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Abstract. H. Kamowitz claimed that the spectra of certain composition
operators on Hardy spaces, induced by analytic selfmappings ϕ of the open
unit disk, which have Denjoy-Wolff point of modulus one with angular deriva-
tive less than one, are discs. C.C. Cowen discovered a gap in the proof and
gave a new suggestion, applying different methods for different areas of points
asserted to lie in the spectrum. In one of these he uses a continuity assertion
of his ‘model of iteration’, which seems not to be proved completly. This
paper fills the gap in Kamowitz’s proof precisely in this case and gives little
generalizations.
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1. INTRODUCTION

Let D denote the open unit disk in the complex plane C and, for 1 6 p < ∞, let
Hp denote the usual Hardy spaces (cf. [5]):

Hp =

{
f : D → C analytic, ‖f‖p := sup

r∈(0,1)

{[
1
2π

2π∫
0

|f(reiθ)|p dθ

] 1
p
}
<∞

}
.

For an analytic selfmapping ϕ of D, we consider the composition operator

Cϕ : Hp → Hp, f 7→ f ◦ ϕ.
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This operator has been studied intensively during the last three decades; for a
survey compare [3], [9] and [4]. In particular, it is a basic fact that Cϕ is well-
defined and bounded for all analytic selfmappings ϕ (see e.g. [4], Corollary 3.7).
Suppose that ϕ is not an elliptic automorphism. Then σ(Cϕ), the spectrum of Cϕ,
depends essentially on the position of the Denjoy-Wolff point a of ϕ, that is the
uniquely determined limit point of all iteration sequences (zn)∞n=0, zn+1 = ϕ(zn)
(cf. [3], p. 137, and, for the definition of the Denjoy-Wolff point, [4], Theorem 2.51
and Definition 2.52).

If ϕ is analytic in a neighborhood of D and not a Möbius transformation,
|a| = 1 and ϕ′(a) < 1, H. Kamowitz attempted to show

σ(Cϕ) =
{
λ ∈ C : |λ| 6 (ϕ′(a))−

1
p

}
([7], Theorem 3.1). There is a gap in the proof, which C.C. Cowen mentioned
in [2], p. 79: It has to be shown that for g(z) = (z − a)αh(z) with a certain
complex α and bounded analytic function h and for certain complex λ, the sum
∞∑

k=0

g(ϕk(z))λ−k converges in Hp, where ϕk denotes the k-th iterate of ϕ (ϕ0 := id,

the identity map, and ϕk+1 := ϕk ◦ ϕ).

C. C. Cowen did not fill this gap but suggested a different proof. He restricted
himself to p = 2 and, in the case that ϕ is an inner function, extensively used the
Hilbert space structure of H2 ([2], Theorem 5.1; here and below cf. [4], too) so that
an extension to Hp is not obvious. If ϕ is not an inner function, he used methods
which can be transferred to Hp, 1 < p < ∞ (but not to p = 1): For a certain
radius r and all s ∈ (0, r) he shows that σ(Cϕ)∩{λ : |λ| = s} 6= ∅, applying special
iteration sequences ([2], Corollary 3.6). By using the so-called model of iteration,
that is the fact that there is a nonconstant analytic selfmapping σ of D and a
Möbius transformation ψ such that ψ ◦ σ = σ ◦ ϕ (this is a deep result developed
in [1]), he finds that the spectrum is invariant under rotations ([2], Theorem 4.3),
hence {λ ∈ C : |λ| < r} ⊆ σ(Cϕ); for a generalization to Hp, 1 < p < ∞, see [6],
Korollar 6.2.2. In order to show that {λ ∈ C : r < |λ| < (ϕ′(a))−

1
2 } ⊆ σ(Cϕ) ([2],

Theorem 4.6) he uses the assertion σ(z) → 1 as z → a in his model of iteration,
which is mentioned in the remark in [1], p. 80. Unfortunately we do not see how
this follows from the construction. (It is obvious that σ(zn) → 1 for all iteration
sequences, but how does continuity in a follow?) Precisely in this case (considering
non-inner functions and λ, r < |λ| < (ϕ′(a))−

1
p ) we will fill the gap in Kamowitz’s

proof and hence obtain a complete proof of Theorem 1.1.
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Theorem 1.1. Let 1 < p <∞ and ϕ : D → D be analytic in a neighborhood
of D and not being an inner function. Suppose that a ∈ ∂D is the Denjoy-Wolff
point of ϕ and ϕ′(a) < 1. Then the spectrum of Cϕ : Hp → Hp is given by

σ(Cϕ) = {λ : |λ| 6 (ϕ′(a))−
1
p }.

