2, . . . ,m, and let 0 6= ak ∈ C, ak 6= aj for k 6= j, k, j =
1, 2, . . . ,m, be given. Then the operator function L : Ω → B(X) is considered,
defined by (1.1). We assume that with T0 := A0, Tn := I, there exist operators
T1, . . . , Tn−1, B1, . . . , Bn ∈ B(X) such that

(2.1) Ak = TkBk · · ·B1, k = 1, 2, . . . , n.

Such decompositions exist always by taking Bk := I, Tk := Ak, k = 1, . . . , n − 1,
and Bn := An. Under the assumption that the polynomial part of L is a Keldysh
pencil, such decompositions are assumed, where all Bk are equal (cf. [18]).

Furthermore we assume that for k = 1, . . . ,m there exist closed subspaces
Nk and Zk of X such that

(2.2) X = Nk ⊕ Zk, Nk ⊂ N(Hk).

There exist always such decompositions under the assumption that the operators
Hk are of finite rank, where in addition the subspaces Zk are finite dimensional,
and Nk can be chosen equal to N(Hk). Let Pk be the continuous projection from
X onto Zk along Nk. Then we have HkPk = Hk, and the operator I − αPk is
bijective for each α ∈ C \ {1}.

Let K := n+m for n > 1, and let K := 1 +m for n = 0. Let

XK := X ⊕ · · · ⊕X ⊕ Z1 ⊕ · · · ⊕ Zm
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the Banach space of the direct sum of n copies of X and of Z1, . . . , Zm endowed
with the norm

‖(f1, . . . , fK)T ‖ :=

(
K∑

k=1

‖fk‖2

) 1
2

.

We define linear operators T,H : XK → XK by the following operator matrices

(2.3) T :=



T0 T1 · · · Tn−1 H1 · · · Hm

0
...
0

1
a1
P1

...
1

am
Pm


, n > 2,

T :=


T0 H1 · · · Hm
1
a1
P1

...
1

am
Pm

 , n = 0, 1,

(2.4) H :=



0 0 · · · 0 Bn

B1 0 0 0
B2

. . .
...

Bn−1 0
0 1

a1
P1 0 · · · 0

...
. . . . . . . . .

...
0

0 0 · · · 0 1
am
Pm


, n > 2,

H := diag
(
B1,

1
a1
P1, . . . ,

1
am

Pm

)
, n = 0, 1,

where B1 = 0 if n = 0, respectively (cf. [14] for this type of linearization of the
polynomial part of L, and also [18] for the case that all Bk are equal, and cf. [19]
for a similar type of linearization of the rational part of L).

Proposition 2.1. Let T,H be given by (2.3), (2.4), respectively. Then we
have:

(i) T,H ∈ B(XK).
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(ii) Let Tk ∈ B∞(X), 0 6 k 6 n − 1, Bk ∈ B∞(X), 1 6 k 6 n, and let the
operators Hk be of finite rank, 1 6 k 6 m. Then T,H ∈ B∞(XK).

Now we define operator functions E,F : Ω → B(XK) by
(2.5)

F(λ) :=



I

λB1 I

λ2B2B1 λB2 I
...

. . . . . .
λn−1Bn−1 · · ·B1 · · · λBn−1 I

−1
λ−a1

P1
−a1

λ−a1
P1

...
. . .

−1
λ−am

Pm
−am

λ−am
Pm


,

(2.6)

E(λ) :=



I
n∑

k=1

λk−1TkBk · · ·B2 · · · Tn−1 + λBn
−a1

λ−a1
H1 · · · −am

λ−am
Hm

I
. . .

I

P1

. . .
Pm


.

Let XK−1 denote the space

XK−1 := X ⊕ · · · ⊕X ⊕ Z1 · · · ⊕ Zm

with n − 1 copies of X, and let IXK−1 , IXK denote the identity operators in
XK−1, XK respectively.

Theorem 2.2. Let L,T,H,E,F be given by (2.3), (2.4), (2.5), (2.6) respec-
tively. Then for each λ ∈ Ω the operators E(λ), F(λ) are invertible, and we have

(2.7) L(λ)⊕ IXK−1 = E(λ)(IXK − T− λH)F(λ), λ ∈ Ω.

Let L : C → B(XK) be the operator function defined by

(2.8) L(λ) := IXK − T− λH, λ ∈ C.

Then from Theorem 2.2 it follows:
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Corollary 2.3. ρ(L) = ρ(L) ∩ Ω, σ(L) = σ(L) ∩ Ω.

We denote by π : XK → X the canonical projection of XK onto its first
coordinate space

(2.9) π(f1, f2, . . . , fK)T = f1,

and we denote by π the canonical projection of XK onto XK−1

(2.10) π(f1, f2, . . . , fK)T = (f2, . . . , fK)T .

Proposition 2.4. (i) Let λ0 ∈ Ω be an eigenvalue of L, and let 0 6= f ∈ X be
a corresponding eigenvector. Then λ0 is an eigenvalue of L, and F(λ0)(f, 0, . . . , 0)T

6= 0 is a corresponding eigenvector.
(ii) Let λ0 ∈ Ω be an eigenvalue of L, and let 0 6= f = (f1, f2, . . . , fK)T be a

corresponding eigenvector. Then f1 6= 0 and λ0 is an eigenvalue of L. Furthermore
πF(λ0)−1f = f1 6= 0 is a corresponding eigenvector.

(iii) The (geometric) multiplicities of the eigenvalues λ0 ∈ Ω of L and L

coincide.
(iv) Let f0, f1, . . . , fr ∈ X, f0 6= 0, be a Jordan chain of L corresponding to

the eigenvalue λ0 ∈ Ω of L. Then the vectors g0, g1, . . . , gr ∈ XK ,

gj =
j∑

k=0

1
k!

F(k)(λ0)


fj−k

0
...
0

 , j = 0, . . . , r,

are a Jordan chain of L corresponding to the eigenvalue λ0 of L.

(v) Let g0, g1, . . . , gr ∈ XK , g0 6= 0, be a Jordan chain of L corresponding to
the eigenvalue λ0 ∈ Ω of L, and let

f0 := F(λ0)−1g0,

fj := F(λ0)−1

[
gj −

j−1∑
ν=0

1
(j − ν)!

F(j−ν)(λ0)fν

]
, j = 1, . . . , r.

Then we have
πfj = 0, j = 0, . . . , r.

