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Let X,Y be complex Banach spaces. Denote by £(X,Y) the set of all bounded
linear operators from X to Y. If Y = X then we write for short £(X) = L(X, X).

Recall the well-known punctured neighbourhood theorem:

THEOREM 0.1. LetT € L(X) be a Fredholm operator. Then there existe > 0
and constants k1 < dimKerT, ko < codimImT such that dimKer(T — z) = ky
and codimIm(T — z) = kg for all z, 0 < |z| < e.

In this paper we study a more general situation. Let X,Y,Z be Banach
spaces, let U be an open subset of C"*, let S: U — L(X,Y) and T : U — L(Y, Z)
be analytic operator-valued functions satisfying 7'(z)S(z) = 0 for all z € U. For
z € U write a(z) = dimKer T'(z)/ Im S(z).

The aim of the paper is to study the behaviour of the function z — «(z).

The main result of the first section is the following generalization of Theo-
rem 0.1: if U C C, w € U, ImT'(w) is closed and a(w) < oo, then a(z) = k is
constant in a punctured neighbourhood of w.
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Clearly the classical punctured neighbourhood theorem follows easily from
this generalization for sequences 0 — X yadx =y - 0, respectively.

In the second section we study the case n > 2. This situation has been
studied mainly in connection with the Koszul complex of an n-tuple of commuting

operators.

For T € L(X,Y) denote by v(T) the Kato reduced minimum modulus, v(T) =
inf{||Tz| : dist{z,Ker T} = 1} (formally we set v(0) = oo). Clearly v(T) > 0 if
and only if Im T is closed.

If M, L are closed subspaces of X then write

d(M,L) = sup dist{z, L}
zeM
llzll<1

and the gap between M and L is defined by S\(M,L) = max{d(M, L),0(L, M)}.
For the properties of the reduced minimum modulus and the gap see [6].
The following result is due to Markus, cf. [13], Theorem 1.4.

THEOREM 1.1. Let U be an open subset of C*, let T : U — L(X,Y) be
a norm-continuous function, let w € U and ImT(w) be closed. The following
conditions are equivalent:
(i) the function z — v(T'(z)) is continuous at w;
(ii hmmf’y( (2)) > 0;
(iii Zhrrqlv 5(KerT( ),KerT(z)) = 0;

)
)
(iv) lim & (Ker T'(w), Ker T(2)) = 0;
)
i)

Z—w
0,

(
5 (
(v hrrqlﬂé(IInT ImT(w))
lim §(ImT ), Im T (w)) = 0.

Z—w

Vl w

The equivalences (iii) < (iv) and (v) < (vi) follow from the fact that auto-
matically 2151111} §(KerT'(z),Ker T(w)) = 0 and zlgrqlu d(ImT(w),ImT(z)) =0.

A continuous function 7' : U — L(X,Y) is called regular at w if ImT'(w)) is
closed and T satisfies any of equivalent conditions (i)—(vi). In particular, condition
(ii) implies that the set of all regularity points of T is open. Also, T is regular at
w if and only if the adjoint function z +— T'(2)* is regular at w.

Regular functions are closely related to the exactness:
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THEOREM 1.2. ([13], Theorem 2) Let U be an open subset of C*, w € U
and let T : U — L(X,Y) be an analytic function. The following conditions are
equivalent:

(i) T is regular at w;

(ii) there exists a meighbourhood Uy C U of w, a Banach space E and an
analytic function S : Uy — L(E, X) such that Im S(z) = Ker T(2) (z € Up);

(iil) there exists a neighbourhood Uy C U of w, a Banach space E' and an
analytic function S": Uy — L(Y, E’) such that ImT'(z) = Ker S'(z) (z € Uy).

In particular, if T : U — L(X,Y) is regular at w and = € KerT(w) then
there exist a neighbourhood Uy of w and an analytic function f : Uy — X such
that f(w) = 2 and T(2)f(z) = 0 (2 € Up). Indeed, let S : Uy — L(E,X) be an
analytic function satisfying the properties of (ii). Choose e € E with S(w)e = z
and set f(z) = S(z)e.

LEMMA 1.3. Let U be an open subset of C*, let S : U — L(X,Y) and
T :U — L(Y,Z) be functions reqular in U. Suppose that T(2)S(z) = 0 for all
z € U. Then a(z) is constant on each connected subset of U.