In the next section we develop the crucial estimates to prove the convergence
of the above-mentioned sum in a simplified case. In the third section we give the
details to fill the gap. We will require weaker assumptions than in the application
above, hence Theorem 3.1 below is interesting in itself (e.g., p = 1 is allowed and
ϕ need not to be analytic in a neighborhood of D.).

2. THE CRUCIAL CONVERGENCE THEOREM

Let H∞(D) denote the space of bounded analytic functions on D and, for h ∈
H∞(D), ‖h‖∞ := sup{|h(z)| : z ∈ D}.

Theorem 2.1. Let ϕ : D → D be analytic with Denjoy-Wolff point a ∈ ∂D
and 1 6 p < ∞. Suppose that ϕ and ϕ′ are continuously continuable on D (the
continuation is denoted by ϕ or ϕ′, resp.) and d := ϕ′(a) < 1. Suppose S := {b ∈
∂D : |ϕ(b)| = 1} is finite and S̃ := {ϕ(b) : b ∈ S} consists only of fixed points of ϕ.

If S̃ = {a}, let r := 0, otherwise r := max{(ϕ′(b̃))−1 : b̃ ∈ S̃, b̃ 6= a}.
Suppose − 1

p < α < 1
p

log r
log d (α ∈ (− 1

p ,∞) in the case r = 0), h ∈ H∞(D), and
g(z) := (z − a)αh(z) using an analytic branch of (z − a)α. Then for λ ∈ C,
|λ| > d α, the sum

∞∑
k=0

λ−kg ◦ ϕk

converges in Hp.

Remark 2.2. (i) Since ϕ(a) = a we have a ∈ S and a ∈ S̃.
(ii) The Julia-Carathéodory Theorem (see e.g. [9], p. 57) asserts that ϕ′(b̃)

is real and positive for all b̃ ∈ S̃, and the Grand Iteration Theorem ([9], p. 78)
insures ϕ′(b̃) > 1 for b̃ ∈ S̃, b̃ 6= a, hence r < 1.

(iii) In our modification of H. Kamowitz’s proof we may restrict ourselves to
real α. Recall that (z − a)α ∈ Hp for α > − 1

p , as can be seen by an elementary
calculation similar to that in [5], Lemma, p. 65. In [7], Lemma 1.3 and Lemma 1.4,
it is shown that the assumptions on S and S̃ are fulfilled at least for an iterate of a
selfmapping that is analytic in a neighborhood of D and is not an inner function.

(iv) There is a possibility to weaken the assumption, namely to allow ϕ′(b) =
∞ in some sense. We use the continuity of ϕ′ in b ∈ S, ϕ(b) 6= a to deduce the
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inequality (2.6) below and its consequences. It is easy to see that one can obtain

similar estimates in some cases where ϕ′(b) = ∞, e.g., for ϕ(z) = 2
√

z+1
2 − 1

(
√

1 := 1), where S = S̃ = {−1, 1}, ϕ′(−1) = ∞ and ϕ′(1) = 1
2 (hence 1 is the

Denjoy-Wolff point); then the assertion of Theorem 2.1. holds, using 1
∞ = 0, hence

r = 0 in the example. The details of this case are left to the reader.

Proof of Theorem 2.1. The proof is divided into three parts. First we choose
a constant δ such that we can control the behavior of ϕ in Bδ(b) := {z ∈ D :
|z − b| < δ}, b ∈ S, and we deduce some properties for the iterates ϕk of ϕ. In
the second and third part we examine the behavior of ϕk and the consequences
for the growth of |g ◦ϕk| more accurately in the cases α > 0, |λ| 6 1 (I) and α < 0
(II), which leads to norm estimates in each case. After that we are done, because
the other cases are clear: For α = 0 the assertion is true because then |λ| > 1 and
g is bounded in D, hence ‖g ◦ ϕk‖p 6 ‖g‖∞ for all k, similarly in the case α > 0,
|λ| > 1.

