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Abstract. We present methods for computing the K-groups of a variety of
C∗-algebras associated to lattices in Heisenberg Lie groups, including twisted
group C∗-algebras and Azumaya algebras over the corresponding nilmani-
folds. A precise formula for the rank of the above K-groups is given, and
it is shown that any twisted group C∗-algebra over such a lattice Γ is KK-
equivalent to an ordinary group C∗-algebra corresponding to a possibly dif-
ferent lattice Γ0. We also give applications of our methods to the calculation
of K-groups for certain twisted transformation group C∗-algebras and certain
continuous trace algebras whose spectra are tori.
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0. INTRODUCTION

In an earlier paper ([24]), an initial study was made of twisted group C∗-algebras
corresponding to generalized discrete Heisenberg groups, that is, groups which
can be expressed as cocompact discrete subgroups of simply connected Heisenberg
Lie groups of dimension 2n + 1, n ∈ Z+. In particular, the second cohomology
group with coefficients in the unit circle T was calculated, multipliers representing
each element of this group were given, and a description was provided for the
primitive ideal spaces of the twisted group C∗-algebras corresponding to specific
multipliers. It was also shown that for such groups Γ of rank 2n+1 with n > 2, any
twisted group C∗-algebra C∗(Γ, σ) is ∗-isomorphic to the C∗-algebra of continuous
sections of a C∗-bundle over the circle group T whose fibers are matrix algebras



292 Soo Teck Lee and Judith A. Packer

over non-commutative tori of rank 2n. That such a decomposition exists leads one

naturally to expect that exact sequences in topology, such as the Gysin sequence,

could possibly play a role in the calculation of the K-groups for twisted discrete

Heisenberg group C∗-algebras, and indeed this turns out to be the case, as has

already been shown for certain untwisted discrete Heisenberg group C∗-algebras

in [2].

It is our intention in this paper to study this problem in the slightly wider

setting of twisted transformation group C∗-algebras C(T)×ρ,σ Zk, of which twisted

discrete Heisenberg group C∗-algebras are a special case. In most of the examples

we will be considering, ρ will be an action on C(T) corresponding to rotation by

torsion elements of T. If ρ : Zk → T is the corresponding group homomorphism,

then the kernel M of ρ is of finite index in Zk and without loss of generality we

can assume that the two-cocycle σ ∈ Z2(Zk, C(T, T)) when restricted to M ×M

takes on its values in [C(T, T)]Z
k

, i.e. those elements of C(T, T) which are left

invariant under the action of Zk. If p : T → T/ρ(Zk) = Z is the quotient map,

then [C(T, T)]Z
k

can be identified with C(Z, T), and the corresponding twisted

transformation group C∗-algebra C(Z) ×id,σM
M can be identified with the sub-

algebra p∗(C(Z)) ×id,σM
M of C(T) ×ρ,σ Zk. Results of M. Rieffel ([37]) show

that there is a free and proper Zk space X such that (X/M, Zk) is equivalent to

(T, Zk, ρ), and (X/Zk,M) is equivalent to the trivial M space (Z,M). We thus

can use the fact, due to A. Kumjian, I. Raeburn, and D. Williams ([23]), that the

equivariant Brauer groups BrZk(X/M) and BrM (X/Zk) are isomorphic, together

with recent work of the second author, Raeburn and Williams on the equivariant

Brauer groups of principal bundles ([36]), to prove the following result:

Theorem 1.3. Let ρ : Zk → T be a homomorphism with finite range and

kernel M , and denote the induced action of Zk on C(T) and C(T, T) by ρ also.

Let σ ∈ Z2(Zk, C(T, T)), and denote the restriction of σ to M × M by σM .

Then, without loss of generality we may assume that σM takes on values in the

trivial M module p∗(C(Z, T)), and the twisted transformation group C∗-algebra

C(T)×ρ,σ Zk is strongly Morita equivalent to its C∗-subalgebra p∗(C(Z))×id,σM
M

∼= C(T)×id,σM
M .

The above theorem applies in particular to twisted discrete Heisenberg group

C∗-algebras and allows us to deduce the following fact:
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Theorem 1.5. Let Γ be a generalized discrete Heisenberg group of rank 2n+
1, and let [σ] ∈ H2(Γ, T). Then there is a subgroup Γ0 of Γ of finite index, and a
multiplier σ0 on Γ0 which is homotopic to the trivial multiplier on Γ0, such that
C∗(Γ, σ) is strongly Morita equivalent to C∗(Γ0, σ0)

Since σ0 is homotopic to the trivial multiplier, by work of the second au-
thor and I. Raeburn ([35]), the calculation of the K-groups of C∗(Γ0, σ0), thus
those of C∗(Γ, σ), reduces to the calculation of the K-groups of the homogeneous
space N/Γ0, where here N represents the 2n + 1 dimensional simply connected
Heisenberg Lie group. Since for such homogeneous spaces the Chern character
ch : K∗(N/Γ0) ⊗Z R → H∗(N/Γ0, R) is an isomorphism, and since by Nomizu’s
Theorem H∗(N/Γ0, R) ∼= H∗(n, R), where n is the Lie algebra of N , we can deduce
that the ranks of all the K-groups involved depend on N alone, not Γ0, and can be
computed from knowledge about the cohomology groups Hk(n, R), 0 6 k 6 2n+1,
which have been recently computed by R. Howe ([18]). We thus are able to deduce
the following result:

Corollary 2.7. Let Γ be a generalized discrete Heisenberg group of rank
2n+1, viewed as a subgroup of the 2n+1 dimensional simply connected Heisenberg
Lie group N , let σ be any multiplier on Γ, and let A(N/Γ, δ([σ])) be the Azumaya
algebra with spectrum N/Γ associated to (Γ, σ) as in [35]. Then

rank [Ki(C∗(Γ, σ))] = rank [Ki(A(N/Γ, δ([σ])))]

= rank [Ki(N/Γ)] =
(

2n + 1
n

)
, i = 0, 1.

This is the analogue for discrete generalized Heisenberg groups of a well-
known work of G. Elliott ([13]), who studied the case Γ = Zn. We mention here
that it has been conjectured that if A is any Azumaya algebra whose spectrum is
a compact polyhedron X, then the K-groups of A have the same rank as the K-
groups of C(X) (see [38], Theorem 6.5 and [35], Remark 2.9); however, a detailed
proof of this conjecture has never been published.

Section 2 of our paper also contains methods for computing the torsion sub-
groups of the K-groups of the homogeneous spaces N/Γ. Since N/Γ can be written
as a principal T-bundle over T2n, this problem reduces to the 6-term Gysin ex-
act sequence in K-theory (c.f. [21]). We calculate the explicit form of certain of
the connecting maps in this sequence, which together with knowledge about the
ring K∗(T2n) should allow one in principle to compute K0(N/Γ) and K1(N/Γ) via
homological algebra. We carry through these computations for arbitrary Γ when
n = 1, 2 and 3, (i.e., for N/Γ of dimension 3, 5, and 7). We note that in the special
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case where Γ is the standard integer lattice in N , the K-groups for N/Γ have been

computed for arbitrary n in [2].

We mention at this point that as far back as 1981, G.G. Kasparov ([22]) and

J. Rosenberg ([39]) had independently proved results implying that for any cocom-

pact discrete subgroup of a solvable simply connected Lie group G, K∗(C∗(Γ)) was

isomorphic, modulo a dimension shift, to K∗(G/Γ). However, explicit computa-

tion of the K-groups involved for specific classes of lattices do not appear to be

common in the literature.

Although the computations carried out in Section 2 seem to deal with C∗-

algebras of a very specialized nature, we show in Sections 1 and 3 that our meth-

ods have applications to the calculations of the K-groups of many more classes of

C∗-algebras. In particular, our results in Section 1 show that any twisted trans-

formation group C∗-algebra of the form C(T)×ρ,σ Zk described in the statement

of Theorem 1.3 is KK-equivalent to either C(Tk+1) or to a C∗- algebra of the form

C∗(Γ) ⊗ C(Tk−2n), where Γ is a discrete Heisenberg group of rank 2n + 1, for

n 6 [k/2]. Also, as already indicated in the statement of Corollary 2.7, the prob-

lem of the calculation of the K-groups of twisted discrete Heisenberg C∗-algebras

C(Γ, σ) is by results of [35] equivalent to the problem of computing the K-groups

for Azumaya algebras with spectrum N/Γ. In addition, in Section 3 of our paper,

we indicate how C∗-algebras associated to discrete Heisenberg groups are KK-

equivalent to certain twisted tori, by which we mean some continuous trace C∗-

algebras whose spectra are tori having non-trivial Dixmier-Douady classes. Thus,

the problem of calculating the K-groups for these twisted tori is also equivalent to

the same problem for C∗-algebras associated to discrete Heisenberg groups, which

adds one more subject to the already substantial list of “many apparently diverse

topics where the Heisenberg group reveals itself as an important factor” ([17]).

We thank Professor Iain Raeburn for providing us with Proposition 3.1 and

its proof, and for useful discussions.
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1. KK-EQUIVALENCE FOR C∗-ALGEBRAS ASSOCIATED

TO DISCRETE HEISENBERG GROUPS

In this section, we first give some background on generalized discrete Heisenberg
groups, and then show how the study of the K-groups of a variety of twisted
crossed products and continuous fields of non-commutative tori can be reduced to
the problem of computing the K-groups of untwisted group C∗-algebras of discrete
Heisenberg groups.

