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Abstract. If µ is a representing measure for γ ≡ γ(2n) in the Truncated
Complex Moment Problem γij =

R
zizj dµ (0 6 i+j 6 2n), then card supp µ

> rank M(n), where M(n) ≡ M(n)(γ) is the associated moment matrix. We
present a concrete example of γ illustrating the case when card supp µ >
rank M(n)(γ) for every representing measure µ. This example is based on
an analysis of moment problems in which some analytic column Zk of M(n)

can be expressed as a linear combination of columns Z
i
Zj of strictly lower

degree.
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1. INTRODUCTION

Given n > 1 and a sequence of complex numbers

γ ≡ γ(2n) : γ00, γ01, γ10, . . . , γ0,2n, γ1,2n−1, . . . , γ2n−1,1, γ2n,0,

the Truncated Complex Moment Problem (TCMP) entails determining whether
there exists a positive Borel measure µ on the complex plane such that

γij =
∫

zizj dµ (0 6 i + j 6 2n).

Although no complete criterion for solubility of TCMP is known at present, in
[3], [4], [5], R.E. Curto and the author developed various necessary or sufficient
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conditions for the existence of representing measures; these are expressed as posi-
tivity and extension properties of the moment matrix M(n) ≡ M(n)(γ) associated
to γ (see below for terminology and notation). If µ is a representing measure
for γ, then card suppµ > rank M(n) ([3], Corollary 3.7 and [6]); moreover, there
exists a rankM(n)-atomic (minimal) representing measure for γ if and only if
M(n) > 0 and M(n) admits an extension to a moment matrix M(n+1) satisfying
rank M(n+1) = rankM(n) ([3], Theorem 5.13). The existence of such a flat (i.e.,
rank-preserving) extension has been established in a variety of cases ([4], [5], de-
scribed below), but in 1995 J.E. McCarthy ([8]) proved that there exist γ ≡ γ(10)

for which every representing measure µ satisfies card supp µ > rank M(n)(γ).
McCarthy further showed that such γ are in a sense generic among moment se-
quences having representing measures; nevertheless, the literature apparently con-
tains no concrete example of a moment sequence displaying this feature. In the
present note we provide such a concrete example. For n = 3, we exhibit a specific
γ(6) with rankM(3)(γ) = 8 and card suppµ = 9 for the unique minimal represent-
ing measure µ (Theorem 3.1). We establish this example within the framework
of solving TCMP for moment matrices M(n) in which some analytic column Zk

can be expressed as a linear combination of columns Z
i
Zj of strictly lower de-

gree. For a moment matrix M(n) with such an analytic constraint, Section 2
provides an algorithmic procedure for determining whether or not γ(2n) admits
a finitely atomic representing measure. If such a measure exists, there exists a
unique minimal representing measure, which is not necessarily associated with a
flat extension M(n + 1), but rather with finite sequence of successive extensions
M(n+1), . . . ,M(n+d),M(n+d+1), of which the first d are rank-increasing and
the last is flat (cf. Theorem 1.2 below).

We devote the remainder of this section to terminology, notation, and a sur-
vey of some results that we require concerning extensions of moment matrices. The
moment matrix M(n) that we introduced in [3], [6] has m(n) ≡ (n+1)(n+2)/2 rows
and columns, labelled lexicographically by 1, Z, Z, . . . , Zn, Zn−1Z, . . . , ZZ

n−1
, Z

n
;

the entry in row Z
i
Zj , column Z

k
Zl is γj+k,i+l. Alternately, for 0 6 i, j 6 n, let

Bij denote the (i + 1)× (j + 1) matrix

Bij =


γij γi+1,j−1 . . . γi+j,0

γi−1,j+1 γij . . . γi+j−1,1

...
... · · ·

...
γ0,i+j γ1,i+j−1 . . . γji


(note that Bij is constant on diagonals); then M(n) admits the block decomposi-
tion M(n) = (Bij)06i,j6n.
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For k > 0, let Pk denote the complex polynomials p(z, z) =
∑

aijz
izj of

total degree at most k. For p ∈ P2n, let Γ(p) =
∑

aijγij , and for p ∈ Pn, let
p̂ ≡ (aij) ∈ Cm(n) denote the coeffcient vector of p with respect to the basis {zizj}
of Pn (ordered lexicographically). M(n) is uniquely determined by

〈M(n)f̂ , ĝ〉 = Γ(fg), f, g ∈ Pn;

moreover, if there exists a representing measure µ for γ, then 〈M(n)f̂ , f̂〉 =

Γ(|f |2) =
∫
|f |2 dµ > 0 (f ∈ Pn), so M(n) > 0 ([3], Chapter 3, page 15).