We fix a constant ε > 0 so small that

— in case I: d + ε < |λ| 1
α and, unless S̃ = {a}, ϕ′(b̃) − ε > d−αp (in

particular > 1) for all b̃ ∈ S̃, b̃ 6= a; note that due to our assumptions we have
ϕ′(b̃)−

1
p 6 r

1
p < dα for b̃ ∈ S̃, b̃ 6= a; further, since the Julia-Carathéodory

Theorem ([9], p. 57) asserts that the angular derivatives ϕ′(b) are different from
zero, we may assume that ε is so small that |ϕ′(b)| > ε for all b ∈ S;

— in case II: (d− ε)α < |λ| and ε < min{d, 1− d}.

Since ϕ′ is continuous, there is a constant δ0 ∈ (0, 1) such that

(2.1) |ϕ′(z)− ϕ′(b)| < ε for all b ∈ S, z ∈ Bδ0(b).

Moreover, because of the continuity of ϕ and the fact that all b̃ ∈ S̃ are fixpoints
of ϕ and S is finite, it is easy to see that δ0 can be chosen so small that

(2.2) ϕ(Bδ0(b̃)) ∩Bδ0(b) = ∅ for all b̃ ∈ S̃, b ∈ S, b 6= b̃

and Bδ0(b1) ∩Bδ0(b2) = ∅ for all b1, b2 ∈ S, b1 6= b2.
By the very definition of S we obtain that ϕ

(
D \

⋃
b∈S

Bδ0(b)
)

is a closed set

lying in D. Hence there is a constant δ, which we may assume to be smaller than
δ0, satisfying

Bδ(b) ∩ ϕ

(
D \

⋃
b∈S

Bδ0(b)

)
= ∅ for all b ∈ S,

and further that, for all b ∈ S \ S̃, there is a point b̃ ∈ S̃ with ϕ(Bδ(b)) ⊂ Bδ0(b̃).



Spectra of certain composition operators on Hardy spaces 287

Let D := D \
⋃

b∈S

Bδ(b). Then ϕ(D) is a closed set lying in D. Hence ϕk(D)

converges uniformly to the Denjoy-Wolff point a ([9], Grand Iteration Theorem,
p. 78). In particular, there is an integer k0 satisfying ϕk0(D) ⊂ Bδ(a).

Finally we want to introduce integers dependent on z which control the rate
of convergence of ϕk(z) to a: By (2.2), for all z ∈ Bδ0(b̃)∩D, b̃ ∈ S̃, b̃ 6= a, we have
ϕ(z) ∈ Bδ0(b̃) or ϕ(z) ∈ D or both. Since ϕk(z) → a, in particular ϕk(z) /∈ Bδ0(b̃)
for large k, there is an integer k with ϕk(z) ∈ D. We denote the smallest such
integer by k(z) (k(z) > 0). Then ϕk(z) ∈ Bδ(b̃) for all 0 6 k < k(z).

For z ∈ Bδ(b)∩D, b ∈ S\S̃, ϕ(b) 6= a, our construction yields ϕ(z) ∈ Bδ0(b̃)∩
D for b̃ = ϕ(b) ∈ S̃, b̃ 6= a. Hence for this z, we can define k(z) := 1 + k(ϕ(z)),
which is the smallest integer satisfying ϕk(z)(z) ∈ D.

Next we consider the two cases mentioned above in more detail:

Case I. α > 0, |λ| 6 1. We shall estimate |ϕk(z) − a|. The estimates we
find depend on the position of z:

— z ∈ Bδ0(a). Using (2.1), we obtain

(2.3) |ϕ(z)− a| =

∣∣∣∣∣
z∫

a

ϕ′(ξ) dξ

∣∣∣∣∣ 6 |z − a|(d+ ε).

Because of d + ε < |λ| 1
α 6 1 it follows that ϕ(z) ∈ Bδ0(a) and, inductively,

|ϕk(z)− a| 6 |z − a|(d+ ε)k, hence

(2.4) |ϕk(z)− a| 6 δ0(d+ ε)k (z ∈ Bδ0(a), k ∈ {0, 1, . . .}).

