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Abstract. If S is the semigroup generated by an n-th order strongly elliptic
operator on Lp(X; dx) associated with the left regular representation of a
unimodular Lie group G in the homogeneous space X = G/M , where M is
a compact subgroup of G, and κ is the reduced heat kernel of S defined by

(Stϕ)(x) =

Z
X

κt(x ; y) ϕ(y) dy

then we prove Gaussian upper bounds for κt and all its derivatives.
For reduced heat kernels associated with irreducible unitary represen-

tations on nilpotent Lie groups we prove similar Gaussian bounds.
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1. INTRODUCTION

Various methods have been developed in the last few years for the derivation of
Gaussian bounds on the kernels of strongly elliptic and subelliptic operators on
manifolds or Lie groups. These methods are described in the books [5], [12] and
[16]. The first method, used by Davies, is a logarithmic Sobolev inequality to
obtain semigroup bounds for real second order strongly elliptic operators. Via a
perturbation method one then obtains Gaussian type upper bounds. Alternatively,
[16] uses Harnack inequalities and that method is also restricted to real second
order operators. Robinson, however, first proves Nash inequalities in order to
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derive semigroup bounds. Then via the Davies perturbation method, Gaussian
type upper bounds are established. His method also works for higher order strongly
elliptic operators.

In this paper we consider homogeneous spaces X = G/M with G a con-
nected unimodular Lie group and M a connected compact Lie subgroup. Let H
be a complex n-th order strongly elliptic operator affiliated to the left regular rep-
resentation of G in L2(X; dx), where dx is the G-invariant measure on X induced
by the Haar measures of G and M . Then the semigroup S generated by the closure
of H has a smooth kernel K on G such that

Stϕ =
∫
G

Kt(g)U(g)ϕ dg

for all t > 0 and ϕ ∈ L2(X; dx), where U denotes the left regular representation
of G in L2(X; dx) (see [12], Theorem III.2.1). We shall show that the semigroup
S has a heat kernel on X × X which can be expressed as an integral of the Lie
group kernel K. For this kernel, and all its derivatives, we prove Gaussian type
upper bounds in terms of the natural distance on the homogeneous space.

On non-compact symmetric spaces, Anker ([1]), studied the functional cal-
culus of Laplace operators. In [1] heat kernel upper bounds are derived for these
Laplace operators. In this paper, the Lie group G need not be semisimple.

We use the notation of [12]. Let G be a connected unimodular d-dimensional
Lie group with Haar measure dg and let M be a dm-dimensional compact con-
nected Lie subgroup of G with Haar measure dm. Let a1, . . . , ad be a vector space
basis for the Lie algebra g of G. Define the homogeneous space X = G/M . By
[14], Satz III.3.2 there exists a G-invariant measure dx = dġ induced by the Haar
measures dg and dm. By ġ we denote the left coset gM for all g ∈ G. If U is
a continuous representation of G in a Banach space X then for all i ∈ {1, . . . , d}
we denote by Ai = dU(ai) the infinitesimal generator of the one parameter group

t 7→ U(exp(−tai)). We also need multi-index notation. Let J(d) =
∞⊕
k=0

{1, . . . , d}k

denote the set of all multi-indices over the index set {1, . . . , d}. If α = (i1, . . . , ik) ∈
J(d) then set Aα = Ai1 ◦ · · · ◦ Aik and we denote by |α| = k the length of the
multi-index α.

For p ∈ [1,∞] consider the left regular representation U of G on Lp(X; dx)
defined by

(1.1)
(
U(g)ϕ

)
(x) = ϕ(g−1x)

for all ϕ ∈ Lp(X; dx) and a.e. x ∈ X.
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Let n ∈ N be even and for all α ∈ J(d) with |α| 6 n let cα ∈ C. We con-
sider the operator H in Lp(X; dx) associated with the left regular representation
U of (1.1)

(1.2) H =
∑

α: |α|6n

cαA
α,

with domainD(H) =
⋂

|α|6n
D(Aα). The operatorH is called an n-th order strongly

elliptic operator if there exists a µ > 0 such that

Re (−1)n/2
∑

α: |α|=n

cαξ
α > µ|ξ|n

for all ξ ∈ Rd, where ξα = ξi1 · · · ξik for all α = (i1, . . . , ik) ∈ J(d). By [12],
Theorem I.5.1, the closure of H generates a continuous semigroup S. Note that
the operator H is already closed if p ∈ (1,∞) (see [3], Theorem 2.9). Moreover, for
all t > 0 there exists a smooth, rapidly decreasing, Lie group kernelKt ∈ L1(G; dg)
such that

(Stϕ)(x) =
∫
G

Kt(g)(U(g)ϕ)(x) dg =
∫
G

Kt(g)ϕ(g−1x) dg

for all ϕ ∈ Lp(X; dx) and a.e. x ∈ X (see [12], Theorem III.2.1).

Since Kt is continuous and M is compact one can define for all t > 0 the
continuous function κt : X ×X → C by

κt(ġ; k̇) =
∫
M

Kt(gmk−1) dm

where g, k ∈ G. Note that this definition does not depend on the coset representa-
tives by the unimodularity of M . We call the function κt the reduced heat kernel
because of the following identity.

Proposition 1.1. If p ∈ [1,∞], ϕ ∈ Lp(X; dx) and t > 0 then

(Stϕ)(x) =
∫
X

κt(x; y)ϕ(y) dy

for a.e. x ∈ X.
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Proof. Let ψ ∈ C∞c (X). Since G and M are unimodular [14], Satz III.3.2
gives

(ψ, Stϕ) =
∫
X

ψ(ġ)
∫
G

Kt(l)ϕ(l−1gM) dl dġ

=
∫
X

ψ(ġ)
∫
G

Kt(l−1)ϕ(lgM) dl dġ

=
∫
X

ψ(ġ)
∫
G

Kt(gl−1)ϕ(lM) dl dġ

=
∫
X

ψ(ġ)
∫
X

( ∫
M

Kt(gm−1k−1) dm
)
ϕ(kM) dk̇ dġ

=
∫
X

ψ(ġ)
∫
X

( ∫
M

Kt(gmk−1) dm
)
ϕ(k̇) dk̇ dġ

for all t > 0 and ϕ ∈ Lp(X; dx).

The function t 7→ κt(x; y) with x, y ∈ X fixed extends to a holomorphic
function since S is holomorphic (see also [2], Theorem 3.1).

We now discuss the regularity of the reduced heat kernel κt.

Proposition 1.2. For all t > 0 one has κt ∈ C∞(X ×X).

Proof. Define for t > 0 the function K̃t : G×G→ C by

K̃t(g1, g2) =
∫
M

Kt(g1mg−1
2 ) dm.

Then K̃t ∈ C∞(G × G) since Kt ∈ C∞(G) (see [12], Theorem III.4.8). The
projection (g1, g2) 7→ (ġ1, ġ2) from G × G into X ×X is a C∞ map. From these
observations it follows that κt ∈ C∞(X ×X) for all t > 0.

We denote the (multi-)derivatives of the reduced kernel κt with respect to
the first variable by Aα and with respect to the second variable by Rα. To avoid
confusion we denote the left derivative in the direction ai on the Lie group G by
Ãi and the right derivative by R̃i. Derivatives of the reduced heat kernel κ can be
expressed in terms of derivatives of the Lie group kernel K.

Corollary 1.3. If α, β ∈ J(d) then

(AαRβκt)(ġ; k̇) =
∫
M

(ÃαR̃βKt)(gmk−1) dm

for all t > 0 and g, k ∈ G.

Proof. The proof of this corollary is similar to the proof of Proposition 1.1.
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Introduce the control metric d1 on X by

(1.3) d1(x; y) = sup
{
|ψ(x)− ψ(y)|

∣∣ ψ ∈ Cb;∞(X) real and
d∑
i=1

|Aiψ|2 6 1
}
,

where Cb;∞(X) denotes the space of all infinitely differentiable functions on X

with uniformly bounded derivatives. The main result of this paper is the next
theorem.

Theorem 1.4. Let X = G/M be a homogeneous space with G a connected
unimodular Lie group and M a compact connected subgroup. Let H be an n-th
order strongly elliptic operator as in (1.2) and κt the corresponding reduced heat
kernel. Then for all α, β ∈ J(d) there exist a, b > 0 and ω > 0 such that

|(AαRβκt)(x; y)| 6 at−(|α|+|β|+d−dm)/neωte−b(d1(x;y)
nt−1)1/(n−1)

for all x, y ∈ X and t > 0.

Remark 1.5. Although this theorem has been formulated for real t, it is also
valid in a complex sector. There exists a θC ∈ (0, π/2] such that the operator eiϕH

is a strongly elliptic operator for all ϕ ∈ (−θC , θC). Then the reduced heat kernel
extends to a holomorphic function on the sector Λ(θC) = {z ∈ C\{0}

∣∣ | arg z| <
θC} and for all θ ∈ (0, θC) one has similar kernel bounds for κz uniformly for
z ∈ Λ(θ), with t replaced by |z|.

Example 1.6. If G is a connected semisimple Lie group and M a connected
compact subgroup of G then G is unimodular and the conclusions of Theorem 1.4
are valid for the homogeneous space G/M .

In the next example we present an explicit description of a homogeneous
space.

Example 1.7. Let X = SL(r,R)/SO(r,R). Consider the action of g ∈
SL(r,R) defined by A 7→ gAgt for all strictly positive symmetric matrices A. Then
SO(r,R) is the stabilizer subgroup of the identity matrix I. The SL(r,R)-orbit
of I equals the set of all strictly positive symmetric matrices with determinant 1.
Indeed, each strictly positive symmetric matrix A with determinant 1 can be
written as A = UΛU t with U ∈ SO(r,R) and Λ a diagonal matrix with strictly
positive diagonal entries and determinant 1. Let g = UΛ1/2 ∈ SL(r,R). Then
A = gIgt. So we can identifyX with the set of strictly positive symmetric matrices
with determinant 1.

