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Abstract. We are interested in remainder estimates in the Weyl formula
for the asymptotic number of eigenvalues of certain elliptic operators on Rd

and on a smooth compact manifold without boundary. The main aim of
this paper is to compare spectral asymptotics of operators with irregular
coefficients and certain classes of smoothed operators for which the Weyl
formula is derived by means of elementary pseudodifferential calculus.

The remainder estimates are obtained here essentially with an exponent
less than one half of the optimal exponent known in the case of smooth coef-
ficients. The presentation is self-contained (we do not require any knowledge
of the subject) and will be continued in a subsequent paper, where sharper
remainder estimates will be proved.
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1. INTRODUCTION

The aim of this paper is to present a very simple approach of studying the asymp-
totic behaviour of some elliptic differential operators with coefficients which are
not necessarily smooth. The main tool we use in the proof is the formula for
the symbol of the composition of two pseudodifferential operators (exposed e.g.
in Chapter 1 of the book of M.A. Shubin ([37]) or in Chapter 2 of the book of
H. Kumano-Go ([24])) and moreover, concerning the operators on a manifold, the
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fact that the Hörmander class of pseudodifferential operators of type δ, ρ is well
defined if 0 6 δ < ρ 6 1, ρ+ δ > 1.

Let us note here that the asymptotic distribution of eigenvalues is one of
the important problems of the spectral theory of partial differential operators and
since the pioneer work of H. Weyl (cf. [43]) concerning vibrations of membranes and
elastic bodies, a lot of papers have investigated various questions concerning the
accuracy of the remainder estimates in the asymptotic formulas and their validity
for diverse classes of differential operators in various situations, e.g. differential
operators with irregular coefficients.

Consider a differential operator A on Rd of degree m ∈ 2N, of the form

(1.1) A =
∑

|α|, |β|6m/2

Dα(aα,β(x)Dβ)

where the coefficients aα,β are measurable, locally bounded on Rd and the notation
(1.1) means that A is a sesquilinear form on C∞

0 (Rd) given by

(1.1′) A[ϕ,ψ] =
∑

|α|, |β|6m/2

(aα,β(x)Dβϕ,Dαψ)

for ϕ,ψ ∈ C∞
0 (Rd), where (ψ1, ψ2) =

∫
ψ1(x)ψ2(x) dx is the scalar product of

L2(Rd).
Further on we assume aβ,α(x) = aα,β(x) for every |α|, |β| 6 m/2, i.e. A is a

quadratic form. We say that A is globally elliptic of degree m if there are constants
C, c > 0 such that

(1.2) c(|x|+ |ξ|)m − C 6 a0(x, ξ) 6 C(1 + |x|+ |ξ|)m

where

a0(x, ξ) =
∑

|α|, |β|6m/2

aα,β(x)ξα+β .

If A is globally elliptic of degree m, then the closed, bounded from below
quadratic form being the extension of A, defines a self-adjoint operator in L2(Rd)
which will be denoted also by the letter A. The resolvent of A is compact and
its spectrum is formed by a sequence of eigenvalues of finite multiplicities with no
finite accumulation point. If λ1 6 λ2 6 λ3 6 · · · is the sequence of eigenvalues
of A where each multiple eigenvalue is repeated as many times as its multiplicity,
then NA(λ) = max{n ∈ N : λn 6 λ} denotes the corresponding counting function.
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To describe the regularity properties of coefficients we fix 0 < r 6 1 and
define

(1.3)
Ar(Rd) =

{
a ∈ L∞(Rd) :

∃C > 0, sup
|y|61

|a(x+ y)− a(x)| 6 C〈x〉−r for all x ∈ Rd
}

where 〈x〉 = (1 + |x|2)1/2. We make the following

Regularity Hypotheses. Let 0 < r 6 1. We assume that for |α + β| 6

m− 1 the coefficient aα,β may be written in the following way

(1.4) aα,β(x) = 〈x〉m−|α+β|
a1

α,β(x) + 〈x〉m−r−|α+β|
a2

α,β(x)

with
a1

α,β ∈ Ar(Rd) and a2
α,β ∈ L∞(Rd),

and for |α+ β| = m the coefficients aα,β are constant.
We have

Theorem 1.1. Let A be globally elliptic of degree m ∈ 2N and the regularity
hypotheses hold for a given 0 < r 6 1. If µ < r/m and C > 0, then

(1.5) NA(λ) = Na0(λ) + O(Na0(λ+ Cλ1−µ)−Na0(λ− Cλ1−µ)) + O(1)

where a0 is as in (1.2) and

Na0(λ) = (2π)−d

∫
a0(x,ξ)<λ

dxdξ.

Remark 1.2. It is easy to see that under our hypotheses c1λ2d/m 6 Na0(λ) 6

C1λ
2d/m holds for certain constants C1, c1 > 0. If we assume moreover that ∂xjaα,β

are L1
loc and

(1.6) |∇x,ξa0(x, ξ)| > c2(|x|+ |ξ|)m−1 − C2

for certain C2, c2 > 0, then it can be easily shown (cf. [37], Proposition 28.3) that

Na0(λ+ Cλ1−µ)−Na0(λ− Cλ1−µ) = O(λ−µ)Na0(λ) = O(λ−µ+2d/m).

Consider now differential operators on a smooth manifold M of dimension d.
We shall say that a quadratic form A on C∞

0 (M) is local if A[ϕ,ψ] = 0 for every
ϕ,ψ ∈ C∞

0 (M) with suppϕ ∩ suppψ = ∅. For 0 < r 6 1 we denote

(1.7)
Br(Rd) = {a ∈ L∞(Rd) :

∃C > 0, |a(x)− a(y)| 6 C|x− y|r for all x, y ∈ Rd}.
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Further on we assume that M is compact and dy is a smooth density defining
the scalar product of L2(M). We say that Ξ is an atlas of M if every χ ∈ Ξ
is a smooth diffeomorphism of an open set Uχ ⊂ Rd onto its image in M and
{χ(Uχ)}χ∈Ξ is a covering of M .

We say that A is elliptic of degree m ∈ 2N on M if A is a local quadratic form
on C∞(M) and there is an atlas Ξ such that every χ ∈ Ξ gives the density dy on
χ(Uχ) as the image of the Lebesgue measure dx on Uχ and A[ϕ,ψ] = Aχ[ϕ◦χ, ψ◦χ]
for ϕ,ψ ∈ C∞

0 (χ(Uχ)) with

(1.8) Aχ =
∑

|α|, |β|6m/2

Dα(aα,β,χ(x)Dβ)

where aα,β,χ ∈ L∞(Rd) and Aχ is elliptic of degree m ∈ 2N, i.e. there is cχ > 0
such that

(1.2′) am,χ(x, ξ) =
∑

|α|=|β|=m/2

aα,β,χ(x)ξα+β > cχ|ξ|m.

If A is elliptic of degree m on M , then the closed, bounded from below
quadratic form being the extension of A, defines a self-adjoint operator in L2(M).
Since the embedding of Hs(M) into L2(M) is compact for every s > 0, the re-
solvent of A is compact and as before NA(λ) denotes the corresponding counting
function. We have

Theorem 1.3. Let A be elliptic of degree m ∈ 2N on a compact manifold of
dimension d. Let 0 < r < 1 and assume that the coefficients aα,β,χ ∈ Br(Rd) if
|α| = |β| = m/2. Then there is a constant cA such that for µ < r

m(r+1) we have

(1.9) NA(λ) = cAλ
d/m(1 + O(λ−µ)).

Since our intention is a self-contained, easy and detailed presentation, we
have formulated our statements in a simple way and without looking for possible
generalisations. In particular, the statement of regularity hypotheses has been
chosen to make extremely simple the idea of replacing the study of A by the study
of a smooth differential or pseudodifferential operator Ã obtained from A by a
very simple smoothing procedure. Afterwards, the asymptotic formula for the
smoothed operator is obtained using the Tauberian idea of [15], based on a study
of the counting function NP (λ) for the power P = Ãµ via its Fourier transform

(1.10) u(t) =
∫

e−itλ dNP (λ).
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The paper is organized as follows. In Section 2 we consider the properties
of the differential operator Ã obtained from A by smoothing the coefficients. In
particular, the powers Ãµ are described as elements of suitable classes of pseu-
dodifferential operators. In Section 3 we check that the asymptotic formula for A
follows from the analogous formula for Ã. In Section 4 we describe an approxi-
mation of e−itP , allowing to obtain the asymptotic behaviour of u(t) [defined by
(1.10)] and to complete the proof of Theorem 1.1 by applying a version of the
Tauberian theorem described in Section 5.

Further on, we consider the case of irregular top order coefficients. In this
case the smoothing procedure is more complicated: every irregular coefficient
should be replaced by a suitable pseudodifferential operator from Hörmander’s
class of type 1, δ. In Section 6 we describe the suitable classes of operators in Rd

and show the asymptotic formula for the spectral function with a simple remainder
estimate. To be self-contained, we complete the proof of Theorem 1.3 in Section 7
describing how the statements from Section 6 may be translated in the language
of local coordinates.

At the end of this introduction we would like to give an indication about
the place of results presented here against the background of known results in the
subject. In particular, we would like to mention here L. Hörmander’s development
of the theory of Fourier integral operators in [15] allowing to prove that in the
case of smooth coefficients (1.9) holds with µ = 1/m, which is in general the best
possible value of the exponent µ (if no hypotheses on the Hamiltonian flow are
considered). The best possible value of the exponent µ in (1.5) is µ = 2/m, and in
the case of smooth coefficients A. Mohamed ([30]) proved this estimate under very
weak additional hypotheses. Therefore, in the case of smooth coefficients, using
the results of Theorem 1.1 and 1.3 we obtain remainder estimates with any value
of µ between 0 and one half of the best possible value.

In the subsequent paper [46] we show that the approximation of u(t) by uN (t)
described below in Section 4 allows to obtain in fact the remainder estimates with
any value of µ between 0 and the best possible value. In particular, (1.9) holds
with µ < r/m if the coefficients are Hölder continuous with exponent r, where
0 < r 6 1 (cf. also [44], [45]).