For p(z, z) =
∑

aijz
izj ∈ Pn, we define an element p(Z,Z) of CM(n) (the column

space of M(n)) by p(Z,Z) =
∑

aijZ
i
Zj . If µ is a representing measure for γ, then

suppµ ⊂ Z(p) ≡ {z | p(z, z) = 0} if and only if p(Z,Z) = 0 ([3], Proposition 3.1),
whence

rank M(n) 6 card suppµ 6 card
⋂

p∈Pn

p(Z,Z)=0

Zp

(cf. [5], Chapter 1, page 6). The following result is the main tool for establishing
the existence of representing measures in [3], [4], [5].

Theorem 1.1. ([3], Theorem 5.13) There exists a rank M(n)-atomic repre-
senting measure for γ if and only if M(n) > 0 admits a flat extension M(n + 1).

By combining Theorem 1.1 with a result of M. Putinar ([9], Theorem 2),
in [5] we established the following criterion for the existence of finitely atomic
representing measures.

Theorem 1.2. ([5], Theorem 1.5) The following are equivalent for γ(2n):
(i) There exists a representing measure with convergent moments of all or-

ders;
(ii) There exists a representing measure having convergent moments up to

(at least) order 2n + 2;
(iii) There exists a finitely atomic representing measure;
(iv) There exists k > 0 such that M(n) admits a positive extension M(n+k),

which in turn admits a flat extension M(n + k + 1).

(The equivalence of (ii) and (iii) is due to M. Putinar ([9]); it remains un-
known whether the existence of a representing measure implies the existence of a
finitely atomic representing measure.)

Can we always take k = 0 in Theorem 1.2 (iv)? Equivalently, if there exists
a finitely atomic representing measure for γ(2n), does there exist a representing
measure whose support consists precisely of rankM(n)(γ) atoms? The answer
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is affirmative for truncated moment problems on the real line ([2], [6]); for the
Quadratic Moment Problem (n = 1) ([3], Theorem 6.1); for the case of Flat Data
(when M(n) > 0 and rank M(n) = rankM(n − 1)) ([3], Theorem 5.4); for the
case when there is a linear relation Z = α1+ βZ in CM(n) ([4], Theorem 2.1); and
for the only known minimal quadrature rules of even degree for Lebesgue measure
restricted to the square, disk, or triangle (rules of degree 2 or 4) ([1], [7] and [11]).

Despite this positive evidence, and in response to our affirmative conjecture
([3]), McCarthy proved that there exist minimal representing measures which do
not correspond to flat extensions, as follows.

Theorem 1.3. ([8]) There exist moment sequences γ(10) admitting finitely
atomic representing measures, but not admitting rank M(5)-atomic representing
measures.

McCarthy’s proof of Theorem 1.3 (which appears in [5], Theorem 5.2) de-
pends on a topological embedding and dimensionality argument. This proof shows,
moreover, that the sequences of Theorem 1.3 form a topologically “large” subset
of the sequences γ(10) having representing measures; nevertheless, since the proof
is nonconstructive, it seems difficult to display such sequences or to construct their
minimal representing measures.

Following [3], [6], we say that a positive moment matrix M(n) is recursively
generated if it satisfies the following property:

(RG) p(Z,Z) = 0 ⇒ (pq)(Z,Z) = 0, p, q, pq ∈ Pn.

If γ admits a representing measure, then M(n) is positive and recursively
generated ([3], Remark 3.15). Although the converse is false ([5]), we have the
following result of [4] which is the basis for Section 2 and Section 3.

Theorem 1.4. ([4], Theorem 3.1) Suppose M(n) is positive and recursively
generated. If Zk = p(Z,Z) for some p ∈ Pk−1, where 1 6 k 6 [n/2] + 1, then
M(n) admits a unique flat extension M(n + 1).

In the sequel we say that M(n) admits an analytic constraint if there exists
k, 1 6 k 6 n, such that Zk = p(Z,Z) in CM(n) for some p ∈ Pk−1. [5], Exam-
ple 4.4 illustrates γ ≡ γ(6) such that M(3)(γ) (positive and recursively generated)
admits an analytic constraint of the form Z3 = αZ

2
, but γ has no representing

measure. In Section 2 we extend Theorem 1.4 so as to solve TCMP for moment
matrices with analytic constraints. For the case when k > [n/2]+1, Algorithm 2.1
and Theorem 2.2 together show how to test (within the realm of elementary linear
algebra) whether or not M(n) admits a positive, recursively generated extension
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M(2k−2); this is precisely the criterion for the existence of a finitely atomic repre-
senting measure. If this criterion is satisfied, then the unique minimal representing
measure may be explicitly constructed using Theorem 1.6 (below).