On SO(3,R) one can use spectral theory to deduce Gaussian bounds for the
reduced heat kernel.
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Example 1.8. Let N = (0, 0, 1) ∈ R3. Let G = SO(3,R) and M = GN =
{g ∈ SO(3,R) | gN = N} the stabilisator group of N . Let a1, a2, a3 be the basis
for g given by

a1 =

 0 1 0
−1 0 0
0 0 0

 , a2 =

 0 0 0
0 0 1
0 −1 0

 , a3 =

 0 0 1
0 0 0
−1 0 0

 .

So d = 3 and dm = 1, whence d − dm = 2. Consider the bijection Φ : G/M → S2

defined by Φ(ġ) = gN for all g ∈ G. For all i ∈ {1, 2, 3} let Âi be the vector fields
on S2 induced by the bijection Φ and the vector fields Ai on X. The measure
dx = dġ on X induces the surface measure dµ on S2. Next, the G-invariant
second order strongly elliptic operator −Â2

1− Â2
2− Â2

3 equals the Laplace-Beltrami
operator of S2. For this particular operator one can derive the Gaussian type upper
bounds by a spectral argument. For all n ∈ N0 the eigenspace corresponding to
the eigenvalue n(n + 1) is spanned by 2n + 1 orthonormal eigenvectors en,j with
j ∈ {1, . . . , 2n+ 1}. Then by the addition theorem, ([11], Theorem 2) there exist
C1, C2 > 0 such that

|κt(x;x)| =
∣∣∣∣ ∞∑
n=0

e−t(n
2+n)

2n+1∑
j=1

en,j(x)en,j(x)
∣∣∣∣

6 C1

(
1 +

∞∑
n=0

e−t(n
2+n)n

)
6 C2(1 + t−2/2) = C2(1 + t−(d−dm)/2)

for all t > 0 and x ∈ S2. Then off-diagonal Gaussian upper bounds as in Theo-
rem 1.4 can be obtained by an application of [15], Theorem 1.

The techniques used in this paper differ from the usual methods, because
we cannot apply the higher order Davies perturbation trick as in [12], Chapter
III. First, we derive the appropriate Nash inequalities if M ∩Z(G) is finite, where
Z(G) denotes the centre of G. This is inspired by the paper [7], where Gaussian
bounds for real second order strongly elliptic operators associated with irreducible
unitary representations of nilpotent Lie groups have been established. These Nash
inequalities are used to obtain semigroup bounds for second order operators. Then
Gaussian bounds for higher order strongly elliptic operators on the homogeneous
space are derived via a reduction method from the Gaussian bounds for higher
order strongly elliptic operators on the Lie group. In [9] a slightly less delicate
version of a transference method was used to deduce large time Gaussian bounds
for the kernel associated with a homogeneous operator on a nilpotent Lie group
from a similar kernel on a homogeneous group. In the present paper the reduction
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gives the correct small time singularity in the Gaussian bound of the main theorem.
Finally we remove the assumption on M ∩ Z(G).

The reduction method also works to extend the results in [7] to higher order
operators and Gaussian kernel bounds on the derivatives. In [7] Gaussian kernel
bounds have been proved for the reduced heat kernel of the semigroup generated
by a real second order strongly elliptic operator associated with an irreducible
unitary representation of a nilpotent Lie group. In the last section we show how
the other kernel bounds can be proved.

2. VOLUME ESTIMATE

In this section we prove a lower bound on the X-volume of the projection on X

of small balls in G if M ∩ Z(G) is finite.

Suppose the vector space basis a1, . . . , ad for the Lie algebra g is such that
a1, . . . , adm is a vector space basis for the Lie algebra m of M .

The modulus | · | on the Lie group G is defined by |g| = dG(e; g), where the
metric dG on G is given by

dG(k; l) = inf
γ∈Γ(k,l)

1∫
0

( d∑
i=1

γ2
i (t)

)1/2

dt,

with

Γ(k, l) = {γ : [0, 1] → G | γ is absolutely continuous on [0, 1], γ(0) = k, γ(1) = l}

and
dγ(t)

dt
=

d∑
i=1

γi(t)Yi
∣∣∣
γ(t)

for a.e. t ∈ [0, 1], where the vector fields Yi are defined by

(2.1) (Yiϕ)(g) =
d
dt

∣∣∣
t=0

ϕ(exp(−tai)g)

for all ϕ ∈ C∞(G), g ∈ G and 1 6 i 6 d. The modulus on M , denoted by | · |M , is
defined analogously. Let Bε = {g ∈ G

∣∣ |g| < ε} and Bε,M = {g ∈ M
∣∣ |g|M < ε}

for all ε > 0.

Frequently we need the following lemma to estimate distances.
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Lemma 2.1. There exist ε0 > 0 and C > 0 such that the restriction of the

exponential map to the set {t ∈ Rd
∣∣ |ti| < ε0 for all i ∈ {1, . . . , d}} is an analytic

diffeomorphism onto its image and

C−1‖t‖ 6 | exp(t1a1 + · · ·+ tdad)| 6 C‖t‖

uniformly for all t ∈ {t ∈ Rd
∣∣ |ti| < ε0 for all i ∈ {1, . . . , d}}, where ‖t‖ =

max{|ti|
∣∣ i ∈ {1, . . . , d}}.

Proof. See [8], Proposition 6.1.

Lemma 2.2. There exist ε′ > 0 and C > 0 such that

Bε ∩M ⊆ BCε,M

for all ε ∈ (0, ε′].

Proof. Let V be a neighbourhood of 0 in the Lie algebra g such that exp|V
is a diffeomorphism from V onto a neighbourhood of the identity e ∈ G. Write

g = a + m, where m denotes the Lie algebra of M . Then by the proof of [13],

Theorem 6.9, there exist neighbourhoods W of 0 in a and W ′ of 0 in m such

that W +W ′ ⊆ V , the map w + w′ 7→ exp(w) exp(w′) is a homeomorphism from

W +W ′ onto the neighbourhood U = exp(W ) exp(W ′) of the identity e ∈ G and,

moreover, U ∩M = exp(W ′). Let ε′ > 0 be so small that

Bε′ ⊆ U ∩ exp(V ).

Then Bε′ ∩M ⊆ U ∩M = exp(W ′).

Next, let ε0, C > 0 be as in Lemma 2.1. Now suppose ε ∈ (0, ε′ ∧ ε0] and

g ∈ Bε ∩M . Then for all i ∈ {1, . . . , d} there exist ti ∈ R with |ti| 6 Cε such that

g = exp(t1a1 + · · ·+ tdad).

Alternatively, g ∈ exp(W ′) and hence there exists a w′ ∈ W ′ such that g =

exp(w′). Since exp|V is injective it follows that tdm+1 = · · · = td = 0. Therefore,

by Lemma 2.1 again, there exist ε′′, C ′ > 0 such that Bε ∩M ⊆ BC′ε,M for all

ε ∈ (0, ε′′].
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Lemma 2.3. If ε > 0 then∫
M

1Bε
(gmk−1) dm 6

∫
M∩g−1B2εg

1 dm

for all g, k ∈ G.

Proof. We may assume that there exists an m1 ∈M such that b = gm1k
−1 ∈

Bε. Then∫
M

1Bε
(gmk−1) dm =

∫
M

1Bε
(gmm1k

−1) dm =
∫
M

1Bε
(gmg−1b) dm

by the unimodularity of M . Since gmg−1b ∈ Bε if, and only if, m ∈ g−1Bεb
−1g

and Bεb−1 ⊆ B2ε one obtains∫
M

1Bε(gmk
−1) dm =

∫
M∩g−1Bεb−1g

1 dm 6
∫

M∩g−1B2εg

1 dm,

as required.

We next introduce a technical condition which we remove at the end of
Section 4.

Lemma 2.4. Suppose there exist r ∈ N and a continuous matrix representa-
tion ρ′ of G in GL(r,R) such that M ∩Ker ρ′ is finite. Then there exists a matrix
representation ρ of G in GL(r,R) such that the restriction of ρ to M has a finite
kernel and ρ(M) is a subgroup of SO(r,R).

Proof. Since M is compact and connected also ρ′(M) is a compact and con-
nected subgroup of GL(r,R) and hence of SL(r,R). Note that (SL(r,R),SO(r,R))
is a Riemannian symmetric pair of non-compact type. Therefore Theorem VI.2.1
of [10] implies that there exists an h ∈ SL(r,R) such that hρ′(M)h−1 ⊆ SO(r,R).
Then the representation g 7→ hρ′(g)h−1 has the desired properties.

Lemma 2.5. Suppose there exist r ∈ N and a continuous matrix representa-
tion ρ of G in GL(r,R) such that M ∩ Ker ρ is finite and ρ(M) is a subgroup of
SO(r,R). Then there exists a C > 0 such that

‖V EV −1 − I‖ 6 Cε

for all V ∈ SO(r,R), ε ∈ [0, 2] and E ∈ ρ(Bε), where ‖ · ‖ denotes the Euclidean
matrix norm on Rr×r.



278 A.F.M. ter Elst and C.M.P.A. Smulders

Proof. Define for all i ∈ {1, . . . , d} the matrices Mi by

Mi =
d
dt

∣∣∣
t=0

ρ(exp(tai)).

