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Abstract. If X is a topological vector space and T : X → X is a continuous
linear mapping, then T is said to be hypercyclic when there is a vector f in X
such that the set {T nf : n > 0} is dense in X. When X is a separable Fréchet
space, Gethner and Shapiro obtained a sufficient condition for the mapping
T to be hypercyclic. In the present paper, we obtain an analogous sufficient
condition when X is a particular nonmetrizable space, namely the operator
algebra for a separable infinite dimensional Hilbert space H, endowed with
the strong operator topology. Using our result, we further provide a sufficient
condition for a mapping T on H to have a closed infinite dimensional subspace
of hypercyclic vectors. This condition was first found by Montes-Rodŕıguez
for a general Banach space, but the approach that we take is entirely different
and simpler.
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1. INTRODUCTION

In 1929 Birkhoff ([1]) proved a remarkable theorem that there exists an entire
function f(z) whose successive translates f(z), f(z + 1), f(z + 2), . . . are dense in
the space of all entire functions, endowed with the topology of uniform conver-
gence on compact sets. Analogous to Birkhoff’s theorem, G.R. MacLane ([11])
proved in 1952 that there exists an entire function f whose successive derivatives
f, f ′, f ′′, . . . are dense in the space of all entire functions. The results of Birkhoff
and MacLane can be rephrased in operator theory terms. To explain that, we let
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X be a topological vector space and T : X → X be a continuous linear mapping.

Corresponding to T , the orbit of a vector x in X is the set

orb(T, x) = {x, Tx, T 2x, T 3x, . . .}.

Definition 1.1. A vector x is said to be a hypercyclic vector of T if its

orbit orb(T, x) is dense in X. The mapping T is said to be hypercyclic if T has a

hypercyclic vector.

When X is the Fréchet space of all entire functions, Birkhoff’s Theorem states

that the translation operator T : f(z) 7→ f(z + 1) is hypercyclic, and MacLane’s

Theorem states that the differentiation operator T : f 7→ f ′ is hypercyclic. When

X is a separable Fréchet space, Gethner and Shapiro ([5]) showed in 1987 a suf-

ficient condition for a continuous linear mapping T : X → X to be hypercyclic.

Their condition is analogous to the condition obtained in 1982 by Kitai ([7]) for

the case when X is a Banach space. To state the result of Gethner and Shapiro,

we use d to denote the metric of a Fréchet space X.

Theorem 1.2. ([5]) Suppose X is a separable Fréchet space, and T : X → X

is a continuous linear mapping. If there exists a dense subset E of X and a right

inverse W of T such that

lim
n→∞

d(0, Tnf) = 0 and lim
n→∞

d(0,Wnf) = 0

for every f ∈ E, then T has a hypercyclic vector.

Applying Theorem 1.2 to the Fréchet space of entire functions, Gethner and

Shapiro derived the theorems of Birkhoff and MacLane. Besides this space, some

hypercyclicity-like phenomena have been found in other interesting spaces; for

example, the Banach space of continuous functions on a compact interval studied

by Luh ([10]), and also the Fréchet space of all analytic functions on the open

unit disk studied by Seidel and Walsh ([13]). Hypercyclicity can also occur in a

separable infinite dimensional complex Hilbert space H, as it is well-known ([6],

Problem 168) that if we let B : H → H be the unilateral backward shift, then the

operator 2B is hypercyclic. In view of this example, we raise the following question

for the operator algebra B(H) which, by definition, consists of all bounded linear

operators from H to H.
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Question 1.3. Can hypercyclicity occur in the operator algebra B(H) of a

separable infinite dimensional complex Hilbert space H?

The answer for the above question is of course negative if we use the operator

norm topology of the algebra B(H), because no countable subset of B(H) can be

dense in that topology. In order for the above question to make sense, we introduce

the following definition.