Furthermore the vectors

πf0 = g1,0, πf1 = g1,1, . . . , πfr = g1,r

are a Jordan chain of L corresponding to the eigenvalue λ0 of L.
(vi) The partial null multiplicities and the null multiplicities of the eigenval-

ues λ0 ∈ Ω of L and L coincide.

Proof. Using formula (2.7) the proof is analogous to a corresponding proof
in [19] and therefore is omitted.
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Now we prove that the results of the Proposition 2.4 (iii), (vi) are also true
for the eigenvalues λ ∈ {a1, . . . , am} of L and L. We proceed in a similar way as
in [16], [15].

For j ∈ {1, . . . ,m} we define operator functions Lj : Ω ∪ {aj} → B(X) and
Gj : Ω ∪ {aj} → B(X ⊕ Zj) by

(2.11) Lj(λ) := I −
n∑

k=0

λkAk +
n∑

k=1
k 6=j

1
λ− ak

Hk,

and

(2.12) Gj(λ) :=

(
Lj(λ) −Hj

− 1
aj
Pj

aj−λ
aj

Pj

)
.

Let

XK
j := X ⊕ Zj ⊕X ⊕ · · · ⊕X ⊕ Z1 ⊕ · · · ⊕ Zj−1 ⊕X ⊕ Zj+1 ⊕ · · · ⊕ Zm.

We denote by πj : XK
j → X ⊕Zj the canonical projection from XK

j onto the first
two coordinate spaces

πj(f1, . . . , fK)T := (f1, f2)T ,

and we denote by πj the canonical projection of XK
j onto

XK−2
j := X ⊕ · · · ⊕X ⊕ Z1 ⊕ · · · ⊕ Zj−1 ⊕X ⊕ Zj+1 ⊕ · · · ⊕ Zm.

Theorem 2.5. Let j ∈ {1, . . . ,m} be given. There exist operator functions
Êj : Ω ∪ {aj} → B(XK , XK

j ), F̂j : Ω ∪ {aj} → B(XK
j , X

K) such that for each
λ ∈ Ω ∪ {aj} the operators Êj(λ), F̂j(λ) are invertible, and we have

(2.13) Gj(λ)⊕ IXK−2
j

= Êj(λ)(IXK − T− λH)F̂j(λ), λ ∈ Ω ∪ {aj}.

Proof. Let Fj : Ω ∪ {aj} → B(XK) be defined by(
Fj(λ)(f1, . . . , fK)T

)
k

:=


k−1∑
κ=1

λk−κBk−1 · · ·Bκfκ + fk, k = 1, . . . , n,

−1
λ−ak−n

Pk−nf1 + −ak−n

λ−ak−n
Pk−nfk, k = n+ 1, . . . , n+m, k 6= n+ j,

Pk−nfk, k = n+ j,
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and let Ej(λ) : Ω ∪ {aj} → B(XK) be defined by(
Ej(λ)(f1, . . . , fK)T

)
k

:=


f1 +

n∑
κ=2

n∑
ν=κ−1

λν−κ+1TνBν · · ·Bκfκ +
n+m∑

κ=n+1
κ6=n+j

−aκ−n

λ−aκ−n
Hκ−nfκ, k = 1,

fk, k = 2, . . . , n,
Pk−nfk, k = n+ 1, . . . , n+m.

Then we have

Ej(λ)(IXK − T− λH)Fj(λ)

=



Lj(λ) −Hj

I
. . .

I

P1

. . .
Pj−1

− 1
aj
Pj

aj−λ
aj

Pj

Pj+1

. . .
Pm



.

Let P1 ∈ B(XK , XK
j ) be defined by

P1 :=



I

0 Pj

I
. . .

I

P1

. . .
Pj−1

I 0
Pj+1

. . .
Pm



.

P1 originates from the identity operator in XK by changing the second row with
the (n+j)-th row. We set Êj(λ) := P1Ej(λ). Furthermore let P2 ∈ B(XK

j , X
K) be
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defined by P2 := PT
1 . P2 originates from the identity operator in XK by changing

the second column with the (n+j)-th column. We set F̂j(λ) := Fj(λ)P2. Then the
assertion follows from the formula for Ej(λ)(IXK − T− λH)Fj(λ) just proved.

Theorem 2.5 implies that aj ∈ {a1, . . . , am} is an eigenvalue of Gj if and
only if aj is an eigenvalue of L. Moreover the geometric multiplicities, partial
null multiplicities, and null multiplicities coincide. In detail we have the following
proposition.

Proposition 2.6. (i) Let aj ∈ {a1, . . . , am} be an eigenvalue of Gj , and let
0 6= (f1, f2)T ∈ X ⊕ Zj be a corresponding eigenvector. Then aj is an eigenvalue
of L and F̂j(aj)(f1, f2, 0, . . . , 0)T 6= 0 is a corresponding eigenvector.

(ii) Let aj ∈ {a1, . . . , am} be an eigenvalue of L, and let 0 6= f = (f1, . . . , fK)T

be a corresponding eigenvector. Then aj is an eigenvalue of Gj , and π1F̂j(aj)−1f =
(f1, Pjfj)T 6= 0 is a corresponding eigenvector.

(iii) The (geometric) multiplicities of the eigenvalues aj of Gj and L coincide.
(iv) Let (f1,0, f2,0), (f1,1, f2,1), . . . , (f1,r, f2,r) ∈ X ⊕ Zj, (f1,0, f2,0) 6= 0, be

a Jordan chain of Gj corresponding to the eigenvalue aj of Gj . Then the vectors
g0, g1, . . . , gr ∈ XK ,

gk := F̂j(aj)


f1,k

f2,k

0
...
0

+
1
1!

F̂
′

j(aj)


f1,k−1

f2,k−1

0
...
0

+ · · ·+ 1
k!

F̂
(k)
j (aj)


f1,0

f2,0

0
...
0

 ,

k = 0, 1, . . . , r, are a Jordan chain of L corresponding to the eigenvalue aj of L.

(v) Let g0, g1, . . . , gr ∈ XK(g0 6= 0) be a Jordan chain of L corresponding
to the eigenvalue aj of L, and let

f0 := F̂j(aj)−1g0,

fk := F̂j(aj)−1

[
gk −

k−1∑
ν=0

1
(k − ν!)

F̂
(k−ν)
j (aj)fν

]
, k = 1, . . . , r.

Then we have
πjfk = 0, k = 0, 1, . . . , r.

Furthermore
πjf0, πjf1, . . . , πjfr

is a Jordan chain of Gj corresponding to the eigenvalue aj of Gj .
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(vi) The partial null multiplicities and the null multiplicities of the eigenval-
ues aj of Gj and L coincide.

