Journal of Operator Theory
Volume 41, Issue 1, Winter 1999 pp. 127-138.
Algebraic reduction for Hardy submodules over polydisk algebrasAuthors: Kunyu Guo
Author institution: Department of Mathematics, Fudan University, Shanghai, 200433, P.R. China
Summary: For a Hardy submodule M of H2(\bbbDn), assume that M∩C or$M∩R$ is dense in M, where C or$R$ is the ring of all polynomials or$R$isaNoetheriansubringof$\Hol(¯\bbbDncontaining\cal C).WedescribethosefinitecodimensionalsubmodulesofMbyconsideringzerovarieties.Thecodimensionformulasrelatedtozerovarieties,andsomealgebraicreductiontheoremsareobtained.TheseresultscanberegardedasgeneralizationsoftheresultofAhern−Clark([2]).Finally,wepointoutthattheresultsinthispaperextendwithessentiallynochangetoanyreproducingHilbertAΩ−moduleH$ which satisfies certain techn ical hypotheses.
Keywords: Hardy submodules, ideals, charactistic space
Contents Full-Text PDF