Definition 1.4. Let L : B(H) → B(H) be a bounded linear mapping. An

operator T in B(H) is said to be a hypercyclic vector of L if its orbit orb(L, T ) is

dense in B(H) in the strong operator topology. Furthermore, the mapping L is

said to be hypercyclic when it has a hypercyclic vector.

In Section 2 below, we prove the main theorem of the paper, which is a suffi-

cient condition for the mapping L : B(H) → B(H) to be hypercyclic, analogous to

the condition given by Theorem 1.2. Using the main theorem we give examples of a

hypercyclic mapping L. Then we further show that for every hypercyclic mapping

L there exists an invariant infinite dimensional linear subspace of B(H) consisting

entirely, except for the zero operator, of hypercyclic vectors of L. Furthermore,

this subspace is even dense in the strong operator topology of B(H). This result

originates from the work of P.S. Bourdon ([2]) who showed this phenomenon for

the Hilbert space H. Then, in Section 3, we discuss the relation between the

main theorem and Theorem 1.2. In particular, we show that if T ∈ B(H) sat-

isfies the hypotheses of Theorem 1.2, then the left multiplication linear mapping

LT : B(H) → B(H) defined by LT (V ) = TV is hypercyclic. This in turn implies

that the operator T itself is hypercyclic. Motivated by this result, we further show

that H can have a closed infinite dimensional subspace consisting entirely, except

for zero, of hypercyclic vectors of T , when T satisfies an extra hypothesis. The

existence of such closed subspaces was first shown by A. Montes-Rodŕıguez ([12]),

and our work provides a different approach to this phenomenon.
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2. HYPERCYCLICITY

For a separable infinite dimensional complex Hilbert space H, the operator algebra
B(H) naturally has many topologies, but in this paper we use only two, namely
the operator norm topology and the strong operator topology. To distinguish the
two, we use the convention that when a topological term is used for B(H) it always
refers to the operator norm topology, otherwise we add the prefix “SOT” in front
of the term with reference to the strong operator topology.

With our convention, we remark that the operator algebra B(H) is SOT-
separable. There are many ways to see that, but we now offer one that relates to
one of our later arguments. To begin, we let {ek : k > 1} be an orthonormal basis
of H, let Pn : H → H be the orthogonal projection onto span{ek : 1 6 k 6 n},
and let I : H → H be the identity mapping. Then, for any vector f in H and any
operator T in B(H),

‖PnTPnf − Tf‖ 6 ‖PnT (Pnf − f)‖+ ‖(Pn − I)(Tf)‖,
6 ‖T‖ ‖(Pn − I)f‖+ ‖(Pn − I)(Tf)‖,

which goes to zero as n →∞. In other words, PnTPn → T in the strong operator
topology. Each operator PnTPn can be represented uniquely as an n × n matrix
with scalar entries with respect to the basis {ek}, and so PnTPn can be approx-
imated arbitrarily close, in the operator norm, by an n × n matrix with rational
entries. Thus the countable set of all finite square matrices with rational entries
is SOT-dense in B(H).

The SOT-separability of B(H) makes one wonder whether a countable SOT-
dense set of B(H) can be the orbit of an operator in B(H) under a linear mapping
L : B(H) → B(H). For that to happen, we now prove a sufficient condition anal-
ogous to Theorem 1.2, based on some techniques used by Kitai [7], Theorem 1.4,
in showing the Banach space version of Theorem 1.2.

Theorem 2.1. A bounded linear mapping L : B(H) → B(H) is hypercyclic
if there exist a linear mapping A : B(H) → B(H) and a countable SOT-dense
subset D of B(H) such that LA is the identity mapping on B(H) and for each
operator V in D,

lim
n→∞

‖An(V )‖ = 0 and lim
n→∞

‖Ln(V )‖ = 0.

Proof. Denote the countable SOT-dense subset D by D = {Tk : k > 1}.
Using the hypothesis on D, we now determine a sequence of integers {nk : k > 1}.
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Let n1 be a positive integer such that ‖An1(T1)‖ < 2−1, and determine a positive
integer n2 such that the following three inequalities hold:

‖An1+n2(T2)‖ < 2−12−2, ‖An2(T2)‖ < 2−2 and ‖Ln2(T1)‖ < 2−2.