Proof. Using formula (2.13) the proof is analogous to the proof of Proposi-
tion 2.4 and therefore is omitted.

In the following proposition we characterize eigenvalues aj and corresponding
Jordan chains of L. These conditions are used in the proof of the theorem which
then follows.

Proposition 2.7. (i) aj ∈ {a1, . . . , am} is an eigenvalue of L and f0 6= 0 a
corresponding eigenvector if and only if there exists a vector f1 ∈ Zj such that

Hjf0 = 0,(
I −

n∑
k=0

ak
jAk +

m∑
k=1
k 6=j

1
aj − ak

Hk

)
f0 = Hjf1.

(ii) Let aj ∈ {a1, . . . , am} be an eigenvalue of L. Then the vectors f0, f1, . . . ,
fr ∈ X, f0 6= 0, are a Jordan chain of L of length r + 1 corresponding to the
eigenvalue aj of L if and only if there exists a vector fr+1 ∈ Zj such that

Hjf0 = 0,

k∑
l=0

1
(k − l)!

L
(k−l)
j (aj)fl = Hj(−fk+1), k = 0, 1, . . . , r.

Proof. The proof is analogous to the proof of Lemma 2 in [16], and therefore
is omitted.

The proof of the next proposition is similar to the proof of Theorem 3 in [16].
We use the characterization of Proposition 2.7. First we prove that the geometric
multiplicities of the eigenvalues aj of L and Gj coincide, then we prove that the
null multiplicities of the eigenvalues aj of L and Gj coincide.

Proposition 2.8. Let aj ∈ {a1, . . . , am}. Assume that Nj = N(Hj).
(i) Let aj be an eigenvalue of L, and let f0 6= 0 be a corresponding eigenvec-

tor. Then aj is an eigenvalue of Gj and 0 6= (f0, f1)T ∈ X⊕Zj is a corresponding
eigenvector, where f1 ∈ Zj is the vector which exists according to Proposition
2.7 (i) corresponding to f0.

(ii) Let aj be an eigenvalue of Gj , and let 0 6= (f0, g0)T ∈ X ⊕ Zj be a
corresponding eigenvector. Then f0 6= 0, and aj is an eigenvalue of L and f0 is a
corresponding eigenvector.
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(iii) The geometric multiplicities of the eigenvalues aj of Gj and L coincide.
(iv) Let 0 6= f0, f1, . . . , fr be a Jordan chain of L corresponding to the eigen-

value aj of L. Then there exist vectors g0, g1, . . . , gr ∈ Zj such that

0 6= (f0, g0)T , (f1, g1)T , . . . , (fr, gr)T

is a Jordan chain of Gj corresponding to the eigenvalue aj of Gj .

(v) Let 0 6= (f0, g0)T , (f1, g1)T , . . . , (fr, gr)T ∈ X ⊕ Zj be a Jordan chain of
Gj corresponding to the eigenvalue aj of Gj . Then 0 6= f0, f1, . . . , fr is a Jordan
chain of L corresponding to the eigenvalue aj of L.

(vi) The partial null multiplicities and the null multiplicities of the eigenval-
ues aj of L and Gj coincide.

Proof. (i) Let aj be an eigenvalue of L and f0 6= 0 a corresponding eigenvec-
tor. Proposition 2.7 (i) implies that there exists a vector f1 ∈ Zj such that

Hjf0 = 0,

Lj(aj)f0 = Hjf1;

this implies

Pjf0 = 0 and − 1
aj
Pjf0 = 0,

Lj(aj)f0 −Hjf1 = 0

or (
Lj(aj) −Hj

− 1
aj
Pj 0

)(
f0

f1

)
= 0.

That is, the vector 0 6= (f0, f1)T ∈ X ⊕ Zj is an eigenvector of Gj corresponding
to the eigenvalue aj of Gj .

(ii) Let aj be an eigenvalue of Gj and 0 6= (f0, g0)T ∈ X⊕Zj a corresponding
eigenvector: (

Lj(aj) −Hj

− 1
aj
Pj 0

)(
f0

g0

)
= 0

or
Lj(aj)f0 −Hjg0 = 0,

− 1
aj
Pjf0 = 0.

The assumption f0 = 0 implies Hjg0 = 0 or g0 ∈ N(Hj). Since g0 ∈ Zj this implies
g0 = 0. Thus we have a contradiction to 0 6= (f0, g0)T . Therefore f0 6= 0 and

Hjf0 = 0 (since Pjf0 = 0),
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Lj(aj)f0 = Hjg0.

From Proposition 2.7 (i) then it follows that aj is an eigenvalue of Gj , and f0 6= 0
is a corresponding eigenvector.

(iii) This follows from (i) and (ii).
(v) The assumption is equivalent to

k∑
l=0

1
(k − l)!

G
(k−l)
j (aj)

(
fl

gl

)
= 0, k = 0, 1, . . . , r.

Since g0, g1, . . . , gr ∈ Zj this is equivalent to

(2.14)


k∑

l=0

1
(k−l)!L

(k−l)
j (aj)fl = Hjgk, k = 0, 1, . . . , r;

0 6= f0 ∈ N(Hj);

fk + gk−1 ∈ N(Hj), k = 1, 2, . . . , r.

We have considered the case r = 0 in (i)–(iii). Thus we can assume that r > 1.
Then from (2.14) it follows for k = 0, 1, . . . r − 1 that

(2.15) Hjgk = Hj(−fk+1).

Furthermore we define a vector fr+1 ∈ Zj by

−fr+1 = gr.

Thus
Hjgr = Hj(−fr+1),

and equation (2.15) is valid for k = 0, 1, . . . , r. From Proposition 2.7 (ii) now it
follows that f0, f1, . . . , fr is a Jordan chain of L corresponding to the eigenvalue
aj of L.

(iv) Let fr+1 ∈ Zj be the vector described in Proposition 2.7 (ii). Then we
can determine successively vectors g0, g1 . . . , gr ∈ Zj such that

Hjgk = Hj(−fk+1)

for k = 0, 1, . . . , r. For this we set

(2.16)


h0 := −f1,

hk := −
k−1∑
l=0

hl −
k∑

l=0

fl+1, k = 1, . . . , r,
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and then
gk := Pjhk ∈ Zj , k = 0, 1, . . . , r.