Proof. Let w € U satisfy a(w) = dimKer T(w)/Im S(w) < co. By Theo-
rem 1.1 (iv) and (vi),
lim S(Ker T(w),KerT(z)) =0 and lim g(Im T(w),ImT(z)) = 0.

Thus there exists ¢ > 0 such that g(Ker T(z),KerT(w)) < 1/3 and g(Im S(z),
Im S(w)) < 1/3 for z € U, dist{z,w} < e. By [1] this implies that

a(z) =dimKerT(z)/Im S(z) = dimKer T'(w)/ Im S(w) = a(w)

for all z € U, dist{z,w} < e.

Thus «(z) is locally constant and a standard argument gives that a(z) is
constant on the component of connectivity of U containing w.

If Uy is a component of U and there is no w € Uy with a(w) < oo, then
clearly a(z) = oo on Up. 1

An operator T' € L£(X) with the property that the function z — T — z is reg-
ular at 0 is called semi-regular (sometimes Kato regular). Semi-regular operators
exhibit very nice properties and have been studied intensely, see e.g. [9], [10], [12].

An essential version of semi-regular operators has been also studied. Recall
that if M, L are closed subspaces of X then we write M L (M is essentially con-
tained in L) if dim M /(M NL) < oo. We summarize some of equivalent conditions
characterizing essentially semi-regular operators.
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THEOREM 1.4. ([10], Theorem 3.1) Let T € L(X) be an operator with closed
range. The following conditions are equivalent:

(i) (Kato decomposition) there exists a decomposition X = X1 @& Xo such
that TX;, C X1, TXy C Xo, dimX; < oo, T|X; is nilpotent and T|Xs is an
semi-regular operator;

(i) N Im(T —2) C ImT;

z#0
(iii) dgiémKerT/N*(T) < oo, where N*(T') is the set of all x € X such
that there are complex numbers z; (i = 1,2,...) tending to 0 and elements x; €
Ker(T — z;) such that x = lim z; (clearly N*(T) C KerT);
(iv) dimR*(T)/ImTzzoooo where R*(T) is the set of all x € X such that
x = lim x; for some x; € Im(T — z;) and some z; — 0 (clearly ImT C R*(T)).

i—00
Note that condition (i) implies that the function z — T — z is regular in a
punctured neighbourhood {z : 0 < |z| < e} for some ¢ > 0.
General analytic operator-valued functions of one variable can be reduced to
the linear case by the method of linearization, see [2], Theorem 2.6.

THEOREM 1.5. Let U C C be an open set, T : U — L(X,Y) an analytic
function and w € U. Then there exist a neighbourhood Uy of w, Banach spaces Z
and M, an operator V.€ L(M) and analytic functions A : Uy — LM, X & Z),
B:Uy— LY @ Z, M) such that A(z) and B(z) are invertible operators and

B)(T(2)®12)A(z) =V =zl (2 € Up).
Let U C C be an open set and let 7' : U — L(X,Y) be an analytic operator-
valued function. Let w € U. Write
R*(T'(w)) ={y €Y : there exist 2, € U, 2 — w
and yi € ImT(2;) with y, — y},
R*(T(w)) = {y € Y : lim dist{y,ImT'(z)} = 0}.
Clearly ImT(w) C R*(T(w)) C R*(T(w)) and R*(T(w)), R**(T'(w)) are closed
subspaces of Y.
Similarly write
N*(T(w)) = {x € X : there are z, € U, x}, € KerT'(z)
with z; — w and zp, — m},

N*(T(w))={z € X : lim dist{z, KerT'(2)} = 0}.

Clearly N**(T'(w)) C N*(T(w)) C Ker T'(w) and N*(T'(w)), N**(T'(w)) are closed
subspaces of X.
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THEOREM 1.6. Let U C C be an open set, T : U — L(X,Y) an analytic

function and w € U. The following statements are equivalent:
(i) dim R*(T(w))/Im T (w) < oo;

(i) dim R**(T(w))/ImT(w) < oo;

(iti) dim Ker T'(w)/N*(T(w)) < 0o and Im T (w) is closed;

(iv) dim Ker T'(w)/N**(T'(w)) < oo and Im T'(w) is closed.

Any of these conditions implies that there exists € > 0 such that the function
T is regular in the punctured neighbourhood {z € U : 0 < |z — w| < €}. Further
N*(T(w)) = N**(T(w)), R*(T(w)) = R**(T(w)) and dimKer T'(w)/N*(T'(w)) =
dim R*(T'(w))/ Im T'(w).