More detailed comments and references to other papers and results in the
area of spectral asymptotics are given in Section 8.
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2. CLASSES OF SYMBOLS AND OPERATORS

If X ,X ′ are Banach spaces, then B(X ,X ′) denotes the Banach space of bounded
linear operators X → X ′ and B(X ,X ) = B(X ). Let S(Rn) denote the Schwartz
space of rapidly decreasing functions on Rn and define Ψ−∞

gl as the set of integral
operators with a kernel belonging to S(Rd × Rd), i.e. the operators which can be
extended to linear continuous operators S ′(Rd) → S(Rd). Further on, we write
simply S, L2, Ar, instead of S(Rd), L2(Rd), Ar(Rd), denoting by ‖ · ‖ the norm
of L2 or B(L2).

If p ∈ C∞(Rd ×Rd) is polynomially bounded, then p(x,D) is the associated
pseudo-differential operator defined as a linear operator on S given by

(2.1) p(x,D)ϕ = (2π)−d

∫
eixξp(x, ξ)ϕ̂(ξ) dξ.

For s ∈ R, the global Sobolev space is the completion of S in the norm

(2.2) ‖ϕ‖Hs
s

= ‖Λs(x,D)ϕ‖ where Λs(x, ξ) = (1 + |x|2 + |ξ|2)s/2.

Clearly P ∈ Ψ−∞
gl if and only if P extends to a bounded operator H−s

−s → Hs
s

for every s ∈ R. Using all the time the notation Λ(x, ξ) = (1 + |x|2 + |ξ|2)1/2,
introduce the metric

(2.3) g = |dx|2 + Λ(x, ξ)−2|dξ|2

on Rd
x × Rd

ξ and denote by Sm
g the class of functions p ∈ C∞(Rd

x × Rd
ξ) such that

(2.4) |p(α)
(α′)(x, ξ)| 6 Cα,α′Λ(x, ξ)m−|α| for every α, α′ ∈ Nd,

where p(α)
(α′)(x, ξ) = ∂α

ξ ∂
α′

x p(x, ξ). We denote by Ψm
g the class of linear operators

P on S such that P − p(x,D) ∈ Ψ−∞
gl with p ∈ Sm

g called a symbol of P .
Note that if p(x,D) ∈ Ψ−∞

gl then p(x, ξ) = eixξp(x,D)(e−ixξ) belongs to
S(Rd

x × Rd
ξ). Also p ∈ Sm

g , q ∈ Sm′

g ⇒ pq ∈ Sm+m′

g and there is p � q ∈ Sm+m′

g

satisfying

(2.5) p(x,D)q(x,D)− (p � q)(x,D) ∈ Ψ−∞
gl with p � q ∼=

∑
α

(−i)|α|

α!
p(α)q(α)

[where p(α)(x, ξ) = ∂α
ξ p(x, ξ), p(α)(x, ξ) = ∂α

x p(x, ξ)], i.e. p(x,D)q(x,D) ∈ Ψm+m′

g .
If p ∈ Sm

g then Λs(x,D)p(x,D)Λ−m−s(x,D) ∈ Ψ0
g extends to a bounded operator

on L2, i.e. every P ∈ Ψm
g extends to a bounded operator Hm+s

m+s → Hs
s for every
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s ∈ R, hence extends to a continuous operator on S ′. The adjoint of P ∈ Ψm
g

belongs to Ψm
g and has the symbol

(2.6) p∗ ∼=
∑
α

(−i)|α|

α!
p
(α)
(α).

Identifying (P ∗)∗ and P we get (p∗)∗ − p ∈ S(Rd
x × Rd

ξ). If P − p(x,D) ∈ Ψ−∞
gl

then P may be chosen symmetric [i.e. (Pϕ,ψ) = (ϕ, Pψ) for ϕ,ψ ∈ S] if and only

if p∗ − p ∈ S(Rd
x × Rd

ξ).

If m < 0 then Λm(x,D) is compact on L2 and consequently every P ∈ Ψm
g

is compact if m < 0. A symbol p ∈ Sm
g is called globally elliptic of degree m > 0

if there are constants C0, c0 > 0 such that |p(x, ξ)| > c0Λ(x, ξ)m − C0 and the

operator P ∈ Ψm
g is called globally elliptic of degree m if P − p(x,D) ∈ Ψ−∞

gl with

p globally elliptic of degree m.

Definition 2.1. (i) If m ∈ R, then Sm
0 denotes the set of functions a ∈

C∞(Rd) satisfying |∂αa(x)| 6 Cα〈x〉m for every α ∈ Nd and for 0 6 r 6 1 we set

(2.7) Sm
0 [r] = {a ∈ Sm

0 : ∂αa ∈ Sm−r
0 if |α| = 1}.

(ii) If m ∈ R, 0 6 r 6 1, then we set

(2.8) Sm
g [r] = {p ∈ Sm

g : p(α) ∈ Sm−r
g if |α| = 1}

and denote by Ψm
g [r] the class of operators P ∈ Ψm

g such that P − p(x,D) ∈ Ψ−∞
gl

with p ∈ Sm
g [r]. We note that

(2.9) m′ 6 m− r ⇒ Sm′

0 ⊂ Sm
0 [r], Sm′

g ⊂ Sm
g [r]

and using ∂x(pq) = (∂xp)q + p∂xq we check easily that

(2.10) p ∈ Sm
g [r], q ∈ Sm′

g [r] ⇒ pq ∈ Sm+m′

g [r], p � q − pq ∈ Sm+m′−1−r
g ,

i.e. p(x,D)q(x,D) ∈ Ψm+m′

g [r], p(x,D)q(x,D) − (pq)(x,D) ∈ Ψm+m′−1−r
g . If p ∈

Sm
g [r] is real, then p∗ − p ∈ Sm−1−r

g . If P − p(x,D) ∈ Ψ−∞
gl and P ∈ Ψm

g [r] is

symmetric, then Im p ∈ Sm−1−r
g and when P is moreover globally elliptic of degree

m > 0, then Re p is globally elliptic and we can always choose p such that Re p > 1.
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Proposition 2.2. (i) If P ∈ Ψm
g [r] is symmetric and globally elliptic of

degree m > 0, then P is bounded from below, its extension to Hm
m is self-adjoint

and its resolvent is compact.
(ii) Assume moreover that the least eigenvalue of P is greater than 1, i.e.

P > I. Using the same letter P to denote the associated self-adjoint operator, we
have P θ ∈ Ψmθ

g [r] if θ = j/2n with j, n ∈ Z. If P − p(x,D) ∈ Ψ−∞
gl and Re p > 1,

then (Re p)θ ∈ Smθ
g [r] and P θ − (Re p)θ(x,D) ∈ Ψmθ−1−r

g .

The proof of (i) follows the standard construction of a parametrix for an
elliptic operator (cf. e.g. [37], Chapter 1 or [24] Chapter 2). Due to the composition
properties (2.10), it suffices to prove (ii) for θ = −1 and θ = 1/2. In Appendix we
check that the construction of the parametrix gives P−1 ∈ S−m

g [r] and the standard

construction of the square root (cf. e.g. [37], Section 1.6.2) gives P 1/2 ∈ Ψm/2
g [r].

We note that it is possible to show (ii) for every θ ∈ R using the representation of
P θ by Cauchy integrals as described e.g. in [24], Chapter 8.

Lemma 2.3. Let γ ∈ C∞
0 (Rd) be such that

∫
γ = 1 and supp γ ⊂ {|y| 6 1}.

If a ∈ Ar, then the convolution a ∗ γ ∈ S0
0 [r] and |(a− a ∗ γ)(x)| 6 C〈x〉−r.

Proof. Indeed, since supp γ ⊂ {|y| 6 1} we get the desired estimate of

(a ∗ γ − a)(x) =
∫

(a(x− y)− a(x))γ(y) dy

from the definition of Ar and a ∗ γ ∈ S0
0 [r] follows by using

∫
γ(α)(y) dy = 0 for

|α| > 1 in

(a ∗ γ)(α)(x) =
∫
a(x− y)γ(α)(y) dy =

∫
(a(x− y)− a(x))γ(α)(y) dy.

Let A be the quadratic form (1.1) satisfying the hypotheses of Theorem 1.1.

Definition of the smoothed operator Ã. For a given sesquilinear form
Q, its symmetrization is denoted Q+hc, i.e. (Q+hc)[ϕ,ψ] = 1

2 (Q[ϕ,ψ]+Q[ψ,ϕ]).
Set

(2.11) Ã =
∑

|α|,|β|6m/2

Dα(ã0
α,β(x)Dβ) + hc

with
ã0

α,β(x) = 〈x〉m−|α+β|(a1
α,β ∗ γ)(x),

where γ is as in Lemma 2.3 [note that ã0
α,β = aα,β = const if |α+β| = m]. Setting

(2.12) ã0(x, ξ) =
∑

|α|,|β|6m/2

ã0
α,β(x)ξα+β
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we have ã0
α,β ∈ S

m−|α+β|
0 [r] and ã0 ∈ Sm

g [r]. Clearly Ã is a differential operator

Ã =
∑
|α|6m

ãα(x)Dα = ã(x,D) ∈ Ψm
g [r],

because ã(x, ξ) =
∑

|α|6m

ãα(x)ξα satisfies ã− ã0 ∈ Sm−1−r
g , hence ã ∈ Sm

g [r].

3. COMPARISON OF A AND Ã

We keep the notations of Section 2 concerning the smooth operator Ã associated
with the quadratic form A which satisfies the hypotheses of Theorem 1.1. The
proof of Theorem 1.1 is based on the fact that the asymptotic behaviour of NA(λ)
andN

Ã
(λ) are similar as well as the asymptotic behaviour ofNa0(λ) andN

Re ã0
(λ).

Here NP (λ) denotes always the counting function of a self-adjoint, bounded from
below operator P with compact resolvent, and, for a given real function p0 on R2d,
we denote

(3.1) Np0(λ) = (2π)−d

∫
p0(x,ξ)<λ

dxdξ.

More precisely we are going to show

Proposition 3.1. In order to prove Theorem 1.1, it suffices to prove that
(1.5) holds with A and a0 replaced by Ã and Re ã0.

To compare Na0(λ) and N
Re ã0

(λ) we note that Lemma 2.3 and the definition
of ã0 give

(3.2) |(a0 − ã0)(x, ξ)| 6 C
∑

|α+β|6m−1

〈x〉m−r−|α+β|〈ξ〉|α+β| 6 C1Λ(x, ξ)m−r,

hence ã0 is globally elliptic, i.e. the quadratic form Ã is bounded from below,
closed on H

m/2
m/2 and defines a self-adjoint operator with compact resolvent in L2.