Now we show that we have fk + gk−1 ∈ N(Hj), k = 1, . . . , r. For this it suffices to
show that

(2.17) fk + hk−1 ∈ N(Hj)

for k = 1, . . . , r. For k = 1 we have f1 + h0 = 0 ∈ N(Hj), and for any 1 < k 6 r

thus we have successively from (2.16) that

fk + hk−1 = 0 ∈ N(Hj)

for k = 1, . . . , r and therefore (2.17) is satisfied. In conclusion the vectors f0, . . . , fr,
g0, . . . , gr satisfy (2.14), and aj is an eigenvalue of Gj with (f0, g0)T , (f1, g1)T , . . . ,

(fr, gr)T as corresponding Jordan chain.
(vi) This follows from (iv) and (v).

Combining Proposition 2.6 (i)–(iii) and Proposition 2.8 (i)–(iii), and combin-
ing Proposition 2.6 (iv)–(vi) and Proposition 2.8 (iv)–(vi) we now can prove that
the (geometric) multiplicities of the eigenvalues aj of L and L coincide.

Theorem 2.9. Let aj ∈ {a1, . . . , am}. Assume that Nj = N(Hj).
(i) Let aj be an eigenvalue of L, and let f0 6= 0 be a corresponding eigen-

vector. Then aj is an eigenvalue of L and there exists a vector f1 ∈ Zj (according
to Proposition 2.7 (i)) such that F̂j(aj)(f0, f1, 0, . . . , 0)T 6= 0 is a corresponding
eigenvector.

(ii) Let aj be an eigenvalue of L, and let 0 6= f = (f1, f2, . . . , fK)T be a corre-
sponding eigenvector. Then aj is an eigenvalue of L and f1 6= 0 is a corresponding
eigenvector.

(iii) The geometric multiplicities of the eigenvalues aj of L and L coincide.
(iv) Let 0 6= f0, f1, . . . , fr be a Jordan chain of L corresponding to the eigen-

value aj of L. Then there exist vectors g0, g1, . . . , gr ∈ Zj such that the vectors
g0, g1, . . . , gr ∈ XK defined by

gk = F̂j(aj)


fk

gk

0
...
0

+ · · ·+ 1
k!

F̂
(k)
j (aj)


f0
g0
0
...
0

 , k = 0, . . . , r,

are a Jordan chain of L corresponding to the eigenvalue aj of L.
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(v) Let g0, g1, . . . , gr ∈ XK(g0 6= 0) be a Jordan chain of L corresponding

to the eigenvalue aj of L. Then g1,0, g1,1, . . . , g1,r ∈ X(g1,0 6= 0) is a Jordan chain

of L corresponding to the eigenvalue aj of L.

(vi) The partial null multiplicities and the null multiplicities of the eigenval-

ues aj of L and L coincide.

Now we describe the spectrum of L under the conditions of Proposition 2.1 (ii).

Theorem 2.10. Let Tk ∈ B∞(X), 0 6 k 6 n − 1, Bk ∈ B∞(X), 1 6 k 6 n,

and let the operators Hk be of finite rank, 1 6 k 6 m. Let ρ(L) 6= ∅. Then the

spectrum σ(L) of L consists of eigenvalues of finite multiplicity with infinity as

their only possible limit point. Furthermore the eigenvalues aj ∈ {a1, a2, . . . , am}
of L have (finite null multiplicity and finite pole multiplicity and consequently)

finite multiplicity.

Proof. From Corollary 2.3 we have σ(L) = σ(L)∩Ω and ρ(L) = ρ(L)∩Ω 6= ∅.
Thus the assertion follows from Theorem 12.9 in [18] (since T,H ∈ B∞(XK)) and

Corollary 2.3, Proposition 2.4, Theorem 2.9, since the pole multiplicities of the

eigenvalues aj ∈ {a1, . . . , am} are equal to dimR(Hj).

3. COMPLETENESS AND SPECTRAL ASYMPTOTICS (THE RATIONAL CASE)

In this section we use the results from Section 2 to prove in the case of a Hilbert

space some asymptotic results for the eigenvalues and the completeness of the

eigenvectors and associated vectors of the rational operator function L.

Throughout this section let X be a (complex, separable) Hilbert space with

inner product ( · , · ). The inner product in XK then is defined by

(f, g) :=
K∑

k=1

(fk, gk).

In this case we have

X = N(Hk)⊕N(Hk)⊥

for each k ∈ 1, . . . ,m, and we choose Pk to be the orthogonal projection onto

N(Hk)⊥. We denote by Bp(X), 0 < p < ∞, the von Neumann-Schatten classes.

We suppose throughout this section that n > 1.
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Proposition 3.1. (i) Assume kerBk = {0}, k = 1, . . . , n. Then ker H = {0}.
(ii) Let for n = 1 the operator B1 be normal, and let for n > 2

B1B
∗
1 = B∗2B2, . . . , Bn−1B

∗
n−1 = B∗nBn, BnB

∗
n = B∗1B1.

Then H is normal.
(iii) Let for n = 1 the operator B1 = A1 be selfadjoint, and let for n > 2 the

operator An and the operators

B1BnBn−1 · · · B2,

B2B1BnBn−1 · · · B3,

· · ·
Bn−1Bn−2 · · · B1Bn

be selfadjoint. Furthermore let an
j ∈ R, j = 1, . . . ,m. Then Hn is selfadjoint.

(iv) Let Bk ∈ Bp(X) for some p ∈]0,∞[ for k = 1, . . . , n, and let Hk,
k = 1, . . . ,m, be of finite rank. Then H ∈ Bp(XK).

Proof. This follows from the definition of H.

Assume that B1 = · · · = Bn =: B, and that B is normal. Then the assump-
tions of Proposition 3.1 (ii) are satisfied, and thus H is normal. Assume that all Bk

commute, that An is selfadjoint, and that an
j ∈ R, j = 1, . . . ,m. Then the assump-

tions of Proposition 3.1 (iii) are satisfied, and thus Hn is selfadjoint. Therefore
it follows that under the assumption that the polynomial part of L is a Keldysh
pencil all conditions of Proposition 3.1 (i), (ii), (iii) are satisfied if additionally
an

j ∈ R, j = 1, . . . ,m.
Now we have the following theorem.

Theorem 3.2. Let T0, T1, . . . , Tn−1, B1, . . . , Bn ∈ B∞(X), and let the oper-
ators H1, . . . ,Hm be of finite rank.