With n1 and n2 determined, we can find a positive integer n3 such that

‖An1+n2+n3(T3)‖ < 2−12−22−3, ‖An2+n3(T3)‖ < 2−22−3, ‖An3(T3)‖ < 2−3,

and also

‖Ln2+n3(T1)‖ < 2−22−3 and ‖Ln3(T2)‖ < 2−3.

In general, we determine a positive integer nk such that for all integers m =
1, 2, . . . , k,

(2.1) ‖Anm+nm+1+···+nk(Tk)‖ < 2−m2−m−1 · · · 2−k,

and for all integers l = 2, 3, . . . , k,

(2.2) ‖Lnl+nl+1+···+nk(Tl−1)‖ < 2−l2−l−1 · · · 2−k.

In terms of the sequence {nk}, we define T by

T =
∞∑

k=1

An1+n2+···+nk(Tk),

in which every summand satisfies

‖An1+n2+···+nk(Tk)‖ < 2−12−2 · · · 2−k.

Thus the series expression of T is absolutely convergent and so it defines an oper-
ator T in B(H).

We now show that T is a hypercyclic vector of L, by first observing the
following: for any integer m > 2,

Ln1+n2+···+nm(T ) =
∞∑

k=1

Ln1+n2+···+nmAn1+n2+···+nk(Tk), because L is bounded

=
m−1∑
k=1

Lnk+1+···+nm(Tk) + Tm +
∞∑

k=m+1

Anm+1+···+nk(Tk),
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from which it follows that
‖Ln1+n2+···+nm(T )− Tm‖

6
m−1∑
k=1

‖Lnk+1+···+nm(Tk)‖+
∞∑

k=m+1

‖Anm+1+···+nk(Tk)‖

6
m−1∑
k=1

2−k−1 · · · 2−m +
∞∑

k=m+1

2−m−1 · · · 2−k, by (2.1) and (2.2)

< 2−m
∞∑

k=0

2−k + 2−m−1
∞∑

k=0

2−k = 2−m+1 + 2−m,

and hence

(2.3) lim
m→∞

‖Ln1+n2+···+nm(T )− Tm‖ = 0.

We now use Equation (2.3) to show that every basic SOT-open set U contains
an operator of the form Ln1+n2+···+nα(T ), for some integer α, and hence orb(L, T )
is SOT-dense in B(H). By the definition of the strong operator topology, U can
be written as

U = U(V0, ε ; f1, f2, . . . , fN )

= {V ∈ B(H) : ‖(V − V0)fi‖ < ε, for all i = 1, . . . , N},
where ε > 0, V0 is an operator in B(H), and f1, f2, . . . , fN are N vectors in H.
If every fi is the zero vector then U = B(H), and thus we can assume that some
fi is nonzero in our proof. We denote C = max{‖fi‖ : 1 6 i 6 N}, for which
Equation (2.3) gives an integer M such that for all integers m > M ,

‖Ln1+n2+···+nm(T )− Tm‖ < (2C)−1ε.

Hence if 1 6 i 6 N and m > M , then

(2.4) ‖Ln1+n2+···+nmT (fi)− Tm(fi)‖ < (2C)−1ε‖fi‖ 6
ε

2
.

On the other hand, the set D is SOT-dense in B(H) and so the set {Tm :
m > M} is also SOT-dense in B(H). Thus we can choose an integer α > M such
that Tα ∈ U(V0, ε/2 ; f1, f2, . . . , fN ); that is, for all i = 1, 2, . . . , N ,

(2.5) ‖(Tα − V0)fi‖ <
ε

2
.