Since replacing A by A + cI does not change the form of (1.5), we may assume
further on that A > I, Ã > I, a0 > 1 and Re ã0 > 1. Then (3.2) implies

(3.3) |aµ
0 − (Re ã0)µ| 6 C

if µ 6 r/m, hence

(3.4) Naµ
0
(λµ − C0) 6 N

(Re ã0)µ(λµ) 6 Naµ
0
(λµ + C0),



258 Lech Zielinski

and using Npµ
0
(λµ) = Np0(λ), (λµ +C0)1/µ = λ(1+C0λ

−µ)1/µ = λ+O(λ1−µ), we
obtain

(3.5) Na0(λ− C1λ
1−µ) 6 N

Re ã0
(λ) 6 Na0(λ+ C1λ

1−µ).

A similar comparison of NA(λ) and N
Ã
(λ) results from

Proposition 3.2. If µ < r/m, then Aµ− Ãµ extends to a bounded operator
on L2.

Clearly, if Proposition 3.2 holds, then Ãµ − C0I 6 Aµ 6 Ãµ + C0I and

(3.6) N
Ãµ(λµ − C0) 6 NAµ(λµ) 6 N

Ãµ(λµ + C0)

due to the min-max principle (cf. [33]). Then using NP µ(λµ) = NP (λ) as before
we find

(3.7) N
Ã
(λ− C1λ

1−µ) 6 NA(λ) 6 N
Ã
(λ+ C1λ

1−µ).

i.e. Proposition 3.2 implies Proposition 3.1.

The end of this section is devoted to the proof of Proposition 3.2. We have

Lemma 3.3. The self-adjoint operator (Ã + λ)−1/2 is bounded L2 → H
m/2
m/2

for every λ > 0 and denote by B(λ) the bounded form on L2 given by

(3.8) B(λ)[ϕ,ψ] = (A− Ã)[(Ã+ λ)−1/2ϕ, (Ã+ λ)−1/2ψ].

Then ‖B(λ)‖ 6 C(1 + λ)−θ if θ < r/m.

Proof. For |α+β| = m we have ã0
α,β = aα,β = const and for |α+ β| 6 m−1

the functions
bα,β(x) = (aα,β − ã0

α,β)(x)〈x〉−(m−r−|α+β|)

are bounded on Rd. If |α| 6 m/2, |β| 6 m/2− 1 and ψ ∈ Hm/2
m/2 , then

|(bα,β(x)〈x〉m/2−|α|Dαψ, 〈x〉m/2−r−|β|Dβψ)|

6 C‖〈x〉m/2−|α|Dαψ‖ ‖〈x〉m(1/2−r/m)−|β|Dβψ‖,

hence assuming θ < r/m we may write

(3.9) |(A− Ã)[ψ,ψ]| 6 C1‖ψ‖H
m/2
m/2

‖ψ‖
H

m/2−θ

m/2−θ

6 C2‖Ã1/2ψ‖ ‖Ã1/2−θψ‖,
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where the last inequality is a consequence of Proposition 2.2 that guarantees

(3.10) cθ‖ϕ‖Hmθ
mθ

6 ‖Ãθϕ‖ 6 Cθ‖ϕ‖Hmθ
mθ
,

with certain constants Cθ, cθ > 0 and θ = j/2n, j, n ∈ Z. Since

‖Ã1/2−θ(Ã+ λ)−1/2‖ = sup
λ′>1

|λ′1/2−θ(λ′ + λ)−1/2| ≤ C̄θ(1 + λ)−θ
,

for 0 6 θ 6 1/2, using ψ = (Ã+ λ)−1/2
ϕ in (3.9), for θ < r/m we have

|B(λ)[ϕ,ϕ]| 6 C‖Ã1/2(Ã+ λ)−1/2
ϕ‖ ‖Ã1/2−θ(Ã+ λ)−1/2

ϕ‖ 6 (1 + λ)−θ‖ϕ‖2.

Lemma 3.4. If B(λ) is given by (3.8) and ‖B(λ)‖ 6 C(1+λ)−θ, θ > 0, then

(3.11) ‖(A+ λ)−1 − (Ã+ λ)−1‖ 6 C̃(1 + λ)−1−θ for λ > 0.

Proof. Setting ψ = (Ã+ λ)1/2
ϕ in

(A+ λI)[(Ã+ λ)−1/2ψ, (Ã+ λ)−1/2ψ] = ((I +B(λ))ψ,ψ)

we have
(A+ λ)−1 = (Ã+ λ)−1/2(I +B(λ))−1(Ã+ λ)−1/2

and

(3.12) (A+ λ)−1 − (Ã+ λ)−1 = (Ã+ λ)−1/2((I +B(λ))−1 − I)(Ã+ λ)−1/2
.

To complete the proof we estimate the norm of (3.12) using ‖(Ã + λ)−1/2‖ 6

(1 + λ)−1/2 and the fact that for λ > λ0 one has ‖B(λ)‖ 6 1/2 and

‖(I +B(λ))−1 − I‖ 6
‖B(λ)‖

1− ‖B(λ)‖
6 2C(1 + λ)−θ

.

To complete the proof of Proposition 3.2 it remains to show

Lemma 3.5. Assume that (3.11) holds for a certain θ 6 1/2. Then Aµ− Ãµ

extends to a bounded operator on L2 if µ < θ.

Proof. If 0 < µ < 1, a > 1, then Υa =
∞∫
0

dλλµ−1a(a+ λ)−1 = Υ1a
µ.

If µ < 1/2 and ϕ ∈ Hm/2
m/2 = D(A1/2) ⊂ D(Aµ), then µ− 3/2 < −1 and

λµ−1‖A(A+ λ)−1
ϕ‖ 6 λµ−1‖A1/2(A+ λ)−1‖ ‖A1/2ϕ‖ 6 Cλµ−3/2‖A1/2ϕ‖
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is integrable on [1; ∞[ with respect to λ, allowing to write

Υ1A
µϕ =

∞∫
0

dλλµ−1A(A+ λ)−1
ϕ

and an analogous formula holds with Ã instead of A. Using (3.11) and the equality

A(A+ λ)−1 − Ã(Ã+ λ)
−1

= λ((Ã+ λ)
−1

− (A+ λ)−1), we have for ϕ ∈ H
m/2
m/2

the estimate

Υ1‖(Aµ − Ãµ)ϕ‖ 6

∞∫
0

dλλµ−1‖A(A+ λ)−1
ϕ− Ã(Ã+ λ)

−1
ϕ‖

6 C1

( 1∫
0

dλλµ−1 +

∞∫
1

dλ (1 + λ)µ−1−θ

)
‖ϕ‖

6 C2‖ϕ‖.

4. CONSTRUCTION OF A PARAMETRIX FOR e−itP

In this section we consider a self-adjoint operator P ∈ Ψm′

g [r] such that P −
p(x,D) ∈ Ψ−∞

gl and

(4.1) p0(x, ξ) = Re p(x, ξ) > c0Λ(x, ξ)c0 with c0 > 0.

Assuming m′ < r we construct an approximation of e−itP for t ∈ C, Im t < 0, by
operators

(4.2) QN (t) = (qN (t)e−itp0)(x,D), qN (t) ∈ S0
g ,

chosen such that QN (0) = I and d
dtQN (t) + QN (t)iP has a sufficiently regular

integral kernel for N large enough. We start by

Proposition 4.1. Let N ∈ N and define PN : C∞(Rd
x×Rd

ξ) → C∞(Rd
x×Rd

ξ)
by

(4.3) PN : a 7→ PNa =
∑
|α|6N

(−i)|α|

α!
(p̄(α)a)(α).

If m′ < r then there are qN,j ∈ S
(j−1)(m′−r)
g for 1 6 j 6 N , q̃0n,j ∈ S

j(m′−r)
g for

n 6 j 6 N + n, such that

(4.4)
(

d
dt

+ iPN

)
(qn(t)e−itp0) = q̃0n(t)e−itp0
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with
qn(t) = 1 +

∑
16j6n

tjqN,j , q̃0n(t) =
∑

n6j6n+N

tj q̃0n,j .

Proof. If q ∈ Sm
g , then

(4.5) eitp0

(
d
dt

+ iPN

)
(qe−itp0) =

∑
06j6N

tj q̃j ,

where

q̃0 = −ip0q + iPNq = i(p̄− p0)q −
∑

16|α|6N

(−i)|α|+1

α!
(p̄(α)q)(α),

(4.6) q̃j =
∑

α0+···+αj |6N

αk 6=0 if 16k6j

cα0,...,αj
(p̄(α0+···+αj)q)

(α0)p
(α1)
0 · · · p(αj)

0 for 1 6 j 6 N.

Since P is symmetric we have p̄ − p0 ∈ Sm′−r−1
g and q̃0 ∈ Sm+m′−r−1

g . It is easy

to check that q̃j ∈ S
m+m′−r+j(m′−1)
g for 1 6 j 6 N , hence setting q0(t) = 1 we

can see that the statement of Proposition 4.1 holds for n = 0 [because r 6 1 ⇒
j(m′ − 1) 6 j(m′ − r)]. Assume now that we have found qN,j for 1 6 j 6 n, such
that the statement of Proposition 4.1 holds for a certain n < N and we are going
to find qN,n+1 such that the statement holds for n+ 1. Since

eitp0

(
d
dt

+ iPN

)
((qn(t) + tn+1qN,n+1)e−itp0)

= q̃0n(t) + (n+ 1)tnqN,n+1 + tn+1eitp0

(
d
dt

+ iPN

)
(qN,n+1e−itp0),

we have

eitp0

(
d
dt

+ iPN

)
(qn+1(t)e−itp0)

= tn(q̃0n,n + (n+ 1)qN,n+1) +
∑

06j6N

tn+j+1q̃0n+1,n+j+1

and to cancel the term with tn we take qN,n+1 = −q̃0n,n/(n + 1), which belongs

to Sn(m′−r)
g due to the hypothesis concerning q̃0n(t). Hence, setting q = qN,n+1 in

(4.5)–(4.6), we can see that (n + 1)(m′ − r) + j(m′ − 1) 6 (n + j + 1)(m′ − r)
implies q̃0n+1,k ∈ S

k(m′−r)
g for n+ 1 6 k 6 N + n+ 1.
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Lemma 4.2. Assume m′ 6 1 + r. Then for every s ∈ R there is a constant
Cs > 0 such that

(4.7) ‖e−itP ‖B(Hs
s ) 6 (2 + |t|)Cs for Im t 6 0.