(i) Let the operators B1, . . . , Bn satisfy the assumptions of Proposition 3.1
(i), (ii) with B1 = A1 selfadjoint (for n = 1), and An and the operators

B1BnBn−1 · · · B2,

B2B1BnBn−1 · · · B3,

· · ·
Bn−1Bn−2 · · · B1Bn

selfadjoint (for n > 2), respectively. Then for any δ > 0 there are only finitely
many eigenvalues of L outside the angles{

λ :
∣∣∣∣arg λ− π

k

n

∣∣∣∣ < δ

}
, k = 0, 1, . . . , 2n− 1.
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(ii) Let the assumptions of (i) be satisfied, and let Bk ∈ Bp(X) for some
p ∈]0,∞[ for k = 1, . . . , n. Then the system of eigenvectors and associated vectors
corresponding to the eigenvalues λ ∈ C of L is complete in X.

Proof. We consider only the cases n > 2, since a similar reasoning is valid
for the case n = 1. (i) For the operator function L(λ) := IXK − T − λH the
operators T and H are compact with ker H = {0} and H normal. Let G := H−1

and B := TH−1. Then the operator G is normal with compact resolvent, while
B is compact relative to G. Furthermore the eigenvalues of L,L, and G − B

coincide and have the same null multiplicities. This follows from Proposition 2.4,
Theorem 2.9, and Lemmma 15.2 in [18]. For the spectrum σ(H) we have

σ(H) = σ




0 · · · 0 Bn

B1

. . .
Bn−1 0


 ∪

m⋃
k=1

{
1
ak

}
.

Since


0 · · · 0 Bn

B1

. . .
Bn−1 0


n

is selfadjoint in the Hilbert space Xn, σ(H) lies

on the rays

arg λ = π
k

n
, k = 0, 1, . . . , 2n− 1,

arg λ = arg
1
ak
, k = 1, . . . ,m.

Then it follows from Lemma 15.3 in [18], Proposition 2.4, and Theorem 2.9 that
for any δ > 0 there are only finitely many eigenvalues of L outside the angles{

λ :
∣∣∣∣arg λ− π

k

n

∣∣∣∣ < δ

}
, k = 0, 1, . . . , 2n− 1,

{λ : | arg λ− arg ak| < δ}, k = 1, . . . ,m.

If all the values ak, k = 1, . . . ,m, lie on the rays arg λ = kπ/n, k = 0, . . . , 2n− 1,
the assertion is obviously true. Thus let k1, . . . , kl ∈ {1, . . . ,m} be such that

arg ak1 = · · · = arg akl
,

arg aj 6= arg ak1 , j 6= k1, . . . , kl, j ∈ {1, . . . ,m},

arg ak1 6= π
k

n
, k = 0, . . . , 2n− 1.
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For 0 6= a ∈ C and δ > 0 denote by Ω(a, δ) the angle Ω(a, δ) := {λ : | arg λ−arg a| <
δ}. Let δk1 > 0 be such that aj /∈ Ω(ak1 , δk1), j 6= k1, . . . , kl, j = 1, . . . ,m, and
that

Ω(ak1 , δk1) ∩
{
λ : arg λ = k

π

n

}
= ∅, k = 0, . . . , 2n− 1.

Let 0 < δ2 < δk1 . Then the spectrum of L in Ω(ak1 , δ2) is finite. This follows from
Theorem 8.2 and Remarks 8.6 and 8.7 in [18], since ak1 , . . . , akl

are eigenvalues of
finite multiplicity of the operator G = H−1. This argument can be applied to all
ak. From this the assertion follows.

(ii) We use the notations of the proof of (i). The operator T is compact and
the operator H ∈ Bp(XK) with ker H = {0} is normal. In view of Proposition 2.4
and Theorem 2.9 it suffices to establish that the eigenvectors and associated vectors
of L are complete in XK . The operator G is normal and G−1 = H ∈ Bp(XK),
while B is compact relative to G. Since the spectrum σ(H) of H lies on the rays

arg λ = π
k

n
, k = 0, 1, . . . , 2n− 1,

arg λ = arg
1
ak
, k = 1, . . . ,m,

the spectrum of G lies on the rays

arg λ = π
k

n
, k = 0, 1, . . . , 2n− 1,

arg λ = arg ak, k = 1, . . . ,m,

Thus, by Theorem 4.3 in [18], the system of root vectors of G−B is complete in
XK . Thus, the set N of all vectors of the form Hg, where g is a root vector of G−B,
is complete in R(H). Since ker H∗ = {0} (since H is normal and kerH = {0}), R(H)
is dense in XK and thus N is complete in XK . According to Lemma 15.1 in [18],
N coincides with the set of all eigenvectors and associated vectors of L.

Denote by Nk(r, L) for r > 0 and k = 0, . . . , 2n − 1 the sum of the null
multiplicities of the eigenvalues of L in the sector

∆k(r) :=
{
λ :
∣∣∣ arg λ− π

k

n

∣∣∣ < π/2n, |λ| < r
}
,

denote by N+(r) (respectively, N−(r)) the sum of the null multiplicities of the
eigenvalues of An in ]r−n,∞[ (respectively, ]−∞,−r−n[ ), denote byNk(r, (ak)) the
sum of dimR(Hk) for which ak is in {λ : arg λ = πk/n, |λ| < r}, k = 0, . . . , 2n−1,
and let N+

k (r) := N+(r) + Nk(r, (ak)), k = 0, . . . , 2n − 1. In the next theorem
we compare the functions N2k(r, L) with N+

2k(r), and N2k+1(r, L) with N−
2k−1(r).

The results are formulated only for N2k(r, L), since the formulations are anal-
ogous for N2k+1(r, L). For functions ϕ,ψ :]0,∞[→ R we write ϕ(r) ∼ ψ(r) if
lim

r→∞
ϕ(r)/ψ(r) = 1.



236 Hansjörg Linden

Theorem 3.3. Let the assumptions of Theorem 3.2. (i) be satisfied.

(i) Assume that the positive spectrum of An is finite. Then the spectrum of

L in the angles

Ω2k :=
{
λ :
∣∣∣ arg λ− 2π

k

n

∣∣∣ < π

2n

}
, k = 0, . . . , n− 1,

is also finite.

(ii) Assume that the positive spectrum of An is infinite and

lim inf
r→∞

logN+
2k(r)

log r
<∞.

Then

lim inf
r→∞

∣∣∣∣N2k(r, L)
N+

2k(r)
− 1
∣∣∣∣ = 0, k = 0, . . . , n− 1.

(iii) Assume that the positive spectrum of An is infinite and

lim inf
r→∞,ε→0

N+
2k(r(1 + ε))
N+

2k(r)
= 1.