— z ∈ D. The definition of k0 in the first part of the proof implies that
ϕk0(z) ∈ Bδ(a), hence the result above insures that, for k > k0, |ϕk(z) − a| 6

(d+ ε)k−k0 |ϕk0(z)− a|. Thus there is a constant c0, independent of z and k, such
that

(2.5) |ϕk(z)− a| 6 c0(d+ ε)k (z ∈ D, k ∈ {0, 1, . . .}).

— z ∈ Bδ0(b̃) ∩ D, b̃ ∈ S̃, b̃ 6= a. Another application of (2.1) yields

(2.6) |ϕ(z)− b̃| =

∣∣∣∣∣(z − b̃)ϕ′(b̃) +

z∫
b̃

(
ϕ′(ξ)− ϕ′(b̃)

)
dξ

∣∣∣∣∣ > |z − b̃|(ϕ′(b̃)− ε).
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As long as ϕk(z) ∈ Bδ0(b̃)∩D we obtain from (2.6): |ϕk(z)− b̃| > |z− b̃|(ϕ′(b̃)−ε)k.
Thus k(z), defined in the first part of the proof, is smaller than the smallest integer
k satisfying |z − b̃|(ϕ′(b̃)− ε)k > δ0 (recall ϕ′(b̃)− ε > d−αp > 1), hence

k(z) 6
log δ0 − log |z − b̃|

log(ϕ′(b̃)− ε)
+ 1 6

log δ0 − log |z − b̃|
log d−αp

+ 1 =: K(z)

(as smaller |z − b̃|, as greater K(z), i.e. as slower the convergence of ϕk(z) to a
could be).

Combining this with (2.5), we obtain, for k > K(z),

(2.7) |ϕk(z)− a| = |ϕk−k(z)(ϕk(z)(z))− a| 6 c0(d+ ε)k−k(z) 6 c0(d+ ε)k−K(z).

– z ∈ Bδ(b)∩D, b ∈ S \ S̃, ϕ(b) 6= a. We can apply (2.7) with ϕ(z) replacing
z because ϕ(z) ∈ Bδ0(ϕ(b)) ∩ D:

|ϕk(z)− a| = |ϕk−1(ϕ(z))− a| 6 c0(d+ ε)k−1−K(ϕ(z)) for k − 1 > K(ϕ(z)).

Similar to (2.6) we have |ϕ(z)− ϕ(b)| > |z − b|(|ϕ′(b)| − ε), and so

1 +K(ϕ(z)) = 1 +
log δ0 − log |ϕ(z)− ϕ(b)|

log d−αp
+ 1

6 2 +
log δ0 − log(|z − b|(|ϕ′(b)| − ε))

log d−αp
=: K(z).

We can summarize the last two cases: For all b ∈ S, ϕ(b) 6= a, there is a
constant cb, such that, for all z ∈ Bδ(b) ∩ D,

(2.8) K(z) = cb −
log |z − b|
log d−αp

and

(2.9) |ϕk(z)− a| 6 c0(d+ ε)k−K(z) (k > K(z)).

Now we are able to estimate ‖g ◦ ϕk‖p
p = sup

s∈(0,1)

1
2π

2π∫
0

|g ◦ ϕk(seiθ)|p dθ for a

large fixed integer k. We fix s ∈ (0, 1) and divide the integral into several parts:

M0 := {θ ∈ [0, 2π) : seiθ ∈ D}
M(b) := {θ ∈ [0, 2π) : seiθ ∈ Bδ(b)} (b ∈ S).

Then M0 ∪
⋃

b∈S

M(b) = [0, 2π).
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From (2.4) and the definition of g we obtain

1
2π

∫
M(a)

|g ◦ ϕk(seiθ)|p dθ 6
1
2π

∫
M(a)

[(
δ0(d+ ε)k

)α ‖h‖∞
]p

dθ

6 δαp
0 ‖h‖p

∞(d+ ε)kαp.

Similarly (2.5) yields

1
2π

∫
M0

|g ◦ ϕk(seiθ)|p dθ 6 cαp
0 ‖h‖p

∞(d+ ε)kαp.