Proof. Due to the duality of H−s
−s and Hs

s , it suffices to consider s > 0.
Clearly (4.7) holds for s = 0. Assume now that (4.7) holds for a given s > 0, fix
0 < κ 6 1 + r −m′ and denote [0; t] = {λt ∈ C : 0 6 λ 6 1}. Then for ϕ ∈ Hs

s it
is easy to estimate the Hs

s -norm of

Λκ(x,D)e−itP Λ−κ(x,D)ϕ = e−itP Λκ(x,D)Λ−κ(x,D)ϕ

−
∫

[0; t]

dτ e−i(t−τ)P [Λκ(x,D), iP ]e−iτP Λ−κ(x,D)ϕ,

because [Λκ(x,D), iP ] ∈ Sκ+m′−1−r
g ⊂ B(Hs

s ) when κ 6 1 + r −m′. Therefore

‖e−itP ‖B(Hs+κ
s+κ

) 6 Cs,k‖Λκ(x,D)e−itP Λ−κ(x,D)‖B(Hs
s ),

and assuming (4.7) for a given s > 0 we obtain (4.7) with s+ κ instead of s.

Proposition 4.3. Let m′ < r and n ∈ N. If N ∈ N is large enough then
there exists Cn,N > 0 such that for Im t < 0, 0 6 k 6 n,

(4.8)
∥∥∥ dk

dtk
(e−itP −QN (t))

∥∥∥
B(H−n

−n
,Hn

n )
6 (2 + |t|)Cn,N .

Proof. For Im t < 0 and q(t) ∈ C∞(R3d) polynomially bounded we denote

(4.9) Kt(q, x, x′) = (2π)−d

∫
ei(x−x′)ξ−itp0(x,ξ)q(t)(x, ξ, x′) dξ.

If aN (t)(x, ξ, x′) = qN (t)(x, ξ)p(x′, ξ) then

(4.10) (QN (t)p(x,D)∗ϕ)(x) =
∫
Kt(aN , x, x

′)ϕ(x′) dx′

and standard integrations by parts associated with Taylor expansion of p(x′, ξ) in
x′ = x give

(4.10′)
[( d

dt
QN (t) + iQN (t)p(x,D)∗

)
ϕ
]
(x) =

∫
Kt(q̃0N + q̃1N , x, x

′)ϕ(x′) dx′

with q̃0N given by (4.4) and

(4.11) q̃1N (t)(x, ξ, x′) = eitp0(x,ξ)(N + 1)

1∫
0

dτ (1− τ)N q̃2N (t, τ)(x, ξ, x′)



Asymptotic distribution of eigenvalues for some elliptic operators 263

with

q̃2N (t, τ)(x, ξ, x′) =
∑

|α|=N+1

(−1)|α|

α!
∂α

ξ ((qN (t)e−itp0)(x, ξ)p̄(α)(x+ τ(x′ − x), ξ)).

Since
e−itP −QN (t) =

∫
[0; t]

dτ
d
dτ

(QN (τ)e−i(t−τ)P )

=
∫

[0; t]

dτ
(

d
dτ
QN (τ) +QN (τ)iP

)
e−i(t−τ)P ,

it remains to prove that for every n0 ∈ N there is N ∈ N large enough to guarantee
that for α ∈ N2d+1 satisfying |α| 6 n0 one has

(4.12) |∂α
t,x,x′Kt(q̃0N + q̃1N , x, x

′)| 6 (2 + |t|)C(1 + |x|+ |x′|)−n0 .

Since m′ < r 6 1, for every N0 ∈ N there is N ∈ N such that

(4.13) |q(t)(x, ξ, x′)| 6 (2 + |t|)C0(1 + |x′|)m′
Λ(x, ξ)−2N0 ,

(4.14)
|Kt(q, x, x′)| 6

∫
|q(t)(x, ξ, x′)|dξ

6 (2 + |t|)C̄0(1 + |x′|)m′
(1 + |x|)d+1−2N0

if q = q̃0N + q̃1N . Replacing q by q0j of the form

(4.15) q0j (t)(x, ξ, x′) = (−xj + ∂ξj
p0(x, ξ))q(t)(x, ξ, x′) + i∂ξj

q(t)(x, ξ, x′)

in (4.9), we estimate easily

(4.16) |Kt(q0j , x, x
′)| 6 (2 + |t|)C1(1 + |x′|)m′

(1 + |x|)d+2−2N0 .

Since q0j given by (4.15) satisfies i∂ξj (q(t)e
ixξ−itp0(x,ξ)) = q0j (t)eixξ−itp0(x,ξ) and we

have x′je
ix′ξ = −i∂ξj

eix′ξ, the integration by parts in (4.9) gives x′jKt(q, x, x′) =
Kt(q0j , x, x

′), hence due to the estimates (4.16) for j = 1, . . . , d, we obtain

(4.17) |Kt(q, x, x′)| 6 (2 + |t|)C̄1(1 + |x′|)m′−1(1 + |x|)d+2−2N0 .

If 0 6 k 6 N0 then we may repeat the above reasoning k times and obtain

(4.18) |Kt(q, x, x′)| 6 (2 + |t|)C̄k(1 + |x′|)m′−k(1 + |x|)d+1+k−2N0 .

Calculating qα such that ∂α
t,x,x′Kt(q, x, x′) = Kt(qα, x, x′) we find similar decay

estimates if only N0 is large enough.
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5. END OF THE PROOF OF THEOREM 1.1

Setting P = Ãµ and using Proposition 2.2, we can see that P satisfies the hy-
potheses from the beginning of Section 4 with m′ = mµ. Our aim is to prove
Theorem 1.1 with Ã instead of A (cf. Proposition 3.1) and it suffices to prove

(5.1) NP (λ) = Np0(λ) + O(Np0(λ+ C0)−Np0(λ− C0)) + O(1),

where as in Section 4, P − p(x,D) ∈ Ψ−∞
gl and p0 = Re p > 1. Indeed, we may

interchange a0 and Re ã0 in (3.5), replace a0 by ã in (3.2) and by p1/µ
0 in (3.3) due

to Proposition 2.2. Hence replacing λ by λµ in (5.1) and using N
Ã
(λ) = NP (λµ),

(λµ + C0)1/µ = λ + O(λ1−µ), Np0(λ
µ) = N

p
1/µ
0

(λ) as in Section 2, we get (1.5)

with Ã and Re ã0 instead of A and a0.
Since µ < r/m implies m′ = mµ < r, it remains to prove

Theorem 5.1. If P is as at the beginning of Section 4 and m′ < r, then
(5.1) holds.

To prove Theorem 5.1 we introduce χ ∈ C∞
0 (R) such that suppχ ⊂ [−c; c],∫

χ = 1, χ > 0 and χ is strictly positive on [−c/2; c/2], where c > 0 is fixed. We
shall show that

(5.2) NP (λ)− (χ ∗NP )(λ) = O(ν(λ, 2c)) + O(1),

(5.3) Np0(λ)− (χ ∗Np0)(λ) = O(ν(λ, c)) + O(1),

where we have denoted ν(λ,C) = Np0(λ+ C)−Np0(λ− C) for C > 0.
Due to the hypothesis (4.1) for every n ∈ N there exists Cn such that

(5.4) Λ(x, ξ)n|e−itp0(x,ξ)| 6 (2 + |Im t|−1)Cn for Im t < 0,

and a reasoning analogous to the proof of Proposition 4.3 allows to estimate

(5.5) ‖QN (t)‖B(H−n
−n

,Hn
n ) 6 (2 + |Im t|−1 + |t|)CN,n for Im t < 0.

Due to Proposition 4.3, estimates (5.5) still hold if QN (t) is replaced by e−itP . If
λ1 6 λ2 6 λ3 6 · · · is the sequence of eigenvalues (counted with multiplicities) of
P , then setting

(5.6) u(t) =
∑
j>1

e−itλj = Tr e−itP =
∫

e−itλ dNP (λ)
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and using the fact that the embedding of Hs
s into H−s

−s is of trace class if s > d,
we obtain

(5.7) |u(t)| 6 (2 + |Im t|−1 + |t|)C for Im t < 0.

Therefore (cf. e.g. [17], Theorem 3.1.11), it is possible to define the boundary value
of u on R, being a distribution S ′(R) such that

(5.8) u(t) = S ′(R)- lim
ε↓0

u(t− iε) for t ∈ R.

Defining on {Im t < 0} the holomorphic function

(5.9) uN (t) = TrQN (t) =
∫

e−itp0(y,ξ)qN (t)(y, ξ)
dydξ
(2π)d

,

we obtain as before the existence of the boundary value on R in S ′(R),

(5.10) uN (t) = S ′(R)- lim
ε↓0

uN (t− iε) for t ∈ R,

and Proposition 4.3 implies

(5.11)
∣∣∣∣ dk

dtk
(u− uN )(t)

∣∣∣∣ 6 (2 + |t|)CN,K for 0 6 k 6 K, t ∈ R.

Introducing wN ∈ C∞(R) given by

(5.12) wN (λ) =
∑

06k6N

∫
qN,k(y, ξ)(−i)kχ(k)(λ− p0(y, ξ))

dydξ
(2π)d

we check easily that∫
e−itλwN (λ) dλ =

∑
06k6N

∫
qN,k(y, ξ)e−itp0(y,ξ)tkχ̂(t)

dydξ
(2π)d

= χ̂(t)uN (t)

holds if Im t < 0, i.e. taking the boundary value on R we have ŵN = χ̂uN and due
to (5.11),

(5.13)
∣∣∣∣ dk

dtk
(χ̂u− χ̂uN )(t)

∣∣∣∣ = ∣∣∣∣ dk

dtk
Fλ→t((χ ∗NP )′ − wN )

∣∣∣∣ 6 Cn(1 + |t|)−n

holds for every t ∈ R, n ∈ N and 0 6 k 6 K, implying |((χ ∗ NP )′ − wN )(λ)| 6

C(1 + |λ|)−2, hence

(5.14)

λ∫
−∞

((χ ∗NP )′ − wN )(λ′) dλ′ = O(1).
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To complete the proof of Theorem 5.1, it suffices to show

(5.15)

λ∫
−∞

(w0 − wN )(λ′) dλ′ = O(ν(λ, c)),

where

w0(λ) =
∫
χ(λ− p0(y, ξ))

dydξ
(2π)d

=
∫
χ(λ− λ′) dNp0(λ

′) = (χ ∗Np0)
′(λ).