By the Campbell-Baker-Hausdorff formula it is obvious that the local map from
coordinates of the first kind to coordinates of the second kind is a real analytic
diffeomorphism with a Jacobian matrix of determinant 1 in 0. Hence by Lemma 2.1
there exist ε0, C > 0 such that the map (t1, . . . , td) 7→ exp(t1a1) · · · exp(tdad) is
an analytic diffeomorphism from {t ∈ Rd

∣∣ |ti| < ε0 for all i ∈ {1, . . . , d}} onto its
image Ω and

C−1‖t‖ 6 | exp(t1a1) · · · exp(tdad)| 6 C‖t‖

uniformly for all t ∈ {t ∈ Rd
∣∣ |ti| < ε0 for all i ∈ {1, . . . , d}}, where ‖t‖ =

max{|ti|
∣∣ i ∈ {1, . . . , d}}. There exists an ε′ > 0 such that Bε′ ⊆ Ω. Suppose

ε ∈ (0, ε′] and E ∈ ρ(Bε). Then for all i ∈ {1, . . . , d} there exists a ti ∈ R with
|ti| 6 Cε such that

E = ρ(exp(t1a1) · · · exp(tdad)) = ρ(exp(t1a1)) · · · ρ(exp(tdad))

= exp(t1M1) · · · exp(tdMd).

Hence
‖V EV −1 − I‖ = ‖V (E − I)V −1‖ = ‖E − I‖ 6 C ′ε

for all V ∈ SO(r,R), where C ′ > 0 depends only on ε′, C and M1, . . . ,Md. By
compactness there exists an M > 0 such that

‖V EV −1 − I‖ 6 M

for all V ∈ SO(r,R) and E ∈ ρ(B2). Therefore

‖V EV −1 − I‖ 6 max(C ′,M(ε′)−1)ε

for all ε ∈ [0, 2], E ∈ ρ(Bε) and V ∈ SO(r,R).

Proposition 2.6. Suppose there exist r ∈ N and a continuous matrix rep-
resentation ρ of G in GL(r,R) such that M ∩Ker ρ is finite. Then there exists a
C > 0 such that

VolX(Bεġ) > Cεd−dm

for all ε ∈ (0, 1] and g ∈ G.

Proof. By Lemma 2.4 we may assume that ρ(M) ⊂ SO(r,R).
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First,

VolG(Bε) =
∫
G

1Bε
(gl−1) dl =

∫
X

∫
M

1Bε
(gmk−1) dmdk̇

6
∫
Bεġ

∫
M∩g−1B2εg

1 dmdk̇ = VolX(Bεġ)VolM (M ∩ g−1B2εg)

for all g ∈ G and ε > 0 by Lemma 2.3. Next, there exists a C > 1 such that
C−1εd 6 VolG(Bε) 6 Cεd for all ε ∈ (0, 1]. Therefore it is sufficient to prove that
there exists a C > 0 such that

VolM (M ∩ g−1B2εg) 6 Cεdm

for all g ∈ G and ε ∈ (0, 1]. Since the restriction of ρ to M has a finite kernel and
ρ(M) is isomorphic to M/Ker(ρ|M ) it therefore suffices to show that there exists
a C > 0 such that

Volρ(M)(ρ(M) ∩ ρ(g−1B2εg)) 6 Cεdm

for all g ∈ G and ε ∈ (0, 1].
Let ε ∈ (0, 1] and g ∈ G. Let A ∈ ρ(M)∩ρ(g−1B2εg). Consider the Gaussian

decomposition
ρ(g−1) = UΛV,

where U, V ∈ SO(r,R) and Λ = diag (λ1, . . . , λr). By a suitable permutation of
the rows and columns of Λ and the fact that permutation matrices are orthogonal
we may assume without loss of generality that |λ1| > |λ2| > · · · > |λr|. Then

U−1AU = ΛV EV −1Λ−1

for some E ∈ ρ(B2ε). Hence U−1AU = ΛẼΛ−1, where

Ẽ = V EV −1 =

 1 + ε11 · · · ε1r
...

. . .
...

εr1 · · · 1 + εrr

 ,

with |εij | 6 Cε for some C > 0, independent of V,E and ε, by Lemma 2.5.
Therefore

B = U−1AU = ΛẼΛ−1 =

 1 + ε11 · · · ε1rλ1λ
−1
r

...
. . .

...
εr1λrλ

−1
1 · · · 1 + εrr

 .
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Since B ∈ SO(r,R) all columns have length 1 and are mutually orthogonal. As

|λiλ−1
j | 6 1 for all i > j there exists a C > 0, independent of V,E and ε, such that

|(B− I)ij | 6 Cε for all i > j. Evaluating the inner product of the first and second

column in B it follows that there is a C > 0, independent of V,E,Λ and ε, such

that |B12| 6 Cε. Repeating this procedure, i.e., evaluating the inner products of

column j and the preceding columns 1, . . . , j−1, it follows that there exists a C > 0,

independent of V,E,Λ and ε, such that |(B − I)ij | 6 Cε for all i, j ∈ {1, . . . , r}.

Since U ∈ SO(r,R) it follows that |(A− I)ij | = |(U(B − I)U−1)ij | 6 Cr2ε for all

1 6 i, j 6 r. Note that Cr2 is independent of ε and g.

Next there is an ε′ ∈ (0, 1] such that if ε ∈ (0, ε′], then A = exp(logA).

Hence there exists a C > 0, independent of ε and g, such that |(logA)ij | 6 Cε

for all 1 6 i, j 6 r. Therefore, by Lemma 2.1 there is a C > 0, independent of g

and ε ∈ (0, ε′], such that A lies in the Cε-ball in GL(r,R) induced by the modulus

on GL(r,R). Then by Lemma 2.2 there exists a C > 0, independent of g and

ε ∈ (0, ε′] such that A lies in the Cε-ball in ρ(M) induced by the modulus on

ρ(M). Since the dimension of ρ(M) equals dm there is a C > 0 such that

Volρ(M)(ρ(M) ∩ ρ(g−1B2εg)) 6 Cεdm

for all g ∈ G and ε ∈ (0, ε′]. Finally, the restriction ε ∈ (0, ε′] can be weakened to

ε ∈ (0, 1] by a compactness argument.

Corollary 2.7. Suppose M ∩ Z(G) is finite. Then there exists a C > 0

such that

VolX(Bεġ) > Cεd−dm

for all ε ∈ (0, 1] and g ∈ G.

Proof. The matrix representation induced by the adjoint representation Ad

of G and the basis a1, . . . , ad for g has kernel Z(G).
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3. NASH INEQUALITIES

The method we use to derive semigroup bounds from L1(X; dx) into L∞(X; dx)
is via Nash inequalities, which we prove in this section.

Throughout this section we suppose that M ∩ Z(G) is finite. Moreover, we
suppose that the vector space basis a1, . . . , ad for the Lie algebra g is such that
a1, . . . , adm is a vector space basis for the Lie algebra m of M .

Let L2;1(X; dx) =
d⋂
i=1

D(Ai) ⊂ L2(X; dx) with norm

‖ϕ‖2;1 = max
α∈J(d)
|α|61

‖Aαϕ‖2.

The bounds of the next proposition are a generalization of the classical Nash
inequalities.

Theorem 3.1. There exists a C > 0 such that

‖ϕ‖2+4/(d−dm)
2 6 C‖ϕ‖2

2;1‖ϕ‖
4/(d−dm)
1

for all ϕ ∈ L2;1(X; dx) ∩ L1(X; dx).

In order to prove Theorem 3.1 we first prove Young inequalities on the ho-
mogeneous space.

Let ϕ ∈ L2(X; dx) ∩ L1(X; dx) and ψ ∈ L1(G; dg). Then the convolution
product ψ ∗U ϕ is defined by

ψ ∗U ϕ =
∫
G

ψ(g)U(g)ϕdg.

For every integrable function ψ : G → C introduce the function ψ[ : X ×X → C
by

ψ[(ġ, k̇) =
∫
M

ψ(gmk−1) dm,

where g, k ∈ G.
Next let ψ : G→ C be integrable and let q ∈ [1,∞). Then |||ψ|||q is defined

by

|||ψ|||q = ess sup
x∈X

( ∫
X

|ψ[(x, y)|q dy
)1/q

and |||ψ|||∞ is defined by

|||ψ|||∞ = ess sup
x∈X

ess sup
y∈X

|ψ[(x, y)|.
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If Ψ : X ×X → C is measurable, then for q ∈ [1,∞) set

||||Ψ||||q = ess sup
y∈X

( ∫
X

|Ψ(x, y)|q dx
)1/q

and

||||Ψ||||∞ = ess sup
y∈X

ess sup
x∈X

|Ψ(x, y)|.

Note that the integration and essential supremum are taken over different variables.

The next elementary lemma gives a relation between the norms.

Lemma 3.2. If ε > 0 and q ∈ [1,∞] then

||||ψ[ε||||q = |||ψε|||q,

where ψε = 1Bε
.

Proof. Let ε > 0. Then by the unimodularity of M one has for all q ∈ [1,∞)

||||ψ[ε||||q = ess sup
k̇∈X

( ∫
X

|ψ[ε(ġ, k̇)|q dġ
)1/q

= ess sup
k̇∈X

( ∫
X

( ∫
M

1Bε(gmk
−1) dm

)q
dġ

)1/q

= ess sup
k̇∈X

( ∫
X

( ∫
M

1Bε(km
−1g−1) dm

)q
dġ

)1/q

= ess sup
k̇∈X

( ∫
X

( ∫
M

1Bε
(kmg−1) dm

)q
dġ

)1/q

= ess sup
k̇∈X

( ∫
X

|ψ[ε(k̇, ġ)|q dġ
)1/q

= |||ψε|||q.

The equality for q = ∞ is proved similarly.

We are now going to prove Young type inequalities. In order to do this we
first need some preparation.

Let S denote the set of complex valued integrable simple functions Ψ : X ×
X → C such that K = {x ∈ X | ∃ y ∈ X with Ψ(x, y) 6= 0} has finite measure.

The following lemma states some very crucial properties for simple functions
in the set S.
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Lemma 3.3. (i) If Ψ ∈ S then

||||Ψ||||∞=ess sup
y∈X

ess sup
x∈X

|Ψ(x, y)|= ess sup
(x,y)∈X×X

|Ψ(x, y)|=ess sup
x∈X

ess sup
y∈X

|Ψ(x, y)|.