Proof. A. Suppose first that Y = X and T(z) = V — zIx for some operator
V € L(X). We show that in this case conditions (i)—(iv) are equivalent to

(v) V —w is essentially semi-regular.

Clearly (i) = (ii) and (iv) = (iii).

By Theorem 1.4, (i) < (iii) < (v).

(ii) = (v): Clearly (ii) implies that Im T'(w) is closed. Further

N (V=2 ¢ BV —w)

2w
so that, by Theorem 1.4, V — w is essentially semi-regular.

Suppose now that V' — w is essentially semi-regular. Let X = X; @ X5 be
the Kato decomposition of V — w, i.e., VX; C X1, VX; C X5, dimX; < oo,
(V —w)|X; is nilpotent and (V' — w)| X5 is semi-regular. It is easy to see that, for
z # w, Ker(V — z) = Ker((V — 2)|X2) and Im(V — 2) = X7 + Im((V — 2)|X2).
Thus
N*(V —w) = N*(V —w) = Ker((V — w)| X2)

and

Hence (v) implies (iv). Further

dimKer(V — w)/N*(V — w) = dimKer ((V — w)|X;) = dim X; /(V — w) X,
=dim R*(V — w)/Im(V — w).
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Also the Kato decomposition implies that the function z +— V — z is regular in a

certain punctured neighbourhood of w.

B. Let now T'(z) be a general analytic operator-valued function. By Theo-
rem 1.5 there exist a neighbourhood Uy of w, Banach spaces Z, M, an operator
V € L(M) and analytic functions A : Uy — LM, X & Z), B: Uy — LY & Z, M)

whose values are invertible operators, such that
B(2)(T(2) ®17)A(z) =V —zIz (2 € Up).
For z € Uy we have

Ker(V —zI) = Ker((T(2)®12)A(2)) = A(2) ' Ker(T(2)®1z) = A(z) ' Ker T(z)

and
Im(V — 2I) = Im(B(2)(T(z) ® Iz)) = B(z)(ImT(z) + Z).
Thus
N*(V = wl) = A(w) "IN (T(w)),
N*(V —wl) = A(w) " "N*(T(w)),
R*(V —wl) = B(w)(R*(T(w)) + Z) and
R*™*(V —wl) = B(w)(R*"(T(w)) + Z).

Hence all the statements for the function T'(z) are equivalent to the corresponding

statements for V' — zI and the general case reduces to the previous case. I

REMARK 1.7. Let U C C,w € U and let T : U — L(X,Y) be an analytic
function. Then dim Ker T'(w)/N*(T(w)) can be interpreted as the “jump” in the
kernel of T'(z); similarly dim R*(T'(w))/Im T (w) signifies the jump in the range of

T(z). It is interesting to note that these two numbers are always equal.

THEOREM 1.8. Let U be an open subset of C and w € U. Suppose that
S:U— L(X,Y), T:U— LY, Z) are analytic functions satisfying T'(z)S(z) =0
(z€U), a(w) < oo and ImT(w) is closed. Then there exist € > 0 and a constant
¢ < a(w) such that a(z) =c¢ for all z, 0 < |z —w| < e.

Proof. By [14], Lemma 2.1, a(z) < a(w) for all z in a neighbourhood of
w. Using the previous theorem, both z — S(z) and z — T(z) are regular in a
certain punctured neighbourhood of w so that, by Lemma 4, a(z) is constant in
this punctured neighbourhood. &
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II

In this section we study analytic operator-valued functions of n-variables.
It is not possible to expect the punctured neighbourhood theorem for n > 2;

the proper generalization seems to be

CONJECTURE 2.1. Let U C C" be open, let S : U — L(X,Y) and T :
U — L(X,Y) be analytic on U. Suppose that T'(z)S(z) = 0, ImT'(z) is closed
and a(z) = dimKerT(z)/ImS(z) < oo (¢ € U). Let k € N. Then the set
{z €U : a(z) > k} is analytic in U.

Recall that a set M C U is called analytic in U if for each w € U there exist a
neighbourhood Uy of w and analytic (scalar-valued) functions fi, ..., f, such that
MnNUy={z€Uy: fi(z) =--- = fr(z) =0}.

