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Abstract. It is well known that the Hardy space over the bidisk D2 is an
A(D2) module and that A(D2) is contained in H2(D2). Suppose (h) ⊂ A(D2)
is the principal ideal generated by a polynomial h, then its closure [h](⊂
H2(D2)) and the quotient H2(D2) 	 [h] are both A(D2) modules. We let
Rz, Rw be the actions of the coordinate functions z and w on [h], and let
Sz, Sw be the actions of z and w on H2(D2) 	 [h]. In this paper, we will
show that Rz and Rw, as well as Sz and Sw, essentially doubly commute.
Moreover, both [R∗

w, Rz] and [S∗
w, Sz] are actually Hilbert-Schmidt.
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0. INTRODUCTION

The Berger-Shaw theorem says that the self-commutator of a multicyclic hyponor-
mal operator is trace class ([1]). It is interesting to study the multivariate analogue
of this theorem. In [6], the authors reformulated the theorem in an algebraic lan-
guage and showed that if the spectrum of a finite rank hyponormal module is
contained in an algebraic curve then the module is reductive. They also gave ex-
amples showing that it is generally not the case if the spectrum of the module is
of higher dimension. However, many examples show that the cross commutators
do not seem to have a close relation with the spectra of modules and are gener-
ally “small”. This suggests that the following general questions may have positive
answers.
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Questions. Suppose T1, T2 are two doubly commuting operators acting on
a separable Hilbert space H and R1, R2 are the restrictions of them to a jointly
invariant subspace that is finitely generated by T1, T2.

(1) Is the cross commutator [R∗1, R2] in some Schatten p-class?
(2) Is the product [R∗1, R1][R∗2, R2] also small?
(3) What about the compressions of T1, T2 to the orthogonal complement

of M?

A special case of the first question was studied by Curto, Muhly and Yan
in [3]. The second question was raised by R. Douglas. The third one appears
naturally from the study of essentially reductive quotient modules. Note that
when T1 = T2 the first two questions are answered positively by the Berger-Shaw
Theorem.

In this paper we will make a study of these questions in the case H = H2(D2),
the Hardy space over the bidisk, and T1, T2 are the multiplications by the two
coordinate functions z and w. Then a closed subspace of H2(D2) is jointly invariant
for T1 and T2 if and only if it is an A(D2) submodule. We will have a look at the
third question first because it turns out to be the easiest. The answer to the second
question is a consequence of the answer to the first one. Some related questions
will also be studied in this paper.

We now begin the study by doing some preparations.
Throughout this paper we let E′, E be two separable Hilbert spaces of infinite

dimension and {δ′j : j > 0}, {δj : j > 0} are orthonormal bases for E′ and E

respectively. We let H2(E) denote the E-valued Hardy space, i.e.

H2(E) :=
{ ∞∑

j=0

zjxj : |z| = 1,
∞∑

j=0

‖xj‖2E < ∞
}

.

It is well known that every function in H2(E) has an analytic continuation to the
whole unit disk D. For our convenience, we will not distinguish the functions of
H2(E) from their extensions to D. We let Tz be the Toeplitz operator on H2(E)
such that for any f ∈ H2(E),

Tzf(z) = zf(z).

One sees that Tz is a shift operator of infinite multiplicity.
A B(E′, E)-valued analytic function θ(z) on D is called left-inner (inner) if its

boundary values on the unit circle T are almost everywhere isometries (unitaries)
from E′ into E. Therefore, multiplication by a left-inner θ defines an isometry
from H2(E′) into H2(E).
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A closed subspace M ⊂ H2(E) is called invariant if

TzM ⊂ M.

The Lax-Halmos Theorem gives a complete discription of invariant subspaces

in terms of left-inner functions.

Theorem 0.1. (Lax-Halmos) M is a nontrivial invariant subspace of H2(E)

if and only if there is a closed subspace E′ ⊂ E and a B(E′, E)-valued left-inner

function θ such that

(0.1) M = θH2(E′).

The representation is unique in the sense that

θH2(E′) = θ′H2(E
′′
) ⇔ θ = θ′V,

where V is a unitary from E′ onto E
′′
.

In order to make a study of the Hardy modules over the bidisk, we identify

the space E with another copy of the Hardy space. Then H2(E) = H2(D) ⊗ E

will be identified with H2(D)⊗H2(D) = H2(D2). We do this in the following way.

Let u be the unitary map from E to H2(D) such that

uδj = wj , j > 0.

Then U = I ⊗ u is a unitary from H2(D)⊗ E to H2(D)⊗H2(D) such that

U(ziδj) = ziwj , i, j > 0.

It is not hard to see that M ⊂ H2(E) is invariant if and only if UM ⊂ H2(D2)

is invariant under multiplication by the coordinate function z. This identification

enables us to use the Lax-Halmos theorem to study certain properties of sub-Hardy

modules over the bidisk which we will do in Section 1. Throughout this paper,

we will let d|z| denote the normalized Lebesgue measure on the unit circle T and

d|z|d|w| be the product measure on the torus T2.
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1. HILBERT-SCHMIDT OPERATORS

In this section we prove two technical lemmas and an important corollary.
Suppose θ is left inner with values in B(E′, E) and δ is any fixed element of

E. We now define an operator N from θE′ to the Hardy space H2(D) over the
unit disk as the following:

(1.1) N
(
θ(z)

∞∑
j=0

αjδ
′
j

)
:=

〈
θ(z)

∞∑
j=0

αjδ
′
j , δ

〉
E

,

where
∞∑

j=0

αjδ
′
j is any element in E′.

Lemma 1.1. N is Hilbert-Schmidt and

(1.2) tr(N∗N) =
∫
T

‖θ∗(z)δ‖2E′ d|z|.