To verify matrix positivity we will generally employ a criterion due to

Smul’jan ([10]). Consider a block matrix M =
(

A B

B∗ C

)
.

Proposition 1.5. M > 0 if and only if A > 0, B = AW for some matrix W

(equivalently, RanB ⊂ RanA), and C > W ∗AW . In this case, rank M = rank A

if and only if C = W ∗AW .

We will have occasion to use the Extension Principle ([6], Proposition 2.4):
if M > 0, then each linear dependence relation in the column space of A extends
to a corresponding relation in the column space of M .

The following Flat Extension Theorem is our main tool for explicitly con-
structing minimal representing measures in the presence of flat extensions. Observe
that an extension of M(n) to M(n + 1) is completely determined by a choice of
“new moments” of degrees 2n + 1 and 2n + 2; moreover, all of these moments (or
their conjugates) appear in column Zn+1 of M(n + 1), so M(n + 1) is determined
by M(n) and Zn+1. Let [Zn+1]n denote the truncation of Zn+1 through compo-
nents indexed by monomials of degree at most n; this coincides with the left-most
column vector of block B ≡ (Bi,n+1)06i6n. If M(n + 1) is a positive extension of
M(n), then (from Proposition 1.5) [Zn+1]n ∈ RanM(n), so there exists p ∈ Pn

such that

(1.1) [Zn+1]n = p(Z,Z) in CM(n).

Further, if M(n + 1) is a flat extension of M(n) > 0, then Proposition 1.5 implies

(1.2) Zn+1 = p(Z,Z) in CM(n+1).

A flat extension M(n + 1) of M(n) > 0 is thus completely determined from M(n)
by a choice of new moments of degree 2n+1 via the equivalence of (1.1) and (1.2).

Theorem 1.6. ([3], Theorem 4.7, Corollary 5.12) Suppose M(n+1) is a flat
extension of M(n) > 0, determined by a relation Zn+1 = p(Z,Z) for some p ∈ Pn.
Then M(n+1) admits unique successive flat (positive) moment matrix extensions
M(n + 2),M(n + 3), . . ., where M(n + d + 1) is determined from M(n + d) (via
(1.1)–(1.2)) by the relation

(1.3) [Zn+d+1]n+d = (zdp)(Z,Z) in CM(n+d), d > 1.
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Let r = rankM(n); in M(r) there is a relation of the form Zr = a01 + a1Z +

· · · + ar−1Z
r−1. The r distinct roots of zr − (a0 + · · · + ar−1z

r−1), z0, . . . , zr−1,

comprise the support of an r-atomic minimal representing measure for γ, with

densities ρ0, . . . , ρr−1 determined by the Vandermonde equation

(1.4) V (z0, . . . , zr−1)(ρ0, . . . , ρr−1)t = (γ00, γ01, . . . , γ0,r−1)t.

We note that if r > 2n + 1, then some of the analytic moments γ0,j in (1.4)

are “new” moments, which are recursively generated for M(r) via (1.3).

2. SOLUTION OF TCMP FOR MOMENT MATRICES WITH ANALYTIC CONSTRAINTS

Let M(n) be a positive, recursively generated moment matrix with an analytic

constraint. Thus there exists k, 1 6 k 6 n, such that Zk = p(Z,Z) in CM(n) for

some p ∈ Pk−1. To solve TCMP for γ(2n), we first describe an algorithm which

determines (in a finite sequence of steps) whether or not M(n) admits a positive,

recursively generated extension M(n + 1).

We denote a moment matrix extension M(n+1) by the block decomposition

(2.1) M(n + 1) =
(

M(n) B

B∗ C

)
,

where B = (Bi,n+1)06i6n and C = Bn+1,n+1. The Extension Principle implies

that if M(n + 1) > 0, then Zk = p(Z,Z) in CM(n+1). If, in addition, M(n + 1) is

recursively generated, then

(2.2) Zn+1 = (zn+1−kp)(Z,Z) in CM(n+1),

whence

(2.3) [Zn+1]n = (zn+1−kp)(Z,Z) in CM(n).