(ii) Let Ψ ∈ S and set a = ||||Ψ||||∞. Define Ea,y = {x ∈ X
∣∣ |Ψ(x, y)| = a} for

all y ∈ X. Then
∫
X

∫
X

1Ea,y
(x) dxdy 6= 0.

Proof. If Ψ = 1U for some measurable U ⊂ X ×X with measure zero then
it is obvious that

ess sup
x∈X

ess sup
y∈X

|Ψ(x, y)| = ess sup
(x,y)∈X×X

|Ψ(x, y)| = ess sup
y∈X

ess sup
x∈X

|Ψ(x, y)| = 0.

Similarly, if Ψ = 1U for some measurable U ⊆ X×X with strictly positive measure
then it is elementary that

ess sup
x∈X

ess sup
y∈X

|Ψ(x, y)| = ess sup
(x,y)∈X×X

|Ψ(x, y)| = ess sup
y∈X

ess sup
x∈X

|Ψ(x, y)| = 1.

Now let Ψ ∈ S be arbitrary. Then there exist k ∈ N, a1, . . . , ak > 0 and dis-

joint measurable sets U1, . . . , Uk ⊆ X × X such that |Ψ| =
k∑
i=1

ai1Ui
. Since

ess sup
(x,y)∈X×X

((f ∨ g)(x, y)) = ess sup
(x,y)∈X×X

f(x, y)∨ ess sup
(x,y)∈X×X

g(x, y) and |Ψ| = a11U1 ∨

· · · ∨ ak1Uk
, the first part of the lemma follows.

If Ψ = 1U for some measurable U ⊆ X×X then it is obvious that the second

statement holds. If |Ψ| =
k∑
i=1

ai1Ui
as in the first part and a1 = a without loss of

generality (and the measure of U1 is strictly positive), then∫
X

∫
X

1Ea,y (x) dxdy >
∫
X

∫
X

1U1(x, y) dxdy > 0,

as required.

Define for ϕ ∈ L2(X; dx) ∩ L1(X; dx) the linear operator Tϕ : S →
∞⋂
p=1

Lp(X; dx) by

(TϕΨ)(x) =
∫
X

Ψ(x, y)ϕ(y) dy

for a.e. x ∈ X. The following theorem is a slight variation of the classical Riesz-
Thorin theorem.
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Theorem 3.4. Let ϕ ∈ L2(X; dx) ∩ L1(X; dx), α1, α2 ∈ (0, 1), β1, β2 ∈
(0, 1) and M1,M2 > 0. Suppose

‖TϕΨ‖1/β1 6 M1||||Ψ||||1/α1 , ‖TϕΨ‖1/β2 6 M2||||Ψ||||1/α2

for all functions Ψ ∈ S. Then

‖TϕΨ‖1/β 6 M1−t
1 M t

2||||Ψ||||1/α

for all Ψ ∈ S and t ∈ (0, 1), where α = (1− t)α1 + tα2 and β = (1− t)β1 + tβ2.

Proof. Define the functions α, β : C → C by

α(z) = (1− z)α1 + zα2, β(z) = (1− z)β1 + zβ2

for all z ∈ C. For z = 0, z = 1 and z = t the pair (α(z), β(z)) reduces to (α1, β1),
(α2, β2) and (α, β), respectively. Note that

‖TϕΨ‖1/β = sup
σ∈S′,

‖σ‖1/(1−β)=1

∣∣∣ ∫
X

(TϕΨ)(x)σ(x) dx
∣∣∣

for all β ∈ (0, 1) and Ψ ∈ S, where S′ denotes the set of all simple functions on
X. Fix Ψ ∈ S and σ ∈ S′ with ‖σ‖1/(1−β) = 1. Define I by

I =
∫
X

(TϕΨ)(x)σ(x) dx.

Let c1, c2, . . . , cp be the different values of Ψ not equal to zero and let χ1, χ2, . . . , χp
be the corresponding characteristic functions. Write cj = |cj |eiuj . Define

Fz =
p∑
j=1

eiuj |cj |α(z)/αχj

for all z ∈ C. Similarly, let d1, d2, . . . , dq be the different values of σ not equal
to zero and let χ′1, χ

′
2, . . . , χ

′
q be the corresponding characteristic functions. Write

dj = |dj |eivj and define

σz =
q∑
j=1

eivj |dj |(1−β(z))/(1−β)χ′j

for all z ∈ C. Replacing χj by Tϕχj yields an expression for TϕFz. Define Φ :
C → C by

Φ(z) =
∫
X

(TϕFz)(x)σz(x) dx.
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Then Φ(t) = I and it is obvious from these considerations that Φ is a bounded,
continuous and holomorphic function on {z = x+ iy ∈ C | 0 < x < 1}.

Consider z ∈ C with Re z = 0. Then Re α(z) = α1 and Re β(z) = β1. The
Hölder inequality gives

|Φ(z)| 6 ‖TϕFz‖1/β1‖σz‖1/(1−β1) 6 M1||||Fz||||1/α1‖σz‖1/(1−β1).

Moreover, for each y ∈ X one has( ∫
X

|Fz(x, y)|1/α1 dx
)α1

=
( ∫
X

|Ψ(x, y)|1/α dx
)α(α1/α)

.

Hence
||||Fz||||1/α1 = ||||Ψ||||α1/α

1/α .

It follows that

|Φ(z)| 6 M1||||Ψ||||α1/α
1/α ‖σz‖1/(1−β1) = M1||||Ψ||||α1/α

1/α

for all z ∈ C with Re z = 0. Similarly,

|Φ(z)| 6 M2||||Ψ||||α2/α
1/α

for all z ∈ C with Re z = 1. Then the Phrágmen-Lindelöf lemma (cf. [17], Chapter
XII, p. 93) gives

|I| = |Φ(t)| 6 M1−t
1 M t

2||||Ψ||||1/α.

Therefore

‖TϕΨ‖1/β = sup
σ∈S′

‖σ‖1/(1−β)=1

|Φ(t)| 6 M1−t
1 M t

2||||Ψ||||1/α,

as required.

Corollary 3.5. Let ϕ ∈ L1(X; dx)∩L2(X; dx) and M1,M2 > 0. Suppose

‖TϕΨ‖∞ 6 M1||||Ψ||||∞, ‖TϕΨ‖1 6 M2||||Ψ||||1

for all Ψ ∈ S. Then
‖TϕΨ‖1/t 6 M1−t

1 M t
2||||Ψ||||1/t

for all t ∈ (0, 1) and Ψ ∈ S.
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Proof. Let Ψ ∈ S and ε > 0. From the definition of S it follows that
||||Ψ||||1 < ∞. Moreover, if Ψ(x, y) = 0 for a.e. (x, y) ∈ X × X then the proof
is trivial. So let Ψ ∈ S be such that a = ||||Ψ||||∞ > 0. Set Ea,y = {x ∈

X
∣∣ |Ψ(x, y)| = a}. Suppose that for all n ∈ N the set

{
y ∈ X

∣∣ ∫
X

1Ea,y (x) dx >

1/n
}

has zero measure. Then the set
{
y ∈ X

∣∣ ∫
X

1Ea,y (x) dx > 0
}

has zero

measure, which contradicts Lemma 3.3 (ii). Therefore there exist b > 0 and

a subset X0 ⊆ X with strictly positive measure such that
∫
X

1Ea,y
(x) dx > b

uniformly for all y ∈ X0. Then there exists an N1 ∈ N such that for all n > N1

and y ∈ X0 the bounds

||||Ψ||||∞ = a 6 (anb)1/n(1 + ε) 6
( ∫
Ea,y

an dx
)1/n

(1 + ε)

=
( ∫
Ea,y

|Ψ(x, y)|n dx
)1/n

(1 + ε) 6
( ∫
X

|Ψ(x, y)|n dx
)1/n

(1 + ε)

are valid. Since X0 has positive measure one deduces that

||||Ψ||||∞ 6 ||||Ψ||||n(1 + ε)

for all n > N1. Moreover, with K = {x ∈ X | ∃ y ∈ X with Ψ(x, y) 6= 0} one has

‖TϕΨ‖n =
( ∫
X

∣∣∣ ∫
X

Ψ(x, y)ϕ(y) dy
∣∣∣n dx

)1/n

=
( ∫
K

∣∣∣ ∫
X

Ψ(x, y)ϕ(y) dy
∣∣∣n dx

)1/n

6 ess sup
x∈X

∣∣∣ ∫
X

Ψ(x, y)ϕ(y) dy
∣∣∣( ∫
K

1 dx
)1/n

= ‖TϕΨ‖∞
( ∫
K

1 dx
)1/n

for all n ∈ N. But Ψ(x, y) = 0 for a.e. (x, y) ∈ X × X if
∫
K

1 dx = 0. Therefore

assume that
∫
K

1 dx 6= 0. By definition of S one has
∫
K

1 dx < ∞. Hence there is

an N2 > 0 such that for all n > N2

‖TϕΨ‖n 6 ‖TϕΨ‖∞(1 + ε).

So

(3.1) ‖TϕΨ‖n 6 ‖TϕΨ‖∞(1 + ε) 6 M1(1 + ε)2||||Ψ||||n
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for all n > N3 = max(N1, N2).
Alternatively, lim

n→∞
|Ψ|1/(1−1/n) = |Ψ| uniformly on X ×X. So there exists

an N ∈ N such that for all n > N and y ∈ X the estimates∫
X

|Ψ(x, y)|dx 6
∫
X

|Ψ(x, y)|1/(1−1/n) dx(1 + ε)1/2

are valid. Since 0 6 x 6 x1−1/n(1 + ε)1/2 for sufficiently large n ∈ N, uniformly
on [0, ||||Ψ||||1], there is an N4 ∈ N such that for all n > N4 and a.e. y ∈ X∫

X

|Ψ(x, y)|dx 6
( ∫
X

|Ψ(x, y)|dx
)1−1/n

(1 + ε)1/2

6
( ∫
X

|Ψ(x, y)|1/(1−1/n) dx
)1−1/n

(1 + ε).