For b ∈ S, b 6= a but ϕ(b) = a, our construction insures ϕ(seiθ) ∈ Bδ0(a) for
all θ ∈M(b). Hence (2.4) asserts, for k > 1,

1
2π

∫
M(b)

|g ◦ ϕk(seiθ)|p dθ 6 δαp
0 ‖h‖p

∞(d+ ε)(k−1)αp.

To compensate the possibly slow convergence of ϕk(z) to a for z near b ∈ S,
ϕ(b) 6= a, we use the fact that the sets where the convergence could be very slow
are very small; more accurate: For b ∈ S, ϕ(b) 6= a, we divide M(b) again:

Ml(b) :=
{
θ ∈ [0, 2π) : δdαpl 6 |seiθ − b| < δdαp(l−1)

}
(l ∈ {1, 2, . . .}).

By (2.8) we have, for θ ∈Ml(b) and z = seiθ,

K(z) 6 cb −
log(δdαpl)
log d−αp

= cb +
log δ

log dαp
+ l.

Hence, using c′b := cb+ log δ
log dαp , it follows from (2.9) that, if k > c′b+l, i.e., l 6 k−c′b,

1
2π

∫
Ml(b)

|g ◦ ϕk(seiθ)|p dθ 6
|Ml(b)|

2π

[(
c0(d+ ε)k−c′

b−l
)α‖h‖∞]p ,

where |Ml(b)| denotes the Lebesgue measure of Ml(b). It is easy to see that
|Ml(b)| 6 2πδdαp(l−1) 6 2πδ(d+ ε)αp(l−1), hence

1
2π

∫
Ml(b)

|g ◦ ϕk(seiθ)|p dθ 6 δcαp
0 ‖h‖p

∞(d+ ε)(k−c′
b−1)αp (l 6 k − cb).

Let kb denote the largest integer smaller than k− c′b, in particular kb > k− c′b − 1.
We only look for large k, hence we may assume k > c′b + 1. For R(b) := {θ ∈
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[0, 2π) : |seiθ − b| < δdαpkb}, we have |R(b)| 6 2πδdαpkb 6 2πδ(d + ε)αp(k−c′
b−1),

hence, using |ϕk(z)− a| 6 2,

1
2π

∫
R(b)

|g ◦ ϕk(seiθ)|p dθ 6 δ2αp‖h‖p
∞ (d+ ε)(k−c′

b−1)αp.

Since M(b) = R(b) ∪
kb⋃

l=1

Ml(b) we obtain

1
2π

∫
M(b)

|g ◦ ϕk(seiθ)|p dθ 6 (2αp + kbc
αp
0 )δ‖h‖p

∞(d+ ε)(k−c′
b−1)αp

6 (2αp + (k − c′b)c
αp
0 )δ‖h‖p

∞(d+ ε)(−c′
b−1)αp(d+ ε)kαp.

Putting all the information together we see that there is a constant C, inde-
pendent of s such that, for all k > 1 + max{c′b : b ∈ S, ϕ(b) 6= a} ∪ {0},

1
2π

2π∫
0

|g ◦ ϕk(seiθ)|p dθ 6 Ck(d+ ε)αpk,

hence

‖λ−kg ◦ ϕk‖p 6 |λ|−k
(
Ck(d+ ε)αpk

) 1
p = C

1
p

(
k

1
pk

(d+ ε)α

|λ|

)k

.

Since (d + ε)α < |λ| and k
1

pk → 1 for k → ∞, there is a constant 0 < q < 1 such

that k
1

pk
(d+ε)α

|λ| < q for all large k. Hence the sum
∞∑

k=0

λ−kg ◦ ϕk converges in Hp.

Case II. α < 0. To estimate 1
2π

2π∫
0

|g ◦ ϕk(seiθ)|p dθ we consider again the

different positions of z = seiθ:
— z ∈ Bδ0(a): Similar to (2.3) and (2.6) we obtain

|z − a|(d+ ε) > |ϕ(z)− a| > |z − a|(d− ε) (z ∈ Bδ0(a)),

in particular ϕ(z) ∈ Bδ0(a), and it follows inductively that

(2.10) |g ◦ ϕk(z)| 6
(
(d− ε)k|z − a|

)α ‖h‖∞ (z ∈ Bδ0(a))

(be always aware of the consequences of α < 0 for the inequalities).
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— z ∈ D: By the very definition of D and since ϕ(D), . . . , ϕk0(D) are
compact sets lying in D, there is a constant δ1 satisfying

(2.11) |ϕm(z)− a| > δ1 for all z ∈ D, 0 6 m 6 k0.

