Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Previous issue ·  Next issue ·  Most recent issue in the archive · All issues in the archive   

Journal of Operator Theory

Volume 41, Issue 1, Winter 1999  pp. 127-138.

Algebraic reduction for Hardy submodules over polydisk algebras

Authors:  Kunyu Guo
Author institution: Department of Mathematics, Fudan University, Shanghai, 200433, P.R. China

Summary:  For a Hardy submodule M of H2(\bbbDn), assume that MC or$MR$ is dense in M, where C or$R$ is the ring of all polynomials or$R$isaNoetheriansubringof$\Hol(¯\bbbDncontaining\cal C).WedescribethosefinitecodimensionalsubmodulesofMbyconsideringzerovarieties.Thecodimensionformulasrelatedtozerovarieties,andsomealgebraicreductiontheoremsareobtained.TheseresultscanberegardedasgeneralizationsoftheresultofAhernClark([2]).Finally,wepointoutthattheresultsinthispaperextendwithessentiallynochangetoanyreproducingHilbertAΩmoduleH$ which satisfies certain techn ical hypotheses.

Keywords:  Hardy submodules, ideals, charactistic space


Contents    Full-Text PDF