Therefore,
||||Ψ||||1 6 ||||Ψ||||1/(1−1/n)(1 + ε)

for all n > N4. Moreover, the dominated convergence theorem yields

lim
n→∞

∫
X

|(TϕΨ)(x)|1/(1−1/n) dx =
∫
X

|(TϕΨ)(x)|dx.

Hence there exists an N5 ∈ N such that

‖TϕΨ‖1/(1−1/n) 6 ‖TϕΨ‖1(1 + ε)

for all n > N5. It follows that

(3.2) ‖TϕΨ‖1/(1−1/n) 6 ‖TϕΨ‖1(1 + ε) 6 M2(1 + ε)2||||Ψ||||1/(1−1/n)

for all n > N6 = max(N4, N5).
By Theorem 3.4 one can interpolate between the bounds (3.1) and (3.2) and

‖TϕΨ‖1/((1−t)/n+t(1−1/n)) 6 M1−t
1 M t

2(1 + ε)2||||Ψ||||1/((1−t)/n+t(1−1/n))

for all t ∈ (0, 1) and n > max(N3, N6). Let t̃ ∈ (0, 1). Then there exists an N ∈ N
such that

‖TϕΨ‖
1/̃t

6 (1 + ε)2M (1−t̃−1/n)/(1−2/n)
1 M

(̃t−1/n)/(1−2/n)
2 ||||Ψ||||

1/̃t

for all n > N . Finally, letting n→∞ and ε→ 0 one obtains

‖TϕΨ‖
1/̃t

6 M1−t̃
1 M t̃

2||||Ψ||||1/̃t

for all t̃ ∈ (0, 1).
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In order to apply Corollary 3.5 we prove bounds on L1 and L∞.

Lemma 3.6. If ϕ ∈ L2(X; dx) ∩ L1(X; dx) then

‖TϕΨ‖1 6 ||||Ψ||||1‖ϕ‖1, ‖TϕΨ‖∞ 6 ||||Ψ||||∞‖ϕ‖1

for all Ψ ∈ S.

Proof. Let Ψ ∈ S. Then Fubini’s theorem gives

‖TϕΨ‖1 =
∫
X

∣∣∣ ∫
X

Ψ(x, y)ϕ(y) dy
∣∣∣ dx 6

∫
X

∫
X

|Ψ(x, y)| |ϕ(y)|dy dx

=
∫
X

( ∫
X

|Ψ(x, y)|dx
)
|ϕ(y)|dy 6

∫
X

ess sup
y′∈X

( ∫
X

|Ψ(x, y′)|dx
)
|ϕ(y)|dy

= ess sup
y∈X

( ∫
X

|Ψ(x, y)|dx
)
‖ϕ‖1 = ||||Ψ||||1‖ϕ‖1.

Furthermore,

‖TϕΨ‖∞ = ess sup
x∈X

∣∣∣ ∫
X

Ψ(x, y)ϕ(y) dy
∣∣∣ 6 ess sup

x∈X

∫
X

|Ψ(x, y)||ϕ(y)|dy

6 ess sup
x∈X

∫
X

ess sup
y′∈X

(
|Ψ(x, y′)|

)
|ϕ(y)|dy = ||||Ψ||||∞‖ϕ‖1,

by Lemma 3.3 (i), which completes the proof.

We are now able to state Young type inequalities.

Proposition 3.7. If ϕ ∈ L2(X; dx) ∩ L1(X; dx) then

‖TϕΨ‖p 6 ||||Ψ||||p‖ϕ‖1

for all Ψ ∈ S and p ∈ [1,∞].

Proof. This is an immediate consequence of Lemma 3.6 and Corollary 3.5.

By approximation we apply the Young inequalities to obtain bounds on

ψε ∗U ϕ, where we set ψε = 1Bε
.
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Proposition 3.8. Let ϕ ∈ L2(X; dx) ∩ L1(X; dx). Then

‖ψε ∗U ϕ‖2 6 ||||ψ[ε||||2 ‖ϕ‖1

for all ε > 0.

Proof. Let ε > 0. First take ϕ ∈ Cc(X). Let K be the support of ϕ. Suppose
ψ[ε(x, y) 6= 0 for some x = ġ ∈ X and y = k̇ ∈ X. Then there exists an m ∈ M

such that gmk−1 ∈ Bε, and hence, x ∈ Bεy. Therefore it is obvious that x 6∈ BεK
implies ψ[ε(x, y) = 0 for all y ∈ K. Hence the function (x, y) 7→ ψ[ε(x, y)ϕ(y) from
X ×X into C has support in BεK ×K. Next∫

X

ψ[ε(ġ, k̇)ϕ(k̇) dk̇ =
∫
X

( ∫
M

ψε(gmk−1) dm
)
ϕ(k̇) dk̇

=
∫
X

( ∫
M

ψε(gm−1k−1)ϕ(kmM) dm
)

dk̇

=
∫
G

ψε(gl−1)ϕ(lM) dl =
∫
G

ψε(l)ϕ(l−1gM) dl

=
∫
G

ψε(l)ϕ(l−1ġ) dl = (ψε ∗U ϕ)(ġ)

for all g ∈ G by the unimodularity of G and M . Now let Ψ̃n be a sequence of
non-negative simple functions converging to ψ[ε pointwise from below. Set Ψn =
Ψ̃n · 1BεK×K for all n ∈ N. Then

lim
n→∞

( ∫
X

∣∣∣ ∫
X

(ψ[ε(x, y)−Ψn(x, y))ϕ(y) dy
∣∣∣2 dx

)1/2

= 0

by the dominated convergence theorem. Hence Proposition 3.7 yields

‖ψε ∗U ϕ‖2 6 lim sup
n→∞

‖TϕΨn‖2 + ‖ψε ∗U ϕ− TϕΨn‖2 6 ||||ψ[ε||||2 ‖ϕ‖1.

Since ϕ 7→ ψε∗Uϕ is continuous on L2(X; dx), the proposition follows immediately
from the density of Cc(X) in L2(X; dx) ∩ L1(X; dx).

Let γ : [0, 1] → G be an absolutely continuous path from the identity e to g
with tangents in the space spanned by a1, . . . , ad. Then there exist γi ∈ L∞([0, 1])
such that

dψ(γ(t))
dt

=
d∑
i=1

γi(t)(Yiψ)(γ(t))
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for all ψ ∈ C∞(G) and a.e. t ∈ [0, 1], where Yi is as in (2.1). Moreover,

|g| = inf
γ

1∫
0

( d∑
i=1

γi(t)2
)1/2

dt,

where the infimum is over all absolutely continuous paths from the identity e to
g ∈ G. Therefore

((I − U(g))ϕ)(x) =

1∫
0

d∑
i=1

γi(t)(L(γ(t))Aiϕ)(x) dt

for all ϕ ∈ C∞c (X) and x ∈ X. Consequently,

‖(I − U(g))ϕ‖2 6

1∫
0

( d∑
i=1

γi(t)2
)1/2( d∑

i=1

‖Aiϕ‖2
2

)1/2

dt

by the Schwarz inequality. Then optimization over all possible paths γ gives

‖(I − U(g))ϕ‖2 6 |g|
( d∑
i=1

‖Aiϕ‖2
2

)1/2

.

So, if ψ ∈ L1(G; dg) is a positive function with ‖ψ‖1 = 1 then

‖ϕ− ψ ∗U ϕ‖2 6
∫
G

ψ(g)|g|
( d∑
i=1

‖Aiϕ‖2
2

)1/2

dg.

In the following proposition we state the Nash inequalities.

Proposition 3.9. Let ϕ ∈ L2;1(X; dx) ∩ L1(X; dx). Then

‖ϕ‖2 6 ε
( d∑
i=1

‖Aiϕ‖2
2

)1/2

+
(
|||ψε|||2/‖ψε‖1

)
‖ϕ‖1

for all ε > 0.

Proof. Obviously one has

‖ϕ‖2 6 ‖ϕ− (ψε/‖ψε‖1) ∗U ϕ‖2 + ‖(ψε/‖ψε‖1) ∗U ϕ‖2.

Then the proposition follows from Lemma 3.2, Proposition 3.8 and the preparatory
considerations preceding this proposition.
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Now we estimate for all ε ∈ (0, 1] the factor |||ψε|||2/‖ψε‖1 in the Nash
inequality stated in Proposition 3.9. First we have ‖ψε‖1 = VolG(Bε). But there
exists an α > 1 such that

(3.3) α−1εd 6 VolG(Bε) 6 αεd

for all ε ∈ (0, 4]. Hence

α−1εd 6 ‖ψε‖1 6 αεd

for all ε ∈ (0, 4].
Secondly, we estimate an upper bound for the norm |||ψε|||2 for all ε ∈ (0, 1].

Lemma 3.10. If g ∈ G then

VolG(B2ε) > VolX(Bεġ)VolM (M ∩ g−1Bεg)

for all ε > 0.

Proof. Let g ∈ G and ε > 0. Then∫
M

1g−1Bεg(m) dm 6
∫
M

1g−1B2εg(km) dm

for all k ∈ g−1Bεg. Since the map k 7→
∫
M

1g−1B2εg(km) dm from G into R is right

M -invariant it follows that

1g−1Bεġ(k̇)
∫
M

1g−1Bεg(m) dm 6
∫
M

1g−1B2εg(km) dm

for all k ∈ G. Integration over X yields

VolX(Bεġ)VolM (M ∩ g−1Bεg) =
∫
X

1g−1Bεġ(k̇)
∫
M

1g−1Bεg(m) dmdk̇

6
∫
X

( ∫
M

1g−1B2εg(km) dm
)

dk̇

=
∫
G

1B2ε(glg
−1) dl = VolG(B2ε)

by the unimodularity of G.
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Proposition 3.11. There exists a C > 0 such that

|||ψε|||2 6 Cε(d+dm)/2

for all ε ∈ (0, 1].