Indeed, (5.14) and (5.15) allow to estimate

(5.16) (χ ∗ (NP −Np0))(λ) =

λ∫
−∞

((χ ∗NP )′ − w0)(λ′) dλ′ = O(ν(λ, c)) + O(1)

and the proof of Theorem 5.1 follows from (5.2) and (5.3).

Proof of (5.3). It suffices to note that

(5.17)
Np0(λ)− (χ ∗Np0)(λ) =

λ+c∫
λ−c

χ(λ− λ′)(Np0(λ)−Np0(λ
′)) dλ′

= O(ν(λ, c)).

Proof of (5.15). The left hand side of (5.15) is equal to

(5.18)
∑

16k6N

∫
qN,k(y, ξ)(−i)kχ(k−1)(λ− p0(y, ξ))

dydξ
(2π)d

,

and using |qN,k(y, ξ)| 6 C, we estimate the absolute value of (5.18) by

∑
16k6N

C

∫
|χ(k−1)(λ− p0(y, ξ))|

dydξ
(2π)d

=
∑

16k6N

C

λ+c∫
λ−c

|χ(k−1)(λ− λ′)|dNp0(λ
′) = O(ν(λ, c)).

Proof of (5.2). Estimating |wN (λ)| by

∑
06k6N

C

∫
|χ(k)(λ− p0(y, ξ))|

dydξ
(2π)d

=
∑

06k6N

C

∫
|χ(k)(λ− λ′)|dNp0(λ

′)

= O(ν(λ, c)),
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we obtain (χ ∗ NP )′(λ) = wN (λ) + O(1) = O(ν(λ, c)) + O(1) and due to χ(λ) >

1/C0 > 0 for |λ| 6 c/2,

NP (λ+ c/2)−NP (λ− c/2) 6

λ+c/2∫
λ−c/2

C0 χ(λ− λ′) dNP (λ′)

6 C0(χ ∗NP )′(λ) = O(ν(λ, c)) + O(1),

NP (λ)− (χ ∗NP )(λ) =
∫
χ(λ− λ′)(NP (λ)−NP (λ′)) dλ′

6 C1(NP (λ+ c)−NP (λ− c))

= O(ν(λ, 2c)) + O(1).

6. SMOOTHING OF TOP ORDER COEFFICIENTS

For s ∈ R, the Sobolev space Hs is the completion of S in the norm ‖ϕ‖Hs =
‖〈D〉sϕ‖, where 〈D〉 = (I − ∆)1/2 and Ψ−∞ denotes the set of operators which
can be extended to linear continuous operators H−n → Hn for every n ∈ N.

Definition 6.1. Let m ∈ R, 0 6 δ < 1 and 0 6 r 6 1. Then Sm
1,δ(r) denotes

the class of functions p ∈ C∞(Rd
x × Rd

ξ) satisfying

(6.1)
|p(α)(x, ξ)| 6 Cα〈ξ〉m−|α| for α ∈ Nd,

|p(α)
(α′)(x, ξ)| 6 Cα〈ξ〉m−|α|+δ(|α′|−r) for α, α′ ∈ Nd, |α′| > 1

and Ψm
1,δ(r) denotes the class of linear operators P such that P − p(x,D) ∈ Ψ−∞

with p ∈ Sm
1,δ(r), called the symbol of P . For r = 0 the class Sm

1,δ(0) is the usual
Hörmander class denoted Sm

1,δ and Ψm
1,δ(0) is denoted Ψm

1,δ.

Proposition 6.2. (i) Let P ∈ Ψm
1,δ(r) be symmetric, i.e. (Pϕ,ψ) = (ϕ, Pψ)

for ϕ,ψ ∈ S and P − p(x,D) ∈ Ψ−∞. Then Im p ∈ Sm−1+δ(1−r)
1,δ .

(ii) Assume moreover that P is elliptic of degree m > 0, i.e. |p(x, ξ)| >

c0|ξ|m − C0 for certain constants C0, c0 > 0. Then P is bounded from below, its
extension on Hm is self-adjoint and will be denoted by the same letter P .

(iii) If moreover P > I, then P θ ∈ Ψmθ
1,δ (r) for θ = j/2n, j, n ∈ Z. If

Re p > 1, then (Re p)θ ∈ Smθ
1,δ (r) and P θ − (Re p)θ

q(x,D) ∈ Ψmθ−1+δ(1−r)
1,δ .

The proof of Proposition 6.2 is similar to the proof of Proposition 2.2 (cf.
Appendix).
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Further on in this section we consider a quadratic form A on C∞
0 (Rd) given

by (1.1) with aα,β ∈ L∞(Rd) and aα,β ∈ Br(Rd) if |α + β| = m, assuming that
there is c0 > 0 such that

(6.2) am(x, ξ) =
∑

|α|=|β|=m/2

aα,β(x)ξα+β > c0|ξ|m.

Definition of the “smooth” operator Ã. Let γ ∈ S satisfy
∫
γ = 1.

We fix 0 6 δ < 1 and define

(6.3) ãα,β(x, ξ) = (aα,β ∗ γδ,ξ)(x) with γδ,ξ(x) = γ(x〈ξ〉δ)〈ξ〉δd
,

(6.4) Ã =
∑

|α|=|β|=m/2

Dα(ãα,β(x,D)Dβ) + hc.

Proposition 6.3. If aα,β ∈ Br(Rd) and ãα,β is given as in (6.3), then
ãα,β ∈ S0

1,δ(r) and

(6.5) |aα,β(x)− ãα,β(x, ξ)| 6 C〈ξ〉−rδ
.

Proof. Let ã(x, ξ) = (a ∗ γδ,ξ)(x) =
∫
a(y)γ((x − y)〈ξ〉δ)〈ξ〉δd dy with a ∈

Br(Rd). Since there exist bounded functions χβ such that

∂α′

x ∂α
ξ (γ((x− y)〈ξ〉δ)〈ξ〉δd)

=
∑
β6α

χβ(ξ)〈ξ〉δ(|α
′|+|β|)−|α|(x− y)βγ(α′+β)((x− y)〈ξ〉δ)〈ξ〉δd

,

we obtain |ã(α)
(α′)(x, ξ)| 6 C〈ξ〉δ|α

′|−|α|, because we may estimate |ã(α)
(α′)(x, ξ)| by

(6.6) C ′〈ξ〉δ|α
′|−|α| ∑

β6α

∫
|x− y||β|〈ξ〉δ|β||γ(α′+β)((x− y)〈ξ〉δ)|〈ξ〉δd dy,

and every integral in (6.6) is bounded with respect to ξ.
If |α′| > 0 then

∫
∂α′

x ∂α
ξ (γ((x− y)〈ξ〉δ)〈ξ〉δd) dy = 0, hence

ã
(α)
(α′)(x, ξ) =

∫
(a(y)− a(x))∂α′

x ∂α
ξ (γ((x− y)〈ξ〉δ)〈ξ〉δd) dy.

Using |a(x)− a(y)| 6 C0|x− y|r, we may replace (6.6) by

C ′′〈ξ〉δ|α
′|−|α|−δr

∑
β6α

∫
|x− y||β|+r〈ξ〉δ(|β|+r)|γ(α′+β)((x− y)〈ξ〉δ)|〈ξ〉δd dy
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and every integral is bounded with respect to ξ, completing the proof of ã ∈ S0
1,δ(r).

Introducing b(x, ξ) = ã(x, ξ)− a(x), we have

b(α)(x, ξ) =
∫

(a(y)− a(x))∂α
ξ (γ((x− y)〈ξ〉δ)〈ξ〉δd) dy

and estimating as before we obtain

(6.7) |b(α)(x, ξ)| 6 Cα〈ξ〉−|α|−δr
.

Therefore we check easily that Ã[ϕ,ψ] = ((ã(x,D)+R)ϕ,ψ) with ã ∈ Sm
1,δ(r)

and R ∈ Ψ−∞, i.e. we may treat Ã as a pseudodifferential operator of class Ψm
1,δ(r)

with the symbol ã. Moreover (6.5) implies |aµ
m − (Re ãm)µ| 6 const for µ < rδ/m

if

(6.8) ãm(x, ξ) =
∑

|α|=|β|=m/2

ãα,β(x, ξ)ξα+β

and ãm − ã ∈ S
m−1+δ(1−r)
1,δ implies that Ã is elliptic of degree m. Further on we

assume Ã > I, ã > 1 and show

Proposition 6.4. If µ < δr, then Ãµ − Aµ extends to a bounded operator
on L2.

Proof. Reasoning as in Section 3 it suffices to check that ‖B(λ)‖ 6 C(1+λ)−θ

with θ < δr and that (3.9) holds with the norms of Hs
s replaced by the norms Hs.

The last statement follows from

Proposition 6.5. If 0 < r 6 1, aα,β ∈ Br(Rd) and ãα,β is given as in (6.3),
then the difference aα,β(x)− ãα,β(x,D) extends to a bounded operator H−s → L2

for every s < δr.

Proof. Let q(x, ξ) = (aα,β(x)− ãα,β(x, ξ))〈ξ〉s, let χ ∈ C∞
0 (Rd) be such that

χ(x) = 1 if |x| 6 1 and for ε > 0 set qε(x, ξ) = q(x, ξ)χ(εξ). Then

Kε(x, x′) = (2π)−d

∫
ei(x−x′)ξqε(x, ξ) dξ

is the integral kernel of qε(x,D) and integrating by parts we have, for |α| > 1,

(6.9)
(2π)d(x− x′)αKε(x, x′) =

∫
ei(x−x′)ξ(i∂ξ)αqε(x, ξ) dξ

=
∫

(ei(x−x′)ξ − 1)(i∂ξ)αqε(x, ξ) dξ

due to
∫

(i∂ξ)αqε(x, ξ) dξ = 0. Using |ei(x−x′)ξ − 1| 6 |x − x′|κ|ξ|κ with 0 <

κ < δr − s 6 1 and |α| = d we estimate the absolute value of (6.9) by C
∫
|x −

x′|κ〈ξ〉κ+s−d−δr dξ, where the integral is convergent due to κ+s−δr < 0. Therefore
|Kε(x, x′)| 6 C ′|x−x′|−d+κ and moreover |Kε(x, x′)| 6 CN |x−x′|−N for all N ∈ N
large enough, which completes the proof due to the Schwartz lemma.
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If E
Ã
(λ) denotes the spectral projector of Ã, then ÃnE

Ã
(λ) is bounded for

all n ∈ N, hence E
Ã
(λ) ∈ Ψ−∞ and we denote by e

Ã
( · , · , λ) the smooth integral

kernel of E
Ã
. We have

Theorem 6.6. If 0 < r 6 1, Ã ∈ Ψm
1,δ(r) is elliptic, self-adjoint and µ <

(1− δ)/m 6 (δr)/m, then

(6.10)
e
Ã
(x, x, λ) = e

Re ãm
(x, λ)

+ O(e
Re ãm

(x, λ+ Cλ1−µ)− e
Re ãm

(x, λ− Cλ1−µ)) + O(1)

holds uniformly with respect to x ∈ Rd, where

(6.10′) e
Re ãm

(x, λ) = (2π)−d

∫
Re ãm(x,ξ)<λ

dξ.