Note also that [Zn+1]n is independent of the analytic constraint; indeed, if we

also have Zj = q(Z,Z) in CM(n), where 1 6 j 6 n and q ∈ Pj−1, then the

Extension Principle and property (RG) imply that (zn−j+1q)(Z,Z) = Zn+1 =

(zn−k+1p)(Z,Z) in CM(n+1), whence [(zn+1−jq)(Z,Z)]n = [(zn+1−kp)(Z,Z)]n in

CM(n).
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Algorithm 2.1. Test for existence of positive, recursively generated exten-

sions of moment matrices with analytic constraints.

(i) To construct a positive, recursively generated extension M(n + 1), we

begin by defining [Zn+1]n via (2.3). This definition uniquely determines (up to

conjugation) all “new” moments of degree 2n + 1, and thus determines block

Bn,n+1 and the corresponding block B of (2.1). If RanB is not contained in

RanM(n), then, by Proposition 1.5, there is no positive, recursively generated

extension M(n + 1).

(ii) Suppose RanB ⊂ RanM(n) and let W satisfy B = M(n)W (cf.

Proposition 1.5). Since M(n + 1) is to be positive and recursively generated,

we use the Extension Principle and block B∗ to define Zn+1 for M(n + 1) by

Zn+1 = (zn+1−kp)(Z,Z) in the column space of
(

M(n)
B∗

)
. This relation uniquely

determines (up to conjugation) all new moments of degree 2n+2, and thus uniquely

determines C ≡ Bn+1,n+1. From (2.1) and Proposition 1.5, the resulting extension

M(n + 1) is positive if and only if C > W ∗M(n)W . If M(n + 1) is not positive,

then M(n) admits no positive, recursively generated moment matrix extension.

(iii) If M(n+1) is positive, we then determine whether or not it is recursively

generated. Since M(n) is recursively generated, to make this determination, the

Extension Principle implies that it suffices to consider relations in CM(n+1) of the

form

(2.4) Z
i
Zj = s(Z,Z), where i + j = n and s ∈ Pn.

In order that M(n + 1) satisfy (RG) it is necessary and sufficient to verify that
for each such relation, Z

i+1
Zj = (zs)(Z,Z) and Z

i
Zj+1 = (zs)(Z,Z). Moreover,

by considering a basis for CM(n+1) consisting of a maximal independent subset of

{Zi
Zj}06i+j6n+1, it suffices to consider a relation as in (2.4) in which s(Z,Z) is

expressed as a linear combination of basis elements of degree at most n. Since

there are at most finitely many such relations, it is possible to check for property

(RG) in a finite number of steps.

If M(n + 1) (as just defined) is positive and recursively generated, then it is

the unique such extension, and is called the analytic extension of M(n); if such an

extension does not exist, then γ admits no finitely atomic representing measure

(cf. Theorem 1.2).
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Theorem 2.2. Suppose M(n) is positive, recursively generated, and has an
analytic constraint Zk = p(Z,Z), where 1 6 k 6 n and p ∈ Pk−1. Then γ(2n)

admits a finitely atomic representing measure if and only if k 6 [n/2] + 1, or k >

[n/2]+1 and M(n) admits successive analytic extensions M(n+1), . . . ,M(2k−2)
as determined by Algorithm 2.1. In this case, γ(2n) has a unique minimal repre-
senting measure, which is rank M(n)-atomic if k 6 [n/2]+1 and is rank M(2k−2)-
atomic if k > [n/2] + 1.

Proof. Suppose µ is a finitely atomic representing measure for γ(2n). Then
µ has convergent moments of all orders, and the successive moment matrices
M(n + 1)[µ], M(n + 2)[µ], . . . are positive and recursively generated (since µ is
a representing measure for each). Since M(n) has an analytic constraint, it fol-
lows from Algorithm 2.1 that the extensions M(n + j)[µ] (j > 1) are the unique
successive analytic extensions of M(n).

For the converse, let d = n if k 6 [n/2]+1 and let d = 2k−2 if k > [n/2]+1.
The hypothesis implies that in CM(d) we have Zk = p(Z,Z) for p ∈ Pk−1, where
k 6 [d/2] + 1. Since M(d) is positive and recursively generated, Theorem 1.4
implies that M(d) has a unique flat extension M(d + 1), and Theorem 1.1 yields
a corresponding rankM(d)-atomic representing measure for γ(2n).