Proof. Since we assume that M ∩Z(G) is finite, there exists by Corollary 2.7
a C > 0 such that

VolX(Bεx) > Cεd−dm

for all x ∈ X and ε ∈ (0, 1]. Next, if g, k ∈ G and
∫
M

1Bε
(gmk−1) dm 6= 0 then

there exists an m ∈ M such that km−1 ∈ Bεg, whence k̇ ∈ Bεġ. Then by the
Lemmas 2.3 and 3.10 one has

|||ψε|||2 6 ess sup
ġ∈X

( ∫
Bεġ

( ∫
M∩g−1B2εg

1 dm
)2

dy
)1/2

6 VolG(B4ε) ess sup
x∈X

VolX(Bεx)1/2VolX(B2εx)−1

6 VolG(B4ε) ess sup
x∈X

VolX(Bεx)−1/2 6 4dαC−1/2ε(d+dm)/2

for all ε ∈ (0, 1], where we used the estimates (3.3) in the last step.

The following proposition is the key result to prove Theorem 3.1.

Proposition 3.12. There exists a C > 0 such that

‖ϕ‖2 6 ε‖ϕ‖2;1 + Cε−(d−dm)/2‖ϕ‖1

for all ε > 0 and ϕ ∈ L2;1(X; dx) ∩ L1(X; dx).

Proof. By the estimates for |||ψε|||2 for all ε ∈ (0, 1] stated in Proposition 3.11
and the Nash inequality stated in Proposition 3.9, there exists a C > 0 such that

‖ϕ‖2 6 ε‖ϕ‖2;1 + Cε−(d−dm)/2‖ϕ‖1

for all ε ∈ (0, 1] and ϕ ∈ L2;1(X; dx) ∩ L1(X; dx). But then these estimates are
valid for all ε > 0 since ‖ϕ‖2 6 ‖ϕ‖2;1.

It is now easy to prove Theorem 3.1.

Proof of Theorem 3.1. Optimize the inequalities from Proposition 3.12 over
ε > 0.

In the following section the Nash inequalities are used to prove the Gaussian
bounds of Theorem 1.4.
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4. GAUSSIAN KERNEL BOUNDS

In this section we deduce the kernel bounds stated in Theorem 1.4. For all r, p ∈
[1,∞] denote by ‖T‖r→p the operator norm of a linear operator T : Lr(X; dx)
→ Lp(X; dx).

The next proposition is well known, but for self-consistency we include the
proof.

Proposition 4.1. Suppose M ∩ Z(G) is finite. Moreover, suppose that the
vector space basis a1, . . . , ad for the Lie algebra g is such that a1, . . . , adm is a
vector space basis for the Lie algebra m of M . Let S be the semigroup generated
by the closure of a pure second order strongly elliptic operator H of the form

H = −
d∑

i,j=1

cijAiAj .

Then there exist a, ω > 0 such that

|(τ, Stϕ)| 6 at−(d−dm)/2eωt‖ϕ‖1‖τ‖1

for all ϕ, τ ∈ C∞c (X) and t > 0.

Proof. Let H0 = H + µI and T the semigroup generated by the closure of
H0, where µ denotes the ellipticity constant. Since H0 generates a continuous
semigroup on L1(X; dx), by Theorem I.5.1 of [12], there exist a, ω > 0 such that
‖Tt‖1→1 6 aeωt for all t > 0. Let C > 0 be the Nash constant as in Theorem 3.1.
Let ϕ ∈ L1(X; dx) ∩ L2(X; dx). Then

d
dt
‖Ttϕ‖2

2 = −2 Re (Ttϕ,H0Ttϕ) 6 −2µ‖Ttϕ‖2
2;1 6 −2µ

C

‖Ttϕ‖2+4/(d−dm)
2

‖Ttϕ‖4/(d−dm)
1

6 − 2µ
Ca4/(d−dm)e4ωt/(d−dm)

(‖Ttϕ‖2
2)

1+2/(d−dm)

‖ϕ‖4/(d−dm)
1

for all t > 0. Therefore,

d
dt

(‖Ttϕ‖2
2)
−2/(d−dm) = − 2

d− dm
(‖Ttϕ‖2

2)
−1−2/(d−dm) d

dt
‖Ttϕ‖2

2

>
4µ

(d− dm)Ca4/(d−dm)e4ωt/(d−dm)
‖ϕ‖−4/(d−dm)

1

and by integration

‖Ttϕ‖−4/(d−dm)
2 = (‖Ttϕ‖2

2)
−2/(d−dm)

> t
4µ

(d− dm)Ca4/(d−dm)
e−4ωt/(d−dm)‖ϕ‖−4/(d−dm)

1 .
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So ‖St‖1→2 = eµt‖Tt‖1→2 6 a′t−(d−dm)/4eω
′t for suitable a′, ω′ > 0. By duality,

‖St‖2→∞ = ‖S∗t ‖1→2 6 a′′t−(d−dm)/4eω
′′t for suitable a′′, ω′′ > 0 and therefore

‖St‖1→∞ 6 ‖St/2‖1→2‖St/2‖2→∞ 6 at−(d−dm)/2eωt

for redefined a and ω, uniformly for all t > 0.

Together with the reduction formula these bounds are the main ingredient
in the proof of the Gaussian bounds for higher order strongly elliptic operators.

Proposition 4.2. Suppose M ∩ Z(G) is finite. Moreover, suppose that the
vector space basis a1, . . . , ad for the Lie algebra g is such that a1, . . . , adm is a
vector space basis for the Lie algebra m of M . Let H be an n-th order strongly
elliptic operator as in (1.2) and κt the corresponding reduced heat kernel. Then
for all α, β ∈ J(d) there exist a, b > 0 and ω > 0 such that

|(AαRβκt)(x; y)| 6 at−(|α|+|β|+d−dm)/neωte−b(d1(x;y)
nt−1)1/(n−1)

for all x, y ∈ X and t > 0.

Proof. First for all ϕ : X → C define the function π∗ϕ : G → C by
(π∗ϕ)(g) = ϕ(ġ). Let α, β ∈ J(d). Then the reduction formula of Corollary
1.3 gives

(AαRβκt)(ġ; k̇) =
∫
M

(ÃαR̃βKt)(gmk−1) dm =
∫
M

(ÃαR̃βKt)(gm−1k−1) dm

for all g, k ∈ G, where we use the unimodularity of M in the second equality. Let

ϕ, τ ∈ C∞c (X), ρ ∈ R, ψ ∈ Cb;∞(X) real valued and suppose that
d∑
i=1

|Aiψ|2 6 1.

Then∫
X

∫
X

(AαRβκt)(ġ; k̇)eρ(ψ(ġ)−ψ(k̇))ϕ(k̇)τ(ġ) dk̇ dġ

=
∫
X

∫
X

∫
M

(ÃαR̃βKt)(gm−1k−1)eρ((π
∗ψ)(g)−(π∗ψ)(km))(π∗ϕ)(km)(π∗τ)(g) dmdk̇ dġ

=
∫
X

∫
G

(ÃαR̃βKt)(gr−1)eρ((π
∗ψ)(g)−(π∗ψ)(r))(π∗ϕ)(r)(π∗τ)(g) dr dġ

=
∫
X

∫
M

∫
G

(ÃαR̃βKt)(smr−1)eρ((π
∗ψ)(sm)−(π∗ψ)(r))(π∗ϕ)(r)(π∗τ)(sm) dr dmdṡ

=
∫
G

∫
G

(ÃαR̃βKt)(hr−1)eρ((π
∗ψ)(h)−(π∗ψ)(r))(π∗ϕ)(r)(π∗τ)(h) dr dh
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for all t > 0. Secondly,

(4.1) (Ãiπ∗ψ)(g) = (Aiψ)(ġ)

for all g ∈ G and i ∈ {1, . . . , d}. So
d∑
i=1

|Ãiπ∗ψ|2 6 1. If follows that

|(π∗ψ)(g)− (π∗ψ)(h)| 6 |gh−1|

for all g, h ∈ G. From [12], Theorem III.4.8 and an elementary transformation
to rewrite the right derivatives in terms of left derivatives and an exponential
function, one deduces that there exist a, b > 0 and ω > 0 such that

|(ÃαR̃βKt)(g)| 6 at−(d+|α|+|β|)/neωte−2b(|g|nt−1)1/(n−1)

for all g ∈ G and t > 0. Therefore∣∣∣ ∫
X

∫
X

(AαRβκt)(ġ; k̇)eρ(ψ(ġ)−ψ(k̇))ϕ(k̇)τ(ġ) dk̇ dġ
∣∣∣

6
∫
G

∫
G

at−(d+|α|+|β|)/neωte−2b(|hr−1|nt−1)1/(n−1)
·

· eρ((π
∗ψ)(h)−(π∗ψ)(r))|(π∗ϕ)(r)||(π∗τ)(h)|dh dr

6at−(d+|α|+|β|)/neωt
∫
G

∫
G

e−2b(|hr−1|nt−1)1/(n−1)
e|ρ||hr

−1||(π∗ϕ)(r)||(π∗τ)(h)|dhdr.

Using the estimate

−b(|hr−1|nt−1)1/(n−1) + |ρ||hr−1| 6 ωb|ρ|nt

with ωb = b−(n−1)(n− 1)n−1n−n one deduces that

(4.2)

∣∣∣ ∫
X

∫
X

(AαRβκt)(ġ; k̇)eρ(ψ(ġ)−ψ(k̇))ϕ(k̇)τ(ġ) dk̇ dġ
∣∣∣

6 at−(d+|α|+|β|)/neωt+ωbρ
nt·

·
∫
G

∫
G

e−b(|hr
−1|nt−1)1/(n−1)

|(π∗ϕ)(r)||(π∗τ)(h)|dhdr.