Hence, for that particular integer α and for all fi,

‖Ln1+n2+···+nαT (fi)− V0(fi)‖
6 ‖Ln1+n2+···+nαT (fi)− Tα(fi)‖+ ‖Tα(fi)− V0(fi)‖

<
ε

2
+

ε

2
= ε,

by Inequalities (2.4) and (2.5). This implies that Ln1+n2+···+nα(T ) ∈ U and
completes the proof.
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We now present two examples showing that the sufficient condition in The-

orem 2.1 can be satisfied. These two examples involve the unilateral forward and

backward shifts, which are probably the best studied Hilbert space operators in

the literature.

Example 2.2. Let {en : n > 1} be an orthonormal basis of H and let

S ∈ B(H) be the unilateral forward shift, which is defined by Sen = en+1 for

all integers n > 1. The Hilbert space adjoint S∗ is the unilateral backward shift,

which satisfies S∗e1 = 0 and S∗en = en−1 for all integers n > 2. Define a

linear mapping L : B(H) → B(H) by L(T ) = 2S∗T for all T in B(H). Since

‖L(T )‖ 6 2‖S∗‖ ‖T‖ = 2‖S‖ ‖T‖ = 2‖T‖, the linear mapping L is bounded. In

addition, we define a linear mapping A : B(H) → B(H) by A(T ) = 2−1ST , giving

the identity LA = I. Furthermore, we let D denote the set of all operators T in

B(H) such that T has a positive integer N with the property that Tek = 0 for

all integers k > N , and also that each of the vectors Te1, T e2, . . . , T eN is a linear

combination of e1, e2, . . . , eN with rational coefficients. In other words, D consists

of all operators that are represented as finite square matrices with rational entries,

with respect to the basis {en}. The set D is a countable SOT-dense subset of

B(H), as indicated in the second paragraph of this section. Moreover, if T is an

operator in D that can be represented as an n × n matrix, then one can check

that Ln+1(T ) = 0, and that ‖Ak(T )‖ 6 2−k‖S‖ ‖T‖ = 2−k‖T‖. Hence the linear

mapping L is hypercyclic, by Theorem 2.1.

Example 2.3. With S, S∗ and D given as in Example 2.2, we define bounded

linear mappings L,A : B(H) → B(H) by L(T ) = 2S∗TS and A(T ) = 2−1STS∗,

for all T in B(H). It is easy to check that LA = I, and furthermore if T is an

operator in D that can be represented as an n × n matrix with rational entries,

then S∗(n+1)T = 0, and hence Ln+1(T ) = 0. Since ‖An(T )‖ 6 2−n‖S∗‖ ‖T‖ ‖S‖ =

2−n‖T‖, the linear mapping L is hypercyclic by Theorem 2.1.

Having given two examples based on the sufficient condition for hypercyclic-

ity provided by Theorem 2.1, we now discuss a simple necessary condition. It is

clear from the definition that if L : B(H) → B(H) is hypercyclic, then L must

have an SOT-dense range in B(H). Though this necessary condition for hyper-

cyclicity is not at all related to the sufficient condition given by Theorem 2.1, it

can be strengthened to the condition given in the following lemma, which in turn

yields a result better than Theorem 2.1.
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Lemma 2.4. If L : B(H) → B(H) is hypercyclic then for every scalar λ, the
mapping L− λ has an SOT-dense range.

Proof. Let L∗ be the Banach space adjoint of L. We remark that ev-
ery nonzero SOT-continuous linear functional S on B(H) is necessarily norm-
continuous. For that S, we claim that if there exists a scalar λ such that L∗S = λS

then L is not hypercyclic. To prove the claim, we simply observe that for every
operator T in B(H) and for every positive integer n,

S(LnT ) = (L∗nS)(T ) = λnS(T ).

This implies that the orbit orb(L, T ) is not SOT-dense in B(H).

From our claim we deduce that if L is hypercyclic, then for every nonzero
SOT-continuous linear functional S on B(H) and for every scalar λ, there exists an
operator T in B(H) such that S((L− λ)T ) 6= 0. Thus (L− λ)B(H) is SOT-dense
in B(H), because B(H) is a locally convex topological vector space in the strong
operator topology.