Proof. Since θ is left inner, {θδj | j > 0} is an orthonormal basis for θE′. To

prove the lemma, one suffices to show that
∞∑

j=0

〈N∗Nθδ′j , θδ
′
j〉θE′ is finite. In fact,

∞∑
j=0

〈N∗Nθδ′j , θδ
′
j〉θE′ =

∞∑
j=0

〈Nθδ′j , Nθδ′j〉H2 =
∞∑

j=0

∫
T

|〈θ(z)δ′j , δ〉E |2 d|z|

=
∞∑

j=0

∫
T

|〈δ′j , θ∗(z)δ〉E′ |2 d|z|

=
∫
T

∞∑
j=0

|〈δ′j , θ∗(z)δ〉E′ |2 d|z| =
∫
T

‖θ∗(z)δ‖2E′ d|z|.

So in general
tr(N∗N) 6 ‖δ‖2,

and the equality holds when θ is inner.
Back to the H2(D2) case, this lemma has an important corollary. Let us first

introduce some operators.
For any bounded function f we let Tf := Pf be the Toeplitz operator on

H2(D2), where P is the projection from L2(T2) to H2(D2). For every non-negative
integer j and λ ∈ D, we let operators Nj and Nλ from H2(D2) to H2(D) be such

that for any f(z, w) =
∞∑

k=0

fk(z)wk ∈ H2(D2)

Njf(z) = fj(z), Nλf(z) = f(z, λ).
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Then one verifies that Nj is a contraction for each j and ‖Nλ‖ = (1 − |λ|2)−1/2.
Furthermore,

∞∑
k=0

TwkNk = I on H2(D2),(1.3)

Nλ =
∞∑

k=0

λkNk.(1.4)

In what follows we will be mainly interested in the restrictions of Nk, Nλ to
certain subspaces and will use the same notations to denote these restrictions.

Corollary 1.2. For any A(D2) submodule M ⊂ H2(D2), Nj and Nλ are
Hilbert-Schmidt operators restricting on M 	 zM for each j > 0 and λ ∈ D, and

tr(N∗
j Nj) 6 1,

∥∥∥p⊥
1

1− λw

∥∥∥2

6 tr(N∗
λNλ) 6 (1− |λ|2)−1,

where p⊥ is the projection from H2(D2) onto M 	 zM .

Proof. Because M is invariant under the multiplication by z, U∗M is invari-
ant under Tz, where U is defined in the last paragraph of Section 0, and hence

U∗M = θH2(E′)

for some Hilbert space E′ and a left inner function θ. Then

U∗(M 	 zM) = θH2(E′)	 zθH2(E′) = θ(H2(E′)	 zH2(E′)) = θE′.

Let us first deal with the operator Nλ.

In Lemma 1.1, if we choose δ =
∞∑

j=0

λ
j
δj ∈ E, then for any f(z, w) =

∞∑
j=0

fj(z)wj inside M 	 zM , U∗f =
∞∑

j=0

fj(z)δj is in θE′, and

NU∗f(z) = N
( ∞∑

j=0

fj(z)δj

)
=

〈 ∞∑
j=0

fj(z)δj , δ
〉

=
∞∑

j=0

fj(z)λj = Nλf(z).

So Nλ = NU∗, hence is Hilbert-Schmidt by Lemma 1.1, and

tr(N∗
λNλ) = tr(U∗N∗NU) = tr(N∗N).
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The inequality
tr(N∗

λNλ) 6 (1− |λ|2)−1

comes from the remarks following the proof of Lemma 1.1. We now show the
inequality ∥∥∥p⊥

1
1− λw

∥∥∥2

6 tr(N∗
λNλ).

Let {g0, g1, g2, . . .} be an orthonormal basis for M 	 zM . Then

Nλgk(z) = gk(z, λ) =
∫
T

gk(z, w)
1− λw

d|w|,

and therefore

tr(N∗
λNλ) =

∞∑
k=0

∫
T

∣∣∣ ∫
T

gk(z, w)
1− λw

d|w|
∣∣∣2 d|z| >

∞∑
k=0

∣∣∣ ∫
T

∫
T

gk(z, w)
1− λw

d|w|d|z|
∣∣∣2

=
∞∑

k=0

|〈gk, (1− λw)−1〉|2 =
∥∥∥p⊥

1
1− λw

∥∥∥2

.

For operators Nj , j = 0, 1, 2, . . ., we choose δ to be δj , j = 0, 1, 2, . . . corre-
spondingly in Lemma 1.1. Similar calculations will establish the assertion and the
inequalities.

If L2 denotes the collection of all the Hilbert-Schmidt operators acting on
some Hilbert space K, then for any a, b in L2,

〈a, b〉 def= trace(b∗a)

defines an inner product which turns (L2, 〈 · , · 〉) into a Hilbert space. If | · | is the
norm induced from this inner product, then

(1.5) |xay| 6 ‖x‖ ‖y‖ |a|,

for any a ∈ L2 and any bounded operators x and y ([7], p. 79), where ‖ · ‖ is the
operator norm.

Lemma 1.3. Suppose A,B are two contractions such that [A,B] = AB−BA

is Hilbert-Schmidt and f(z) =
∞∑

j=0

cjz
j is any holomorphic function over the unit

disk such that
∞∑

j=0

j|cj | converges, then [f(A), B] is also Hilbert-Schmidt.
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Proof. We observe that for any positive interger n,

[An, B]

= AnB −BAn

= AnB −An−1BA + An−1BA−BAn

= An−1[A,B] + [An−1, B]A
...

= An−1[A,B] + An−2[A,B]A + · · ·+ A[A,B]An−2 + [A,B]An−1,

hence
|[An, B]| 6 n|[A,B]|

by inequality (1.5). If we let fn(z) =
n∑

j=0

cjz
j then [fn(A), B] is in L2 and

|[fn(A), B]− [f(A), B]| =
∣∣∣[ ∞∑

j=n+1

cjA
j , B

]∣∣∣
6

∞∑
j=n+1

|cj | |[Aj , B]| 6
∞∑

j=n+1

j|cj | |[A,B]|.

From the assumption on f ,

lim
n→∞

∞∑
j=n+1

j|cj | |[A,B]| = 0,

hence [f(A), B] is also in L2, i.e. Hilbert-Schmidt.

Corollary 1.2 is crucial for the rest of the sections and Lemma 1.3 will enable
us to get around some technical difficulties.

2. DECOMPOSITION OF CROSS COMMUTATORS

In this section we will define the compression operators and decompose their cross
commutators. We begin by introducing some notations.