Therefore it remains to estimate

t−d/n
∫
G

∫
G

e−b(|hr
−1|nt−1)1/(n−1)

|(π∗ϕ)(r)||(π∗τ)(h)|dhdr
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for all t > 0.
Thirdly, for all j ∈ N0 define the annuli Ωj by

Ωj = {(h, r) ∈ G×G | j 6 |hr−1|nt−1 < j + 1}.

Let d(j)(h, r) denote the measure on Ωj induced by dhdr. Then∫
G

∫
G

t−d/ne−b(|hr
−1|nt−1)1/(n−1)

|(π∗ϕ)(r)||(π∗τ)(h)|dhdr

=
∞∑
j=0

∫
Ωj

t−d/ne−b(|hr
−1|nt−1)1/(n−1)

|(π∗ϕ)(r)||(π∗τ)(h)|d(j)(h, r)

6
∞∑
j=0

t−d/ns
d/2
j e((j+1)t)2/ns−1

j e−bj
1/(n−1)

·

·
∫
Ωj

|(π∗ϕ)(r)||(π∗τ)(h)|s−d/2j e−|hr
−1|2s−1

j d(j)(h, r)

6
∞∑
j=0

t−d/ns
d/2
j e((j+1)t)2/ns−1

j e−bj
1/(n−1)

·

·
∫
G

∫
G

|(π∗ϕ)(r)||(π∗τ)(h)|s−d/2j e−|hr
−1|2s−1

j dh dr,

where sj > 0 for all j ∈ N0.
Fourthly, let K∆ and κ∆ denote the Lie group kernel and reduced heat kernel

of the semigroup S∆ generated by the Laplacian ∆ = −A2
1 − · · · − A2

d. By [12],
Theorem III.5.1 there exist a, c > 0 and ω1 > 0 such that

s−d/2e−|g|
2s−1

6 aeω1sK∆
cs(g)

for all s > 0 and g ∈ G. Then by reduction, Corollary 1.3, again, it follows that∫
G

∫
G

|(π∗ϕ)(r)||(π∗τ)(h)|s−d/2j e−|hr
−1|2s−1

j dhdr

6 aeω1sj

∫
G

∫
G

|(π∗ϕ)(r)||(π∗τ)(h)|K∆
csj

(hr−1) dh dr(4.3)

= aeω1sj

∫
X

∫
X

κ∆
csj

(x; y)|ϕ(y)||τ(x)|dxdy

= aeω1sj (|τ |, S∆
csj
|ϕ|)
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for all j ∈ N0. Then by the bounds of Proposition 4.1 there exist a > 0 and ω > 0
such that∫

G

∫
G

t−d/ne−b(|hr
−1|nt−1)1/(n−1)

|(π∗ϕ)(r)||(π∗τ)(h)|dhdr

6 a
∞∑
j=0

t−d/ns
d/2
j e((j+1)t)2/ns−1

j e−bj
1/(n−1)

s
−(d−dm)/2
j eωsj‖ϕ‖1‖τ‖1

uniformly for all t, s1, s2, . . . > 0 and ϕ, τ ∈ C∞c (X). Now set sj = (j+1)1/(n−1)t2/n

for all j ∈ N0. Then

t−d/ns
d/2
j e((j+1)t)2/ns−1

j e−bj
1/(n−1)

s
−(d−dm)/2
j eωsj

= (j + 1)dm/(2(n−1))e(j+1)2/n−1/(n−1)
e−bj

1/(n−1)
eω(j+1)1/(n−1)t2/n

t−(d−dm)/n

6 (j + 1)dm/(2(n−1))e(j+1)2/n−1/(n−1)−2−1bj1/(n−1)
t−(d−dm)/n

for all t > 0 with 2ωt2/n 6 2−1b. Since 2/n− 1/(n− 1) < 1/(n− 1) it follows that

M =
∞∑
j=0

(j + 1)dm/(2(n−1))e(j+1)2/n−1/(n−1)−2−1bj1/(n−1)
<∞

and

(4.4)

∫
G

∫
G

t−d/ne−b(|hr
−1|nt−1)1/(n−1)

|(π∗ϕ)(r)||(π∗τ)(h)|dhdr

6 aMt−(d−dm)/n‖ϕ‖1‖τ‖1

for all t ∈ (0, ((4ω)−1b)n/2]. Alternatively, if t > ((4ω)−1b)n/2 then

(4.5)

∫
G

∫
G

t−d/ne−b(|hr
−1|nt−1)1/(n−1)

|(π∗ϕ)(r)||(π∗τ)(h)|dh dr

6 t−d/n
∫
G

∫
G

|(π∗ϕ)(r)||(π∗τ)(h)|dh dr

= t−d/n‖ϕ‖1‖τ‖1 6 ((4ω)−1b)−dm/2t−(d−dm)/n‖ϕ‖1‖τ‖1.

A combination of (4.2), (4.4) and (4.5) yields that for all α, β ∈ J(d) there exist
a, b, ω > 0 such that∣∣∣ ∫

X

∫
X

(AαRβκt)(ġ; k̇)eρ(ψ(ġ)−ψ(k̇))ϕ(k̇)τ(ġ) dk̇ dġ
∣∣∣

6 at−(|α|+|β|+d−dm)/neωt+ωbρ
nt‖ϕ‖1‖τ‖1
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uniformly for all t > 0, ϕ,τ ∈ C∞c (X), ρ ∈ R and real valued ψ ∈ Cb;∞(X) with
d∑
i=1

|Aiψ|2 6 1 for all i ∈ {1, . . . , d}. Then

|(AαRβκt)(ġ; k̇)| 6 at−(|α|+|β|+d−dm)/neωt+ωbρ
nte−ρ(ψ(ġ)−ψ(k̇))

and minimizing first over ψ and finally over ρ gives the bounds

|(AαRβκt)(ġ; k̇)| 6 at−(|α|+|β|+d−dm)/neωte−b(d(ġ;k̇)
nt−1)1/(n−1)

and the proof of Proposition 4.2 is complete.

Now we are able to prove the main theorem.

Proof of Theorem 1.4. Obviously the validity of Theorem 1.4 is independent
of the choice of the basis a1, . . . , ad for g, i.e., if Theorem 1.4 is valid for one
particular basis then it is valid for any basis. This is because the distance d1 in
(1.3) is independent of the chosen basis, up to equivalence of norms.

Let D = M∩Z(G). Then D is a closed normal subgroup of G, and also of M ,
since D is central in G. Therefore G/D is a connected unimodular group and M/D

is a compact connected subgroup of G/D. We first show that (M/D) ∩ Z(G/D)
is finite.

Let a1, . . . , ad′ , . . . , adm , . . . , ad be a basis for g such that a1, . . . , ad′ is a basis
for d, the Lie algebra ofD and a1, . . . , adm is a basis for m. Then ad′+1+d, . . . , ad+d

is a basis for the Lie algebra g/d.
Let a ∈ m and suppose a+ d ∈ z(g/d), the centre of g/d. Then [a, b] ∈ d and

hence [a, b] is central for all b ∈ g. Therefore,

Ad (exp(ta))b = et ad ab = b+ t[a, b]

for all t ∈ R and b ∈ g. But a ∈ m and hence {Ad (exp(ta))b | t ∈ R} is a
compact subset of g. So [a, b] = 0 for all b ∈ g and hence a ∈ d. Therefore
(m/d) ∩ z(g/d) = {0}. Hence dim((M/D) ∩ Z(G/D)) = 0 since the Lie algebra of
G/D is naturally isomorphic to the Lie algebra g/d. Then (M/D) ∩ Z(G/D) is
finite because M/D is compact.

Let P : G/D → (G/D)
/

(M/D) denote the canonical projection map. Define

the map Φ : G/M → (G/D)
/

(M/D) by

Φ(gM) = P (gD)



Reduced heat kernels on homogeneous spaces 299

for all g ∈ G. It is an elementary exercise to show that the map Φ is well defined,
it is a bijection and both Φ and Φ−1 are C∞ maps. Moreover, if one normalizes
the Haar measure on D to have total measure one then∫

(G/D)
/

(M/D)

ϕ =
∫

G/M

ϕ ◦ Φ

for all ϕ ∈ Cc((G/D)
/

(M/D)). Let again a1, . . . , ad′ , . . . , adm , . . . , ad be a basis
for g such that a1, . . . , ad′ is a basis for d and a1, . . . , adm is a basis for m. Then it
is obvious that Ai = 0 for all i ∈ {1, . . . , d′}. The Lie algebra of G/D is isomorphic
to g/d in the natural manner, and as vector space the latter is naturally isomorphic
to span {ad′+1, . . . , ad}. Let ãi be the element in the Lie algebra of G/D assigned
to ai for all i ∈ {d′ + 1, . . . , d} and let Ãi be the associated infinitesimal generator
on (G/D)

/
(M/D). Then Ai(ϕ ◦Φ) = (Ãiϕ) ◦Φ for all ϕ ∈ C∞((G/D)

/
(M/D))

and i ∈ {d′ + 1, . . . , d}.
Let d̃1 be the distance on (G/D)

/
(M/D) as in (1.3). Then it is easy to see

that
d̃1(Φ(gM); Φ(hM)) = d1(gM ;hM)

for all g, h ∈ G.
Next let

H̃ =
∑

α∈J(d)
|α|6n

cαÃ
α

be the strongly elliptic operator of order n on L2((G/D)
/

(M/D)), where we

set Ã1 = · · · = Ãd′ = 0 (see [6] Lemma 3.9). Then (H̃ϕ) ◦ Φ = H(ϕ ◦ Φ) for
all ϕ ∈ C∞c ((G/D)

/
(M/D)) and hence (S̃tϕ) ◦ Φ = St(ϕ ◦ Φ) for all t > 0,

where S̃t is the semigroup generated by H̃. Let κ̃ denote the reduced heat kernel
corresponding to H̃. Then

κt(gM ;hM) = κ̃t(Φ(gM); Φ(hM))

for all g, h ∈ G. By Proposition 4.2 applied to the group G/D, the compact
subgroup M/D and the strongly elliptic operator H̃, the kernel κ̃ has the required
Gaussian estimates. But then also κ satisfies the desired Gaussian bounds.