We next address size and uniqueness of minimal representing measures. For
the case k 6 [n/2] + 1, it follows directly from Theorem 1.4 that M(n) has a
unique flat extension, so Theorems 1.1 and 1.6 imply that there exists a unique
rank M(n)-atomic minimal representing measure. Suppose next that k > [n/2]+1;
the flat extension M(2k− 1) of M(2k− 2) corresponds to a representing measure
µ for γ with s ≡ rank M(2k − 2) atoms. Let ν denote a minimal respresenting
measure for γ and let r = card supp ν; we seek to show that r = s and ν = µ. Since
ν is r-atomic, rank M(r− 1)[ν] = r (cf. [5], Theorem 4.7). As above, M(n + j)[ν]
(j > 1) is a sequence of successive positive, recursively generated extensions of
M(n), so by the uniqueness of analytic extensions,

(2.5) M(n + j)[ν] = M(n + j) 0 6 j 6 2k − 2− n.

Suppose r − 1 > 2k − 2. Then r = rankM(r − 1)[ν] > rank M(2k − 2)[ν] =
rank M(2k − 2) = s > r. Thus µ is a minimal representing measure; uniqueness
follows from the uniqueness of analytic extensions and Theorem 1.6. Finally,
suppose r − 1 < 2k − 2. Since ν is a representing measure for the moments
of M(r + i)[ν] (i > 0), (2.5) implies r = card supp ν > rank M(2k − 2)[ν] =
rank M(2k − 2) = s > r. Thus µ is minimal and uniqueness now follows readily
from Theorem 1.6.
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3. EXAMPLE OF A MINIMAL REPRESENTING MEASURE NOT CORRESPONDING TO

A FLAT EXTENSION

In this section we use Theorem 2.2 to display a moment sequence γ(6) such that the
minimal representing measure is 9-atomic, while rankM(3)(γ) = 8; the minimal
measure therefore does not correspond to a flat extension of M(3)(γ) (cf. Theo-
rem 1.1).

Let δ > 0, y ∈ R and define γ00 = 1, γ11 = 1, γ22 = 1 + δ, γ14 = y, γ33 =
γ06 = y2/δ, γ01 = γ02 = γ12 = γ03 = γ13 = γ04 = γ23 = γ05 = γ24 = γ15 = 0. The
corresponding moment matrix M(3) is of the form

M(3) =



1 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 + δ 0 0
0 0 1 0 0 0 0 0 1 + δ 0
0 0 0 1 + δ 0 0 0 0 y 0
1 0 0 0 1 + δ 0 y 0 0 y

0 0 0 0 0 1 + δ 0 y 0 0
0 0 0 0 y 0 y2/δ 0 0 y2/δ

0 1 + δ 0 0 0 y 0 y2/δ 0 0
0 0 1 + δ y 0 0 0 0 y2/δ 0
0 0 0 0 y 0 y2/δ 0 0 y2/δ


,

or, in block form,

(3.1) M(3) =
(

M(2) B3

B∗
3 C3

)
,

where B3 = (Bi,3)06i62 and C3 = B3,3.
Since M(2) is positive and invertible, it follows from (3.1) and Proposition 1.5

that M(3) > 0 if and only if y2 > δ(1+ δ)3, in which case rank M(3) = rank M(2)
if and only if y2 = δ(1 + δ)3. Thus, if y2 = δ(1 + δ)3, then M(3) has a unique
flat extension, and γ(6) has a unique finitely atomic representing measure, which
is 6-atomic (Case of Flat Data, [3]).

Theorem 3.1. If y2 > δ(1 + δ)3, then rank M(3) = 8, and the unique
minimal representing measure for γ(6) is 9-atomic.

Proof. In CM(3) we have

(3.2) Z3 = Z
3

= −y

δ
1 +

y

δ
ZZ;

a calculation shows that {1, Z, Z, Z2, ZZ, Z
2
, Z2Z, ZZ

2} forms a basis for CM(3),
so rank M(3) = 8 and M(3) is recursively generated. Now (3.2) shows that M(3)



434 Lawrence A. Fialkow

has an analytic constraint with n = k = 3. To complete the proof, using The-
orem 2.2, it thus suffices to show that M(3) admits an analytic extension M(4)
satisfying rankM(4) = 9, and to this end we follow Algorithm 2.1.