For any h ∈ H2(D2), we let

[h] := A(D2)h
H2

denote the submodule generated by h. Here we note that h is called inner if

|h(z, w)| = 1 a.e. on T2.
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It is not hard to see that
[h] = hH2(D2)

when h is inner. Further, h is called outer in the sense of Helson (H) if

[h] = H2(D2).

Given any submodule M , we can decompose H2(D2) as

H2(D2) = (H2(D2)	M)⊕M,

and let
p : H2(D2) → M,

q : H2(D2) → H2(D2)	M

be the projections. For any f ∈ H∞(D2), we let Sf and Rf be the compressions
of the operator Tf to H2(D2)	M and M respectively, i.e.

Sf = qfq, Rf = pfp.

In Sections 3 and 4 we will prove that when M = [h] with h a polynomial,
the cross commutators [S∗w, Sz] and [R∗w, Rz] are both Hilbert-Schmidt. To avoid
the technical difficulties, we prove the assertion for the operators [S∗ϕλ

, Sz] and
[R∗ϕλ

, Rz] first, where ϕλ(w) = w−λ

1−λw
with some λ ∈ D such that h(z, λ) 6= 0 for

all z ∈ T, and then apply Lemma 1.3.
First we need to have a better understanding of the two cross commutators

[S∗w, Sz] and [R∗w, Rz]. In view of the decomposition

H2(D2) = (H2(D2)	M)⊕M,

we can decompose the Toeplitz operators on H2(D2) correspondingly.
If we regard ϕλ as a multiplication operator on H2(D2), then

Tϕλ
=

(
qϕλq 0
pϕλq pϕλp

)
,

Tz =
(

qzq 0
pzq pzp

)
,

and

T ∗ϕλ
Tz − TzT

∗
ϕλ

=
(

qϕλqzq + qϕλpzq − qzqϕλq qϕλpzp− qzqϕλp

pϕλpzq − pzqϕλq pϕλpzp− pzqϕλp− pzpϕλp

)
.
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It is well known that Tz doubly commutes with Tw on H2(D2). Because ϕλ is a
function of w only, it is then not hard to verify that

T ∗ϕλ
Tz − TzT

∗
ϕλ

= 0,

so we have that

qϕλqzq + qϕλpzq − qzqϕλq = 0,

and

pϕλpzp− pzqϕλp− pzpϕλp = 0,

i.e.

qϕλqzq − qzqϕλq = −qϕλpzq,

pϕλpzp− pzpϕλp = pzqϕλp.

Thus we have a following:

Proposition 2.1.

S∗ϕλ
Sz − SzS

∗
ϕλ

= −qϕλpzq,(2.1)

R∗ϕλ
Rz −RzR

∗
ϕλ

= pzqϕλp.(2.2)

3. ESSENTIAL COMMUTATIVITY OF S∗
w AND Sz

In this section we will prove the essential commutativity of S∗w and Sz on H2(D2)	
[h] when h is a polynomial. As we noted in the last section, we first prove the
assertion for S∗ϕλ

and Sz.

We first observe that for any f ∈ H2(D2)	 [h] and any g ∈ [h],

〈pzf, zg〉H2 = 〈zf, zg〉H2 = 〈f, g〉H2 = 0.

So pz actually maps H2(D2) 	 [h] into [h] 	 z[h]. Therefore, S∗ϕλ
Sz − SzS

∗
ϕλ

can
be decomposed as

(3.1) H2(D2)	 [h]
−pz−→ [h]	 z[h]

qϕλ−→ H2(D2)	 [h].

This observation has an interesting corollary when h is inner.



388 Rongwei Yang

Corollary 3.1. If h is inner, then S∗wSz − SzS
∗
w is at most of rank 1 on

H2(D2)	 [h].

Proof. First we note that when λ = 0, ϕλ(w) = w. If h is inner,

[h] = hH2(D2),

and {wnh | n = 0, 1, 2, . . .} is an orthonormal basis for [h]	 z[h]. For any function

f(z, w) =
∞∑

j=0

cjw
jh inside [h]	 z[h],

qwf = qwc0h + q
( ∞∑

j=1

cjw
j−1h

)
= c0qwh.

This shows that qw is at most of rank one and hence S∗wSz −SzS
∗
w = −qwpz is at

most of rank one.

This corollary enables us to give an operator theoretical proof of an interest-
ing fact first noticed by W. Rudin in a slightly different context ([11], p. 123).

Corollary 3.2. h(z, w) = z − w has no inner-outer (H) factorization.

Proof. As before, we let Sz, Sw be the compressions of Tz, Tw to H2(D2)	 [h]
and set

en =
1√

n + 1
(zn + zn−1w + · · ·+ zwn−1 + wn), n = 0, 1, 2, . . . .

One verifies that {en | n = 0, 1, 2, . . .} is an orthonormal basis for H2(D2)	 [z−w].
Experts will know that H2(D2) 	 [z − w] is actually the Bergman space over the
unit disk. One then easily checks that

Sz = Sw,

Swen =
√

n + 1√
n + 2

en+1,

S∗wen =
√

n√
n + 1

en−1, n > 1.

Therefore,

[S∗w, Sw]en =
1

n(n + 1)
, n = 0, 1, 2, . . . .

If z − w had an inner-outer factorization, then [z − w] = gH2(D2) for some
inner function g and

[S∗w, Sw] = [S∗w, Sz]

would be at most a rank one operator which conflicts with the above computation.
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Similar methods can be used to show that the functions like z − µwn, for
|µ| < 1 and n a nonnegative integer, have no inner-outer (H) factorization.

We now come to the main theorem of this section.

Theorem 3.3. If h ∈ H∞(D2) and there is a fixed λ ∈ D and a positive
constant L such that

(3.2) L 6 |h(z, λ)|

for almost every z ∈ T then S∗wSz − SzS
∗
w on H2(D2)	 [h] is Hilbert-Schmidt.