Reasoning as at the beginning of Section 5 we may reduce Theorem 6.6 to

Theorem 6.7. Let 0 < r 6 1, let P be self-adjoint, P −p(x,D) ∈ Ψ−∞ with
p ∈ Sm′

1,δ(r) and |p(x, ξ)| > c0〈ξ〉c0 with c0 > 0. Then (6.10) holds with µ = 1 if
m′ < 1− δ 6 δr and Ã, ãm are replaced by P and p0 = Re p.

We note first that following the construction of the parametrix of e−itP from
Section 4 we obtain

Proposition 6.8. If P satisfies the hypotheses of Theorem 6.7, N ∈ N
and 0 6 n 6 N , then we can find qN,j ∈ S

(j−1)(m′−1+δ)
1,δ for 1 6 j 6 n and

q̃0n,j ∈ S
j(m′−1+δ)
1,δ for n 6 j 6 N + n, such that (4.4) holds with qn(t), q̃0n(t)

expressed as in Proposition 4.1.

Proof. It suffices to follow the proof of Proposition 4.1. If q ∈ Sm
1,δ, then

(4.5), (4.6) hold with q̃j ∈ Sm+(j+1)m′−δr−j(1−δ)
1,δ for 1 6 j 6 N and 1− δ 6 δr ⇒

(j + 1)m′ − δr − j(1− δ) 6 (j + 1)(m′ − (1− δ)).

Now to complete the proof of Theorem 6.7, it remains to follow the Tauberian
reasoning from Section 5, where instead of u(t) and uN (t), we compare u(t, x) and
uN (t, x) given by

u(t, x) =
∫

e−itλ dλeP (x, x, λ), uN (t, x) =
∫

e−itp0(x,ξ)qN (t)(x, ξ)
dξ

(2π)d

using pointwise uniform estimates with respect to x ∈ Rd instead of the integration
with respect to x used in Section 5.
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7. PROOF OF THEOREM 1.3

Let X, Y be smooth differential manifolds. If χ : X → Y is a smooth diffeomor-
phism and y = χ(x), then dχ(x) : TxX → TyY has the dual dχ(x)∗ : T ∗y Y → T ∗xX

and we define the coderivative dχ∗ : T ∗Y → T ∗X by the equality dχ∗(y, η) =
(χ−1(y),dχ(χ−1(y))∗η). If A : C∞

0 (X) → C∞(X), then χ∗A denotes the opera-
tor C∞

0 (Y ) → C∞(Y ) acting according to the formula ϕ 7→ (A(ϕ ◦ χ)) ◦ χ−1 for
ϕ ∈ C∞

0 (Y ).
Assume now that χ is a diffeomorphism of Rd such that |∂αχ(x)| 6 Cα for

|α| > 1 and the Jacobian |det(∂xj
χk(x))| > c0 > 0. If p ∈ Sm

1,δ(r), then the well
known formula for the symbol of χ∗(p(x,D)) ∈ Ψm

1,δ (cf. e.g. [37], [24] or [17]) gives

(7.1) χ∗(p(x,D))− (p ◦ dχ∗)(x,D) ∈ Ψm−1+δ(1−r)
1,δ .

Since Sm′

1,δ ⊂ Sm
1,δ(r) if m′ 6 m− rδ and it is easy to check that p ◦ dχ∗ ∈ Sm

1,δ(r)
if p ∈ Sm

1,δ(r), (7.1) gives χ∗P ∈ Ψm
1,δ(r) if P ∈ Ψm

1,δ(r), allowing to define the
corresponding classes of symbols and operators on a manifold as follows

Definition 7.1. (i) Let M be a smooth manifold with a smooth density
dy and denote by Ψ−∞(M) the class of smoothing operators on M , i.e. linear
integral operators with a smooth kernel or in other words, the linear operators
C∞

0 (M) → C∞(M) having a continuous extension E ′(M) → C∞(M) [E ′(M) is
the space of distributions with compact support].

(ii) A linear operator P : C∞
0 (M) → C∞(M) is called pseudolocal if suppϑ1∩

suppϑ2 = ∅ ⇒ ϑ1Pϑ2 ∈ Ψ−∞(M), where ϑj denotes here the operator of multi-
plication by ϑj ∈ C∞

0 (M).
(iii) We define Sm

1,δ(r)(T
∗M) as the class of p ∈ C∞(T ∗M) such that there

is an atlas Ξ and a family {pχ}χ∈Ξ of symbols pχ ∈ Sm
1,δ(r) satisfying pχ ◦dχ∗ = p

on T ∗χ(Uχ). We say that p is elliptic of degree m if it is possible to choose every
pχ elliptic of degree m.

(iv) We define Ψm
1,δ(r)(M) as the class of pseudolocal operators P such that

there is an atlas Ξ and a family {Pχ}χ∈Ξ of operators Pχ ∈ Ψm
1,δ(r) satisfying

Pχ(ϕ ◦χ) = (Pϕ) ◦χ on Uχ for every ϕ ∈ C∞
0 (χ(Uχ)). We say that P is elliptic of

degreem if it is possible to choose every Pχ elliptic of degreem. If P ∈ Ψm
1,δ(r)(M),

then σ(P ) is called a principal symbol of P if σ(P ) ∈ Sm
1,δ(r)(T

∗M) and there is

an atlas Ξ such that Pχ − σ(P )χ(x,D) ∈ Ψm−1+δ(1−r)
1,δ , where σ(P )χ is associated

with the symbol σ(P ) as in (iii) and Pχ with P as above.

Proposition 7.2. (i) The operator P ∈ Ψm
1,δ(r)(M) is elliptic of degree m if

and only if σ(P ) is elliptic of degree m. If P is symmetric, i.e. (Pϕ,ψ) = (ϕ, Pψ)
for ϕ,ψ ∈ C∞

0 (M), then we may choose σ(P ) real.
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(ii) Assume that M is compact, P ∈ Ψm
1,δ(r)(M) is symmetric and elliptic of

degree m > 0. Then P is bounded from below, its extension to the Sobolev space
Hm(M) is self-adjoint and the resolvent is compact.

(iii) Assume moreover P > I, using the same letter P for the associated
self-adjoint operator. Then P θ ∈ Ψmθ

1,δ (r)(M) if θ = j/2n, j, n ∈ Z and assuming
σ(P ) > 1, we may take σ(P θ) = σ(P )θ.

The proof is similar to the proof of Proposition 6.2 (cf. Appendix).

Further on we consider the situation assumed in Theorem 1.2, i.e. A is a local
quadratic form on the compact manifold M with the density dy, expressed in local
coordinates by Aχ for χ ∈ Ξ. If σ(A) ∈ C(T ∗M) is such that σ(A) = am,χ ◦ dχ∗

on T ∗χ(Uχ), then σ(A) is homogeneous of degree m and strictly positive outside
the section of zero cotangent vectors. Let {ϑj}16j6J be a partition of unity of
smooth functions on M satisfying

(7.2)
suppϑj ∩ suppϑk 6= ∅ ⇒ ∃χ(j, k) ∈ Ξ,

suppϑj ∪ suppϑk ⊂ χ(j, k)(Uχ(j,k))

for all 1 6 j, k 6 J and assume moreover that χ(j, k) = χ(k, j). Since A is local,
we have

(7.3) A[ϕ,ψ] =
∑

supp ϑj∩supp ϑk 6=∅

Aχ(j,k)[(ϑjϕ) ◦ χ(j, k), (ϑkψ) ◦ χ(j, k)].

Definition of the smooth operator Ã. Let Ãχ(j,k) be the quadratic
form on C∞

0 (Rd) associated with Aχ(j,k) according to the procedure described in
Section 6 and set

(7.4) Ã[ϕ,ψ] =
∑

supp ϑj∩supp ϑk 6=∅

Ãχ(j,k)[(ϑjϕ) ◦ χ(j, k), (ϑkψ) ◦ χ(j, k)].

Then Ã ∈ Ψm
1,δ(r)(M) and

(7.5) |σ(Ã)− σ(A)| 6 C(1 + σ(A))1−rδ/m,

hence σ(Ã) is elliptic of degree m. Further on we assume A > I, Ã > I, σ(Ã) > 1
and show

Proposition 7.3. If µ < δr/m, then Aµ−Ãµ extends to a bounded operator
on L2.

Proof. Reasoning as in Section 3 it suffices to check that ‖B(λ)‖ 6 C(1+λ)−θ

with θ < δr and that (3.9) holds with the norms of Hs
s replaced by the norms

Hs(M). Due to (7.3), (7.4), the last statement follows from the corresponding
estimate for Aχ(j,k) − Ãχ(j,k) proved in Section 6.
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As in Section 6, the spectral projection E
Ã
(λ) ∈ Ψ−∞(M) has a smooth

kernel e
Ã
( · , · , λ) and we have

Theorem 7.4. If Ã ∈ Ψm
1,δ(r)(M) is elliptic, self-adjoint and µ < (1− δ)/m

6 (δr)/m, then

(7.6)
e
Ã
(y, y, λ) = e

σ(Ã)
(y, λ) + O(e

σ(Ã)
(y, λ+ Cλ1−µ)

− e
σ(Ã)

(y, λ− Cλ1−µ)) + O(1),

holds uniformly with respect to y ∈M , where

(7.6′) e
σ(Ã)

(χ(x), λ) = (2π)−d

∫
σ(Ã)((dχ∗)−1(x,ξ))<λ

dξ for x ∈ Uχ.