Remark 4.3. In general M ∩Z(G) is not finite. An example is the Heisen-
berg group G = A(R), topologically isomorphic to R × R × T, together with the
compact subgroup M ∼ {0} × {0} × T.
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5. REDUCED HEAT KERNELS ON NILPOTENT GROUPS

In the previous section we used the semigroup estimates for the Laplacian on the
homogeneous space (Proposition 4.1) and the general kernel bounds for n-th order
operators on the Lie group to deduce Gaussian bounds for the reduced heat kernel
associated with an n-th order strongly elliptic operator on the homogeneous space.
But it turns out that this method also works for reduced heat kernels associated
with n-th order strongly elliptic operators associated with an irreducible unitary
representation on a nilpotent Lie group. In this section we prove Gaussian bounds
for these kinds of reduced heat kernels on nilpotent Lie groups, together with all its
derivatives. In [7] Gaussian bounds were proved for second order strongly elliptic
operators with real symmetric principal coefficients.

We first recall some notation from [7], Section 2. Note that the representa-
tions in [7] are defined with respect to right cosets, but the difference will cause
no problem. From now on let G be a connected, simply connected, d-dimensional,
nilpotent Lie group with Lie algebra g and fix l ∈ g∗. Let m denote a polarizing
subalgebra for l of dimension dm and let M = exp(m) denote the corresponding
subgroup ofG. Further let a1, . . . , adm , . . . , adm+k be a weak Malcev basis of g pass-
ing through m, i.e., span {a1, . . . , aj} is a subalgebra of g for all j 6 d = dm +k and
m = span {a1, . . . , adm}. Define the one dimensional representation χ : M → C by
χ(exp a) = e2πil(a) for all a ∈ m. Further define γ : Rk → G by

γ(x) = γ(x1, . . . , xk) = exp(x1adm+1) · · · exp(xkadm+k).

The map (m,x) 7→ m·γ(x) is a diffeomorphism fromM×Rk into G which preserves
measures. Let E = (E1, E2) : G→M ×Rk be the inverse of this map. For g ∈ G
define U(g) : L2(Rk) → L2(Rk) by

(U(g)ϕ)(x) = χ(E1(γ(x)g))ϕ(E2(γ(x)g))

for all ϕ ∈ L2(Rk) and a.e. x ∈ Rk. Then U is the basis realization of the
irreducible representation ind(M ↑ G,χ) with respect to the weak Malcev basis
(see [4], p. 125). In the sequel we also need the representation U◦ of G on L2(Rk)
given by

(U◦(g)ϕ)(x) = ϕ(E2(γ(x)g)).

The representations U and U◦ extend to continuous isometric representations on
all the Lp(Rk)-spaces with p ∈ [1,∞] (see [7], Lemma 2.1).
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Let b1, . . . , bd be a vector space basis for g and for all i ∈ {1, . . . , d} let
Bi = dU(bi) and B◦

i = dU◦(bi) be the associated infinitesimal generators. The
B◦
i can be used to define a distance on Rk by

d(x; y) = sup
{
|ψ(x)− ψ(y)|

∣∣ ψ ∈ C∞c (Rk) real and
d∑
i=1

|B◦
i ψ|2 6 1

}
.

(Cf. [7] p. 495.) Next let n ∈ N and

H =
∑

α: |α|6n

cαB
α

be a strongly elliptic operator of order n with complex (constant) coefficients on
Lp(Rk). Then the closure H of H generates a continuous semigroup S on Lp(Rk)
and for all t > 0 the operator St has a smooth reduced heat kernel κt ∈ S(Rk×Rk)
such that

(Stϕ)(x) =
∫
Rk

κt(x; y)ϕ(y) dy

for all ϕ ∈ Lp(Rk) and x ∈ Rk. Let Bα denote the (multi-)derivative of the
reduced kernel κt with respect to the first variable and Rβ the derivative with
respect to the second variable and the basis b1, . . . , bd.

Now we are able to state the Gaussian bounds for the reduced heat kernels
on nilpotent Lie groups.

Theorem 5.1. For all α, β ∈ J(d) there exist a, b > 0 and ω > 0 such that

|(AαRβκt)(x; y)| 6 at−(k+|α|+|β|)/neωte−b(d(x;y)
nt−1)1/(n−1)

for all x, y ∈ Rk and t > 0.

Proof. For t > 0 let Kt ∈ L1(G; dg) be the Lie group kernel of the operator
St. As in Section 1 we denote the left derivative in the direction bi on the Lie group
G by B̃i and the right derivative in the direction bi by R̃i. Again the reduced heat
kernel is obtained from K by a reduction formula.

Lemma 5.2. If α, β ∈ J(d) and t > 0 then

(BαRβκt)(x; y) =
∫
M

χ(m)(B̃αR̃βKt)(γ(x)−1mγ(y)) dm

for all x, y ∈ Rk.

Proof. By [4], Proposition 4.3.2, the right hand side is the kernel of the
operator U(B̃αR̃βKt) = U(B̃αKt/2)U(R̃βKt/2). But U(B̃αKt/2) = B̃αU(Kt/2)
and has as kernel Bακt/2. By duality, U(R̃βKt/2) has the kernel Rβκt/2. Then
the lemma follows by taking the convolution.
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Similar results are also valid with respect to the representation U◦. Let

H◦∆ = −
d∑
i=1

(B◦
i )

2 be the Laplacian and S◦∆ be the semigroup generated by

H◦∆. Then S◦∆t has a fast decaying reduced heat kernel κ◦∆t satisfying

(5.1) κ◦∆t (x; y) =
∫
M

K∆
t (γ(x)−1mγ(y)) dm

for all x, y ∈ Rk, where K∆
t ∈ L1(G; dg) is the kernel of the semigroup generated

by −
d∑
i=1

B̃2
i . Proposition 4.1 has the following form in the present context.

Proposition 5.3. There exist a, ω > 0 such that

(5.2) |(τ, S◦∆t ϕ)| 6 at−k/2eωt‖ϕ‖1‖τ‖1

for all ϕ, τ ∈ C∞c (Rk) and t > 0.

Proof. If the weak Malcev basis a1, . . . , ad has the ideal property (1.3) of [7],

i.e., if

[a, adm+j ] ∈ span {a1, . . . , adm+j−1} for all a ∈ g and j ∈ {1, . . . , k},

then the bounds (5.2) follow from the Nash inequalities Corollary 3.10 of [7] for

U◦, similarly as in the proof of Proposition 4.1. But by Lemma 2.3 of [7] one can

then remove the restriction that the weak Malcev basis has the ideal property.

The modulus on G is defined with respect to the right invariant vector fields

(2.1). But if one uses the left invariant vector fields instead of the right invariant

vector fields then one obtains the same modulus.

For all ϕ : Rk → C define the function π∗ϕ : G→ C by (π∗ϕ)(mγ(x)) = ϕ(x).

Then

(R̃i(π∗ϕ))(mγ(x)) = (B◦
i ϕ)(x)

for all ϕ ∈ C∞c (Rk), m ∈ M , x ∈ Rk and i ∈ {1, . . . , d}. This is the present

substitute for (4.1).

Now we are able to prove Theorem 5.1. Since the proof is very similar,

we indicate the differences. Let α, β ∈ J(d), t > 0, ϕ, τ ∈ C∞c (Rk), ρ ∈ R,
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ψ ∈ Cb;∞(Rk) real valued and suppose that
d∑
i=1

|B◦
i ψ|2 6 1. Then by [4], Lemma

1.2.13 and Theorem 1.2.10, one has∣∣∣ ∫
Rk

∫
Rk

(BαRβκt)(x; y)eρ(ψ(x)−ψ(y))ϕ(y)τ(x) dy dx
∣∣∣

6
∫
Rk

∫
Rk

∫
M

|(B̃αR̃βKt)(γ(x)−1mγ(y))|eρ(ψ(x)−ψ(y))|ϕ(y)| |τ(x)|dmdy dx

=
∫
Rk

∫
G

|(B̃αR̃βKt)(γ(x)−1g)|eρ((π
∗ψ)(γ(x))−(π∗ψ)(g))|(π∗ϕ)(g)| |τ(x)|dg dx

6
∫
Rk

∫
G

|(B̃αR̃βKt)(γ(x)−1g)|e|ρ||γ(x)
−1g||(π∗ϕ)(g)| |τ(x)|dg dx.

If one defines and uses the annuli

Ωj = {(x, g) ∈ Rk ×G | j 6 |γ(x)−1g|nt−1 < j + 1}

then one can argue as in the proof of Proposition 4.2 up to equality (4.3). But
now it follows from (5.1) that∫

Rk

∫
G

|(π∗ϕ)(g)| |τ(x)|K∆
csj

(γ(x)−1g) dg dx

=
∫
Rk

∫
Rk

κ◦∆csj
(x; y)|ϕ(y)| |τ(x)|dy dx = (|τ |, S◦∆csj

|ϕ|) 6 as
−k/2
j eωsj‖ϕ‖1 ‖τ‖1

for suitable a, ω > 0, by Proposition 5.3. The rest of the proof is as before.

Although the proof in the nilpotent case is very similar to the proof in the
homogeneous case, the nilpotent case is not a special case of the homogeneous case
since M is not compact in general.
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