Proof. We first show that S∗ϕλ
Sz − SzS

∗
ϕλ

is Hilbert-Schmidt. From (3.1), it
will be sufficient to show that

qϕλ : [h]	 z[h] → H2(D2)	 [h]

is Hilbert-Schmidt.
Let us recall that the operator Nλ from [h]	 z[h] to H2(D) is defined by

Nλg = g( · , λ),

and it is Hilbert-Schmidt by Corollary 1.2. Suppose

hf0, hf1, hf2, . . .

is an orthonormal basis for [h]	 z[h].
We first show that h(z, w)fk(z, λ) ∈ [h] for every k. In fact,∫

T

|fk(z, λ)|2 d|z| 6 L−2

∫
T

|h(z, λ)fk(z, λ)|2 d|z| = L−2‖Nλ(hfk)‖2 < ∞,

i.e. fk(z, λ) ∈ H2(D) and hence h(z, w)fk(z, λ) ∈ [h] since h is bounded. Further-
more,

(3.3) ‖h( · , · )fk( · , λ)‖2 6 ‖h‖2∞‖fk( · , λ)‖2 6 ‖h‖2∞L−2‖Nλ(hfk)‖2.

Next, we observe that

(3.4) qϕλhfk = qϕλh(fk − fk( · , λ)) + qϕλhfk( · , λ).

Since fk(z, w) − fk(z, λ) vanishes at w = λ for every z ∈ D, it has ϕλ(w) as a
factor, and hence

(3.5) qϕλh(fk − fk( · , λ)) = 0.
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Combining (3.3) and (3.4),

∞∑
k=0

‖qϕλhfk‖2H2(D2) =
∞∑

k=0

‖qϕλh(fk − fk( · , λ)) + qϕλhfk( · , λ)‖2H2(D2)

=
∞∑

k=0

‖qϕλhfk( · , λ)‖2H2(D2) 6
∞∑

k=0

‖h( · , · )fk( · , λ)‖2H2(D2)

6 ‖h‖2∞L−2
∞∑

k=0

‖h( · , λ)fk( · , λ)‖2H2(D) = ‖h‖2∞L−2tr(N∗
λNλ).

This shows that qϕλ, and hence [S∗ϕλ
, Sz] is Hilbert-Schmidt.

Assuming ϕ̂λ(w) = ϕλ(w), one verifies that

S∗ϕλ
= ϕ̂λ(S∗w).

The fact that

ϕ̂λ(ϕ̂λ(w)) = w

and an application of Lemma 1.3 with f = ϕ̂λ then imply that [S∗w, Sz] is Hilbert-
Schmidt.

In Theorem 3.3, if h is continuous on the boundary of D × D, then the
inequality (3.2) will hold once there is a λ ∈ D such that h(z, λ) has no zero
on T. This idea leads to the assertion that S∗wSz − SzS

∗
w is Hilbert-Schmidt on

H2(D2)	 [h] for any polynomial h in two complex variables. But we need to recall
some knowlege from complex analysis before we can prove it.

Suppose G is a bounded open set in the complex plane C. We let A(G) denote
the collection of all the functions that are holomorphic on G and are continuous
to the boundary of G; Z(f) denotes the zeros of f .

To make a study of zero sets of polynomials, we need a classical theorem in
several complex variables.

Theorem 3.4. Let

h(z, w) = zn + a1(w)zn−1 + · · ·+ an(w)

be a pseudopolynomial without multiple factors, where the aj(w)’s are all in A(G).
Further let

Dh := {w ∈ G | ∆h(w) = 0},
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where ∆h(w) is the discriminant of h. Then for any w0 ∈ G−Dh there exists an
open neighborhood of U(w0) ⊂ G − Dh and holomorphic functions f1, f2, . . . , fn

on U with fi(w) 6= fj(w) for i 6= j and w ∈ U , such that

h(z, w) = (z − f1(w))(z − f2(w)) · · · (z − fn(w))

for all w ∈ U and all complex number z.

This theorem is taken from [8], but similar theorems can be found in other
standard books on several complex variables. It reveals some information on the
zero sets of polynomials which we state as

Corollary 3.5. For any polynomial p(z, w) not having z − λ with |λ| = 1
as a factor, the set

Yp = {w ∈ C | p(z, w) = 0 for some z ∈ T}

has no interior.

Proof. We first assume that p is irreducible and write p(z, w) as

p(z, w) = a0(w)zn + a1(w)zn−1 + · · ·+ an(z)

with aj(w) polynomials of one variable and a0(w) not identically zero. Then on
C \ Z(a0), we have

p(z, w) = a0(w)
(

zn +
a1(w)
a0(w)

zn−1 + · · ·+ an(w)
a0(w)

)
.

Let ∆p be the discriminant (see [8] for the definition) of p. If p is irreducible, ∆p

is not identically zero, and so neither is the discriminant of

q(z, w) = zn +
a1(w)
a0(w)

zn−1 + · · ·+ an(w)
a0(w)

.

This implies that the pseudopolynomial q(z, w) has no multiple factor either.
We now prove the corollary for the irreducible polynomial p. We do it by

showing that given any open disk B ⊂ C, there is a w ∈ B which is not in Yp.
Given any small open disk B and a point w0 in B \ {Z(∆p) ∪ Z(a0)}, the

above theorem shows the existence of an open neighborhood U ⊂ B of w0 and
holomorphic functions f1, f2, . . . , fn on U with fi(w) 6= fj(w) for i 6= j and w ∈ U

such that

(3.6) p(z, w) = a0(w)(z − f1(w))(z − f2(w)) · · · (z − fn(w)),
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for all z ∈ C. Then f1(w) can not be a constant λ of modulus 1 because p does not
have factors of the form z − λ from the assumption. So we can choose a smaller
open disk B1 ⊂ U such that f1(B1) ∩ T is empty. Carrying the same argument
out for f2 on B1, we have an open disk B2 ⊂ B1 such that f2(B2) ∩ T is empty.
Continuing this procedure, we have disks B1, B2, . . . , Bn such that Bj ⊂ Bj−1 for
j = 2, 3, . . . , n. Then for any w ∈ Bn, p(z, w) will have no zero on T and hence w

is not in Yp.
If p is an arbitary polynomial not having z − λ with |λ| = 1 as a factor, we

factorize p into a product of irreducible polynomials as

p(z, w) = pd1
1 pd2

2 · · · pdm
m .