The conjecture is true in the following particular cases:

A. If the ranges and kernels of S(z) and T'(z) are complemented subspaces,
see Theorem 2.5 below. In particular, the conjecture is true for operators in Hilbert
spaces.

B. If either S(z) = 0 or T'(z) = 0; this means that the other function is upper
(lower) semi-Fredholm-valued and the conjecture reduces to the statement about
defect indices of semi-Freholm-valued functions, see [5].

C. If the sequence X 57 Y ) Z is a part of a Fredholm complex vanishing
at the ends, see [7], [8], [11] or Theorem 2.9 below.

We start with the following lemma:

LEMMA 2.2. Let U C C™ be an open subset, let T : U — L(X,Y) be an
analytic function, let k € N. Then the set {z € U : dimIm T'(z) < k} is analytic.

Proof. If z1,...,25 € X, y5,...,y5 €Y*, 2 € U and dimImT(z) < k then
the vectors T'(z)x1, ..., T(z)xy are linearly dependent and det ((T'(2)z;, y})) = 0.

On the other hand, if dim Im 7'(z) > k then there are vectors z1, ...,z € X,
i, ..., yp € Y™ such that det((T(z)x;, y})) # 0. Thus

{z €U :dimImT(z) < k}
={zeU: det((T(z)a:i,y;-‘>) =0forall zy,...,ap € X, yf,...,yx €Y}

which is an analytic set, see [3], p. 86. 1
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COROLLARY 2.3. Let S : U — L(X,Y) and T : U — L(Y,Z) be analytic
functions and let k € N. Then the set
{z €U :dimImS(z)/(Im S(z) NKer T'(2)) < k}
is analytic.

Proof. Clearly dimIm S(z)/(ImS(z) N KerT(z)) = dimIm(T(2)S(z)) so
that the corollary follows from the previous lemma. 1

LEMMA 2.4. Let U be an open subset of C*, let S : U — L(X,Y) and
T:U — L(Y,Z) be analytic functions satisfying T'(z)S(z) =0 (z € U). Suppose
that there are Banach spaces X1 and Zy and regqular analytic functions S1 : U —
L(X1,Y), Ty : U — L(Y, Z1) satisfying

KerTi(z) C Im S(2) C KerT(z) C Im S (z)
and dimIm Sy (z)/ Ker T1(z) < oo (z € U). Then the set
{z €U :dimKerT(z)/Im S(z) > k}
is analytic in U.

Proof. The situation is illustrated by the following diagram:

x oy 8 g
Tl(Z)
7 ) N\
X1 Zl
Figure 1.

We can assume that U is connected. For each j set
Aj={z€U:dimImS(z)/KerT1(z) < j}
and
B;j ={z €U :dimIm S, (z)/KerT(z) < j}.
By Corollary 2.3, A; and B; are analytic sets. As in the proof of Lemma 1.3
(or using Theorem 1.2) it is easy to see that there is a constant ¢ such that
dimIm Sy (z)/ Ker Ty (z) = ¢ in U. Thus
{z €U :dimKerT(z)/ImS(z) > k}
={z €U :dimImS;(z)/KerT(z) + dimIm S(z)/ Ker T1(2) < ¢ — k}

c—k
U A, NB._j_;.

=0

The last set is clearly analytic. 1
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Let T € £L(X,Y). An operator S € L(Y, X) is called a generalized inverse of
Tif TST =T and STS = S. If S is a generalized inverse of T then T'S and ST
are projections satisfying Im(7'S) = ImT and Ker(ST) = KerT. Thus T has a
generalized inverse if and only if both Ker T" and Im T are complemented subspaces
of X and Y, respectively.

The next result shows that Conjecture 2.1 is true for operators with gener-
alized inverses. We adopt the method of [4].

THEOREM 2.5. Let U be an open subset of C*, let S : U — L(X,Y) and
T:U — L(Y, Z) be analytic functions. Suppose that T'(z)S(z) =0, dimKer T'(z)/
Im S(z) < oo and the operators S(z) and T(z) have generalized inverses for z € U.
Let k € N. Then the set {z € U : a(z) > k} is analytic in U.

Proof. Let w € U. Let V be a generalized inverse of S(w), i.e., VS(w)V =V
and S(w)VS(w) = S(w). Set P =1 — S(w)V. Then P is a projection, Ker P =
Im S(w).

