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Abstract. A modified Cauchy integral formula is used to show that each
monogenic function f defined on a sector domain and satisfying ‖f(x)‖ 6
C‖x‖−n+1 can be expressed as f = f1+f2. Here f1 is monogenic on the sector
domain and monogenically extends to upper half space, while f2 monogeni-
cally extends to lower half space. Moreover, ‖fj(x)‖ 6 C‖x‖−n+1 on these
extended domains, for j = 1 or 2. Similar decompositions are obtained over
more general unbounded domains, and for more general types of monogenic
functions.
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INTRODUCTION

A general result describing monogenic decompositions of monogenic functions is
given in [1]. In [8], [9], [10] an elementary decomposition is explicitly provided for
special types of monogenic functions defined over a sector domain in Rn. These
monogenic functions satisfy two basic conditions which enable these functions to
be utilised as convolution operators of Calderon-Zygmund type acting on the Lp

spaces of Lipschitz surfaces in Rn, for 1 < p < ∞. By adding on extra terms
to the Cauchy kernel of Clifford analysis we are able to produce a number of
Cauchy integral formulae for a wide class of monogenic functions defined on many
unbounded domains, including sector domains. Using these integral formulae we
are also able to provide explicit decompositions for these monogenic functions.
The method of obtaining these decompositions is different from the method given
in [8], [9], [10]. The decomposition works well for mongenic functions satisfying
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the first of the two criteria satisfied by the monogenic functions lying on sector

domains, and used in [8], [9], [10].

The intention of this paper is to provide suitable groundwork to the type of

operator theory needed to solve boundary value problems for unbounded domains,

but where modified versions of the Clifford analysis versions of the Plemelj formulae

used in [6], [8], [9] are needed. Some of these applications have already been

developed in [4].

1. PRELIMINARIES

We shall consider the complex Clifford algebra, Cln(C), generated from Rn. So

that if e1, . . . , en is an orthonormal basis for Rn then

1, e1, . . . , en, . . . , ej1 . . . ejr
, . . . , e1 . . . en

is a basis for Cln(C), where 1 6 r 6 n and ej1 < · · · < ejr
. Moreover, the basis

vectors, e1, . . . , en, satisfy the anticommutation relationship

eiej + ejei = −2δi,j ,

where δi,j is the Kroneker delta function.

It may be observed that each non-zero vector x ∈ Rn ⊂ Cln(C) has a multi-

plicative inverse, x−1 = −x‖x‖−2. Up to the sign this inverse corresponds to the

usual Kelvin inverse of a non-zero vector in Rn.

For an element A = a0 + · · ·+ a1···ne1 · · · en ∈ Cln(C) its norm is defined to

be ‖A‖ = (a2
0 + · · ·+ a2

1···n)
1
2 .

Suppose now that U is a domain in Rn. We shall be interested in differ-

entiable functions defined on U and taking their values in the Clifford algebra

Cln(C). In particular we shall be interested in such a function, f , which satis-

fies the equation Df = 0, where D =
n∑

j=1

ej
∂

∂xj
. Such a function is called a left

monogenic function. We are also interested in right monogenic functions. A right

monogenic function satisfies the equation gD = 0. An example of a function which

is both left and right monogenic is G(x) = 1
ωn

x
‖x‖n , where ωn is the surface area

of the unit sphere lying in Rn. Using this function we may easily establish the

following analogue of Cauchy’s integral formula:
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Theorem 1.1. Suppose f : U → Cln(C) is a left monogenic function, and U

is a bounded domain with a Lipschitz continuous boundary. Suppose also that f has
a continuous extension to the boundary of U , and we denote this extension also by
f . Then for each y ∈ U we have that f(y) =

∫
∂U

G(x−y)n(x)f(x) dσ(x),where n(x)

is the outward pointing normal vector to U at x, and σ is the Lebesgue measure
on the surface ∂U .

This theorem was first established in a modified form in 3 dimensions in [2].
The proof follows the same basic lines as the classical case in complex analysis
of one variable. Many basic properties of monogenic functions and the Clifford-
Cauchy integral formula are given in [1], [14] and elsewhere, see for instance the
work of Moisil and Theodorescu ([11]) and Iftimie ([6]). It should also be mentioned
that in [5], [7], Cauchy integral formulae have been introduced for Dirac operators
more closely related to the Helmholtz equation, than the one used here. However,
the ideas presented here may be adapted to fit that context too, though some of
the estimates used will need to be modified.