Due to N
Ã
(λ) = TrE

Ã
(λ) =

∫
M

e
Ã
(y, y, λ) dy, Theorem 7.4 implies

N
Ã
(λ) = N

σ(Ã)
(λ) + O(N

σ(Ã)
(λ+ Cλ1−µ)−N

σ(Ã)
(λ− Cλ1−µ)) + O(1)

with
N

σ(Ã)
(λ) =

∫
M

e
σ(Ã)

(y, λ) dy,

and as in Section 2, Proposition 7.3 and (7.5) allow to replace N
Ã
(λ) and N

σ(Ã)
(λ)

by NA(λ) and Nσ(A)(λ), which gives Theorem 1.2 because

Nσ(A)(λ) = Nσ(A)(1)λd/m,

Nσ(A)(λ+ Cλ1−µ)−Nσ(A)(λ− Cλ1−µ) = O(λ−µ+d/m)

with µ < r/(r + 1) if we take δ = 1/(r + 1). As in Section 5, due to Proposition
7.2, it suffices to prove that (7.6) holds with µ = 1 and with Ã, σ(Ã) replaced by P ,
σ(P ), where P ∈ Ψm′

1,δ(r)(M) is self-adjoint and elliptic of degree m′ < 1− δ 6 δr.
Let Ξ be an atlas and {Pχ}χ∈Ξ the family of associated operators Pχ ∈ Ψm′

1,δ(r).
We fix χ ∈ Ξ defined on Uχ ⊂ Rd and we are going to check that for any compact
set Cχ ⊂ Uχ, it is possible to find constants Ck satisfying

(7.7) |Dk
t (u(t, χ(x))− uχ(t, x))| 6 (2 + |t|)Ck for x ∈ Cχ,

where

u(t, y) =
∫

e−itλ deP (y, y, λ), uχ(t, x) =
∫

e−itλ dePχ
(x, x, λ).
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If (7.7) holds, then it still holds with uχ(t, x) replaced by the approximation
uχ,N (t, x) constructed as in Section 6 (where P is replaced by Pχ), hence one
may follow the same Tauberian reasoning as before with u(t, χ(x)) instead of
uχ(t, x), obtaining the same asymptotic formula for eP (χ(x), χ(x), λ) as obtained
for ePχ

(x, x, λ).
Thus, to complete the proof of Theorem 7.4, it remains to prove (7.7). Let

U ′χ ⊂ Rd be an open set containing Cχ, such that the closure of U ′χ is a compact
subset of Uχ and let ϑ ∈ C∞

0 (Uχ) be such that ϑ = 1 on a neighbourhood of the
closure of U ′χ. Then we have

Lemma 7.5. For ϕ ∈ C∞
0 (U ′χ) denote ϕt = e−itPχϕ and ϕ̃t = ϑϕt. Then

for every k, n ∈ N,

(7.8) ‖Dk
t (ϕt − ϕ̃t)‖Hn 6 (2 + |t|)Ck,n‖ϕ‖H−n .

Proof. It suffices to show that for every ϑ1 ∈ C∞
0 (Uχ) such that ϑ = 1 on

suppϑ1 and ϑ1 = 1 on a neighbourhood of the closure of U ′χ, we have

(7.9) ‖(1− ϑ1)ϕt‖Hs−n 6 (2 + |t|)C̄s,n‖ϕ‖H−n

for every n ∈ N and s > 0. Indeed, (1 − ϑ)P k
χϑ1 ∈ Ψ−∞ and (−Dt)k(ϕt − ϕ̃t) =

(1−ϑ)P k
χϑ1ϕt+(1−ϑ)P k

χ (1−ϑ1)ϕt, hence (7.9) implies (7.8). However (7.9) holds
for s = 0, beacause e−itPχ is uniformly bounded H−n → H−n for every n ∈ N. To
prove (7.9) for a given s > 0 we may assume that (7.9) holds with s+m′−1 instead
of s for every ϑ2 ∈ C∞

0 (Uχ) such that ϑ2 = 1 on a neighbourhood of the closure of
U ′χ and ϑ1 = 1 on suppϑ2. Now to obtain (7.9) we estimate the Hs−n-norm of

(1− ϑ1)ϕt = e−itPχ(1− ϑ1)ϕt + it

1∫
0

dτe−itτPχ [1− ϑ1, Pχ]ϕt(1−τ),

using (1− ϑ1)ϕ = 0 and [1− ϑ1, Pχ] ∈ Ψm′−1
1,δ with [1− ϑ1, Pχ]ϑ2 ∈ Ψ−∞ which

guarantee

‖[1− ϑ1, Pχ]ϕt(1−τ)‖Hs−n 6 ‖[1− ϑ1, Pχ](1− ϑ2)ϕt(1−τ)‖Hs−n

+ ‖[1− ϑ1, Pχ]ϑ2ϕt(1−τ)‖Hs−n

6 C‖(1− ϑ2)ϕt(1−τ)‖Hs+m′−1−n + C‖ϕ‖H−n

6 C(2 + |t|)C̄s+m′−1,n‖ϕ‖H−n + C‖ϕ‖H−n .

Let ϕ, ϕt, ϕ̃t be as in Lemma 7.5 and denote ψ = ϕ ◦ χ−1, ψt = e−itPψ,
ψ̃t = ϕ̃t ◦ χ−1. Then for every k, n ∈ N,

(7.10) ‖Dk
t (ψt − ψ̃t)‖Hn(M) 6 (2 + |t|)C̃k,n‖ϕ‖H−n .
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Now (7.10) follows from (7.8) and (Dt + Pχ)ϕ̃t = (Dt + Pχ)(ϕ̃t − ϕt) in

ψ̃t − ψt = i

t∫
0

dτ e−i(t−τ)P (Dτ + P )ψ̃t,

because (Dτ + P )ψ̃t = ((Dτ + Pχ)ϕ̃τ ) ◦ χ−1 holds on χ(Uχ). Finally (7.7) follows
from (7.10) and (7.8), because using a sequence of functions ϕx,ε ∈ C∞

0 (U ′χ)
converging in H−d/2−1 to δx (the delta of Dirac in x) uniformly with respect
to x ∈ Cχ when ε → 0, we get the convergence of e−itPχϕx,ε to uχ(t, x) and
e−itP (ϕx,ε ◦ χ−1) to u(t, χ(x)) when ε→ 0.

8. COMMENTS

To begin this discussion we would like to cite the review [3] presenting the historical
development of the theory (with over 300 references), the books [37], [25], and,
concerning the connections with semiclassical approximations, cf. [20], [21], [36].

Concerning the formula (1.5) with the optimal value µ = 2/m, we refer to the
developments of Fourier integral operators in the analysis of u(t) [given by (1.10)]
for the operators with polynomial coefficients in [11], quasi-homogeneous symbols
in [13], [12] and more general situations considered in [18], [8], [38], [39], [30].

We note that the paper of Weyl [43] was based on the Laplace transform and
many papers used Tauberian theorems associated with Laplace-Fourier transform
(cf. e.g. [4], [5], [6]), but we should mention also the Stieltjes transform (used
mainly to get results for boundary value problems cited below), the method of
complex powers of Seeley (cf. [35], [37]) and the method of approximate spectral
projectors of Tulovski-Shubin (cf. [37], [16], [25]). The estimates for operators
in Rd given in [35], [37] give essentially (1.6) with µ < 1/m (similarly as our
Theorem 1.1 with r = 1), while the development of [16] allows to get (1.5) with
µ < 4/(3m).

However, all these results concern only differential operators with smooth
coefficients (or pseudodifferential operators with smooth symbols) and except
[39], [18], [20], [21], [30], the considered symbols satisfy estimates of the form
|∂αp| 6 Cα|p|1−|α|/m, i.e. every derivative in x decreases the order of the symbol
in all directions of Rd × Rd, which is not the case of the operator considered in
Theorem 1.1 even if the coefficients aα,β are symbols of degree m− |α + β|. In a
subsequent paper we shall develop our approach to obtain better values of µ un-
der stronger hypotheses on the regularity of coefficients and under the additional
“microhyperbolic hypothesis” which may be expressed e.g. by (1.6). A similar
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“microhyperbolic hypothesis” is considered in [18], [20], [21], [38], [39] and [8],
[30], where the considered condition is described in a more general form, being
satisfied e.g. by quasi-homogeneous symbols. Concerning the operators with ir-
regular coefficients on Rd we refer to [4], [5], [6] (and contained references), [9],
[10] (where new interesting results have been recently obtained by developing the
bracketing idea of [1]) and [7] (where new results are compared with historical ones
for Schrödinger operators with irregular potentials).

The remainder estimates in the case of a compact manifold are similar as for
boundary value problems, cf. [19], [28], [29] and concerning the historical progress
in the theory we refer to [1], [26], [34], [27], [41], [42].

We note that the approximation of e−itP from Section 4 uses a representation
with pseudodifferential operators conjugate with respect to the standard one (cf.
e.g. [24], Chapter 7, Section 4). The reason for this will appear in [46].

We note that the definition of classes of symbols Sm
1,δ(r) and the proof of

Proposition 6.5 follow [22] (cf. also [23], [40], concerning the theory of Fourier
integral operators and the propagation of singularities for r = 2).

Finally, let us mention that the analysis presented in this paper can be
applied also in the case of degenerate elliptic operators and other situations of
“hypoelliptic type” (cf. [44], [45]). For instance the proof of the estimate of the
spectral function given in Theorem 6.7 holds for any pseudodifferential operator
from Hörmander’s class of type ρ, δ if its degree is less than (ρ − δ)/2. Since the
powers of hypoelliptic operators of type ρ, δ are still of type ρ, δ, we get the re-
mainder estimate with µ < (ρ− δ)/(2m) for an operator of degree m, similarly as
other methods (cf. [31], [2], [32], [37] etc.) where the “microhyperbolic hypothesis”
is not used.

APPENDIX

Proof of Proposition 2.2. Let P ∈ Ψm
g [r] be globally elliptic of degreem > 0.

Lemma A.1. There exists P−1 ∈ Ψ−m
g [r] such that PP−1 − I ∈ Ψ−∞

gl .

Proof. Let p ∈ Sm
g [r] be a symbol of P satisfying |p| > 1. Standard calcu-

lations using the ellipticity hypothesis give 1/p ∈ S−m
g and ∂x(1/p) = −∂xp/p

2 ∈
S−m−r

g ⇒ q0 = 1/p ∈ S−m
g [r]. Hence R0 = I − p(x,D)q0(x,D) ∈ Ψ−1−r

g and

I − P
∑

06j6N

q0(x,D)Rj
0 = RN+1

0 ∈ Ψ−(N+1)(1+r)
g . It remains to take P−1 =

p−1(x,D) with p−1
∼=
∑
j>0

qj , where qj ∈ S
−m−(1+r)j
g ∈ S−m

g [r] for j > 1 (cf.