For z close to w, the operator I+ (S(z) —S(w))V is invertible. Define P(z) €
L(Y) by P(z) = P(I+(S(z) —S(w))V)_1 € L(Y). Clearly the function z — P(z)
is regular at w since Im P(z) = Im P is constant. We prove that Ker P(z) C
Im S(z). Let y € Ker P(2), i.e., 0 = P(2)y = P(I + (S(z) — S(w))V)fly. Then

(I+(S(2) = S(w))V) 'y € Ker P = Im S(w).
For some z € X we have
y=(I+(S(z)—Sw))V)S(w)z = S(z)VS(w)x € Im S(2).

Similarly, let W be a generalized inverse of T'(w). Set Q@ = I —WT(w). Then
Q is a projection with Im @ = Ker T'(w). For z close to w define Q(z) € L(Y) by
Q(z) = (I+W(S(z)— S(w)))le. Clearly the function z — Q(z) is regular since
Ker Q(z) = Ker Q) is constant. We have
WT(z) =WT(w)+W(T(z) —T(w)) =1-Q+W(T(z) —T(w))
so that
—1

(I+W(T(2) - T(w)) " WT(2) = I — (I+W(T(z) - T(w))) Q=TI - Q(2).

Consequently, Ker T'(z) C Im Q(z).
Thus we have Ker P(z) C Im S(z) C KerT'(z) C Im Q(z) and

dim Im Q(w)/ Ker P(w) = dimIm @/ Ker P = dim Ker T'(w)/ Im S(w) < 0.

As in Lemma 1.3 we have that dim Im Q(z)/ Ker P(z) < oo in a neighbourhood of
w. The rest follows from Lemma 2.4. 1
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COROLLARY 2.6. Conjecture 2.1 is true for operators in Hilbert spaces.
In the following we consider a complex

a(z) | Ono 1(Z)X — 0,

(2.1) 0— Xo 2% x,
where X,..., X, are Banach spaces, the operators §,(z) satisfy ¢;(z)d;—1(2) =0
and depend analytically on a parameter z € U, where U is an open subset of C™.

Suppose that the complex (2.1) is Fredholm, i.e., dim Ker d;(z)/Imd;_:(z) <
oo for all j =0,...,n and z € U (formally we set d_1(z) =0 and J,,(z) = 0).

Let k € N. It is a folklore among specialists in the sheaf theory that the set
{z € U :dimKerd;(z)/Imd;_1(z) > k} is analytic. This result is stated without
proof (for the Koszul complex of a commuting n-tuple of operators) in [7] and
[8]; cf. also [11]. Since apparently there is no elementary proof of this result, we
include the proof here.

We need the following modification of Lemma 2.4:

LEMMA 2.7. Let U be an open subset of C*, let S : U — L(X,Y) and
T:U — L(Y,Z) be analytic functions satisfying T(2)S(z) =0 (z € U). Suppose
that there are Banach spaces X1, 71, finite dimensional Banach spaces F,G and
reqular analytic functions S1: U — L(X1,Y®F) and Ty : U — L(Y ® G, Z1) such
that Tm Sy (z) D Ker T'(z) D Im S(z), Im S(2) + G D Ker T () and dim(Im S;(z) +
G)/KerTi(z) < oo (z € U), see Figure 2. Let k € N. Then the set {z € U :
a(z) = k} is analytic in U.

X1
Si) (g
S
X &ZZ Y 7&2 A
@ N1 (2)
G

Zy
Figure 2.

Proof. Set Y =Y @ F®G. For z € U define the operators S’(z) : X G —
Y T(2): Y - ZaF, S{(2): X10G—=Y and T{(2) : Y/ — Z1 ® F by

S'(2)(z@g) =5z +yg,

T')yo feg) =TEy+ 1,

S1(2)(x1 ® ) = S1(2)21 + 9,
(2)(

Ti(z)yo fog)=Ti(z)yDg) + f
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forallz € X, f € F, g € G and 1 € X;. Thus ImS’(z) = ImS(z) + G,
KerT'(z) = KerT(z) + G, Im S{(2) = Im S1(2) + G and Ker T{(z) = Ker T3 (2).
We have

Im S} (z) D KerT'(2) D Im S’(2) D Ker T} (2)

and
dimIm S} (z)/ Ker T{(z) = dim(Im S1(2) + G) / Ker T} (z) < oco.