In [3] the following modification of Theorem 1.1 is established:

Theorem 1.2. Suppose that U is a domain lying in a half space of Rn, and
that f is a bounded left monogenic function defined on U . Suppose also that U has
a Lipschitz continuous boundary and that f continuously extends to the boundary
of U . Then for each y ∈ U we have that

f(y) =
∫

∂U

M(x, y)n(x)f(x) dσ(x),

where M(x, y) = G(x− y)−G(x + y).

In [3] we also show that Theorem 1.2 is also true if we assume that ‖f(x)‖ 6

C‖x‖s for some constant C ∈ R+ and some s ∈ [0, 1).

Adapting arguments worked out in the four dimensional setting in [14], see
for instance [13], we have:

Proposition 1.3. Suppose that f is left monogenic in the variable y = x−1

on the domain U−1, where U−1 is the Kelvin inverse of the domain U . Then the
function G(x)f(x−1) is left monogenic on the domain U .

By combining the remark following Theorem 1.1 with Proposition 1.3, and
noting that x−1 − y−1 = y−1(y − x)x−1, in [3] we deduce:
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Theorem 1.4. Suppose that U is a domain lying in a half space and that 0
lies on the boundary of U . Suppose also that f is a left monogenic function defined
in a neighbourhood of U \ {0}, and that there is a real, positive constant C such
that ‖f(x)‖ 6 C‖x‖−n+1−s on U , where s ∈ [0, 1). Then for each y ∈ U we have
that

f(y) = P.V.

∫
∂U

L(x, y)n(x)f(x) dσ(x),

where L(x, y) = G(x− y) + G(x + y).

2. THE DECOMPOSITION

We begin this section by introducing a Cauchy integral formula for special types
of monogenic functions defined on special types of domains.

Theorem 2.1. Suppose that f : V → Cln(C) is a left monogenic function
which satisfies ‖f(x)‖ < C‖x‖−n+1−s for some C ∈ R+ and s ∈ (0, 1). Suppose
also that the domain U has a piecewise C1 boundary, ∂U , that 0 ∈ ∂U , and that
V is a neighbouhood of cl(U) \ {0}. Then for each y ∈ U we have

(2.1) f(y) = P.V.

∫
∂U

(G(x− y) + G(y))n(x)f(x) dσ(x).

Proof. First we choose r, R ∈ R+ such that r < ‖y‖ < R. Then from
Cauchy’s integral formula and Cauchy’s theorem we have that

f(y) =
∫

∂U(r,R)

(G(x− y) + G(y))n(x)f(x) dσ(x),

where U(r, R) = (U ∩ B(0, R)) \ B(0, r), and B(0, r) = {x ∈ Rn : ‖x‖ < r}. As
(x− y)−1 + y−1 = y−1x(y − x)−1, it may be determined that

‖G(x− y) + G(y)‖ < C1‖x‖
n−2∑
j=0

‖y‖−j−1‖x− y‖−n+1+j ,

for some C1 ∈ R+. Consequently,∫
Sn−1(0,r)∩U

‖(G(x− y) + G(y))n(x)f(x)‖dσ(x) < C(y)rn−1−s
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for some C(y) ∈ R+, provided ‖y‖ > 2‖x‖. So

lim
r→0

∫
Sn−1(0,r)∩U

(G(x− y) + G(y))n(x)f(x) dσ(x) = 0.

Similarly for ‖x‖ > 2‖y‖∫
Sn−1(0,R)∩U

‖(G(x− y) + G(y))n(x)f(x)‖dσ(x) < C2R
−s.

So

lim
R→∞

∫
Sn−1(0,R)∩U

(G(x− y) + G(y))n(x)f(x) dσ(x) = 0.

The result follows.

An interesting case to consider is when the domain, U , is a sector domain.

Such domains were considered in [8], [9], [10] and elsewhere. For 0 < µ < π
2 , we

shall consider the sector domain

Sµ = {x ∈ Rn : |x1| < ‖x2e2 + · · ·+ xnen‖ tanµ}.

This type of sector domains is not as general as the type appearing in [8], [9],

[10]. However, one can simply rotate the sector domains introduced here to obtain

those more general sector domains. The results that we obtain here holds equally

well on those more general sector domains.

In [8], [9], [10] one considers right monogenic functions f : Sµ → Cln(C)

which satisfy ‖f(x)‖ < C‖x‖−n+1 for some constant C ∈ R+. The integral formula

appearing in the previous theorem does not work for such functions. However, one

can replace the kernel G(x − y) + G(y) appearing in Theorem 2.1 by the kernel

G(x− y)−G(x− w), where w ∈ Rn \ cl(U). In this case

‖G(x− y)−G(x− w)‖ < C‖y − w‖
n−1∑
j=1

‖x− y‖j‖x− w‖n−j .