Fix n ∈ Z+, and suppose d1, d2, . . . , dn ∈ Z+ are chosen so that d1|d2| · · · |dn.
As in [24], we define the generalized discrete Heisenberg group H(d1, . . . , dn) to
be the set Z× Zn × Zn with group operation

(1.1) (r, s, t)(r′, s′, t′)=
(
r+r′+

n∑
i=1

ditis
′
i, s+s′, t+t′

)
r, r′ ∈ Z, s, s′, t, t′ ∈ Zn.

The group H(d1, . . . , dn) can be given a matrix representation in SL (n + 2, Z) as
follows:

(r, s1, . . . , sn,t1, . . . , tn) ∈ Z× Zn × Zn

−→



1 d1t1 d2t2 · · · dntn r

1 s1

1 s2

· 0 ·
· ·

0 · ·
1 sn

1


∈ SL (n + 2, Z).

If one allows the parameters r, s1, . . . , sn, t1, . . . , tn to take on real rather than in-
teger values, one obtains the simply connected Heisenberg Lie groups of dimension
2n + 1, which we denote by N . It is clear that H(d1, . . . , dn) is a lattice in N ,
and conversely, it was shown in Section 1 of [24] that any lattice in N must be
isomorphic to a group of the form H(d1, . . . , dn). More generally, we have the
following result, from [4]:

Proposition 1.1. Let Γ be any 2-step nilpotent group which is a central
extension of Zk by Z. Then there is a positive integer n 6 [k/2] and positive
integers d1|d2| · · · |dn such that Γ ∼= H(d1, . . . , dn)× Zk−2n.

Proof. This is Corollary 3.4 of [4], with n and k replaced by r and m, re-
spectively.
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We next relate discrete Heisenberg groups to the continuous fields of non-
commutative tori first constructed by M. Rieffel. We recall that Rieffel showed in
Section 2 of [37] that given X a locally compact Hausdorff space, G a locally com-
pact second countable amenable group, and σ ∈ Z2(G, C(X, T)) where C(X, T) is
viewed as a trivial G module, then the twisted transformation group C∗-algebra
C0(X) ×id,σ G can be viewed as the C∗-algebra of continuous sections vanishing
at infinity for a C∗-bundle over X, whose fiber over x ∈ X is the twisted group
C∗-algebra C∗(G, σ( · , · )(x)), where σ( · , · )(x) : G × G → T is a 2-cocycle for G

taking values in T. If we specialize the above result to the case where X = T and
G = Zk, it follows that C(T) ×id,σ Zk can be viewed as the C∗-algebra of con-
tinuous sections for a C∗-bundle of non-commutative k-tori over the circle. The
following result shows how discrete Heisenberg groups arise in the study of the
K-theory for such C∗-algebras. It can also be viewed as a form of converse to
[24], Theorem 3.4, which gave an isomorphism between certain twisted Heisenberg
group C∗-algebras and C∗-algebras of continuous sections for C∗-bundles over the
circle with fibers matrix algebras over non-commutative tori.

Theorem 1.2. Let σ ∈ Z2(Zk, C(T, T)) where C(T, T) is a trivial Zk-module.
If [σ] is in the same path component as the identity 1l in H2(Zk, C(T, T)), then the
central twisted crossed product C∗-algebra C(T)×id,σ Zk has the same K-groups as
C(Tk+1). Otherwise, there is a positive integer n 6 [k/2] and d1, . . . , dn ∈ Z+ with
d1|d2| · · · |dn such that C(T)×id,σZk has the same K-groups as C∗(H(d1, . . . , dn))⊗
C(Tk−2n).

Proof. We recall from [34], Theorem 4.2, that the K-groups of C(T)×id,σ Zk

depend only on the path component of [σ] in H2(Zk, C(T, T)). Hence if [σ] is
in the same path component as 1l, Ki(C(T) ×id,σ Zk) ∼= Ki(C(T) ⊗ C∗(Zk)) ∼=
Ki(C(Tk+1)), i = 0, 1. Suppose now that [σ] is in a different path component
from the identity in H2(Zk, C(T, T)). By [31], Corollary 1.4, H2(Zk, C(T, T)) ∼=
k(k−1)/2∏

i=1

(C(T, T))i where if we use the indexing (fij : fij ∈ C(T, T), 1 6 j < i 6 k)

to represent an element in H2(Zk, C(T, T)), the corresponding representative in
Z2(Zk, C(T, T)) is given by

ω
(
(si)k

i=1, (s′i)
k
i=1

)
(z) =

∏
16j<i6k

(fij(z))sis
′
j .

The path component of ω will depend on the path component of each fij in
C(T, T), and representatives for each of the path components in C(T, T) are known
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to be given by {zc | c ∈ Z}. So, given σ ∈ Z2(Zk, C(T, T)), there are integers
{cij | 1 6 j < i 6 k} such that σ is homotopic to the 2-cocycle

ω((cij))(s, s′)(z) =
∏

16i<j6k

zcijsis
′
j .

Since σ is not homotopic to the identity, at least one of the cij is non-zero. There-
fore C(T)×id,σ Zk has the same K-groups as C(T)×id,ω(cij) Zk, and a simple argu-
ment involving Fourier transform in the T variable shows that C(T) ×id,ω(cij) Zk

is isomorphic to C∗(Γ) where Γ is a central extension of Zk by Z corresponding
to the element of Z2(Zk, Z) determined by (cij). By Proposition 1.1, there is a
positive integer n 6 [k/2] and d1, d2, . . . , dn ∈ Z+ with d1|d2| · · · |dn such that
Γ ∼= H(d1, . . . , dn) × Zk−2n. Therefore C(T) ×id,σ Zk has the same K-groups
as C∗(Γ) ∼= C∗(H(d1, . . . , dn) × Zk−2n) = C∗(H(d1, . . . , dn)) ⊗ C∗(Zk−2n) ∼=
C∗(H(d1, . . . , dn))⊗ C(Tk−2n).

Thus if we know the K-groups for C∗-algebras of discrete Heisenberg groups,
the K-groups of the more general C∗-algebras of Theorem 1.2 can be computed
via the Kunneth formula. Our ultimate aim of this section is to show how twisted
group C∗-algebras for discrete Heisenberg groups are always KK-equivalent to
untwisted discrete Heisenberg group C∗-algebras. In fact, we will be able to prove
a generalization of this statement, again by considering twisted transformation
group C∗-algebras of the form C(T)×ρ,σ Zk, where now the action ρ is non-trivial,
and by referring to the equivariant Brauer group for the system (T, ρ, Zk).

For the statement of the following theorem, we first set up our notation. Let
k ∈ Z+, and let ρ : Zk → T be a homomorphism with finite range and kernel M .
Then Zk acts on T via

(1.2) v · z = ρ(v) · z, v ∈ Zk, z ∈ T.

We also denote the corresponding action of Zk on C(T) by ρ. Note Zk/M acts
freely and properly on T, and the orbit space T/(Zk/M) = T/Zk, which we denote
by Z, is also homeomorphic to T. Let p : T→ Z be the quotient map.

Theorem 1.3. Let ρ : Zk → T be as described above, and let σ ∈ Z2(Zk,

C(T, T)), where now the action of Zk on C(T, T) is non-trivial. Let M = ker ρ.
If we denote the restriction of σ to M ×M by σM , then without loss of generality
we may assume that σM takes on its values in p∗(C(Z, T)) viewed as a trivial M

module, and the twisted transformation group C∗-algebra C(T)×ρ,σ Zk is strongly
Morita equivalent to its C∗-subalgebra p∗(C(Z))×id,σM

M .
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Proof. Let l be the order of the range of ρ, so that [Zk : M ] = l. Find
e1 ∈ Zk such that e1 is indivisible in Zk, and ρ(e1) = e2πip/l where (p, l) = 1. An
easy argument then shows we can find e2, . . . , ek ∈M such that {e1, . . . , ek} forms
a basis for Zk. It follows that {le1, . . . , ek} ⊆ M , and if we denote by M1 the
subgroup of M generated by {le1, . . . , ek}, we have [Zk : M1] = l so that M1 = M .
Choose a, b ∈ Z such that ap + bl = 1, and let X = R × Za × Zk−1. Define a
monomorphism α : Zk → X by

α
( n∑

i=1

niei

)
=

(
n1, [bn1], n2, . . . , nk

)
.