If we let
Yj = {w ∈ C | pj(z, w) = 0 for some z ∈ T},

then Yp ⊂
m⋃

j=1

Yj , hence it has no interior.

We feel it may be interesting to have a closer look at the set Yp, but that is
not the purpose of this paper. The result in Corollary 3.5 is good enough for us
to state

Theorem 3.6. For any polynomial h, S∗wSz − SzS
∗
w is Hilbert-Schmidt on

H2(D2)	 [h].

Proof. Suppose h is any polynomial. If h is of the form (z − λ)g for some
polynomial g and some λ of modulus 1, then [h] = [g] because z − λ is outer (H).
So without loss of generality, we assume that h does not have this kind of factor.
Then from the above corollary, h(z, µ) has no zeros on T for any µ ∈ D \ Yh.
Theorem 3.3 and the observations immediately after it then imply that [S∗w, Sz] is
Hilbert-Schmidt.

For any function f ∈ A(D2), we can define an operator Sf by

Sfx
def= qfx

for any x ∈ H2(D2)	[h], where q is the projection from H2(D2) onto H2(D2)	[h].
One checks that this turns H2(D2) 	 [h] into a Hilbert A(D2) quotient module.
The module is called essentially reductive if Sf is essentially normal for every
f ∈ A(D2). It is easy to see that H2(D2) 	 [h] is essentially reductive if and
only if both [S∗z , Sz] and [S∗w, Sw] are compact. Currently we do not know how to
characterize those functions h for which H2(D2)	 [h] is essentially reductive, even
though some partial results are available. [4] and [5] are good references on this
topic. However, if we consider H2(D2)	 [h] as a module over the the subalgebra
A(D) ⊂ A(D2), Theorem 3.7 yields the following
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Corollary 3.7. Assume h is a polynomial. If there is a g ∈ A(D) and a
f ∈ [h] ∩H∞(D2), such that

z = g(w) + f(z, w),

then H2(D2) 	 [h] is an essentially reductive module over A(D) with the action
defined by

f · x def= f(Sz)x

for all f ∈ A(D) and all x ∈ H2(D2)	 [h].

Proof. It suffices to show that Sz is essentially normal. From the assumption
on f , Sf is equal to 0. Since z − g(w) = f(z, w), we have that

Sz = Sg = g(Sw).

Suppose {pn} is a sequence of polynomials which converges to g in supremum
norm, then from Lemma 1.3, [S∗z , pn(Sw)] is compact for each n and it is also not
hard to see that [S∗z , pn(Sw)] converges to [S∗z , g(Sw)] in the operator norm, and
hence [S∗z , Sz] = [S∗z , g(Sw)] is compact.

This corollary shows in particular that H2(D2)	 [h] is essentially reductive
over A(D2) when h is linear.

4. ESSENTIAL COMMUTATIVITY OF R∗
w AND Rz

In the last section we proved that the module actions of the two coordinate func-
tions z, w on the quotient module H2(D2)	 [h] essentially doubly commute when
h is a polynomial. It is then natural to ask if there is a similar phenomenon in
the case of submodules. A result due to Curto, Muhly and Yan ([3]) answered
the question affirmatively in a special case and Curto asked if it is true for any
polynomially generated submodules ([2]). Since C[z, w] is Noetherian, one only
needs to look at the submodules generated by a finite number of polynomials. In
this section we will answer Curto’s question partially and a complete answer will
be given in Section 6.

At first, we thought that the submodule case should be easier to deal with
than the quotient module case because z, w act as isometries on submodules. But
it turns out that the submodule case is more subtle and needs a finer analysis.

Let us now get down to details.
Suppose M is a submodule and Rw and Rz are the module actions by coor-

dinate functions z and w. It is obvious Rw and Rz are commuting isometries. In
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[3], Curto, Muhly and Yan made a study of the essential commutativity of oper-
ators R∗w, Rz in the case that M is generated by a finite number of homogeneous
polynomials. They were actually able to show that [R∗w, Rz] is Hilbert-Schmidt. In
this section we will show that this is also true when M is generated by an arbitrary
polynomial. The same result for the case that M is generated by a finite number
of polynomials is a corollary of this result and will be treated in Section 6.

We suppose h is a polynomial that does not have a factor z−µ with |µ| = 1.
Then from Corollary 3.5 there is a λ ∈ D such that h(z, λ) is bounded away from
0 on T. As in Section 3, we will see that this is crucial in the development of the
proofs.

For a bounded analytic function f(z, w) over the unit bidisk, we recall that
Rf is the restriction of the Toeplitz operator Tf onto [h] and by Proposition 2.1,

R∗ϕλ
Rz −RzR

∗
ϕλ

= pzqϕλp.

We let
p1 : H2(D2) → ϕλ[h], q1 : H2(D2) → [h]	 ϕλ[h]

be the projections; then p = p1 + q1. It is not hard to see that

(R∗ϕλ
Rz −RzR

∗
ϕλ

)p1 = pzqϕλp1 = 0.

Moreover, by the remarks preceding Proposition 2.1,

TzTϕλ
= TzT

∗
ϕλ

= T ∗ϕλ
Tz = Tϕλ

Tz,

and hence,

(4.1)

R∗ϕλ
Rz −RzR

∗
ϕλ

= pzqϕλ(p1 + q1) = pzqϕλq1

= pz(P − p)ϕλq1 = pTzTϕλ
q1 − pzpϕλq1

= pTϕλ
Tzq1 − pzpϕλq1 = pϕλzq1 − pzpϕλq1,

where P is the projection from L2(T2) to H2(D2). For any f ∈ [h] 	 ϕλ[h] and
g ∈ [h],

〈pϕλf, g〉 = 〈f, ϕλg〉 = 0,

i.e.

(4.2) pϕλq1 = 0.

Combining equations (4.1) and (4.2) we have that

R∗ϕλ
Rz −RzR

∗
ϕλ

= pϕλzq1.