The phenomenon in Lemma 2.4 happens also in a Banach space setting. In
fact, Kitai ([7], Theorem 2.3) showed that if T : X → X is a hypercyclic operator
on a Banach space X and if λ is a complex number, then T −λ has a dense range.
This, in turn, implies that the adjoint operator T ∗ has no eigenvalue.

We now turn our attention to the density of hypercyclic vectors of a bounded
linear mapping L : B(H) → B(H). We claim that if L has one hypercyclic vector
T , then L must have an SOT-dense set of hypercyclic vectors. The reason is
that if the set {T,L(T ), L2(T ), L3(T ), . . .} is SOT-dense in B(H), then the set
{Ln(T ), Ln+1(T ), Ln+2(T ), . . .} is also SOT-dense and thus every operator Ln(T )
is a hypercyclic vector of L. Furthermore, those vectors in the orbit actually span
an SOT-dense linear subspace of hypercyclic vectors of L, as indicated in the proof
of the next theorem. The existence of a dense linear subspace of hypercyclic vectors
in a space was first found by P.S. Bourdon ([2]), who showed that if a bounded
linear operator T : H → H has a hypercyclic vector in H, then H must have a
dense linear subspace that is invariant under T and consists entirely, except for
zero, of hypercyclic vectors of T . This result is surprising because in general the
sum of two hypercyclic vectors may not be a hypercyclic vector. The argument of
Bourdon works for our setting and we include it here for the completeness of our
discussion.
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Proposition 2.5. If L : B(H) → B(H) is a hypercyclic bounded linear
mapping, then B(H) has an SOT-dense linear subspace that is invariant under L

and consists entirely, except for the zero operator, of hypercyclic vectors of L.

Proof. For a hypercyclic vector T of L, the linear subspace {p(L)T : p is a
polynomial} contains the orbit orb(L, T ) and so it is SOT-dense in B(H). We let
p(L)T be a nonzero operator in that linear subspace, and now show that p(L)T is
a hypercyclic vector of L.

Since p(L) commutes with L, we see that orb(L, p(L)T ) = p(L)orb(L, T ).
Note that orb(L, T ) is SOT-dense in B(H), and also that p(L) has an SOT-dense
range, due to Lemma 2.4 and the linear factorization of the polynomial p. Thus
p(L)orb(L, T ) is SOT-dense in B(H) and so is orb(L, p(L)T ). This completes our
proof.

To conclude this section, we remark that the set of hypercyclic vectors of
L may not be dense in B(H) in the operator norm topology. To illustrate this
point, we take the linear mapping L in Example 2.2 defined by L(T ) = 2S∗T ,
and use Gr to denote the set of all right invertible operators in B(H). We claim
that every operator T in Gr is not a hypercyclic vector of L. To show that, let
W be an operator in B(H) such that TW = I, the identity operator on H. Since
TWe1 = e1, we see that ‖We1‖ > 0 and so

U =
{

V ∈ B(H) : ‖(V − I)(We1)‖ <
‖We1‖

2

}
is a basic SOT-open set containing I. Note that Ln(T ) /∈ U for every integer n > 1,
because ‖(Ln(T ) − I)(We1)‖ = ‖2nS∗nTWe1 − We1‖ = ‖2nS∗ne1 − We1‖ =
‖We1‖. Hence the set {Ln(T ) : n > 1} is not SOT-dense in B(H) and so the orbit
{Ln(T ) : n > 0} of T under L cannot be SOT-dense either. Since Gr is open in
the operator norm topology, the hypercyclic vectors of L cannot be dense in B(H)
in that topology.