Since the image of α in X is a cocompact discrete subgroup, the corresponding
action of Zk on X induced by ρ is free and proper, and passing to the quotient
space X/α(M) ∼= T, the quotient action of Zk on X/α(M) is equivalent to the
original action (T, ρ, Zk), by the analysis of [37], Theorem 3. The same result of
Rieffel shows that the action of M on the quotient space X/α(Zk) ∼= T is equivalent
to the trivial action of M on T. It follows that Z, the orbit space for the original
action ρ of Zk on T, can be identified with (X/α(M))/(α(Zk)/α(M)) ∼= X/α(Zk).
Now let σ ∈ Z2(Zk, C(T, T)) be given, where Zk acts on C(T, T) via ρ. It is a
consequence of the Hochschild-Serre spectral sequence corresponding to the short
exact sequence of groups

(1.3) 0→M → Zk → Zl → 0

that, multiplying σ by a coboundary if necessary, when we restrict σ to M ×M ,
the corresponding two-cocycle σM takes on values in the Zk-invariant subgroup
[C(T, T)]Z

k

, which is exactly p∗(C(Z, T)) and can be identified with C(Z, T). By
the stabilization trick ([33], Corollary 3.7), there are actions β and γ of Zn and M

on C(T)⊗K1
∼= C(X/α(M))⊗K1 and C(Z)⊗K2

∼= C(X/α(Zn))⊗K2 such that
C(T)×ρ,σ Zk is stably isomorphic to [C(X/α(M))⊗K1]×β Zk and C(Z)×id,σM

M

is stably isomorphic to [C(X/α(Zk)) ⊗ K2] ×γ M , where K1 and K2 denote the
compact operators on the Hilbert spaces `2(Zk) and `2(M) respectively. To prove
the theorem it will suffice to show that [C(X/α(M))⊗K1]×β Zk is strongly Morita
equivalent to [C(X/α(Zk))⊗K2]×γ M .

At this point we intend to use the equivariant Brauer groups BrM (X/α(Zk))
and BrZk(X/α(M)) (c.f. [9], [23] and [36]) so we recall their definitions. If (Y,G)
is a second countable locally compact transformation group, the elements of the
equivariant Brauer group BrG(Y ) are equivalence classes of C∗-dynamical systems
[(A,G, α)] in which A is a separable continuous trace C∗-algebra with spectrum Y ,
and α : G→ Aut (A) is a strongly continuous action of G on Â = Y such that the
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induced action is equal to the original action (Y, G). We refer the reader to [9] for a
more detailed description of the equivalence relation involved and group structure
of BrG(Y ). By the main result of [23], if X is a second countable locally compact
Hausdorff space admitting commuting free and proper actions of second countable
groups G and H, the equivariant Brauer groups BrH(G \X) and BrG(X/H) are
mutually isomorphic via an isomorphism θ : BrH(G \ X) → BrG(X/H) which
in addition satisfies the condition that if θ[(B, β, H)] = [(A,α,G)], then B ×β H

is strongly Morita equivalent to A ×α G. The isomorphism θ is formed as the
composite θ = Φ−1

G ◦ΦH where ΦG : BrG(X/H)→ BrG×H(X) and ΦH : BrH(G \
X)→ BrG×H(X).

In our situation, we let the space X = R × Za × Zk−1 be as described
above, and recall that we have commuting free and proper actions of G = Zn

and H = M . By the theory of the equivariant Brauer group, it will suffice to
show that ΦZn([(C(X/α(M))⊗K1, β, Zn)]) = ΦM ([(C(X/α(Zn))⊗K2, γ,M)]) in
BrZn×M (X). We define the action of Zn ×M on X by

(v,m) · χ = α(v)− α(m) + χ,

so that the stability subgroup for the action of Zn × M on X is the subgroup
{(m,m) | m ∈ M} ⊆ Zn × M , which we denote by N . We note that X

is a principal Zn × M/N = Zn/M bundle over Z with respect to the action,
so that by [36], Theorem 1.2, there are homomorphisms M : BrZn×M (X) →
C(Z,H2(N, T)) (the Mackey obstruction map), S : kerM→ H1(Z, N̂ ) (the spec-
trum map) and P : H2(Z, T) → BrZn×M (X) (the pullback map) with im P =
ker S. Since Z ∼= T, we have

∨

H2(Z,S) ∼=
∨

H3(Z, Z) = {0} and
∨

H1(Z, N̂ ) =
∨

H1(Z,M̂) ∼=
∨

H1(Z, Ẑk) ∼= H2(Z, Zk) = {0}, so that im P = kerS = {0}, and
consequently kerM ∼= im (S) ⊆ H1(Z, N̂) = {0} so that M is one-to-one. On
the other hand, since N ∼= Zk and N acts trivially on Z, by [31], Theorem 1.1,
C(Z,H2(N, T)) ∼= H2(N,C(Z, T)). Thus to show that [C(T) ⊗ K1] ×β M is
strongly Morita equivalent to [C(Z) ⊗ K2] ×γ M , it is enough to show that
M◦ΦZn([(C(X/α(M))⊗K1, β, Zn)]) =M◦ΦM ([(C(X/α(Zn))⊗K2, γ,M)]). By
[23], Proposition 7, ΦZn([(C(X/α(M))⊗K1, β, Zn)]) = [(C0(X)⊗K3, β1, Zn×M)],
where β1 is the action of Zn×M on C0(X)⊗K3 formed via the stabilization trick
from the twisted system (X, (α,−α), Zn×M,ω), where K3 = K(`2(Zn×M)) and
ω ∈ Z2(Zn ×M,C(X, T)) is given by ω((v1,m1), (v2,m2))(x) = σ(v1, v2)(π1(x)),
where π1 : X → X/α(M). Similarly, ΦM ([(C(X/α(Zn))⊗K2, γ,M)]) = [(C0(X)⊗
K3, γ1, Zn ×M)] where γ1 is the action of Zn ×M on C0(X) ⊗ K3 formed via
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the stabilization trick from the twisted system (X, (α,−α), Zn × M,η) where
η ∈ Z2(Zn ×M,C(X, T)) is given by

η((v1,m1), (v2,m2))(x) = σM (m1,m2)(π1(x)) = σM (m1,m2)(π2(x)),

where π2 : X → X/α(Zn) ∼= Z. Now M ◦ ΦZk([(C(X/α(M)) ⊗ K1, β, Zk)]) =
ω|N ×N andM◦ ΦM ([C(X/α(Zn))⊗K2, γ,M ]) = ηN×N and since

ω((m1,m1), (m2,m2))(x) = σ(m1,m2)(π1x) = η((m1,m1), (m2,m2))(x),

for all ((m1,m1), (m2,m2)) ∈ N ×N , and x ∈ X, we see that ΦZn([(C(X/α(M),
β, Zk)]) = ΦM ([(C(X/α(Zk)), γ,M)]) and consequently C(X/α(M)) ×β Zk is
strongly Morita equivalent to C(X/α(Zk))×γ Zk, so that C(T)×ρ,σ Zk is strongly
Morita equivalent to C(Z)×id,σM

M , as desired.

Theorems 1.2 and 1.3 give us the following result:

Corollary 1.4. Let ρ be an action of Zk on C(T) corresponding to a ho-
momorphism ρ : Zk → T with finite range, and let σ ∈ Z2(Zk, C(T, T)). Then
there is a non-negative integer n 6 [k/2] and d1, . . . , dn ∈ Z+ with d1|d2| · · · |dn

such that the twisted transformation group C∗-algebra C(T)×ρ,σ Zk has the same
K-groups as

C(Tk+1), if n = 0,
C∗(H(d1, . . . , dn))⊗ C(Tk−2n), if n > 1.

Proof. From the proof of Theorem 1.3 it is clear that ker ρ = M ∼= Zk and
X/ρ(Zk) = Z ∼= T. Thus C(T)×ρ,σ Zk has the same K-groups as C(T)×id,σM

Zk,
and now we can apply Theorem 1.2 to obtain the desired result.

We remark here that another amusing corollary of Theorem 1.3 is a proof of
the known result that any rational rotation algebra C∗(Zk+1, σ) is strongly Morita
equivalent to C(Tk+1) (see [12]). We omit details.

We now apply the results above to the study of twisted group C∗-algebras
associated to discrete Heisenberg group. If Γ is a discrete group and σ ∈ Z2(Γ, T),
we recall that the twisted group C∗-algebra C∗(Γ, σ) is by definition the C∗-
enveloping algebra of the twisted L1-algebra `1(Γ, σ), where multiplication and
involution are defined on `1(Γ) by the formulas

(1.4)
f ∗ g(γ) =

∑
γ1∈Γ

f(γ1)g(γ−1
1 γ)σ(γ1, γ

−1
1 γ),

f∗(γ) = σ(γ, γ−1)f(γ−1),
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for all f, g ∈ `1(Γ), γ1, γ ∈ Γ. C∗(Γ, σ) can also be described as the twisted crossed
product C×id,σ Γ.

We also recall from [24] that if Γ = H(d1, . . . , dn) for n > 2, then any
multiplier on Γ is cohomologous to one of the form c(λ1, µ1, λ2, . . . , λn, µ2, . . . , µn)·
ω, where ω is inflated from a multiplier on the quotient Z2n of Γ modulo its center,
and

(1.5)

c(λ1, µ1, λ2, . . . ,λn, µ2, . . . , µn)((r, s, t), (r′, s′, t′))

=
n∏

i=1

λ
s′ir
i

n∏
i=1

µr′ti
i λ

d1t1s′1(s
′
1−1)/2

1 µ
d1s′1t1(t1−1)/2
1

for (λ1, µ1, λ2, . . . , λn, µ2, . . . , µn) ∈ (Zd2)
2 × (Zd1)

2(n−1), where here Zk = Z/kZ
is the cyclic group of order k and is represented by the kth roots of unity. The
multipliers{

c(λ1, µ1, λ2, . . . , λn, µ2, . . . , µn)
∣∣ (λ1, µ1, λ2, . . . , λn, µ2, . . . , µn)

∈ (Zd2)
2 × (Zd1)

2(n−1)
}

parametrize the distinct representatives of the path components of H2(Γ, T). We
now apply Theorem 1.3 to twisted group C∗-algebras corresponding to such mul-
tipliers.