Furthermore, equation (4.2) also implies that

pϕλzq1 = pϕλ(p1 + q1)zq1 = pϕλp1zq1 + pϕλq1zq1 = pϕλp1zq1.

Since pϕλ acts on ϕλ[h] as an isometry, the above observations then yield.
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Proposition 4.1. [R∗ϕλ
, Rz] is Hilbert-Schmidt on [h] if and only if p1zq1

is Hilbert-Schmidt and

tr([R∗ϕλ
, Rz]∗[R∗ϕλ

, Rz]) = tr((p1zq1)∗(p1zq1))(p1zq1)).

We further observe that, for any f ∈ [h]	 ϕλ[h] and g ∈ ϕλ[h],

〈p1zf, zg〉 = 〈f, g〉 = 0.

So the range of operator p1zq1 is a subspace of ϕλ[h]	 zϕλ[h]. If we let p⊥ be the
projection from ϕλ[h] onto ϕλ[h]	 zϕλ[h] then

(4.3) p1zq1 = p⊥zq1.

We will prove that p⊥zq1 is Hilbert-Schmidt after some preparation.
Suppose

h =
m∑

j=0

aj(z)wj

is a polynomial and that

(4.4) |h(z, λ)| > ε,

for some fixed positive ε and all z ∈ T. Assume H to be the L2-closure of
span{h(z, w)zj | j > 0}, then H ⊂ [h] and we have the following

Lemma 4.2. H = {h(z, w)f(z) | f ∈ H2(D)} = hH2(D).

Proof. It is not hard to check that hH2(D) ⊂ H.
For the other direction, we assume hf is any function in H and need to

show that f ∈ H2(D). In fact, if pn(z), n > 1 is a sequence of polynomi-
als such that h(z, w)pn(z), n > 1, converges to h(z, w)f(z, w) in L2(T2), then
h(z, λ)pn(z), n > 1, converges to h(z, λ)f(z, λ) in L2(T) by the boundedness of Nλ.
Our assumption on h then implies that pn(z), n > 1, converges to f(z, λ) in L2(T),
and in particular, f(z, λ) ∈ H2(D). This in turn implies that h(z, w)pn(z), n > 1,

converges to h(z, w)f(z, λ) in L2(T2) since h is a bounded function. Hence by the
uniqueness of the limit,

h(z, w)f(z, w) = h(z, w)f(z, λ),

and therefore
f(z, w) = f(z, λ).

It is interesting to see from this lemma and Corollary 3.5 that hH2(D) is
actually closed in H2(D2) for any polynomial h not having a factor z − µ with
|µ| = 1.
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Lemma 4.3. The operator V : [h] → H defined by

V (hf) = h(z, w)f(z, λ)

is bounded.

Proof. First of all h(z, λ)f(z, λ) = Nλ(hf) is in H2(D) and hence so is f(z, λ)
since |h(z, λ)| > ε on T. So V is indeed a map from [h] to H.

Next we choose a number M sufficiently large such that∫
T

|h(z, w)|2 d|w| 6 Mε2 6 M |h(z, λ)|2

for all z ∈ T. Then for any h(z, w)f(z, w) ∈ [h],

‖V (hf)‖2 =
∫
T2

|h(z, w)f(z, λ)|2 d|z|d|w| =
∫
T

( ∫
T

|h(z, w)|2 d|w|
)
|f(z, λ)|2 d|z|

6 M

∫
T

|h(z, λ)f(z, λ)|2 d|z| 6 M(1− |λ|2)−1‖hf‖2.

This lemma enables us to reduce the problem further.
For any h(z, w)f(z, w) ∈ [h]	 ϕλ[h],

p⊥zhf = p⊥zV (hf) + p⊥z(hf − V hf).

But
zh(z, w)f(z, w)− zV (hf)(z, w) = zh(z, w)(f(z, w)− f(z, λ)),

and since f(z, w) − f(z, λ) vanishes at w = λ for every z, it has ϕλ as a factor,
hence z(hf − V (hf)) ∈ zϕλ[h]. Therefore by the definition of p⊥,

(4.5) p⊥zhf = p⊥zV (hf) + p⊥zϕλhg = p⊥zV (hf).

To prove that p⊥zq1 is Hilbert-Schmidt, one then suffices to show that p⊥z

restricted to H is Hilbert-Schmidt. Before proving it, we make another observation
and state a lemma.

Since h(z, w) is a polynomial and

∫
T

|h(z, w)|2 d|w| =
m∑

k=0

|ak(z)|2,
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the Riesz-Fejér theorem implies that there is a polynomial Q(z) such that

|Q(z)|2 =
∫
T

|h(z, w)|2 d|w|

on T. If Q vanishes at some µ ∈ T, then ak(µ) = 0 for each k, and hence h has a
factor (z−µ). But this contradicts our assumption on h. So we can find a positive
constant, say η, such that

(4.6) |Q(z)| > η,

for all z ∈ T.
Suppose {h(z, w)fn(z) | n > 0} is an orthonormal basis for H, then

δi,j =
∫
T2

h(z, w)fi(z)h(z, w)fj(z) d|z|d|w|

=
∫
T

( ∫
T

|h(z, w)|2 d|w|
)
fi(z)fj(z) d|z|

=
∫
T

Q(z)fi(z)Q(z)fj(z) d|z|.

So {Q(z)fk(z) | k > 0} is orthonormal in H2(D), but of course it may not be
complete.

Lemma 4.4. The linear operator J : span{Qfk | k > 0} → H2(D) defined by

J(Qfk) = fk, k > 0,

is bounded.

Proof. By inequality (4.6), for any function Qf ∈ span{Qfk | k > 0},∫
T

|f(z)|2 d|z| 6 η−2

∫
T

|Q(z)f(z)|2 d|z|.

Now we are in the position to prove

Proposition 4.5. p⊥z restricted to H is Hilbert-Schmidt.