This, together with the definition of k0 in the first part of the proof and (2.10)
yields, for k > k0

(2.12)
|g ◦ ϕk(z)| 6

(
(d− ε)k−k0 |ϕk0(z)− a|

)α ‖h‖∞
< δα

1 ‖h‖∞(d− ε)(k−k0)α (z ∈ D).

— z ∈ Bδ(b), b ∈ S, ϕ(b) 6= a. Let k(z) be the integer defined in the first
part of the proof. If k < k(z) then ϕk(z) ∈ Bδ0(b) for some b ∈ S, b 6= a, hence
|ϕk(z)− a| > δ0; if k(z) 6 k < k(z) + k0 then ϕk(z) belongs to ϕk−k(z)(D) and by
(2.11): |ϕk(z)− a| > δ1. In both cases we have

|g ◦ ϕk(z)| 6 (min{δ0, δ1})α ‖h‖∞ 6 (min{δ0, δ1})α ‖h‖∞(d− ε)kα.

If k > k(z) + k0, using (2.12) we can estimate

|g ◦ ϕk(z)| 6 δ1
α‖h‖∞(d− ε)(k−k(z)−k0)α 6 δ1

α‖h‖∞(d− ε)kα.

— z = seiθ ∈ Bδ(b), b ∈ S, ϕ(b) = a: Then θ ∈M := {θ ∈ [0, 2π) : ϕ(seiθ) ∈
Bδ0(a)} and (2.10) yields

1
2π

∫
M

|g ◦ ϕk(seiθ)|p dθ 6
1
2π

∫
M

(d− ε)(k−1)αp|ϕ(seiθ)− a|αp‖h‖p
∞ dθ

6 (d− ε)−αp‖h‖p
∞‖G‖p

p(d− ε)kαp,

with G(z) = (ϕ(z)− a)α = Cϕ(z 7→ (z − a)α) ∈ Hp.
Thus we can find a constant C, independent of k, satisfying

‖λ−kg ◦ ϕk‖p 6 |λ|−k
(
C(d− ε)αpk

) 1
p = C

1
p

(
(d− ε)α

|λ|

)k

,

and since (d− ε)α < |λ|, the sum
∞∑

k=0

λ−kg ◦ ϕk converges in Hp.
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3. THE DETAILS TO FILL THE GAP

As mentioned in the introduction we cannot fill the gap for all λ Kamowitz’s proof
uses. Let us recall the situation of Theorem 1.1: A selfmapping ϕ of D, analytic in
a neighborhood of D and not being an inner function is given, which has Denjoy-
Wolff point a ∈ ∂D with angular derivative d := ϕ′(a) < 1. Then there is a positive
integer N such that S := {b ∈ ∂D : |ϕN (b)| = 1} is finite and S̃ := {ϕN (b) : b ∈ S}
consists only of fixed points of ϕN ([7], Lemma 1.3 and 1.4). Fix such an integer
N . (In the proof of Corollary 4.8 in [2], and in [4], Exercise 7.5.2, it is claimed
that S consists only of fixed points of ϕ for some N , which one can see to be
false by considering z 7→ z2+1

2 . But after slight modifications Corollary 4.8 will be
proved if the continuity in a of the mapping σ, mentioned in the introduction, is
guaranteed.)