Theorem 1.5. Let Γ = H(d1, . . . , dn) be a discrete Heisenberg group with
n > 2, and let σ = c(λ1, µ1, λ2, . . . , λn, µ1, . . . , µn) · ω be a multiplier on Γ. Let
l ∈ Z+ be the order of the subgroup of T generated by {λ1, µ1, . . . , λn, µ2, . . . , µn}.
Then there is a subgroup Γ0 of Γ of index l2 such that C∗(Γ, σ) is strongly Morita
equivalent to C∗(Γ0, σ0), where [σ0] = [σ|Γ0 × Γ0] is homotopic to the identity
multiplier in H2(Γ0, T).

Proof. Denote by D the center of Γ; recall D = {(r, 0, 0) | r ∈ Z}, and
σ|D ×D = 1. By the decomposition theorem for twisted crossed product C∗-
algebras, C∗(Γ, σ) = C×id,σ Γ ∼= C∗(D)×ρ,γ Γ/D ∼= C∗(Z)×ρ,γ Z2n ∼= C(T)×ρ,γ

Z2n, where the action ρ of Z2n on C(T) is defined by

ρ((s, t))(f)(z) = f
( n∏

i=1

(λ−si
i µti

i )z
)
, (s, t) ∈ Z2n, z ∈ T

and γ ∈ Z2(Z2n, C(T, T)) is given by the formula stated in [33], Theorem 4.1. Thus,
we are in exactly the situation covered by Theorem 1.3, and hence we can deduce
that C∗(Γ) = C(T) ×ρ,γ Z2n is strongly Morita equivalent to its C∗-subalgebra
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p∗(C(Z))×id,γM
M , where M = ker ρ is by hypothesis a subgroup of Z2n of index

l, and p : T → T/Z2n = Z ∼= T is an l-to-one cover. Now p∗(C(Z)) ×id,γM
M is

clearly nothing more than the C∗-subalgebra C∗(Γ0, σ0), where Γ0 is the subgroup

of Γ generated by (l, 0, 0) ∈ D and {(0, s, t) | (s, t) ∈ M}, and σ0 = σ|Γ0 × Γ0.

Since [D : lD] = l and [Z2n : M ] = l, it is clear that [Γ : Γ0] = l2. Furthermore,

if we denote by D0 the center of Γ0, then D0 = lD, and using [33], Theorem 4.1,

again to decompose C∗(Γ0, σ0) = C ×id,σ0 Γ0 as C∗(D0) ×ρ0,γ0 M , then ρ0 is the

identity action, so that σ0 is homotopic to the identity multiplier on Γ0, by [24],

Theorem 2.4.

Corollary 1.6. Let Γ be a generalized discrete Heisenberg group and let σ

be a multiplier on Γ. Then there is a subgroup Γ0 of Γ of finite index such that

C∗(Γ, σ) is KK-equivalent to C∗(Γ0).

Proof. Let Γ = H(d1, . . . , dn) and σ ∈ Z2(Γ, T). If n = 1, then by [24],

Theorem 2.11, σ is homotopic to the identity multiplier on Γ, so that by [35], The-

orem 2.3 and 2.6, C∗(Γ, σ) is KK-equivalent to C∗(Γ). If n > 2, by Theorem 1.5,

C∗(Γ, σ) is strongly Morita equivalent to C∗(Γ0, σ0) where Γ0 is a subgroup of Γ

of finite index and σ0 = σ|Γ0 × Γ0 is homotopic to the identity multiplier on Γ0.

Using [35], Theorem 2.3 and 2.6, again, C∗(Γ0, σ0) is KK-equivalent to C∗(Γ0).

This immediately gives us our result about Azumaya algebras over N/Γ

mentioned in our introduction. Recall ([10], [14], [35]) that an Azumaya algebra

over a compact metric space X is a central separable C∗-algebra over the ring

C(X) all of whose irreducible representations are finite dimensional; such algebras

are, up to stable isomorphism, exactly those continuous trace C∗-algebras with
spectrum X whose Dixmier-Douady class is a torsion element of

∨

H3(X, Z):

Corollary 1.7. Let Γ be a generalized discrete Heisenberg group, and let

A be an Azumaya algebra with spectrum N/Γ. Then there is a subgroup Γ0 of Γ

of finite index such that A is KK-equivalent to C(N/Γ0).

Proof. By [35], Theorem 2.3, 2.5 and Corollary 2.8, there is a multiplier σ ∈
Z2(Γ, T) such that A = A(N/Γ, δ([σ])), where δ is a homomorphism of H2(Γ, T)
onto the torsion subgroup of

∨

H(N/Γ, Z) whose kernel is the path component of

1l in H2(Γ, T), so that Ki(A) ∼= Ki+1(C∗(Γ, σ)), i = 0, 1. Now for any discrete

cocompact subgroup Γ0 of N , we have Ki(C(N/Γ0)) ∼= Ki+1(C∗(Γ0)), i = 0, 1, by

[39], Theorem 3.6. Corollary 1.7 then gives us the desired result.
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The next example shows how one carries out the analysis of Theorem 1.5
for any multiplier on H(d1, . . . , dn) of the form c(e−2πi/l1 , 1, e2πi/l2 , . . . , e2πi/ln ,

1, . . . , 1), notation as in Equation (1.5), n > 2, where ln|ln−1| · · · |l2|l1|d2 and
l2|d1. This choice of (λ1, µ1, λ2, . . . , λn, µ2, . . . , µn) ∈ (Zd2)

2 × (Zd1)
2(n−1) may

seem somewhat contrived, but one can show through direct calculation that for any
(λ1, µ1, λ2, . . . , λn, µ2, . . . , µn) ∈ (Zd2)

2 × (Zd1)
2(n−1), it is always possible to find

an automorphism A of the group Γ and positive integers l1, . . . , ln as above such
that A∗(c(λ1, µ1, λ2, . . . , λn, µ2, . . . , µn)) is cohomologous to c(e−2πi/l1 , 1, e2πi/l2 ,

. . . , e2πi/ln , 1, 1, . . . , 1), where A∗(σ)(γ1, γ2) = σ(Aγ1, Aγ2) for σ ∈ Z2(Γ, T) and
γ1, γ2 ∈ Γ. Thus by [32], p. 189,

C∗(Γ, c(λ1, µ1, . . . , µn)) ∼= C∗(Γ, A∗(c(λ1, µ1, λ2, . . . , µn)))
∼= C∗(Γ, c(e−2πi/l1 , 1, e2πi/l2 , . . . , e2πi/ln , 1, 1, . . . , 1)).

Example 1.8. Let Γ=H(d1, . . . , dn), n > 2, and let σ=C(e−2πi/l1 , 1, e2πi/l2 ,

e2πi/l3 , . . . , e2πi/ln , 1, . . . , 1), where ln|ln−1| · · · |l2|l1, l1|d2, and l2| gcd(l1, d1). By
Theorem 1.6, C∗(Γ, σ) is KK-equivalent to C∗(Γ0), where Γ0 has the genera-
tors (l1, 0, 0), (0, sj , 0) and (0, 0, tj), 1 6 j 6 n where s1 = (l1, 0, . . . , 0), sj =
(lj , 0, . . . , 1, . . . , 0), 2 6 j 6 n, and tj = (0, . . . , 0, 1, 0, . . . , 0), 1 6 j 6 n, are ele-
ments of Zn, and where qj = l1/lj so that q2|q3| · · · |qn. Evidently Γ0 is a central
extension of Z2n by Z corresponding to the 2-cocycle σB : Z2n × Z2n → Z, where

σB((s, t), (s′, t′)) = (s, t)B
(

(s′)T

(t′)T

)
, s, t, s′, t′ ∈ Zn, and where B is the 2n × 2n

matrix
(

0n 0n

A 0n

)
where 0n is the n× n zero matrix and

A =



d1 0 0 · · 0
d1q2
l1

d2
l1

0 · · 0
· ·
· ·
· · 0

d1qn

l1
0 · · · dn

l1


.

Following the method of [4], Section 3 there exists P,Q ∈ GL(n, Z), and c1, . . . , cn

∈ Z+, c1|c2| · · · |cn with

P



d1 0 0 · · 0
d1q2
l1

d2
l1

0 · · 0
· ·
· ·
· · 0

d1qn

l1
0 · · · dn

l1


Q =



c1

c2 0
·
·

0 ·
cn
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so that Γ0
∼= H(c1, c2, . . . , cn); [19], Theorem 3.9, p. 179 gives a precise formula

for the cj , 1 6 j 6 n. In particular, if l2 = l3 = · · · = ln = 1, then we can take

q2 = · · · = qn = 0 and compute c1 = gcd(d1, d2/l1), and proceeding inductively,

having defined c1, . . . , cj−1 for j < n, from the formula in [19] we obtain

cj = gcd
{ j−1∏

i=1

di

ci
· dj

lj−1
1

,

j−1∏
i=1

di+1

ci
· dj+1

lj1

}
, (2 6 j 6 n− 1),

cn =

n∏
i=1

di

n−1∏
i=1

ci(l1)n−1

.