We denote the proposed extension M(4) by
(

M(3) B4

B∗
4 C4

)
, with B4 =

(Bi,4)06i63 and C4 = B44. Using (3.2) and (2.3) we define [Z4]3 in CM(3) by

(3.3) [Z4]3 = −y

δ
Z +

y

δ
Z2Z,

whence the B4 block for M(4) is given by

(3.4) B4 =



0 0 1 + δ 0 0
y 0 0 y 0
0 y 0 0 y

0 y2/δ 0 0 y2/δ

0 0 y2/δ 0 0
y2/δ 0 0 y2/δ 0

0 0 w 0 0
w 0 0 w 0
0 w 0 0 w

0 0 w 0 0


,

where w = [y(y2/δ − 1 − δ)]/δ. The conclusion that RanB4 ⊂ RanM(3) now
results from the following relations in CM(3):

[Z4]3 = −y

δ
Z +

y

δ
Z2Z; [Z

4
]3 = −y

δ
Z +

y

δ
Z

2
Z;(3.5)

[Z3Z]3 = −y

δ
Z +

y

δ
ZZ

2
; [Z

3
Z]3 = −y

δ
Z +

y

δ
Z2Z;(3.6)

[Z2Z
2
]3 =

δ(1 + δ)2 − y2

δ2
1 +

y2 − δ(1 + δ)
δ2

ZZ;(3.7)

moreover, these relations determine W satisfying B4 = M(3)W .
Using (2.2), (3.2), the Extension Principle, and block B∗, we next define Z4

for M(4) by Z4 = (−y/δ)Z + (y/δ)Z2Z (in the column space of
(

M(3)
B∗

4

)
). Thus

Z4 = (0, y, 0, 0, 0, y2/δ, 0, w, 0, 0, u, 0, 0, u, 0)t, where u = [y2(y2 − δ − 2δ2)]/δ3.
Moment matrix structure now dictates that block C4 (= B44) is of the form

(3.8) C4 =


u 0 0 u 0
0 u 0 0 u

0 0 u 0 0
u 0 0 u 0
0 u 0 0 u

 .
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From (3.1), (3.4) and (3.8) we see that in CM(4) we have

Z4 = −y

δ
Z +

y

δ
Z2Z; Z

4
= −y

δ
Z +

y

δ
ZZ

2
;

Z3Z = −y

δ
Z +

y

δ
ZZ

2
; Z

3
Z = −y

δ
Z +

y

δ
ZZ2,

whence M(4) is recursively generated and 8 = rankM(3) 6 rank M(4) 6 9.
Proposition 1.5 and (3.1) show that M(4) > 0 if and only if C4 > W ∗M(3)W ,

or

u >
(δ(1 + δ)2 − y2)(1 + δ)

δ2
+

(y2 − δ(1 + δ))y2

δ3
,

which simplifies to y2 > δ(1 + δ)3; moreover, rank M(4) = rankM(3) if and only
if y2 = δ(1+ δ)3. Since y2 > δ(1+ δ)3, it follows that M(4) is positive, recursively
generated and rankM(4) = 9. The result now follows from Theorem 2.2.

We may compute the unique 9-atomic (minimal) representing measure for
γ(6) as follows. Since the analytic extension M(4) satisfies the conditions of Theo-
rem 1.4 (with n = 4 and k = 3), M(4) has a unique flat extension M(5), and Theo-
rem 1.6 implies that M(5) admits unique successive flat extensions M(6), . . . ,M(9).
A calculation of M(9) using (1.3) implies that in CM(9) we have the relation

(3.9) Z9 = −y3

δ3
1− 3

y2

δ2
Z3 +

y3 − 3δ2y

δ3
Z6.

The atoms of the minimal representing measure are the 9 distinct roots of the
characteristic polynomial corresponding to (3.9) (cf. Theorem 1.6), and the den-
sities may be computed via the Vandermonde equation (1.4). We illustrate with
a numerical example.

Example 3.2. Let δ = 1, y = 3. From (3.9), the atoms of the minimal
measure are the roots of z9 = −27−27z3+18z6, i.e., z0 ≈ 2.53209, z1 ≈ −0.879385,
z2 ≈ 1.3473, z3 ≈ −1.26604− 2.19285i, z4 = z3, z5 ≈ −0.673648− 1.16679i, z6 =
z5, z7 ≈ 0.439693 − 0.76157i, z8 = z7. The corresponding densities, determined
from (1.4), are ρ0 = ρ3 = ρ4 ≈ 0.0104859, ρ1 = ρ7 = ρ8 ≈ 0.307069, ρ2 = ρ5 =
ρ6 ≈ 0.0157786.
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