Proof. Assume {gk | k > 0} ⊂ [h] 	 z[h] is an orthonormal basis and, as
above, {h(z, w)fn(z) | n > 0} is an orthonormal basis for H. Since ϕλ is inner,



398 Rongwei Yang

{ϕλ(w)gk(z, w) | k > 0} is an orthonormal basis for ϕλ[h]	 zϕλ[h]. Therefore, by
identity (1.3) and the expression of h,

p⊥zhfn =
∞∑

k=0

〈zhfn, ϕλgk〉ϕλgk =
∞∑

k=0

〈 m∑
i=0

zaiw
ifn, ϕλ

∞∑
j=0

Twj Njgk

〉
ϕλgk.

Note that ai’s and fn are functions of z only, so
m∑

i=0

zaiw
ifn is orthogonal to

∞∑
j=m+1

wjϕλNjgk because the later has the factor wm+1. It then follows that

p⊥zhfn =
∞∑

k=0

〈 m∑
i=0

zaiw
ifn, ϕλ

∞∑
j=0

Twj Njgk

〉
ϕλgk

=
∞∑

k=0

〈 m∑
i=0

zaiw
ifn,

m∑
j=0

ϕλwjNjgk

〉
ϕλgk

=
∞∑

k=0

m∑
i,j=0

ϕλgk

( ∫
T

zai(z)fn(z)Njgk(z) d|z|
)( ∫

T

wiϕλ(w)wj d|w|
)

=
∞∑

k=0

( m∑
i,j=0

cij〈fn, T ∗zai
Njgk〉H2(D)

)
ϕλgk,

where

cij =
∫
T

wiϕλ(w)wj d|w|.

If c := max{|cij |
∣∣ 0 6 i, j 6 m}, then the Cauchy inequality yields

‖p⊥zhfn‖2 =
∞∑

k=0

∣∣∣ m∑
i,j=0

cij〈fn, T ∗zai
Njgk〉H2(D)

∣∣∣2
6 (mc)2

∞∑
k=0

m∑
i,j=0

|〈fn, T ∗zai
Njgk〉H2(D)|2

= (mc)2
∞∑

k=0

m∑
i,j=0

|〈J(Qfn), T ∗zai
Njgk〉H2(D)|2

= (mc)2
∞∑

k=0

m∑
i,j=0

|〈Qfn, J∗T ∗zai
Njgk〉H2(D)|2,

where J is the operator defined in Lemma 4.4. Therefore, by the fact that {Qfn |
n > 0} is orthogonal in H2(D) and the fact that Nj is Hilbert-Schmidt on [h]	z[h]
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for each j,

∞∑
n=0

‖p⊥zhfn‖2 6 (mc)2
∞∑

n=0

∞∑
k=0

m∑
i,j=0

|〈Qfn, J∗T ∗zai
Njgk〉H2(D)|2

= (mc)2
∞∑

k=0

m∑
i,j=0

∞∑
n=0

|〈Qfn, J∗T ∗zai
Njgk〉H2(D)|2

6 (mc)2
∞∑

k=0

m∑
i,j=0

‖J∗T ∗zai
Njgk‖2H2(D)

= (mc)2
m∑

i,j=0

‖J∗T ∗zai
‖2

∞∑
k=0

‖Njgk‖2H2(D)

= (mc)2
m∑

i,j=0

‖J∗T ∗zai
‖2 tr(N∗

j Nj) < ∞.

Theorem 4.6. [R∗w, Rz] is Hilbert-Schmidt on [h] for any polynomial h.

Proof. If h = (z − λ)h1 for some polynomial h1 and λ ∈ T, then [h] = [h1].

If h1 is a nonzero constant then [h1] = H2(D2) and hence

Rw = Tw, Rz = Tz.

Therefore [R∗w, Rz] = 0. So without loss of generality, we may assume h does

not have a factor z − λ for some λ ∈ T. Propositions 4.1, 4.5 and Equality (4.3)

together imply that [R∗ϕλ
, Rz] is Hilbert-Schmidt. An argument similar to that in

the end of the proof of Theorem 3.3 establishes our assertion.

5. OPERATOR [R∗
z , Rz ][R∗

w, Rw] ON [h]

In this section we are going to use the result of the last section to prove the

following:

Theorem 5.1. The operator [R∗z , Rz][R∗w, Rw] is Hilbert-Schmidt on [h] when

h is a polynomial.

Proof. For the same reason as in the proof of Theorem 4.6, we assume that h

does not have a factor z − µ for µ ∈ T. Then by Corollary 3.5, h(z, λ) is bounded

away from zero on T for some λ ∈ D. To make our computations clearer, we
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assume that h(z, 0) is bounded away from 0 on T. Then one sees that for any
hf ∈ [h], h(f − f( · , 0)) is a function in w[h]. Therefore,

(5.1)

[R∗w, Rw]hf = hf −RwR∗whf = hf −RwR∗wh(f − f( · , 0) + f( · , 0))

= hf − h(f − f( · , 0))−RwR∗whf( · , 0)

= hf( · , 0)−RwR∗whf( · , 0) = [R∗w, Rw]h( · , · )f( · , 0).

Similarly,

(5.2)

[R∗z , Rz]hf( · , 0) = hf( · , 0)−RzR
∗
zhf( · , 0)

= hf( · , 0)−RzR
∗
zh(f( · , 0)− f(0, 0) + f(0, 0))

= hf( · , 0)− h(f( · , 0)− f(0, 0))−RzR
∗
zhf(0, 0)

= hf(0, 0)− f(0, 0)RzR
∗
zh = f(0, 0)[R∗z , Rz]h.

By the essential commutativity of R∗z and Rw, and Equalities (5.1), (5.2),

(5.3)

[R∗z , Rz][R∗w, Rw]hf = [R∗z , Rz][R∗w, Rw]h( · , · )f( · , 0)

= [R∗w, Rw][R∗z , Rz]h( · , · )f( · , 0) + Khf( · , 0)

= f(0 , 0)[R∗w, Rw][R∗z , Rz]h + Khf( · , 0),

where K a Hilbert-Schmidt operator from Theorem 4.6. If we let A,B be operators
from [h] to itself such that for any hf ∈ [h]

Ahf = f(0, 0)h; Bhf = h( · , · )f( · , 0),

then the above computation shows that

[R∗z , Rz][R∗w, Rw] = [R∗w, Rw][R∗z , Rz]A + KB.