3. LEFT MULTIPLICATION

In this section, we continue to discuss hypercyclic mappings on the algebra B(H) of
a separable infinite dimensional complex Hilbert space H, in particular the relation
between Theorems 1.2 and 2.1. To begin our discussion, we use {ek : k > 1}
to denote an orthonormal basis of H. In addition, for any subset E of H we
use D(E) to denote the set of all operators T in B(H) satisfying the following
condition: there exists a positive integer n, depending on T , such that Tek = 0
for all integers k > n and that Tek ∈ E for all integers k 6 n.
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Lemma 3.1. If E is dense in H, then D(E) is SOT-dense in B(H).

Proof. Let Pn : H → H be the orthogonal projection onto span{ek : k 6 n},
and let Y be an operator in B(H). Then, for any vector f in H, one can use the
triangle inequality to deduce that

‖PnY Pnf − Y f‖ 6 ‖PnY ‖ ‖Pnf − f‖+ ‖(Pn − I)(Y f)‖,

from which it follows that the SOT-limit of PnY Pn is Y as n →∞. The operator
PnY Pn takes ek to the zero vector if k > n, and takes ek to a vector in span{ej :
j 6 n} if k 6 n. Using this property of PnY Pn and the density of E in H, we
deduce that PnY Pn can be approximated arbitrarily close, in the operator norm,
by an operator T in D(E). Thus Y is in the SOT-closure of D(E), and so D(E)
is SOT-dense in B(H).

Lemma 3.1 provides a way to connect a dense subset of H to an SOT-dense
subset of B(H). We now want to connect an operator on H to a bounded linear
mapping on B(H) through the following definition.

Definition 3.2. Corresponding to any operator T ∈ B(H), we define a left
multiplication mapping LT : B(H) → B(H) by LT (V ) = TV , for all V in B(H).

Suppose T and W are two operators in B(H) such that TW is the identity
operator on H, then LT LW is the identity mapping on B(H). Furthermore, we
now show that if T and W satisfy the hypotheses of Theorem 1.2 then LT and
LW satisfy the hypotheses of Theorem 2.1.

Proposition 3.3. Suppose T,W ∈ B(H). If there is a dense subset E of
H such that for every f ∈ E,

lim
n→∞

‖Tnf‖ = 0 and lim
n→∞

‖Wnf‖ = 0,

then there is a countable SOT-dense subset D of B(H) such that for every operator
V in D,

lim
n→∞

‖Ln
T (V )‖ = 0 and lim

n→∞
‖Ln

W (V )‖ = 0.

Proof. Since E contains a countable subset E′ that is dense in H, we can let
D = D(E′) be the countable set of operators that we discuss in Lemma 3.1. By
the definition of D, every operator V in D has an integer m such that V ek = 0
whenever k > m. Hence, if f is a vector represented as

f =
∞∑
1

akek
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with scalars ak satisfying
∑

|ak|2 < ∞, then

V (f) =
m∑
1

akV (ek).

With this equation, we deduce that

‖Ln
T (V )(f)‖2 =

∥∥∥ m∑
k=1

akTnV (ek)
∥∥∥2

6
( m∑

k=1

|ak| ‖TnV (ek)‖
)2

6
( m∑

k=1

|ak|2
)( m∑

k=1

‖TnV (ek)‖2
)
, by the Cauchy-Schwarz Inequality

6 ‖f‖2
m∑

k=1

‖TnV (ek)‖2.

It follows that

‖Ln
T (V )‖2 6

m∑
k=1

‖TnV (ek)‖2,

in which every term V (ek) is in E′ because V is an operator in D. Thus ‖TnV (ek)‖
→ 0 as n →∞, and hence

lim
n→∞

‖Ln
T (V )‖ = 0.

By repeating the above argument we prove that ‖Ln
W (V )‖ → 0.

From Proposition 3.3 and Theorem 2.1, we easily deduce the following.

Corollary 3.4. If T : H → H is a bounded linear operator satisfying
the hypotheses of Theorem 1.2 then the corresponding left multiplication mapping
LT : B(H) → B(H) is hypercyclic.

To illustrate the phenomenon that occurs in Corollary 3.4, one may take
Example 2.2. As an application to the hypercyclicity of the Hilbert space H, we
now show that we can use a hypercyclic vector of LT to construct hypercyclic
vectors of T , strengthening the hypercyclicity relation between T and LT .