By Lemma 2.4, the set {z € U : dimKerT"(2)/Im S'(z) > k} is analytic in U.
This set, however, is equal to the set {z € U : a(z) > k}. 1

LEMMA 2.8. Let U be an open subset of C", let S : U — L(X,Y) and T :
U — L(Y, Z) be analytic functions satisfying T'(2)S(z) = 0 and a(z) < oo (z € U).
Letw € U. Suppose that there are finite dimensional spaces G, H, a neighbourhood
Ui of w and a regular analytic function Ty : Uy — LY & G, Z ® H) such that
T1(2)|Y = T(z). Then there exist a finite dimensional space F, a neighbourhood
Us of w and a regular analytic function S1 : Us — L(X @ F,Y @& G) such that
S1(2)|X = S(2) and Im S1(z) = KerT1(z) D Ker T'(z2), see Figure 3.

xy 22 vy ¥ g
F 1(2) G 1(2) H
Figure 3.

Proof. For z € Uy we have
dimKer T3 (z)/Im S(z) = dimKer T} (z)/ Ker T'(z) + dim Ker T'(z)/ Im S(z) < oo.
Let y1, ..., ¥y, be linearly independent vectors in Ker T} (w) such that
Im S(w) V A{y1,...,yr} = Ker Ty (w).

Since T is regular, for i = 1,...,r, there exists a (Y @ G)-valued analytic function
; defined in a neighbourhood of w such that T (2)¢(z) = 0 and ¢;(w) = y;. Let F
be an r-dimensional space with a basis fi ..., f, and define S;(z) : X®&F - Y @G
by

$i1(2) (2@ Y 8ifi) =Sz + Y ey (2 € X, B € O).
i=1 i=1
Clearly T1(2)S1(z) = 0 and Im S (w) = Ker T (w) so that there is a neighbourhood

of w where Ker T} (z) = Im S;(2), see [14]. Thus S; is regular in a neighbourhood
of w and satisfies all the required conditions. 1
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THEOREM 2.9. Let Xy, X1,...,X, be Banach spaces, U an open subset of
C™. Let
0— Xo 2 x, 2@ 0l
be a Fredholm complex analytically dependent on z € U (i.e., 0j(2)0;-1(2) =0 and
dimKer §;(z)/Imé;_1(z) < oo for all € U and j =0,...,n).
Let 0 < j <n and k € N. Then the set {z € U : dimKer §;(z)/Imd;_1(z) >
k} is analytic in U.

Proof. Let w € U. Using Lemma 2.8 repeatedly, it is easy to see by the
downward induction that there are finite dimensional spaces F};_1, F; and a regular
analytic function S(z) : X;_1 @ Fj_1 — X; @& F; defined in a neighbourhood
of w such that S(2)|X;_1 = 0;_1(2) and ImS(z) D Kerd;(z). In particular,
dimIm S(z)/Kerd;_1(z) < oo.

Consider the “adjoint” complex

50(2) 51 (2) 65—1(2)

00— Xj &~ Xy — -+ "— X0

where we write for short 07 (2) instead of (J,(z))*. Since this complex is also Fred-
holm, similarly as above there exist finite dimensional spaces G; and Gj41 and a
regular analytic function 7'(2) : X7, ® Gj41 — X; © G; defined in a neighbour-
hood of w such that InT'(z) D Ker((;;.[l(z)) and dim Im 7T'(z)/ Ker d7_;(z) < ooc.
Further the operator S*(2) : X7 @ " — X7 | @ F;_, satisfies

Ker S*(2) = (Im S(2))* C (Kerd;(2))* + F} =Tméj(z) + F.
By Lemma 2.7, the set {2 : dim Ker 67_1(2)/Im 3 (2) = k} is analytic. Since
dim Ker 6;_;(2)/Im §; (2) = dim Ker §;(2)/Im 6;1(2),

this finishes the proof. 1

Let A = (Ay,...,A,) be an n-tuple of commuting operators on a Banach
space X. Denote by op(A) the Taylor spectrum of A. The essential spectrum
ore(A) of A is defined as the set of all A = (Aq,...,\,) € C™ such that the Koszul
complex of the n-tuple (41 — A1,..., A, — A,) is not Fredholm.

COROLLARY 2.10. ([7], [8]) Let A= (Ay,...,Ay) be an n-tuple of commut-
ing operators on a Banach space X. Then the set op(A) \ oe(4) is analytic in
cn \ O'Te(A).
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