Specializing this example even further, if l1 = d2/d1 and lj = 1, 2 6 j 6 n, then

c1 = d1, c2 = d1, c3 = d3/l1 = d1d3/d2, . . . ., and cn = dn/l1 = d1dn/d2. If in

this example d1 is odd and l1 is even, one can compute that the corresponding

multiplier σ0 on Γ0 will be a non-trivial multiplier which is homotopic to the

identity multiplier on Γ0.

Example 1.9. Let Γ = H(d1, d2) and consider σ = c(e−2πi/l1 , 1, e2πi/l2 , 1)

where l2| gcd(d1, l1) and l1|d2. By Theorem 1.5, C∗(Γ, σ) is strongly Morita

equivalent to C∗(Γ0, σ0) where Γ0 is the subgroup of Γ generated by (l1, 0, 0, 0),

(0, l1, 0, 0, 0), (0, q, 1, 0, 0) and (0, 0, 0, 0, 1), for q = l1/l2, and σ0 = σ/Γ0 × Γ0.

Following the method of Example 1.8, we calculate that Γ0 is isomorphic to

H(c1, c2) where c1 = gcd(d1q/l1, d2/l1) = gcd(d1/l2, d2/l1) and c2 = d1d2/l1c1.

As a specific example, we let d1 = 4, d2 = 72, l1 = 6, l2 = 2 and we calculate that

C∗(H(4, 72), σf ) is KK-equivalent to C∗(H(2, 24)). So using Example 2.4 from

the next section,

K0(C∗(H(4, 72), σf )) ∼= K0(C∗(H(2, 24))) ∼= Z10 ⊕ (Z2)2 ⊕ (Z24)2,

K1(C∗(H(4, 72), σf )) ∼= K1(C∗(H(2, 24))) ∼= Z10 ⊕ (Z2)2.
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2. THE GYSIN SEQUENCE IN K-THEORY AND COHOMOLOGY

FOR HEISENBERG NILMANIFOLDS

In Section 1, we showed that the problem of finding the K-groups for twisted
discrete Heisenberg group C∗-algebras and the related Azumaya algebras is equiv-
alent to finding the K-groups for homogeneous spaces of the form N/Γ, where
N is a Heisenberg Lie group, and Γ is a cocompact discrete subgroup. In this
section, we shall use the Gysin sequence for circle bundles over T2n in K-theory
and cohomology theory to set up an exact sequence for calculating these K-groups;
note that both K∗(T2n) and H∗(T2n, Z) are torsion-free and their structure is well-
understood. We first describe N/Γ as a circle bundle over T2n, and compute the
corresponding characteristic classes in H2(T2n, Z). Note that singular and Čech
cohomology are isomorphic for all the topological spaces we consider. Thus we
denote these cohomologies with the notation H∗, except when referring to Čech
cohomology with coefficients in a sheaf. The following discussion is similar to that
in [2], Section 3, but we include it for the readers’ convenience.

Fix n ∈ Z+, and let Γ = H(d1, . . . , dn) be as in the first section, where
d1, . . . , dn ∈ Z+ satisfy d1|d2| · · · |dn. Let N denote the 2n+1 dimensional Heisen-
berg Lie group with multiplication defined by

(r, s, t) · (r′, s′, t′) = (r + r′ + 〈t, s′〉, s + s′, t + t′), r ∈ R, s, t ∈ Rn,

where 〈 · , · 〉 denotes the standard inner product on Rn. We can identify Γ with
the subgroup of N defined by {(r, s, t1d1, . . . , tndn) | r, t1, . . . , tn ∈ Z, s ∈ Zn}.
By Maltsev’s theory, this embedding of Γ into N is unique up to automorphisms
of N . Let L be the subgroup of N generated by Γ and [N,N ], i.e.,

L = Γ1 · [N,N ] = {(r, s, t1d1, . . . , tndn) | r ∈ R, t1, . . . , tn ∈ Z, s ∈ Zn}.

Then Γ ⊆ L so we have a fibration

T ∼= L/Γ −→ N/Γ
p−→ N/L ∼= (N/[N,N ])/(Γ/(Γ ∩ [N,N ])) ∼= T2n.

In particular, (E = N/Γ, p, T2n) is a principal circle bundle on N/Γ, since the
action of [N,N ] = R on N/Γ factors through [N,N ]/Γ ∩ [N,N ] = T.

The circle bundle (E, p, T2n) gives rise via transition functions to an element
of the sheaf cohomology group

∨

H1(T2n,S) =
∨

H1(T2n,U(1)), and hence we can
form the associated complex line bundle (Ẽ, p̃, T2n) to which one can associate an
element λ(Ẽ) ∈ K0(T2n), via the canonical embedding of complex vector bundles
over T2n into K0(T2n).
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Choosing the usual metric on C, it follows from the construction of (Ẽ, p̃, T2n)
that the sphere bundle (S(Ẽ), p̃, T2n) is exactly (E, p, T2n), and hence we can use
the Gysin exact sequence in K-theory (see [21], IV. 1.13, p. 187) to compute the
K-groups for E = N/Γ:

(2.1)

K0(T2n)
α∗0−→ K0(T2n)

↗ ↘

K1(N/Γ) K0(N/Γ)

↖ ↙
K1(T2n)

α∗1←− K1(T2n)

where the maps α∗
j , j = 0, 1, are given by the product with 1 − λ(Ẽ) ∈ K0(T2n)

(recall K∗(T2n) has a graded ring structure). Since K∗(T2n) is torsion free, our
problem thus becomes a problem in multilinear algebra involving the ring structure
of K∗(T2n) and the computation of 1− λ(Ẽ) as an endomorphism of K∗(T2n).

It is well-known that the ring K∗(Tm) is isomorphic to the exterior algebra
over Z on m generators,

∧∗
Z{e1, . . . , em} ([42], p. 185; [13]). Indeed, in this case

the Chern character ch : K∗(Tm) → H∗(Tm, Q) is integral and gives the isomor-
phisms ch0 : K0(Tm)→ Heven(Tm, Z) and ch1 : K1(Tm)→ Hodd(Tm, Z) (see [20])
for a proof) where H∗(Tm, Z) under cup product, is well-known to be isomorphic
to

∧∗
Z{e1, . . . , em} with Hk(Tm, Z) ∼=

∧k
Z{e1, . . . , em}. Thus identifying H∗(Tm, Z)

with
∧∗

Z{e1, . . . , em}, in order to carry out the computations implicit in the se-
quence (2.1), we need to compute ch(1−λ(Ẽ)) = 1−ch(λ(Ẽ)) ∈

∧even
Z {e1, . . . , em}.

We will do this in Proposition 2.2.
We recall the following result of Massey, specialized to our context ([3]).

Let ∆ be a countable discrete group, let B be a connected CW-complex of type
K(∆, 1), and suppose that (E, p, B) is a principal T-bundle over B such that
the fundamental group π1(E) is a central extension of π1(B) = ∆ by π1(T) = Z.
Then the characteristic class c1 of the bundle (E, p, B) as an element of

∨

H2(B, Z) ∼=
∨

H1(B,S) (that is, the first obstruction to a cross-section), can be identified by the
group cohomology class κ ∈ H2(∆, Z) determined by the central group extension

0→ Z→ π1(E)→ π1(B) ∼= ∆→ 0

via the canonical isomorphism λ∗ : H2(∆, Z)→
∨

H2(B, Z) which is discussed in [35],
Lemma 2.6, for example. In our case, π1(E) = π1(N/Γ) = Γ = H(d1, . . . , dn),
π1(B) = ∆ ∼= Z2n, and, using the notation of [4], Section 3 κ ∈ H2(Z2n, Z) is
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defined by M =
n∑

i=1

diEn+i,i (here Ejk denotes the elementary matrix with 1 in

the (j, k)th spot, 0’s elsewhere). Thus we may write κ =
n∑

i=1

di[σEn+i,i ]. From [4],

Section 3 it is known that {[σEjk
] | 1 6 k < j 6 n} is a basis for H2(Z2n, Z), and

it is easily checked that λ∗([σEjk
]) = ek ∧ ej ∈

∧2
Z{e1, . . . , e2n} ∼= H2(T2n, Z) (the

line bundle corresponding to ek ∧ ej is the pull-back of the standard Heisenberg

non-trivial line bundle on T2 to T2n =
2n∏
i=1

T via projection onto the kth and jth

coordinates). It follows that the characteristic class of (N/Γ, p, T2n), or what is
the same thing, the first Chern class of the complex line bundle (Ẽ, p, T2n), is

given by c1(Ẽ) = λ∗([σM ]) = λ∗

( n∑
i=1

di[σEn+i,i
]
)

=
n∑

i=1

diei ∧ en+i ∈ H2(T2n, Z).