If S̃ 6= {a} let r := max{(ϕ′N (b̃))−1 : b̃ ∈ S̃, b̃ 6= a}. Then σ(CϕN
) intersects

every circle with radius ρ < r
1
p (see [2], Corollary 3.6, for the case p = 2 and [6],

Satz 6.2.1, for the extension to arbitrary 1 < p < ∞). Since CϕN
= (Cϕ)N it

follows from the spectral mapping theorem (see e.g. [8], Theorem 3.4 in Section V)
that σ(Cϕ)intersects every circle with radius ρ < r

1
Np . In our case the spectrum

is invariant under rotations ([2], Theorem 4.3, and [6], Satz 3.3.1, both using the
model of iteration but not the continuity of σ in a), hence {λ ∈ C : |λ| < r

1
Np } ⊆

σ(Cϕ).
It is well-known that σ(Cϕ) ⊆ {λ : |λ| 6 d −

1
p } (cf., for example, [4], The-

orem 3.9). Hence in order to prove Theorem 1.1 it is sufficient to show that
{λ ∈ C : r

1
Np 6 |λ| 6 d−

1
p } ⊆ σ(Cϕ) with r = 0 if S̃ = {a} and r like above

otherwise. We do this under somewhat weaker assumptions.

Theorem 3.1. Let ϕ : D → D be analytic with Denjoy-Wolff point a ∈ ∂D
and 1 6 p < ∞. Suppose that ϕ and ϕ′ are continuously continuable on D (the
continuation is denoted by ϕ or ϕ′, resp.), ϕ′′ is bounded near a and d := ϕ′(a) < 1.
Suppose there is an integer N such that S := {b ∈ ∂D : |ϕN (b)| = 1} is finite
and S̃ := {ϕN (b) : b ∈ S} consists only of fixed points of ϕN . If S̃ = {a} let
r := 0, otherwise r := max{(ϕ′N (b̃))−1 : b̃ ∈ S̃, b̃ 6= a}. Then for the spectrum of
Cϕ : Hp → Hp we have

{λ ∈ C : r
1

Np 6 |λ| 6 d−
1
p } ⊆ σ(Cϕ).

Remark 3.2. As in Theorem 2.1, in some cases we may allow continuity in
the extended sense (ϕ′(b) = ∞ for some b ∈ S) and then obtain the result for a

greater class of selfmappings. E.g., for ϕ(z) = 2
√

z+1
2 −1 (cf. Remark 2.2 (iv)) we
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have r = 0, d = 1
2 , hence {λ ∈ C : |λ| 6

(
1
2

)− 1
p } = σ(Cϕ) (equality holds because

d −
1
p is the spectral radius of ϕ, see [4], Theorem 3.9).

Apart from slight modifications we will follow the proof of Theorem 3.1 in
[7] and hence only sketch the main steps. For some estimates Kamowitz used his
Theorem 2.5, which requires analyticity in a neighborhood of a. Thus we shall
first prove similar assertions under the weaker assumptions.

Lemma 3.3. Let ϕ : D → D be analytic with Denjoy-Wolff point a ∈ ∂D.
Suppose that ϕ and ϕ′ are continuously continuable on D (the continuation is
denoted by ϕ or ϕ′, resp.), ϕ′′ is bounded near a and d := ϕ′(a) < 1. Then
(ϕk(0))∞k=0 is an interpolating sequence and there are constants 0 < c1 < c2 < ∞
such that for all k = 0, 1, . . .

c1 6
dk

ϕk(0)− a
6 c2.

Proof. For the first assertion see [4], Theorem 2.65. To prove the second
assertion let ϕ′′ be bounded by M near a and bk := |ϕk(0) − a|. Then bk

k→∞−→ 0
(hence bkM 6 1−d

2 for large k) and, for large k and ξ between ϕk(0) and a,

|ϕ′(ξ)− d| =

∣∣∣∣∣
ξ∫

a

ϕ′′(η) dη

∣∣∣∣∣ 6 |ξ − a| ·M 6 |ϕk(0)− a| ·M = bkM,

hence for large k, say k > k0,

(3.1)
bk+1 = |(ϕk(0)− a) d+

ϕk(0)∫
a

(ϕ′(ξ)− d) dξ|

6 bk d+ bk · bkM 6 bk d+ bk ·
1− d

2
= bk

1 + d

2
.

Thus, by induction
∞∑

k=k0

bk 6 bk0

∞∑
l=0

(
1+d
2

)l
<∞ and so δ :=

∞∏
k=k0

(
1− M

d bk
)
> 0

(without loss of generality we can assume that M
d bk < 1 for k > k0) and D :=

∞∏
k=k0

(
1 + M

d bk
)
<∞.