Proposition 3.5. If LT has a hypercyclic vector V and if f is any nonzero
vector in H, then the vector V f is a hypercyclic vector of T .

Proof. It suffices to show that if g ∈ H then there exists a sequence of positive
integers {nk} such that Tnk(V f) → g, as k → ∞. For that vector g, we consider
the bounded linear operator Sg : H → H defined by

Sg(h) =
〈h, f〉
‖f‖2

g.

Since V is a hypercyclic vector of LT , there exists a sequence of integers {nk} such
that Lnk

T (V ) = Tnk(V ) → Sg in the strong operator topology. Thus Tnk(V f) →
Sg(f) = g in the norm topology of H.
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Since the zero vector of H cannot be a hypercyclic vector of any operator,
Proposition 3.5 implies that every hypercyclic vector V of LT is a one-to-one
operator. Hence V H must be an infinite dimensional vector subspace. It is natural
to ask whether V H can be a closed infinite dimensional subspace. When that
happens, Proposition 3.5 implies that H has a closed infinite dimensional subspace
of hypercyclic vectors of T , except for the zero vector. A result of this kind was
first obtained by A. Montes-Rodŕıguez ([12]), who showed that such subspaces
exist if T is an operator on a separable Banach space X satisfying the hypotheses
in Theorem 1.2, and if X has a closed infinite dimensional subspace X0 with the
property that lim ‖Tnf‖ = 0 for every vector f in X0. Furthermore, F. León-
Saavedra and A. Montes-Rodŕıguez ([8]) showed that the operator T can be taken
to be a compact perturbation of an operator with norm no more than 1. The
result of A. Montes-Rodŕıguez in [12] requires the existence of X0, but this is
not superfluous because this existence condition is proved recently by F. León-
Saavedra and A. Montes-Rodŕıguez ([9]) to be essential. We now offer a simple
proof for the Hilbert space version of the result of A. Montes-Rodŕıguez ([12]).

Theorem 3.6. Suppose T : H → H is a bounded linear operator satisfying
the hypotheses of Theorem 1.2. If H has a closed infinite dimensional subspace K

such that for every vector f in K

lim
n→∞

‖Tnf‖ = 0,

then H has an infinite dimensional closed subspace consisting entirely, except for
zero, of hypercyclic vectors of T .

Proof. To prove the theorem, it suffices to show that the bounded linear
mapping LT : B(H) → B(H) has a hypercyclic vector that is bounded below, in
view of Proposition 3.5 and the discussion immediately after its proof.

Since K is a closed infinite dimensional subspace of H, there is a Hilbert
space isomorphism U from H onto K. By our hypothesis on K, we see that if h

is a vector in H then ‖TnUh‖ → 0 as n →∞.

On the other hand, LT has a hypercyclic vector V , by Corollary 3.4. Since
any scalar multiple of V is also a hypercyclic vector of LT , we can assume that
V has norm 1/2. Thus the operator U + V is bounded below by 1/2. Now one
can easily check that the operator U + V is a hypercyclic vector of LT , because
Ln

T U → 0 in the strong operator topology.
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To conclude this paper, we remark that our results in this paper, except The-
orem 3.6, can readily be generalized to any Banach space X that has a Schauder
basis, though these results are stated and proved here for a Hilbert space H. This
is because a Schauder basis of X is a sequence {xk ∈ X : k > 1} with the property
that for every vector x in X, there is a unique sequence of scalars {αk : k > 1}
such that

lim
n→∞

‖α1x1 + α2x2 + · · ·+ αnxn − x‖ = 0.

This property is shared by an orthonormal basis of the Hilbert space, and is the
only property that we use to make all the proofs in the present paper work. To
this end, the only problem that we appear to have is the use of the inner product
in Proposition 3.5, but we can replace that by a continuous projection onto a one
dimensional subspace.
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