Now using this kernel, and the previous inequality, one may readily adapt argu-

ments appearing in [3] to obtain:
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Theorem 2.2. Suppose that U is a domain in Rn, and that U has a piecewise
smooth, or Lipschitz, boundary and that 0 lies on the boundary of U . Suppose also
that w ∈ Rn \ cl(U). Then for each left monogenic function f : V → Cln(C)
satisfying ‖f(x)‖ < C‖x‖s for some s ∈ [0, 1), where V is a neighbourhood of
cl(U) \ {0}, then

(2.2) f(y) = P.V.

∫
∂U

(G(x− y)−G(x− w))n(x)f(x) dσ(x),

for each y ∈ U .

When s = 0 Theorem 2.2 gives a Cauchy integral formula for a bounded
monogenic function on U . To get a Cauchy integral formula for the type of mono-
genic functions described in [8], [9], [10] we need to use Kelvin inversion. Using
the identity u−1 − v−1 = u−1(v − u)v−1 one may determine that

G(u−1 − v−1) = ω2
nG(u)−1G(v − u)G(v)−1,

see for instance [12]. On placing x = u−1 and y = v−1 and substituting into (2.2)
we have from Proposition 1.3, on noting that n(x)dσ(x) = ω2

nG(u)n(u)G(u)dσ(u)
for x = u−1:

Theorem 2.3. Suppose that g : W → Cln(C) is a left monogenic function
defined on the neighbourhood W of cl(U)−1, the Kelvin inverse of U . Suppose also
that ‖g(v)‖ < C‖v‖−n+1−s for some C ∈ R+, some s ∈ [0, 1) and for each v ∈ W .
Then

g(v) = P.V.

∫
∂U−1

K(u, v)n(u)g(u) dσ(u)

for each v ∈ U−1, where K(u, v) = G(v)G(q)G(u − q) + G(u − v) and q = w−1,
and w ∈ Rn \ cl(U).

On noting that S−1
µ = Sµ for each sector domain, Sµ, it can be seen that

the previous theorem gives a Cauchy integral formula for the type of monogenic
functions used in [8], [9], [10].

Each sector domain, Sµ, is bounded by two cones

C+
µ = {x ∈ Rn : x1 = ‖x2e2 + · · ·+ xnen‖ tanµ}

and
C−µ = {x ∈ Rn : −x1 = ‖x2e2 + · · ·+ xnen‖ tanµ}.



A decomposition theorem in Clifford analysis 303

Also, Sµ = S+
µ ∩ S−µ , where S+

µ = Sµ ∪ Rn,+ and S−µ = Sµ ∪ Rn,−, with Rn,+ =
{x ∈ Rn : x1 > 0}, and Rn,− = {x ∈ Rn : x1 < 0}.

From Theorem 2.3 it follows that if f : Sµ → Cln(C) is a left monogenic
function, and ‖f(x)‖ < C‖x‖−n+1−s for some s ∈ [0, 1) and some C ∈ R+, then
f = f1 + f2, where f1 : S+

µ → Cln(C), and f2 : S−µ → Cln(C) are left monogenic
functions. Moreover,

f1(y) = P.V.

∫
C+

µ

K(x, y)n(x)f(x) dσ(x)

for each y ∈ S+
µ , and

f2(y) = P.V.

∫
C−µ

K(x, y)n(x)f(x) dσ(x)

for each y ∈ S−µ .
The decomposition described in the previous paragraph occurs not only over

sector domains, but over many other types of domains too, including the rotated
paraboloid {x ∈ Rn : |x1| < (x2

2 + · · · + x2
n)}. In fact the type of decomposition

described in the previous paragraph happens over any domain U which satisfies

(i) 0 ∈ U ,
(ii) U = U1 ∩ U2, where U1 ∪ U2 = Rn \ {0} and ∂U = ∂U1 ∩ ∂U2 with

∂U1 ∩ ∂U2 = {0},
(iii) ∂U is Lipschitz continuous,
(iv) the surfaces ∂U1 and ∂U2 have no boundary.

We shall call such a domain a decomposition domain. So we have:

Proposition 2.4. Suppose that f : V → Cln(C) is a left monogenic function
defined in a neighbourhood V of a decomposition domain U . Suppose also that
‖f(x)‖ < C‖x‖−n+1−s for some C ∈ R+ and s ∈ [0, 1). Then f = f1 + f2 where
the left monogenic function fj is defined by

fj(y) = P.V.

∫
∂Uj

K(x, y)n(x)f(x) dσ(x)

for each y ∈ Uj and j = 1, 2.