Then

N2k(r, L) ∼ N+
2k(r), k = 0, . . . , n− 1.

(iv) Assume that N+
2k(r) ∼ arγ for a, γ > 0. Then N2k(r, L) ∼ arγ , k =

0, . . . , n− 1.

Proof. We use the notations of the proof of Theorem 3.2 (i). The eigenvalues

of L0(λ) := I − λnAn are eigenvalues of G with the same null multiplicities. The

remaining eigenvalues of G are the values ak, k = 1, . . . ,m, with finite null multi-

plicity (equal to dimR(Hk)). Thus (i) follows from Theorem 8.2 (and Remarks 8.6

and 8.7) in [18], (ii) follows from Theorem 8.3 (and Remarks 8.6 and 8.7) in [18],

(iii) follows from Theorem 8.4 (and Remarks 8.6 and 8.7) in [18]. (iv) is a corollary

to (iii).

Thus we have for L similar results as for a Keldysh pencil (cf. [18], Sec-

tion 15.3).
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4. LINEARIZATION (THE MEROMORPHIC CASE)

In this section first let X be a (complex) Banach space. Let Ak ∈ B(X), k =
0, 1, . . . , n, 0 6= Hk ∈ B(X), k = 1, 2, . . . , and 0 6= ak ∈ C, k = 1, 2, . . ., ak 6= aj

for k 6= j, with

(4.1) lim
k→∞

|ak| = ∞

be given. Then the operator function L : Ω∞ → B(X) is considered, defined by

L∞(λ) := I −
n∑

k=0

λkAk +
∞∑

k=1

1
λ− ak

Hk, λ ∈ Ω∞,

where
∞∑

k=1

1
λ− ak

Hk

is compact convergent in C. In this section we extend the results of Section 2 on
rational operator functions to this type of meromorphic operator functions. But
we only sketch the procedure. We assume that (2.1) and (2.2) (for k = 1, 2, . . .)
are satisfied. Let

X∞ :=

{
(f1, f2, . . .)T | f1, . . . , fn ∈ X, fn+1 ∈ Z1, fn+2 ∈ Z2, . . . ,

∞∑
k=1

‖fk‖2 <∞

}
.

Then X∞ endowed with the norm

‖f‖∞ := ‖(f1, f2, . . .)T ‖∞ :=

( ∞∑
k=1

‖fk‖2

) 1
2

is a Banach space. We consider for n > 2 the infinite operator matrices

(4.2) T∞ :=



T0 T1 · · · Tn−1 H1 H2 · · ·
0
...
0

1
a1
P1

1
a2
P2

...


,
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(4.3) H∞ :=



0 0 · · · 0 Bn

B1 0 0 0
B2

. . .
...

Bn−1 0
1
a1
P1

1
a2
P2

. . .


,

and with the corresponding modifications for the cases n = 0, 1 as in Section 2.

Proposition 4.1. Assume that

(4.4)
∞∑

k=1

1
|ak|2

‖Pk‖2 <∞,

(4.5)
∞∑

k=1

‖Hk‖2 <∞.

(i) Then for T∞,H∞ given by (4.2), (4.3), respectively, we have T∞,H∞ ∈
B(X∞).

(ii) Let Tk ∈ B∞(X), 0 6 k 6 n − 1, Bk ∈ B∞(X), 1 6 k 6 n, and let the
operators Hk be of finite rank, k = 1, 2, . . . . Then T∞,H∞ ∈ B∞(X∞).

Proof. (i) We have for f ∈ X∞

∥∥∥∥∥
n−1∑
k=0

Tkfk+1 +
∞∑

k=1

Hkfn+k

∥∥∥∥∥
2

6

(
n−1∑
k=0

‖Tk‖2 +
∞∑

k=1

‖Hk‖2

)
‖f‖2

∞,

and
∞∑

k=1

∥∥∥∥ 1
ak
Pkf1

∥∥∥∥2

6
∞∑

k=1

1
|ak|2

‖Pk‖2‖f‖2
∞.

From this it follows that T∞ ∈ B(X∞).
We have for f ∈ X∞

n∑
k=1

‖Bkfk‖2 +
∞∑

k=1

∥∥∥∥ 1
ak
Pkfn+k

∥∥∥∥2

6

(
max

k=1,...,n
‖Bk‖2 + sup

k=1,2,...

1
|ak|2

‖Pk‖2

)
‖f‖2.

From this it follows that H∞ ∈ B(X∞).
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(ii) We approximate T∞,H∞ by finite sections in the following way: Let

m ∈ N be given, then let

(4.6) T∞,m :=



T0 T1 · · · Tn−1 H1 · · · Hm 0 · · ·
0
...
0

1
a1
P1

...
1

am
Pm

0
...


,

(4.7) H∞,m :=



0 0 · · · 0 Bn

B1 0 0 0
B2

. . .
...

Bn−1 0
1
a1
P1

. . .
1

am
Pm

0
. . .



.

Thus we have for f ∈ X∞

‖T∞f− T∞,mf‖2 6

( ∞∑
k=m+1

‖Hk‖2 +
∞∑

k=m+1

1
|ak|2

‖Pk‖2

)
‖f‖2

∞ → 0

for m → ∞. Since T∞,m ∈ B∞(X∞), this implies T∞ ∈ B∞(X∞). Furthermore

we have for f ∈ X∞

‖H∞f− H∞,mf‖2 6 sup
k=m+1,...

1
|ak|2

‖Pk‖2‖f‖2
∞ → 0 for m→∞.

Since H∞,m ∈ B∞(X∞), this implies H∞ ∈ B∞(X∞).
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Now we define operator functions E∞,F∞ : Ω∞ → B(X∞) by
(4.8)

F∞(λ) :=



I

λB1 I

λ2B2B1 λB2 I
...

. . . . . .
λn−1Bn−1 · · ·B1 · · · λBn−1 I

−1
λ−a1

P1
−a1

λ−a1
P1

−1
λ−a2

P2
−a2

λ−a2
P2

...
. . .


,

(4.9)

E∞(λ) :=



I
n∑

k=1

λk−1TkBk · · ·B2 · · · Tn−1 + λBn
−a1

λ−a1
H1

−a2
λ−a2

H2 · · ·

I
. . .

I

P1

P2

. . .


.

We denote by π∞ the canonical projection from X∞ onto its first coordinate space

π∞(f1, f2, . . .)T = f1.