Now let ck := bk

dk . Then (3.1) yields

ck+1 6 ck +
M

d
bk ck,

hence, by induction

ck+1 6 ck0 ·
k∏

k=k0

(
1 +

M

d
bk

)
6 ck0 D.
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Similar to (3.1), for k > k0,

bk+1 > |(ϕk(0)− a) d| −

∣∣∣∣∣
ϕk(0)∫
a

(ϕ′(ξ)− d) dξ

∣∣∣∣∣ > bk d− bk · bkM,

which yields ck+1 > ck − M
d bk ck, hence, by induction

ck+1 > ck0 ·
k∏

k=k0

(
1− M

d
bk

)
> ck0 δ.

Thus, for k > k0, we have

dk

|ϕk(0)− a|
=

1
ck

6
1

ck0 δ
and

dk

|ϕk(0)− a|
>

1
ck0 D

and the second assertion follows.

Proof of Theorem 3.1. Since the spectrum is closed we may restrict ourselves
to the interior of the ring asserted to lie in the spectrum. (The interior is nonempty,
since r < 1 — cf. Remark 2.2 (ii) — and d−

1
p > 1.)

Fix λ0 with r
1

Np < |λ0| < d−
1
p and suppose λ0 /∈ σ(Cϕ). Let |λ0| = dα, i.e.,

α = log |λ0|
log d , hence by the restriction for |λ0|:

(3.2)
log d−

1
p

log d
< α <

log r
1

Np

log d
, i.e. − 1

p
< α <

1
p

log r
log dN

(α ∈ (− 1
p ,∞) in the case r = 0).

Let λ(s) = sλ0 for s > 1. Then, for s near 1, the operator λ(s) − Cϕ is
invertible and |λ(s)| > |λ0|. Choose an analytic branch of (z − a)α for z ∈ D and
then define

γk :=
λ0

k

(ϕk(0)− a)α
=
(

dk

ϕk(0)− a

)α

.

(Kamowitz uses all λ near λ0, |λ| > |λ0|. His definition of γk depends on λ, which
should not be. It is sufficient to consider sλ0, which leads to our definition of
γk.) Applying Lemma 3.3 we see that (γk)∞k=0 is bounded and that (ϕk(0))∞k=0

is an interpolating sequence. Hence there is a function h ∈ H∞(D) satisfying
h(ϕk(0)) = γk.

Let g(z) = (z − a)αh(z). To fill the gap in Kamowitz’s proof we have to

show that
∞∑

k=0

λ(s)−k
g ◦ ϕk converges in Hp. Therefore we apply Theorem 2.1 for

ϕ̂ := ϕN . It is easy to see that a is the Denjoy-Wolff point of ϕ̂ and ϕ̂′(a) = dN .
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The definitions of S, S̃ and r above and those given in Theorem 2.1 applied for
ϕ̂ coincide and the condition concerning α is fulfilled (see (3.2)). Since |λ(s)N | >
|λ0|N = (dN )α, Theorem 2.1 asserts that

h0 :=
∞∑

k=0

(λ(s)N )−kg ◦ ϕ̂k =
∞∑

k=0

λ(s)−kN
g ◦ ϕkN

converges in Hp. Thus

hj := λ(s)−j
Cj

ϕh0 =
∞∑

k=0

λ(s)−kN−j
g ◦ ϕkN+j (j = 1, . . . , N − 1)

converges in Hp, too. Considering h0 + · · · + hN−1 we obtain the convergence of
∞∑

k=0

λ(s)−k
g ◦ ϕk in Hp.

Now an easy calculation yields g = [λ(s)−Cϕ](λ(s)−1
∞∑

k=0

λ(s)−k
g◦ϕk), thus

[
(λ(s)− Cϕ)−1 g

]
(0) = λ(s)−1

∞∑
k=0

λ(s)−k
g(ϕk(0))

= λ(s)−1
∞∑

k=0

(sλ0)−k(ϕk(0)− a)α λ0
k

(ϕk(0)− a)α

= λ(s)−1
∞∑

k=0

s−k =
1
sλ0

1
1− s

,

hence [
(λ0 − Cϕ)−1 g

]
(0) = lim

s→1+

[
(λ(s)− Cϕ)−1 g

]
(0) = ∞,

a contradiction.
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