A general decomposition result for monogenic functions is obtained in [1]
over general domains, and using different techniques. The methods employed here
give explicit computations for a wide class of domains, and monogenic functions.
The results obtained here also improve on Theorem 1.4 as we no longer need to
restrict ourselves to domains lying in a half plane.

Again using Kelvin inversion and Propositions 1.3 and 2.4 we have:



304 John Ryan

Proposition 2.5. Suppose that f : V → Cln(C) is a left monogenic func-
tion, and that V is a neighbourhood of cl(U) \ {0}. Suppose also that ‖f(x)‖ <

C‖x‖s for some C ∈ R+ and s ∈ [0, 1), and U is a decomposition domain. Then
f = f1 + f2, where

fj(y) =
∫

∂Uj

(G(x− y)−G(x− w))n(x)f(x) dσ(x)

for j = 1, 2, y ∈ Uj, and w ∈ Rn \ cl(U).

We also have the following Cauchy integral formula:

Theorem 2.6. Suppose that f : W → Cln(C) is a left monogenic function
on a neighbourhood W of cl(U) \ {0}, and that 0 ∈ ∂U , and ‖f(x)‖ < C‖x‖s for
some C ∈ R+ and s ∈ (−n + 1, 0). Then

f(y) = P.V.

∫
∂U

G(x− y)n(x)f(x) dσ(x).

Proof. First we choose r and R ∈ R+ such that r < ‖y‖ < R. Then from
Cauchy’s integral formula we have that

f(y) =
∫

∂U(r,R)

G(x− y)n(x)f(x) dσ(x),

where U(r, R) is as in the proof of Theorem 2.1.
Now ∥∥∥ ∫

Sn−1(0,R)∩U

G(x− y)n(x)f(x) dσ(x)
∥∥∥ < CRs

for some C ∈ R+, provided that R is sufficently large.
Also, ∥∥∥ ∫

Sn−1(0,r)∩U

G(x− y)n(x)f(x) dσ(x)
∥∥∥ < C(y)rn−1−s

for some C(y) ∈ R+.
Consequently,

f(y) = lim
r→0

lim
R→∞

∫
∂U(r,R)

G(x− y)n(x)f(x) dσ(x).

The result follows.
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One can also deduce that if U is a decomposition domain then f = f1 + f2,
where

fj(y) =
∫

∂Uj

G(x− y)n(x)f(x) dσ(x),

for j = 1, 2.
Using this observation and Propositions 2.4 and 2.5 we have the following

decomposition result:

Theorem 2.7. Suppose that f : W → Cln(C) is a left monogenic function
defined on the neighbourhood, W of cl(U)\{0}, where U is a decomposition domain.
Suppose also that ‖f(x)‖ < C‖x‖s for some C ∈ R+ and s ∈ (−n, 1). Then
f = f1 + f2, where fj is a left monogenic function defined on Uj for j = 1, 2.

The previous result is a special case of a result in [1]. However, the following
result does not automatically follow from that result in [1].

Theorem 2.8. Suppose that Sµ is a sector domain and f : W → Cln(C) is a
left monogenic function defined on the neighbourhood W of cl(Sµ) \ {0}. Suppose
also that ‖f(x)‖ < C‖x‖s for some C ∈ R+ and some s ∈ (−n + 1, 0). Then
‖fj(x)‖ < Cj,ν‖x‖s, where Cj,ν ∈ R+, x ∈ S±ν , with 0 < ν < µ and fj is as in
Theorem 2.7, for j = 1, 2.

Proof. First let us place C±µ = V±,a(y)∪V±,b(y), where V±,a(y) = {x ∈ C±µ :
‖x‖ > N‖y‖} and V±,b(y) = C±µ \ V±,a(y). Then

∥∥∥ ∫
V±,a(y)

G(x− y)n(x)f(x) dσ(x)
∥∥∥ < C

∞∫
N‖y‖

rs−1 dr,

for some C ∈ R+, provided that the integer N is chosen to be large enough.
Consequently, ∥∥∥ ∫

V±,a(y)

G(x− y)n(x)f(x) dσ(x)
∥∥∥ < C1‖y‖s.