Theorem 4.2. Let L∞,T∞,H∞,E∞,F∞ as above and let (4.4), (4.5) be
fulfilled. Then for each λ ∈ Ω∞ we have E∞(λ),F∞(λ) ∈ B(X∞), the operators
E∞(λ),F∞(λ) are invertible, and

L∞(λ)⊕ Iker π∞ = E∞(λ)(IX∞ − T∞ − λH∞)F∞(λ), λ ∈ Ω∞.

Proof. For f ∈ X∞ we have

∞∑
k=1

∥∥∥∥ −1
λ− ak

Pkf1

∥∥∥∥2

6
∞∑

k=1

1
|λ− ak|2

‖Pk‖2‖f‖2 <∞

since the series
∞∑

k=1

1
|λ−ak|2 ‖Pk‖2 converges. Furthermore we have Pk|Zk = IZk

.

Thus
∞∑

k=1

∥∥∥∥ −ak

λ− ak
Pkfn+k

∥∥∥∥2

=
∞∑

k=1

1∣∣∣1− λ
ak

∣∣∣2 ‖fk+n‖2 6 sup
k=1,2,...

1∣∣∣1− λ
ak

∣∣∣2 ‖f‖2 <∞
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since |ak| → ∞. From this it follows that F∞(λ) ∈ B(X∞). Furthermore F∞(λ) is
injective with

F∞(λ)−1 =



I

−λB1 I
. . . . . .

−λBn−1 I

− 1
a1
P1 −λ−a1

a1
P1

− 1
a2
P2 −λ−a2

a2
P2

...
. . .


.

Since for f ∈ X∞ we have (Pk|Zk = IZk
and |ak| → ∞ )

∞∑
k=1

∥∥∥∥− 1
ak
Pkf1

∥∥∥∥2

6
∞∑

k=1

1
|ak|2

‖Pk‖2‖f‖2
∞ <∞,

∞∑
k=1

∥∥∥∥−λ− ak

ak
Pkfk+n

∥∥∥∥2

=
∞∑

k=1

∣∣∣∣1− λ

ak

∣∣∣∣2 ‖fk+n‖2 6 sup
k=1,2,...

∣∣∣∣1− λ

ak

∣∣∣∣2 ‖f‖2
∞ <∞,

thus it follows that F∞(λ)−1 ∈ B(X∞).
For f ∈ X∞ we have∥∥∥∥∥

∞∑
k=1

−ak

λ− ak
Hkfn+k

∥∥∥∥∥
2

6 sup
k=1,2,...

1∣∣∣1− λ
ak

∣∣∣2
∞∑

k=1

‖Hk‖2‖f‖2
∞ <∞,

and since Pk|Zk = IZk
it follows that E(λ) ∈ B(X∞). E(λ) is injective with

E∞(λ)−1

=



I −
n∑

k=1

λk−1TkBk · · ·B2 · · · −Tn−1 − λBn
a1

λ−a1
H1

a2
λ−a2

H2 · · ·

I
. . .

I

P1

P2

. . .


,

and therefore E∞(λ)−1 ∈ B(X∞).

In the following we assume that the conditions (4.4), (4.5) are fulfilled. Let
L∞ : C → B(X∞) be the operator function defined by

L∞(λ) := IX∞ − T∞ − λH∞, λ ∈ C.

For L∞ and L∞ there are valid the analogues of Corollary 2.3, Propositions 2.4,
2.6, 2.7, 2.8, and Theorems 2.5, 2.9, 2.10, which we do not formulate explicitly.
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5. COMPLETENESS AND SPECTRAL ASYMPTOTICS (THE MEROMORPHIC CASE)

In this section we use the results from Section 4 to prove in the case of a Hilbert
space some asymptotic results for the eigenvalues and the completeness of the
eigenvectors and associated vectors which extend those of Section 3 for the rational
operator function L to the meromorphic operator function L∞.

Throughout this section let X be a (complex, separable) Hilbert space with
inner product ( · , · ). The inner product in X∞ is defined by

(f, g)∞ :=
∞∑

k=1

(fk, gk).

In this case again we have X = N(Hk)⊕N(Hk)⊥ for each k ∈ N, and we choose
Pk to be the orthogonal projection onto N(Hk)⊥. We suppose throughout this
section that n > 1.

Under the condition (4.4) for H∞ there is also valid the analogue of Propo-
sition 3.1 (i), (ii), (iii) if an

j ∈ R, j = 1, 2, . . . . Only Proposition 3.1 (iv) must be
modified.

Proposition 5.1. Let Bk ∈ Bp(X) for some p ∈ [1,∞[ for k = 1, 2, . . . .
Furthermore let Hk, k ∈ N, be of finite rank, and let

∞∑
k=1

1
|ak|

dimR(Hk)
1
p <∞.

Then H∞ ∈ Bp(X∞).

Proof. The operator H∞,m given by (4.7) is an element of Bp(X∞) for each
m ∈ N. Furthermore

‖H∞ − H∞,m‖∞,p 6
∞∑

k=m+1

1
|ak|

dimR(Hk)
1
p → 0

for m→∞. From this the assertion follows.

Theorem 5.2. Let for the polynomial part of L∞ the assumptions of Theo-
rem 3.2 (i) be satisfied. Furthermore let

∞∑
k=1

1
|ak|2

<∞,
∞∑

k=1

‖Hk‖2 <∞.
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Assume that (without loss of generality) the numbers 1/ak, k = 1, 2, . . . , lie on the
finitely many rays

arg λ = arg
1
a1
, . . . , arg λ = arg

1
am

,

where arg 1/ak, k = 1, . . . ,m, are pairwise distinct.
(i) For any δ > 0 there are only finitely many eigenvalues of L∞ outside

the angles

(5.1) {λ : | arg λ− π
k

n
| < δ}, k = 0, 1, . . . , 2n− 1,

(5.2) {λ : | arg λ− arg ak| < δ}, k = 1, . . . ,m.

(ii) Assume additionally that on the ray

arg λ = arg ak0 , k0 ∈ {1, . . . ,m},

there are only finitely many ak and arg ak0 6= πk/n, k = 0, . . . , 2n − 1. Then the
assertion of (i) is valid with k 6= k0 in (5.2).

(iii) Let additionally be assumed that the positive spectrum of An is finite,
and that only finitely many ak are on the rays

arg λ = 2π
k

n
, k = 0, . . . , n− 1.