We observe that A is a rank one operator with kernel z[h] + w[h] and one verifies
that [h] 	 (z[h] + w[h]) is one dimensional, hence A is a bounded. Thus to prove
that [R∗z , Rz][R∗w, Rw] is Hilbert-Schmidt, it suffices to check that B is bounded,
but this is clear from our assumption on h and Lemma 4.3.

If h(z, λ) is bounded away from zero on T for some non-zero λ ∈ D, then
similar computations will show that [R∗z , Rz][R∗ϕλ

, Rϕλ
] is Hilbert-Schmidt. Then

applying Lemma 1.3 twice will establish the assertion.

One sees that the proof of Theorem 5.1 depends heavily on the fact that
Rz, Rw are isometries. A corresponding study for the product [S∗z , Sz][S∗w, Sw] is
thus expected to be harder and we plan to return to that at a later time.



Berger-Shaw theorem in Hardy module over the bidisk 401

6. CONCLUDING REMARKS

In this section we will generalize the major theorems obtained so far to the case
when [h] is replaced by submodules generated by a finite number of polynomials.
Here we need a fact from commutative algebra which we state in a form that fits
into our work. Readers may find more information in [9]. We thank Professor
C. Sah for showing us his proof of the following statement.

Lemma 6.1. Suppose p1, p2, . . . , pk are polynomials in C[z, w] such that the
greatest common divisor GCD(p1, p2, . . . , pk) = 1, then the quotient

C[z, w]/(p1, p2, . . . , pk)

is finite dimensional.

Proof. First of all, C[z, w] is a Unique Factorization Domain (UFD) of Krull
dimension 2.

We denote the ideal (p1, p2, . . . , pk) by I and suppose

I =
n⋂

s=1

Is

is the irredundant primary representation of I. If we let Js =
√

Is be the radical
of Is, s = 1, 2, . . . , n, then each Js is prime and it is either maximal or minimal
since the Krull dimension of C[z, w] is 2. In an UFD, every minimal prime ideal
is principal ([12], p. 238). Since GCD(p1, p2, . . . , pk) = 1, the associated prime
ideals J1, J2, . . . , Js must all be maximal and hence each Js must have the form
(z − zs, w − ws) with (zs, ws) ∈ C2, s = 1, 2, . . . , n, mutually different. Therefore,
we can choose an integer, say m, sufficiently large such that

Jm
s = (z − zs, w − ws)m ⊂ Is

for each s. Then,
n⋂

s=1

Jm
s ⊂

n⋂
s=1

Is = I,

and therefore,

dim(C[z, w]/I) 6 dim
(
C[z, w]/

( n⋂
s=1

Jm
s

))
.

By the Nullstellensatz, one easily checks that

Jm
i + Jm

j = C[z, w], i 6= j.
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The Chinese Remainder Theorem then implies that

C[z, w]/
( n⋂

s=1

Jm
s

)
=

n∏
s=1

C[z, w]/Jm
s ,

and hence

dim(C[z, w]/I) 6
n∏

s=1

dim(C[z, w]/Jm
s ) =

(
m(m + 1)

2

)n

.

It would be interesting to generalize this lemma to polynomial rings of higher
Krull dimensions.

If h1, h2, . . . , hk are polynomials and we set

(6.1) G = GCD(h1, h2, . . . , hk) and fj = hj/G,

j = 1, 2, . . . , k; then

GCD(f1, f2, . . . , fk) = 1.

If {e1, e2, . . . , em} is a basis for

C[z, w]/(f1, f2, . . . , fk),

then for any polynomial g(z, w),

g(z, w) =
m∑

i=1

ciei(z, w) + r(z, w)

with r ∈ (f1, f2, . . . , fk) and some constants ci, i = 1, 2, . . . ,m. Therefore,

(6.2) G(z, w)g(z, w) =
m∑

i=1

ciG(z, w)ei(z, w) + G(z, w)r(z, w).

It is easy to see that G(z, w)r(z, w) ∈ (h1, h2, . . . , hk) and hence (G)/(h1, h2,

. . . , hk) is also finite dimensional.

Corollary 6.2. If M is a submodule of H2(D2) generated by a finite num-
ber of polynomials, then

(i) [S∗z , Sw] is Hilbert-Schmidt on H2(D2)	M ;
(ii) [R∗z , Rw] is Hilbert-Schmidt on M ;
(iii) [R∗z , Rz][R∗w, Rw] is Hilbert-Schmidt on M .
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Proof. Suppose h1, h2, . . . , hk are polynomials and M = [h1, h2, . . . , hk] is the
closed submodule generated by h1, h2, . . . , hk. We assume G, fi, i = 1, 2, . . . , k,

and ej , j = 1, 2, . . . ,m to be as in (6.1) and (6.2). Consider the space

K := span{ej | j = 1, 2, . . . ,m}+ M.

It is closed because span{ej | j = 1, 2, . . . ,m} is finite dimensional. For any
polynomial g, identity (6.2) implies that Gg ∈ K, and hence [G] ⊂ K. The
inclusion

[G]	M ⊂ K 	M

then forces [G]	M to be finite dimensional. We let

pG : H2(D2) → [G], qG : H2(D2) → H2(D2)	 [G],

pM : H2(D2) → M, qM : H2(D2) → H2(D2)	M,

p⊥ : H2(D2) → [G]	M,

be the projections. Then p⊥ is of finite rank and

pG = pM + p⊥, qG = qM − p⊥.

One verifies that

pGzpG = pMzpM + pMzp⊥ + p⊥zpM + p⊥zp⊥,

qGzqG = qMzqM − qMzp⊥ − p⊥zqM + p⊥zp⊥,

and consequently, pGzpG − pMzpM and qGzqG − qMzqM are of finite rank. Simi-
larly, qGwqG− qMwqM and qGwqG− qMwqM are also of finite rank. The assertion
in this corollary then follows easily from Theorems 3.6, 4.6 and 5.1.

We conclude this paper by a conjecture suggested by Corollary 6.2.

Conjecture. The assertions in Corollary 6.2 still hold if M is replaced by
any finitely generated submodule.
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