Also, elementary inequalities and trigonometry give

∥∥∥ ∫
V±,b(y)

G(x− y)n(x)f(x) dσ(x)
∥∥∥ < C(ν)‖y‖−n+1

N‖y‖∫
0

rn−2+s dr,

for some C(ν) ∈ R+, provided y ∈ S±ν . The result follows.
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The proof of Theorem 2.8 can easily be adapted to establish the existence
of left monogenic functions which satisfy the inequality ‖f(x)‖ < C‖x‖s for some
s ∈ (−n + 1, 0) on any sector domain Sµ or associated domain S±µ . A minor
adaptation of the proof of Theorem 2.8 gives:

Proposition 2.9. Suppose that g : C±µ → Cln(C) is a measurable function
which satisfies the inequality ‖g(x)‖ < C‖x‖s for some C ∈ R+, some s ∈ (−n +
1, 0) and for almost all x ∈ C±µ . Then the left monogenic function

f(y) =
∫

∂S±µ

G(x− y)n(x)g(x) dσ(x)

satisfies ‖f(x)‖ < Cν‖x‖s on S±ν for some Cν ∈ R+, and each ν with 0 < ν < µ.

We now proceed to find analogues for the previous two results for the two
extremal cases, s = 0, and s = −n + 1. We start with s = 0.

Theorem 2.10. Suppose that f : W → Cln(C) is a bounded left mongenic
function defined on a neighbourhood W of cl(Sµ) \ {0}, for some sector domain
Sµ. Then ‖fj(x)‖ < C(ν) for some C(ν) ∈ R+ with 0 < ν < µ, and fj is as in
Theorem 8.

Proof. We shall use the kernel G(x− y)−G(x + e1). Now

(2.3) ‖G(x− y)−G(x + e1)‖ < C‖y − e1‖
n−1∑
j=1

‖x− e1‖−j‖x− y‖−n+j

for some real number C. We shall first consider the case where ‖y‖ > 1. In this
case ‖y + e1‖ < 2‖y‖. It follows from (3) that

‖G(x− y)−G(x− e1)‖ < C(1)‖y‖
n−1∑

1

‖x− e1‖−j‖x− y‖−n+j ,

for some C(1) ∈ R+. As in the proof of Theorem 2.8 we shall place C±µ =
V±,a(y) ∪ V±,b(y). It follows that

∥∥∥ ∫
V±,a(y)

(G(x− y)−G(X + e1))n(x)f(x) dσ(x)
∥∥∥ < C(2)‖y‖

∞∫
N‖y‖

r−2 dr,

for some C(2) ∈ R+. Consequently,∥∥∥ ∫
V±,a(y)

(G(x− y)−G(x + e1))n(x)f(x) dσ(x)
∥∥∥ < C(3),
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for some C(3) ∈ R+.
Now let us consider

∫
V±,b(y)

G(x − y)n(x)f(x) dσ(x). The same elementary

trigonometry and inequalities used in the proof of Theorem 2.8 show that

∥∥∥ ∫
V±,b(y)

G(x− y)n(x)f(x) dσ(x)
∥∥∥ < Cν‖y‖n−1

N‖y‖∫
0

rn−2 dr,

for y ∈ S±ν . So
∫

V±,b(y)

G(x− y)n(x)f(x) dσ(x)‖ < Cν(1) for some Cν(1) ∈ R+.

Let us now consider
∫

V±,b(y)

G(x+e1)n(x)f(x) dσ(x). Now ‖x+e1‖ > | sinµ| ‖x‖.

Elementary trigonometry now reveals that

∥∥∥ ∫
V±,b(y)

G(x− e1)n(x)f(x) dσ(x)
∥∥∥ < C(3)|cosec µ|−n+2‖y‖−1

N‖y‖∫
0

dr,

for some C(3) ∈ R+.
Therefore, ∥∥∥ ∫

V±,b(y)

G(x− e1)n(x)f(x) dσ(x)
∥∥∥ < NC(3).

To consider the cases where ‖y‖ 6 1 we repeat the previous arguments but
in these cases we integrate over V±,a(e1) and V±,b(e1). In these cases we obtain
similar estimates to those already obtained in this proof. This completes the
proof.

The Kelvin inverse of S+
µ is S−µ , while the Kelvin inverse of S−µ is S+

µ . Con-
sequently, on applying Proposition 1.3 to Theorem 2.10 we obtain

Theorem 2.11. Suppose that f : W → Cln(C) is a left monogenic function
and that W is a neighbourhood of cl(Sµ)\{0}, for some sector domain Sµ. Suppose
also that ‖f(x)‖ < C‖x‖−n+1 for some C ∈ R+. Then ‖fj(x)‖ < C(j, ν)‖x‖−n+1

for some C(j, ν) ∈ R+, where fj is as in Theorem 2.7, and 0 < ν < µ.

The proof of Theorem 2.10 and the argument given to establish Theorem 2.11
can be adapted to give the apropriate analogues of Proposition 2.9 for the extreme
cases s = 0 and s = −n + 1.
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