Then the assertion of (i) is valid with k 6= 2l, l = 0, . . . , n − 1 in (5.1). An
analogous result is valid if the negative spectrum of An is finite, and only finitely
many ak are on the rays

arg λ =
π(2k + 1)

n
, k = 0, . . . , n− 1.

(iv) Let additionally Bk ∈ Bp(X) for some p ∈ [1,∞[ for k = 1, . . . , n, and
let

∞∑
k=1

1
|ak|

dimR(Hk)
1
p <∞.

Then the system of eigenvectors and associated vectors corresponding to the eigen-
values λ ∈ C of L∞ is complete in X∞.

Proof. We consider only the cases n > 2, since a similar reasoning is valid
for the case n = 1. (i) For the operator function L∞(λ) = IX∞ − T∞ − λH∞ the
operator T∞ is compact, and H∞ is compact and normal with ker H∞ = {0}. Let
G∞ := H−1

∞ and B∞ := T∞H−1
∞ . Then the operator G∞ is normal with compact
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resolvent, while B∞ is compact relative to G∞. Furthermore the eigenvalues of
L∞,L∞, and G∞−B∞ coincide and have the same null multiplicities. This follows
from the analogues of Proposition 2.4, Theorem 2.9 for L∞ and L∞, and Lemma
15.2 in [18]. For the spectrum σ(H∞) we have

σ(H∞) = σ




0 . . . 0 Bn

B1

. . .
Bn−1 0


 ∪

∞⋃
k=1

{
1
ak

}
.

Therefore from our assumptions it follows that the spectrum of H∞ lies on the
finitely many rays

arg λ = arg π
k

n
, k = 0, . . . 2n− 1,

arg λ = arg
1
ak
, k = 1, . . . ,m.

Thus the assertion of (i) follows from Lemma 15.3 in [18].
To prove (ii) and (iii) the same procedure as in the second part of the proof

of Theorem 3.2 (i) give the assertions.
(iv) The proof is analogous to the proof of Theorem 3.2 (iii).

Now we consider the asymptotics of the eigenvalues of L∞ in one of the
angles given by (5.2) in more detail.

Theorem 5.3. Let the assumptions of Theorem 5.2 (i) be satisfied. Let
k0 ∈ {1, . . . ,m} be given. Assume that on the ray arg λ = arg ak0 there are
infinitely many numbers ak, where arg ak0 6= πk/n, k = 0, . . . , 2n− 1. Let δk0 > 0
be such that ak /∈ Ω(ak0 , δk0), k = 1, . . . ,m, k 6= k0, and that

Ω(ak0 , δk0) ∩ {λ : arg λ = π
k

n
} = ∅, k = 0, . . . , 2n− 1.

Let 0 < δ1 < δk0 . Denote by N(r, δ1, L∞) the sum of the null multiplicities of the
eigenvalues of L∞ lying in the sector

∆(ak0 , δ1, r) := {λ : | arg λ− arg ak0 | < δ1, |λ| < r},

and denote by N(r, ak0) the sum of dimR(Hk) for which ak ∈ {λ : arg λ =
arg ak0 , |λ| < r}.

(i) Assume that

lim inf
r→∞

logN(r, ak0)
log r

<∞.
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Then

lim inf
r→∞

∣∣∣∣N(r, δ1, L∞)
N(r, ak0)

− 1
∣∣∣∣ = 0.

(ii) Assume that

lim inf
r→∞,ε→0

N(r(1 + ε), ak0)
N(r, ak0)

= 1.

Then
N(r, δ1, L∞) ∼ N(r, ak0).

(iii) Assume that N(r, ak0) ∼ arγ(a, γ > 0). Then N(r, δ1, L∞) ∼ arγ .

Proof. We use the notations of Theorem 5.2 (i). The eigenvalues of L0(λ) :=
I − λnAn are eigenvalues of G∞ with the same null multiplicities. The remaining
eigenvalues of G∞ are the values ak, k = 1, 2, . . . , with finite null multiplicity
(equal to dimR(Hk)). Thus (i) follows from Theorem 8.3 (and Remarks 8.6 and
8.7) in [18], (ii) follows from Theorem 8.4 (and Remarks 8.6 and 8.7) in [18]. (iii)
is a corollary to (ii).

Note that N(r, ak0) is equal to the sum of the pole multiplicities of the
poles ak of L∞ in the sector ∆(ak0 , δ1, r). Thus Theorem 5.3 shows that a certain
asymptotic behavior of the sums of the pole multiplicities of the poles of L∞ on
the ray arg λ = arg ak0 implies a certain asymptotic behavior of the sums of the
null multiplicities of the eigenvalues of L∞ in the angle Ω(ak0 , δ1).

In the next theorem, which can be proved analogous to Theorem 5.3, we
consider the asymptotics of the eigenvalues of L∞ in one of the angles given by
(5.1) in more detail.

Theorem 5.4. Let the assumptions of Theorem 5.2 (i) be satisfied. Let
k0 ∈ {0, . . . , n− 1} be given. Assume that for the ray arg λ = 2πk0/n, one of the
following three conditions holds:

(i) The positive spectrum of An is finite, and the number of ak lying on this
ray is infinite.

(ii) The positive spectrum of An is infinite, and the number of ak lying on
this ray is finite.

(iii) The positive spectrum of An is infinite, and the number of ak lying on
this ray is infinite.

Denote by N+(r) the sum of the null multiplicities of the eigenvalues of the
eigenvalues of An in ]r−n,∞[, denote by N(r, 2k0, (ak)) the sum of the dimR(Hk)
for which ak is in {

λ : arg λ = 2π
k0

n
, |λ| < r

}
,
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and let N+(r, 2k0) := N+(r) + N(r, 2k0, (ak)). Let 0 < δk0 < π/2n be such that
for at most one l0 ∈ {1, . . . ,m} we have arg al0 = 2πk0/n, and no other ray
arg λ = arg ak, k 6= l0, k = 1, . . . ,m, lies in the angle {λ : | arg λ− 2πk0/n| < δk0}.
Let 0 < δ1 < δk0 . Denote by N(r, δ1, L∞) the sum of the null multiplicities of L∞
lying in the sector

∆(2k0, δ1, r) :=
{
λ :
∣∣∣∣arg λ− 2π

k0

n

∣∣∣∣ < δ1, |λ| < r

}
.

Then the assertions of Theorem 5.3 (i), (ii), (iii) are valid with N(r, ak0),
N(r, δ1, L∞) replaced by N+(r, 2k0), N(r, δ1, L∞), respectively.

An analogous result is valid for a ray arg λ = (2k0 + 1)π/n.
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