(2.9)) are such that q0(x,D)Rj
0 − qj(x,D) ∈ Ψ−∞

gl .
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Corollary. If P > I, then P−1 − P−1 ∈ Ψ−∞
gl , hence P−1 ∈ Ψ−m

g [r] and
for every k ∈ N,

(A.1) C−1
k ‖ϕ‖Hkm

km
6 ‖P kϕ‖ 6 Ck‖ϕ‖Hkm

km
.

Proof. The second inequality (A.1) follows from P k ∈ Ψkm
g [r] and the first

one from writing ϕ = P ∗
−kP

kϕ + Rkϕ with P ∗
−k ∈ Ψ−km

g [r], Rk ∈ Ψ−∞
gl , which

gives

‖ϕ‖Hkm
km

6 C ′
k(‖P ∗

−kP
kϕ‖Hkm

km
+ ‖Rkϕ‖Hkm

km
) 6 C ′′

k (‖P kϕ‖+ ‖ϕ‖) 6 Ck‖P kϕ‖.

To complete the proof we note that P k(P−1 − P−1) = P k−1(PP−1 − I) ∈ Ψ−∞
gl

implies that for every k ∈ N, s ∈ R,

‖(P−1 − P−1)ϕ‖Hkm
km

6 Ck‖P k(P−1 − P−1)ϕ‖ 6 Ck,s‖ϕ‖Hs
s
.

Lemma A.2. Assume moreover that P is symmetric. Then there exists
P1/2 ∈ Ψm/2

g [r] globally elliptic of degree m/2, symmetric and satisfying P−P 2
1/2 ∈

Ψ−∞
gl .

Proof. Since P is symmetric, there is p0 ∈ Sm/2
g [r] satisfying P − p0(x,D) ∈

Ψm−1−r
g [r], p0 > 1 and standard calculations give p1/2

0 ∈ S
m/2
g . But ∂xp

1/2
0 =

∂xp/(2p
1/2
0 ) ∈ Sm/2−r

g implies p1/2
0 ∈ Sm/2

g [r] and p1/2 ∗
0 − p

1/2
0 ∈ Sm/2−r−1

g .
Setting q0 = (p1/2

0 +p1/2 ∗
0 )/2 we have q0 ∈ Sm/2

g [r], q0−p1/2
0 ∈ Sm/2−1−r

g and
q20−p0 = (q0−p1/2

0 )(q0 +p
1/2
0 ) ∈ Sm−1−r

g . Since q0(x,D)2− (q20)(x,D) ∈ Ψm−1−r
g ,

we have R0 = P − q0(x,D)2 ∈ Ψm−1−r
g .

We shall check that for j > 1 there is qj ∈ S
m/2−j−r
g ⊂ S

m/2
g [r] such that

q∗j − qj ∈ S(R2d) and

(A.2.n) Rn = P − (q0 + · · ·+ qn)(x,D)2 ∈ Ψm−n−1−r
g .

Let us assume that (A.2.n) holds and rn ∈ Sm−n−1−r
g is such that Rn −

rn(x,D) ∈ Ψ−∞
gl . But q0 + · · · + qn is globally elliptic and modifying qn with a

function S(R2d) we may assume q0+· · ·+qn > 1, hence q̃n+1 = 2rn/(q0+· · ·+qn) ∈
S

m/2−n−1−r
g . But

q∗j − qj ∈ S(R2d) ⇒ Im qj ∈ Sm/2−j−1−r
g ⇒ Im (q0 + · · ·+ qn)−1 ∈ S−m/2−1−r

g

and

r∗n − rn ∈ S(R2d) ⇒ Im rn ∈ Sm−n−2−r
g

⇒ Im q̃n+1 ∈ Sm/2−n−2−r
g ⇒ q̃∗n+1 − q̃n+1 ∈ Sm/2−n−2−r

g .
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Hence setting qn+1 = (q̃∗n+1 + q̃n+1)/2, we have

rn − 2qn+1(q0 + · · ·+ qn) ∈ Sm−n−2−r
g

and
P − (q0 + · · ·+ qn+1)(x,D)2

= Rn + (q0 + · · ·+ qn)(x,D)2 − (q0 + · · ·+ qn+1)(x,D)2

= Rn − 2qn+1(q0 + · · ·+ qn)(x,D) + R̃n+1 ∈ Ψm−n−2−r
g

with R̃n+1 ∈ Ψm−n−2−r
g , i.e. (A.2.n + 1) holds. Taking p1/2

∼=
∑
j>0

qj we have

p1/2 ∈ S
m/2
g [r] (cf. (2.9)), p∗1/2 − p1/2 ∈ S(R2d) and there exists P1/2 symmetric,

satisfying P1/2 − p1/2(x,D) ∈ Ψ−∞
gl .

Corollary. (i) Let P be as in Lemma A.2. Then there exists R ∈ Ψ−∞
gl

such that P +R > 0.
(ii) If P > I, then P 1/2 − P1/2 ∈ Ψ−∞

gl , hence P 1/2 ∈ Ψm/2
g [r].

Proof. (i) It suffices to use Lemma A.2 noting that P 2
1/2 > 0.

(b) Since P1/2 − I is globally elliptic of degree m/2 > 0, the assertion (a)
holds also for P1/2 − I instead of P , i.e. there is a self-adjoint R ∈ Ψ−∞

gl such that
P1/2 + R > I. Setting P ′ = (P1/2 + R)2 we have P ′ > I and P ′ − P 2

1/2 ∈ Ψ−∞
gl ,

hence P ′ − P ∈ Ψ−∞
gl and P ′N − PN ∈ Ψ−∞

gl for every N ∈ N. Consider now

f ∈ C(R) such that the Fourier transform f̂ and λf̂(λ) belong to L1(R), and let
us check that f(P ′)− f(P ) ∈ Ψ−∞

gl . Indeed,

f(P ′)ϕ− f(P )ϕ =
∫

dλ
2π
f̂(λ)(eiλP ′

− eiλP )ϕ =
∫

dλ
2π
f̂(λ)iλ

1∫
0

dτ Z(τ, λ)ϕ

where Z(τ, λ) = eiλτP ′
(P ′ − P )eiλ(1−τ)P and using (A.1) with P replaced by P ′

and P + C̃I with C̃ large enough, we have the estimate

‖Z(τ, λ)‖B(H−km
−km

,Hkm
km

) 6 Ck‖P ′kZ(τ, λ)(P + C̃)k‖

= Ck‖P ′k(P ′ − P )(P + C̃)k‖ 6 C ′
k.

To complete the proof we take f ∈ C∞(R) such that f(λ) = 0 for λ 6 1/2
and f(λ) = λ1/2−N for λ > 1, where N ∈ N is chosen large enough. Then
P 1/2+R−P 1/2 = P ′Nf(P ′)−PNf(P ) = (P ′N−PN )f(P ′)−PN (f(P ′)−f(P )) ∈
Ψ−∞

gl .
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Proof of Proposition 6.2. Recall that

p(x,D) ∈ Ψ−∞ ⇔ p ∈ S−∞1,δ =
⋂

m∈R
Sm

1,δ

and

(A.3) p ∈ Sm
1,δ(r), q ∈ Sm′

1,δ(r) ⇒

{
pq ∈ Sm+m′

1,δ (r),

p � q − pq ∈ Sm+m′−1+δ(1−r)
1,δ ,

i.e.
p(x,D)q(x,D) ∈ Ψm+m′

1,δ (r)

and
p(x,D)q(x,D)− (pq)(x,D) ∈ Ψm+m′−1+δ(1−r)

1,δ

holds for r = 0 and using m′ 6 m − rδ ⇒ Sm′

1,δ ⊂ Sm
1,δ(r) we check easily that

all the properties (A.3) hold also if 0 6 r 6 1. If p ∈ Sm
1,δ(r) is real, then

p∗ − p ∈ Sm−1+δ(1−r)
1,δ . If P − p(x,D) ∈ Ψ−∞ with P ∈ Ψm

1,δ(r) being symmetric,

then Im p ∈ S
m−1+δ(1−r)
1,δ and when P is in addition elliptic of degree m > 0,

then Re p is elliptic and we can always choose p such that Re p ≥ 1. Following
the proof of Lemma A.1 with Sm

g [r], Ψm
g [r], Ψ−∞

gl , S(R2d) replaced by Sm
1,δ(r),

Ψm
1,δ(r), Ψ−∞, S−∞1,δ we have q0 = 1/p ∈ S−m

1,δ (r), R0 ∈ Ψ−m−1+δ(1−r)
1,δ and qj ∈

S
−m−j(1−δ(1−r))
1,δ ⊂ S−m

1,δ (r). Changing similarly the proof of Lemma A.2 we have

qj ∈ Sm/2−j(1−δ)−δr
1,δ ⊂ S

m/2
1,δ (r) and Rn ∈ Ψm−(n+1)(1−δ)−δr

1,δ .

Proof of Proposition 7.2. It suffices to adapt the proof of Proposition 6.2 in
the standard way, i.e. instead of p, qj defined on Rd

x × Rd
ξ one uses σ(P ) and qj

defined on T ∗M , replacing qj(x,D) by a pseudodifferential operator Qj on M such
that qj = σ(Qj).
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d’été, Nantes, 1991, Astérisque, 207(1992), 7–33.

21. V. Ivrii, Semiclassical microlocal analysis and precise spectral asymptotics, preprints,
no. 964, 969, 971, 974, 980, 1018, 1031, 1037, Ecole Polytechnique, 1991–1992,
Palaiseau, France.

22. H. Kumano-Go, Pseudodifferential operators, MIT 1981.

23. H. Kumano-Go, M. Nagase, Pseudo-differential operators with non-regular sym-
bols and applications, Funkcial. Ekvac. 21(1978), 151–192.

24. H. Kumano-Go, T. Tanigushi, Y. Tozaki, Multi-products of phase functions for
Fourier integral operators with an application, Comm. Partial Differential
Equations 3(1979), 349–360.

25. S.Z. Levendorskii, Asymptotic Distribution of Eigenvalues of Differential Opera-
tors, Math. Appl., Kluwer Acad. Publ., Dordrecht – Boston – London 1990.

26. K. Maruo, Asymptotic distribution of eigenvalues of non-symmetric operators as-
sociated with strongly elliptic sesquilinear forms, Osaka J. Math. 9(1972),
547–560.



Asymptotic distribution of eigenvalues for some elliptic operators 281
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