We have thus proved:

Proposition 2.1. Let N be the 2n + 1 dimensional Heisenberg Lie group,
with cocompact discrete subgroup Γ = H(d1, . . . , dn), where d1|d2| · · · |dn. Then
the characteristic class in H2(T2n, Z) =

∧2
Z{e1, . . . , e2n} and hence the first Chern

class defined by the complex line bundle (Ẽ, p̃, T2n) associated to (N/Γ, p, T2n) is

defined by c1(Ẽ) =
n∑

i=1

diei ∧ en+i

We now use Proposition 2.1 to deduce:

Proposition 2.2. Let N and Γ be as in Proposition 2.1, let (Ẽ, p̃, T2n) be
the complex line bundle associated to the principal T bundle (N/Γ, p, T2n), and
let λ(Ẽ) be the corresponding representative in K0(T2n). Then the formula for
ch(λ(Ẽ)) in Heven(T2n, Z) =

∧even
Z {e1, . . . , e2n} is given by

ch(λ(Ẽ)) =
n∑

j=0

( n∑
i=1

diei ∧ en+i

)j

j!

= 1 +
n∑

i=1

diei ∧ en+i +
∑

16i1<i26n

di1di2(ei1 ∧ en+i1) ∧ (ei2 ∧ en+i2)

+· · ·+
∑

16i1<i2<···<in−16n

di1 · · · din
(ei1 ∧ en+i1)∧· · ·∧(ein−1 ∧ en+in−1)

+ d1d2 · · · dn(e1 ∧ en+1) ∧ (e2 ∧ en+2)∧ · · · ∧(en ∧ e2n).

Proof. The first equality follows from the formula for the Chern character of
complex line bundles given in [27], p. 196, i.e. ch(λ(Ẽ)) = exp(c1(Ẽ)). The second
formula follows by expanding the first expression.

From the proposition we immediately obtain:
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Theorem 2.3. Let N be the 2n + 1 dimensional Heisenberg Lie group and
let Γ = H(d1, . . . , dn) be a cocompact discrete subgroup. The K-groups of N/Γ can
in principal be computed form the exact sequence

(2.2)

Λeven
Z {e1, . . . , e2n}

α0
∗−→ Λeven

Z {e1, . . . , e2n}
↗ ↘

K1(N/Γ) K0(N/Γ)

↖ ↙
Λodd

Z {e1, . . . , e2n}
α1
∗←− Λodd

Z {e1, . . . , e2n}

where the maps αi
∗ :

∧∗
Z{e1, . . . , e2n} →

∧∗
Z{e1, . . . , e2n} are defined by

αi
∗(γ) = −γ∧

( n∑
j=1

( ∑
16i1<i2<···<ij6n

di1di2 · · · dij (ei1∧en+i1)∧· · ·∧(eij∧en+ij )
))

,

for γ ∈
∧even

Z {e1, . . . , e2n} if i = 0, and for γ ∈
∧odd

Z {e1, . . . , e2n} if i = 1. In
particular,

K0(N/Γ) ∼= coker α0
∗ ⊕ ker α1

∗,

K1(N/Γ) ∼= coker α1
∗ ⊕ ker α0

∗.

Proof. Using the Chern character ch : K∗(T2n) →
∧∗

Z{e1, . . . , e2n}, the
Gysin sequence for K-theory given in diagram (2.1) becomes exactly the diagram
(2.2), and by Proposition 2.2, the maps αi

∗, i = 0, 1 of diagram (2.1) become
the maps stated in the theorem, using the fact that ch(1K∗) = 1∧∗

Z
. We obtain

the splitting for Ki(N/Γ), i = 0, 1, by using the fact the
∧even

Z {e1, . . . e2n} and∧odd
Z {e1, . . . e2n} are finitely generated free abelian groups, so that the respective

subgroups ker αi
∗, i = 0, 1, would have the same property.

Example 2.4. Using the method of Theorem 2.3, we are able to compute
the K-groups of all Heisenberg nilmanifold N/Γ of dimension 3, 5, and 7, i.e. for
n = 1, 2 and 3.

n K0(N/Γ) K1(N/Γ)
1 Z3 ⊕ Zd1 Z3

2 Z10 ⊕ Z2
d1

Z10 ⊕ Z2
d1
⊕ Z2

d2

3 Z35 ⊕ (Zd1)
8 ⊕ (Zd2)

4 ⊕ Z2d2d3/d1 Z35 ⊕ (Zd1)
8 ⊕ (Zd2)

4

Example 2.5. Using Theorem 2.3 and by computing the diagonal forms
for certain incidence matrices, we have computed the K-groups of N/Γ for Γ =
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H(1, 1, . . . , 1) in [2]. Our results show

K0(N/Γ) ∼=


Z(2n+1

n ) ⊕
(n−1)/2⊕

k=1

Z( 2n
n−1−2k)

k(k+1) , n odd,

Z(2n+1
n ) ⊕

n/2⊕
k=1

Z2( 2n
n−2k)

k , n even,

K1(N/Γ) ∼=


Z(2n+1

n ) ⊕
(n−1)/2⊕

k=1

Z2( 2n
n−2k)

k , n odd,

Z(2n+1
n ) ⊕

(n−2)/2⊕
k=1

Z( 2n
n−1−2k)

k(k+1) , n even.

Theorem 2.3 shows us that K0(N/Γ) and K1(N/Γ) are finitely generated
abelian groups, so that by the structure theorem for such groups, we can write
K0(N/Γ) ∼= Zm0⊕T0, K1(N/Γ) ∼= Zm1⊕T1, where T0 and T1 are finite groups and
m0 and m1 are non-negative integers giving the rank of K0(N/Γ) and K1(N/Γ) re-
spectively. Now recall the Chern character defines an isomorphism ch : K∗(N/Γ)⊗Z

Q →
2n+1⊕
i=0

Hi(N/Γ, Q) ([42], p. 174) so that by tensoring by R over Q we ob-

tain the isomorphisms ch : K0(N/Γ) ⊗Z R ∼= Rm0
∼=−→

⊕
Heven(N/Γ, R) and

ch : K1(N/Γ) ⊗ R ∼= Rm1
∼=−→

⊕
Hodd(N/Γ, R). It follows that to calculate the

rank of the abelian groups K0(N/Γ) and K1(N/Γ), it suffices to calculate the Betti
numbers of the nilmanifold N/Γ. A celebrated theorem of Nomizu ([30], Theo-
rem 1) tells us that if n denotes the Lie algebra of N , then Hk(N/Γ, R) ∼= Hk(n, R)
so that these Betti numbers are independent of the cocompact discrete subgroup
Γ chosen, and depend only on the Lie algebra structure of n. In particular, using
these ideas, we obtain:

(2.3)

rank (K1(N/Γ)) =
∑
k odd

dimR(Hk(n, R)) =
n∑

k=0

β2k+1,

rank (K0(N/Γ)) =
∑

k even

dimR(Hk(n, R)) =
n∑

k=0

β2k.

Here βk denote the kth Betti number of N/Γ, or equivalently, βk = dimR(Hk(N/Γ,

R)) = dimR(Hk(n, R)).
The Betti numbers of N/Γ can be deduced from recent work of Dupré ([11])

and Howe ([18], A 4.3). Dupré calculated the Moore cohomology groups with
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coefficients in the reals for simply connected Heisenberg Lie groups. For Heisen-
berg Lie groups N the Moore cohomology can be identified with the continu-
ous cohomology H∗

conts(N, R), and it is a deep result of G. Mostow ([29]) that
H∗

conts(N, R) ∼=
∨

H∗(N/Γ, R) for a large class of simply connected solvable Lie groups
and cocompact discrete subgroups which includes the Heisenberg groups. Howe
uses the representation theory of Sp2n to calculate the Lie algebra cohomology of
the Lie algebra of N , which by Nomizu’s theory is exactly H∗(N/Γ, R).

Theorem 2.6. (cf. [11], Theorem 4.6, [29], Theorem 8.1) Let N be the 2n+1
dimensional Heisenberg Lie group and let Γ be a cocompact discrete subgroup. Let
βk denote the kth Betti number of N/Γ, then

βk =


(

2n

k

)
−

(
2n

k − 2

)
, 0 6 k 6 n;(

2n

k − 1

)
−

(
2n

k + 1

)
, n + 1 6 k 6 2n + 1.

(Since dim(N/Γ) = 2n + 1, βk = 0 for k > 2n + 2.) Here we use the standard

convention that
(

m

j

)
= 0 for j < 0 and j > m.

Corollary 2.7. Let N be the 2n+1 dimensional Heisenberg Lie group, let
Γ be any lattice in N , let σ be any multiplier on Γ, and let A(N/Γ, δ([σ])) be the
associated Azumaya algebra over N/Γ. Then for i = 0, 1,

rank [Ki(C∗(Γ, σ))] = rank [Ki(A(N/Γ, δ([σ])))] = rank [Ki(N/Γ)] =
(

2n + 1
n

)
.

Proof. We know that

rank (K0(N/Γ)) =
n∑

k=0

β2k = 1 +
[n/2]∑
k=1

[ (
2n

2k

)
−

(
2n

2k − 2

) ]

+
n−1∑

k=[n/2]+1

[(
2n

2k − 1

)
−

(
2n

2k + 1

)]
+

(
2n

2n− 1

)

=


(

2n

n

)
−

(
2n

n− 1

)
, n even,(

2n

n− 1

)
−

(
2n

n

)
, n odd,

=
(

2n + 1
n

)
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and similarly

rank (K1(N/Γ)) =
n∑

k=0

β2k+1 = 2n +
[n−1/2]∑

k=1

[ (
2n

2k + 1

)
−

(
2n

2k − 1

) ]

+
n−1∑

k=[n−1/2]+1

[ (
2n

2k

)
−

(
2n

2k + 2

) ]
+

(
2n

2n

)

=


(

2n

n

)
+

(
2n

n + 1

)
=

(
2n + 1

n

)
, n odd(

2n

n− 1

)
+

(
2n

n

)
, n even,

=
(

2n + 1
n

)
.

The lemma now follows from Corollary 1.7, Corollary 1.8, [39], Theorem 3.6 and
[30], Theorem 1.

Remark 2.8. We note here how theoretically our methods can be used to
calculate the K-groups and the Betti numbers for any principal T-bundle (E, p, Tm)
over an m-torus, for m even or odd. By the work of Massey mentioned in the
proof of Proposition 2.1, the fundamental group of E will be a two-step nilpotent
central extension of Zm by Z so that in fact up to an homeomorphism E looks like
G/(Zm ×σM

Z) for σM ∈ H2(Zm, Z), where G is the simply connected two-step
nilpotent Lie group corresponding to Zm×σM

Z by the work of Maltsev ([26]). This
is accomplished as follows: as in our disussion prior to the proof of Proposition 2.1,
any principal T-bundle (E, p, Tm) is determined by its characteristic class c1(E) ∈
H2(Tm, Z). Suppose that c1(E) =

∑
16k<j6m

ajkek∧ej , ajk ∈ Z (recall {ek∧ej | 1 6

k < j 6 m} is a basis for H2(Tm, Z) ∼= Zm(m−1)/2). Let M be the m×m matrix
with integer entries defined by M =

∑
16k<j6m

ajkEjk, and let Γ = Zm ×σM
Z,

σM as in [4], Section 3, and G the associated simply connected Lie group. As in
our proof of Proposition 2.1, (G/Γ, π, (G/[G, G])/(Γ/(Γ ∩ [G, G])) ∼= Rm/Zm ∼=
Tm is a principal Tm-bundle with characteristic class

∑
16k<j6m

ajkek ∧ ej . Thus,

as a principal T-bundle over Tm, (E, p, Tm) is equivalent to (G/Γ, π, Tm). By
[4], Corollary 3.4 there exists a positive integer n with 2n 6 m and positive
integers d1, d2, . . . , dn with d1|d2| · · · |dn such that Zm ×σM

Z is isomorphic to
H(d1, . . . , dn)× Zm−2n and hence G is isomorphic to N × Rm−2n (again by work
of Maltsev) where N is the 2n + 1 dimensional Heisenberg Lie group. If m = 2n,
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we can immediately use Theorem 2.3 and 2.8. If m > 2n, E is homeomorphic to
the homogeneous space

(N × Rm−2n)/(H(d1, . . . , dn)× Zm−2n) = (N/H(d1, . . . , dn))× Tm−2n,

and the K-groups and Betti numbers for E can be read off via the Kunneth formu-
las in K-theory and cohomology, respectively ([5], [41]). In particular, for letting
H = H(d1, . . . , dn), since K∗(Tm−2n) is torsion free, we obtain from [5], Theo-
rem 23.1.3,

K0(G/Γ) ∼= K0(N/H)⊗K0(Tm−2n)⊕K1(N/H)⊗K1(Tm−2n)

∼= [K0(N/H)]2
m−2n−1

⊕ [K1(N/H)]2
m−2n−1

.

Similarly,
K1(G/Γ) = [K0(N/H)]2

m−2n−1
⊕ [K1(N/H)]2

m−2n−1
.

The Betti numbers for G/Γ would be computed similarly.
As a particular example we let m = 3. Any non-trivial T-bundle over T3

will be homeomorphic as a topological space to N/H(d) × T, where N is the
3-dimensional simply connected Heisenberg Lie group and d ∈ Z+, and

Ki(N/H(d)× T) ∼= K0(N/H(d))⊕K1(N/H(d)) ∼= Z6 ⊕ Zd, i = 0, 1,

by Example 2.4. Using the Kunneth formula in cohomology, one calculates that
the Betti numbers for N/H(d) × T are given by β0 = 1, β1 = 3, β2 = 4, β3 = 3,
β4 = 1.

3. K-THEORY FOR SOME TWISTED TORI

In this section we shall briefly discuss how we can calculate the K-groups for
certain continuous trace C∗-algebras whose spectra are tori of odd dimension and
whose Dixmier-Douady classes are of a specific form from the knowledge obtained
in previous sections about the K-groups for generalized discrete Heisenberg group
C∗-algebras. Since the K-groups of continuous trace C∗-algebras have been termed
“twisted K-groups” for the spectrum (this terminology is due to Rosenberg [38]),
by abuse of terminology we shall refer to the continuous trace C∗-algebras whose
spectra are tori as “twisted” tori (not to be confused with the “non-commutative
tori” of Rieffel).

We start first with a proposition whose statement and proof was first shown
to us by I. Raeburn; we thank him for giving us permission to reproduce it here.
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Proposition 3.1. Let Γ be a generalized discrete Heisenberg group of rank
2n + 1. Then C∗(Γ) is strongly Morita equivalent to a C∗-crossed product Aσ ×τ

R2n, where Aσ is a continuous trace C∗-algebra whose spectrum is homeomorphic
to T2n+1. Thus C∗(Γ) is KK-equivalent to a twisted (2n + 1) torus.

Proof. Let Γ = H(d1, . . . , dn) where d1|d2| · · · |dn. We write Γ as a central
extension of Z2n by Z corresponding to σ ∈ Z2(Z2n, Z) defined by

(3.1) σ((s, t), (s′, t′)) =
n∑

i=1

ditis
′
i.

Taking N = Z, G = Γ, and G/N = Z2n in [33], Theorem 4.1 we have, using the
theory of decomposition of twisted crossed products,

C∗(Γ) = C×id Γ = (C×id Z)×id,vσ Z2n ∼= (C∗(Z))×id,vσ Z2n,

where
(3.2)

vσ((s, t), (s′, t′)) = iZ(σ((s, t), (s′, t′))) = δσ((s,t),(s′,t′)), (s, t), (s′, t′) ∈ Z2n.

Using the isomorphism C∗(Z) ∼= C(T) given by Fourier transform we obtain an
isomorphism C∗(Γ) ∼= C(T)×id,ω Z2n where ω : Z2n × Z2n → C(T) is defined by

(3.3) ω((s, t), (s′, t′))(z) = zσ((s,t),(s′,t′)), (s, t), (s′, t′) ∈ Z2n, z ∈ T.

Using the stabilization trick of [33] and inducing from Z2n to R2n, we have, as
summarized in [32], Equation (2.8)

C∗(Γ)⊗K ∼= (C(T)×id,ω Z2n)⊗K ∼= IndR2n

Z2n (β)[C(T)⊗K]×τ R2n,

where the action β of Z2n on C(T)⊗K is obtained from [33], Theorem 3.4 and is
explicitly defined in [32], Equations (2.1) and (2.3) of [32] (replacing “σ” in [32]
by our “ω”). Since the original action of Z2n on C(T) was trivial, by applying
[34], Lemma 3.5 we see that IndR2n

Z2n (β)[C(T)⊗K] is a continuous trace C∗-algebra
with spectrum (R2n/Z2n) × T = T2n+1. Setting Aσ = IndR2n

Z2n (β)[C(T) ⊗ K] and
applying the Thom isomorphism Theorem of Connes ([8]), we have

(3.4) Ki(C∗(Γ)) ∼= Ki(Aσ ×τ R2n) = Ki(Aσ), i = 0, 1,

completing the proof of the proposition.
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We now discuss the problem of identifying the Dixmier-Douady class of the
twisted torus Aσ described in Proposition 3.1. In fact, results in [35] give an
explicit formula for this Dixmier-Douady class in the sheaf cohomology group
∨

H2(T2n+1,S) (here S = T represents the sheaf of germs of T-valued functions on
T2n+1):

Lemma 3.2. Let Γ, σ and Aσ be as in Proposition 3.1. Viewing R2n as a
principal Z2n bundle over T2n, let {Ni}i∈I be an open cover of T2n with continuous
sections ci : Ni → R2n, and define λij : Nij → Z2n by λij(x) = ci(x)cj(x)−1,
x ∈ Nij. Let {Ui = T×Ni} be the corresponding open cover of T2n+1 = T1×T2n.

Then the Dixmier-Douady class δ(Aσ) ∈
∨

H2(T2n+1,S) is represented with respect
to this cover by the Čech two-cocycle {ηijk : Uijk → T} where

(3.5) ηijk((z, x)) = zσ(λij(x),λjk(x)), z ∈ T, x ∈ Nijk ⊆ T2n,

σ as in Equation (3.1).

Proof. This is a direct application of Equation (3.3) together with [34], The-
orem 3.6 and Corollary 3.4 (i).

Since our aim is to recognize which twisted tori are KK-equivalent to gener-
alized discrete Heisenberg group C∗-algebras, whose K-groups are known in prin-
ciple, the formula in Equation (3.5) will not be very helpful as it stands. Instead,
we want to calculate the element of H3(T2n+1, Z) corresponding to the Čech two
cocycle defined in Equation (3.5). Recall from Section 2 that H3(T2n+1, Z) is iso-

morphic to Z(2n+1
3 ), with standard generators given by {ei ∧ ej ∧ ek | 1 6 i < j <

k 6 2n + 1}.

Lemma 3.3. Let σ ∈ Z2(Z2n, Z) be as defined in Equation (3.1), and let Aσ

be the corresponding twisted (2n + 1)-torus constructed in Proposition 3.1. Then
the Dixmier-Douady class of Aσ in H3(T2n+1, Z) is given by

(3.6) δ(Aσ) =
n∑

i=1

die1 ∧ ei+1 ∧ en+i+1.

Proof. We have already computed the Dixmier-Douady class of Aσ as an
element of

∨

H2(T2n+1,S) in Equation (3.5). To obtain the result as stated in
Equation (3.6), we need to compute the image of the sheaf two-cocycle given in
Equation (3.5) under the Bockstein map d2 :

∨

H2(T2n+1,S) →
∨

H3(T2n+1, Z) =
H3(T2n+1, Z) in the long exact sequence in sheaf cohomology corresponding to the
short exact sequence of groups 0 −→ Z −→ R −→ T −→ 0.
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We first write T2n+1 as a cartesian product T × T2n. Let e be the gen-
erator for

∨

H1(T, Z) and f1, . . . , f2n be the standard generators for
∨

H1(T2n, Z).
The projections π1 : T × T2n → T and π2 : T × T2n → T2n give pullbacks
π∗1 :

∨

H1(T, Z) →
∨

H1(T2n+1, Z) and π∗2 :
∨

H1(T2n, Z) →
∨

H1(T2n+1, Z) such that
π∗1(e) = e1 and π∗2(fi) = ei+1, 1 6 i 6 2n, where now {ei | 1 6 i 6 2n + 1} repre-
sent the standard generators of

∨

H1(T2n+1, Z) =
∨

H1(T2n+1, Z). We now resort to an
axiomatic argument similar to that used by J. Brylinski in [7], Theorem 4.14 and
Corollary 4.15. Note that the sheaf two-cocycle {ηijk} defined in Equation (3.5)

is by definition the cup product of the Čech 0-cocycle gz ∈
∨

Z0(T2n+1, T) defined
by gz((z, x)) = z, (z, x) ∈ T × T2n, and the Čech two-cocycle gσ ∈ Z2(T2n+1, Z),
where {(gσ)ijk | Uijk = T×Nijk → Z} is defined by

(3.7) (gσ)ijk(z, χ) = σ(λij(x), λjk(x)) (z, χ) ∈ T×Nijk,

i.e.

(3.8) {ηijk} = {(gz)i} ∪ {(gσ)ijk},

where here our cup product ∪ maps
∨

H0(T2n+1,S)⊗
∨

H2(T2n+1, Z) to
∨

H2(T2n+1,S⊗
Z) ∼=

∨

H2(T2n+1,S). Using our proof of Proposition 2.1 and the explicit structure
of the isomorphism λ∗ : H2(Z2n, Z) →

∨

H2(T2n, Z) discussed there as defined in
[35], Lemma 2.6 it is easy to see that

{(gσ)ijk} = π∗2 ◦ λ∗([σ]) = π∗2 ◦ λ∗

( n∑
i=1

di[σEn+i,i
]
)

= π∗2

( n∑
i=1

difi ∧ fn+i

)
=

n∑
i=1

diei+1 ∧ en+i+1.

Therefore

{(ηijk)} = (gz) ∪
( n∑

i=1

diei+1 ∧ en+i+1

)
.

By using axiomatic results from sheaf theory ([6], Theorem 7.1(a)), we get

d2({ηijk}) = d2

(
(gz)∪

( n∑
i=1

diei+1∧en+i+1

))
= (d0(gz))∪

( n∑
i=1

diei+1∧en+i+1

)

where d0 :
∨

H0(T2n+1,S) →
∨

H1(T2n+1, Z) is the Bockstein map in dimension 0.
Now it is well known that if gj : T2n+1 → T is the continuous function given by
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projection onto the jth coordinate, 1 6 j 6 2n + 1, then {gj} ∈
∨

H0(T2n+1,S) and
d0(gj) = ej . Since gz = g1 we have

d2({ηijk}) = (e1) ∪
( n∑

i=1

diei+1 ∧ en+i+1

)
.

In Section 2, we have already identified H∗(T2n+1, Z) with the exterior algebra on
2n + 1 generators {e1, . . . , e2n} and under this identification the cup product is
identified with the exterior product. Hence

d2({ηijk}) = e1 ∧
n∑

i=1

diei+1 ∧ en+i+1 =
n∑

i=1

die1 ∧ ei+1 ∧ en+i+1,

as desired.

Using Lemma 3.3 we can identify certain twisted tori as being KK-equivalent
to generalized discrete Heisenberg group C∗-algebras:

Theorem 3.4. Let A denote a twisted 2n + 1 torus, that is, a continuous
trace C∗-algebra with spectrum T2n+1, and suppose that there exist positive integers

{di | 1 6 i 6 n} with d1|d2| · · · |dn such that δ(A) =
n∑

i=1

die1 ∧ ei+1 ∧ en+i+1. Then

A is KK-equivalent to C∗(Γ), where Γ = H(d1, . . . , dn), and thus the K-groups of
A can be computed using Theorem 2.3.

Proof. The proof is a direct application of Proposition 3.1, Lemma 3.2 and
Lemma 3.3.

Remark 3.5. By applying elements of Aut(T2n+1) = GL(2n + 1, Z) to the
elements of H3(T2n+1, Z) given in Theorem 3.4, we can arrive at a much wider class
of elements of H3(T2n+1, Z) whose corresponding continuous trace C∗-algebras
can have their K-groups computed via the methods of Section 2. This idea used
together with the Kunneth formula as in Remark 2.8 should allow the K-groups
of a wide range of twisted tori of both odd and even dimension to be computed.
We plan to take up this problem in detail in a future paper; for now we content
ourselves with the following corollary:

Corollary 3.6. Let A denote a nontrivial twisted m-torus for m > 3,
and suppose that there exist integers {ajk | 2 6 k < j 6 m} such that δ(A) =∑
26k<j6m

ajke1 ∧ ek ∧ ej ∈ H3(T3, Z). Then, modulo a dimension shift equal to

the parity of (m − 1), A is KK-equivalent to C∗(Γ × Zm−(2n+1)), where Γ is a
generalized discrete Heisenberg group of rank 2n + 1 6 m, and thus the K-groups
of A can be computed by the method of Remark 2.8.
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Proof. Let M be the (m−1)× (m−1) matrix defined by M =
∑

26k<j6m

ajk ·

Ej−1,k−1, and let Γ1 = Zm−1 ×σM
Z, that is, the central extension of Zm−1

by Z corresponding to σM ∈ Z2(Zm−1, Z) as defined in [4], Section 3. By [4],
Corollary 3.4, Γ1 is isomorphic to Γ×Zm−(2n+1), where Γ is a generalized discrete
Heisenberg group of rank 2n + 1 6 m. By the same method as in Proposition 3.1,
C∗(Γ1) is strongly Morita equivalent to IndRm−1

Zm−1 (β)[C(T) ⊗ K] ×τ Rm−1. Let
A = IndRm−1

Zm−1 (β)[C(T) ⊗ K]. Then the method of Lemma 3.2 shows that A is a
continuous trace C∗-algebra with spectrum Tm and the desired Dixmier-Douady
class, and we have, by Connes’ Thom isomorphism theorem ([8]),

Ki(A) = Ki+(m−1)

(
C∗(Γ1)

)
= Ki+(m−1)

(
C∗(Γ× Zm−(2n+1))

)
, i = 0, 1.

The K-groups of the last C∗-algebra can be computed using the formulas in Re-
mark 2.8.

Example 3.7. Let n = 1, and consider continuous trace C∗-algebras with
spectrum T2n+1 = T3. Any such C∗-algebra is either strongly Morita equivalent to
C(T3), hence has both K0 and K1 groups isomorphic to Z4, or is stably isomorphic
to the stable continuous trace C∗-algebra Ad having Dixmier-Douady class de1 ∧
e2 ∧ e3 ∈

∨

H3(T3, Z) ∼= Z(e1 ∧ e2 ∧ e3), for some d ∈ Z \ {0}. If d ∈ Z+, by
Theorem 3.4, Ad is KK-equivalent to C∗(H(d)) so that by Example 2.4,

Ki(Ad) =
{

Z3 i = 0,
Z3 ⊕ Zd i = 1.

If d < 0, easy arguments using the automorphism (z, x, y)→ (z−1, x, y) show that
Ad
∼= A|d| so that

Ki(Ad) =
{

Z3 i = 0,
Z3 ⊕ Z|d| i = 1;

for all d ∈ Z \ {0}.

Example 3.8. Let n = 2 so that 2n + 1 = 5. If Aδ is a twisted 5-torus
with Dixmier-Douady class given by δ = d1e1 ∧ e2 ∧ e4 + d2e1 ∧ e3 ∧ e5 for positive
integers d1, d2 with d1|d2, then Example 2.4 and Theorem 3.4 show that

Ki(Aδ) =
{

Z10 ⊕ (Zd1)
2 ⊕ (Zd2)

2 i = 0,
Z10 ⊕ (Zd1)

2 i = 1.
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