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The purpose of this paper is to study an analog, for quantum Heisenberg manifolds,
of the natural sub-Riemannian metrics on classical Heisenberg manifolds.

Quantum Heisenberg manifolds were defined in [12] and they have been fur-
ther investigated in [1], [2], [3], and [4]. They are interesting for several reasons, one
being just because they are tractable examples of noncommutative manifolds. This
means that, like the related but simpler noncommutative tori, quantum Heisen-
berg manifolds provide a nice concrete setting in which to explore noncommutative
geometry.

Our treatment of noncommutative metrics is based on Connes’ approach
([9]). But we prefer to work with abstract derivations rather than the concretely
presented derivations implicit in Connes’ unbounded Fredholm modules. See [15]
for further discussion.

Noncommutative metric structure usually arises via an analog of the classi-
cal exterior derivative d on a Riemannian manifold. Classically, this map may be
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realized as a derivation from Lip (X) ⊂ L∞(X) into the module of bounded mea-
surable 1-forms. The graph of this derivation is weak*-closed, a property which
is characteristic of the domain being a Lipschitz algebra ([15]). In some sense the
differentiable structure resides in the map d, while the metric structure resides in
its domain Lip (X). There are some examples where one has the latter sort of
structure but not the former ([16], [17]).

An interesting feature of the present work is that from the noncommutative or
algebraic point of view, sub-Riemannian metrics are very close to genuine Rieman-
nian metrics. In the language of the previous paragraph, the exterior derivative
corresponding to a sub-Riemannian metric is given by composing d with orthogo-
nal projection onto a closed submodule of Ω1(X).

This work followed a suggestion by Marc Rieffel, and was helped by discus-
sions about the Heisenberg group with Daniel Allcock. I also wish to thank the
referee for suggesting a number of minor improvements.

We adopt the following notational conventions: c is a fixed positive integer;
h̄, µ, and ν are fixed real numbers; and H is the Hilbert space L2(R× T× Z).

1. SUB-RIEMANNIAN STRUCTURE FOR CLASSICAL HEISENBERG MANIFOLDS

Let M be a connected Riemannian manifold. It is well-known that M has a natural
metric such that the distance between two points x and y satisfies

d(x, y) = inf{l(p) : p is a path from x to y},

where l(p) denotes the length of p.
Now let B be a subbundle of the tangent bundle TM . We can use it to define

a new metric dB by setting

dB(x, y) = inf{l(p) : p is a path from x to y

which is everywhere tangent to B}.

This is a sub-Riemannian or Carnot-Carathéodory metric. A good general refer-
ence on this topic is [6]. Note that we must either require that any two points
can be connected by a path which is tangent to B, or else allow distances to be
infinite.

The simplest non-trivial example of a sub-Riemannian metric arises on the
Heisenberg group. This example is discussed at length in [10]. We now give a brief
account of the corresponding construction for Heisenberg manifolds.
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The (continuous) Heisenberg group G is the set of all real 3 × 3 matrices of
the form  1 y z

0 1 x

0 0 1

 ,

with the product inherited from the matrix ring M3(R). For any positive integer
c the set Hc of elements for which x, y, and cz are integers constitutes a discrete
subgroup of G, and the quotient construction yields the Heisenberg manifold Mc =
G/Hc. G acts on Mc from the left.

G can be identified with R3 and so it carries a natural differentiable manifold
structure. However, the Euclidean metric on R3 is not compatible with the group
structure of G. Instead, we give G the unique right-invariant Riemannian metric
which agrees with the Euclidean metric at the origin. Concretely, the three vectors

∂

∂x
,

∂

∂y
+ x

∂

∂z
,

∂

∂z

define an orthonormal basis at each point (x, y, z) ∈ G.
Since this Riemannian metric is right-invariant, it descends to Mc. The span

of the two vector fields ∂/∂x and ∂/∂y + x(∂/∂z) is then a bundle B of tangent
planes over Mc. (In fact this is a contact subbundle of TMc, the kernel of the
contact 1-form η = dz−xdy.) We use it to give Mc a sub-Riemannian metric dB

by the procedure described above.
Interestingly, this metric is finite. That is, even though Mc is three-dimensio-

nal, any two points can be joined by a path whose tangent vector at each point is
in the span of ∂/∂x and ∂/∂y + x(∂/∂z) ([8]).

Recall that G acts on Mc from the left. The vector fields ∂/∂x and ∂/∂y +
x(∂/∂z) can be recovered from this action. To see this consider the two one-
parameter subgroups of G of the form x = r, y = z = 0 and y = s, x = z = 0;
the generators of their actions on Mc are the two desired vector fields. That is,
flowing along the vector fields ∂/∂x and ∂/∂y + x(∂/∂z) produces the actions αr

and βs on Mc defined by

αr(A) =

 1 0 0
0 1 r

0 0 1

 ·A, βs(A) =

 1 s 0
0 1 0
0 0 1

 ·A

(A ∈ Mc). We will use this observation to define an analogous construction for
quantum Heisenberg manifolds.
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2. QUANTUM HEISENBERG MANIFOLDS

We recall the definition of the quantum Heisenberg C∗-algebras, and define
corresponding von Neumann algebras. Recall that c is a fixed positive integer, h̄,
µ, and ν are fixed real numbers, and H = L2(R× T× Z).

Definition 2.1. ([12], Theorem 5.5) Let Sc denote the space of C∞ func-
tions Φ on R× T× Z which satisfy

(i) Φ(x + k, y, p) = eickpyΦ(x, y, p) for all k ∈ 2πZ; and
(ii) for every polynomial P on Z and every partial differential operator X̃ =

∂m+n/∂xm∂yn on R×T the function P (p) · (X̃Φ)(x, y, p) is bounded on C×Z for
any compact subset C of R× T.

Define an action of Φ ∈ Sc on H by

(Φξ)(x, y, p) =
∑

q

Φ(x− h̄(q − 2p)µ, y − h̄(q − 2p)ν, q)ξ(x, y, p− q)

(recall that H = L2(R × T × Z)). Then let Dh̄ = Dµ,ν
h̄,c be the norm closure of

Sc ⊂ B(H) and let Nh̄ = Nµ,ν
h̄,c be its weak operator closure.

It is shown in [12] that Dh̄ is a C∗-algebra, and it follows that Nh̄ is a von
Neumann algebra. Note that our conventions differ from [12] by a factor of 2π in
the x variable.

The C∗-algebras Dh̄ are classified up to isomorphism in [2] and [4].
We require alternative characterizations of Dh̄ and Nh̄. The results are anal-

ogous to, but a bit more complicated than, the corresponding facts about noncom-
mutative tori ([15]). (Another characterization of Dh̄ is given in [3].) Our main
tool is a kind of Fourier expansion of elements of Nh̄, given in the next definition.
We record its basic properties in the subsequent lemmas.

Definition 2.2. For t ∈ R and n ∈ Z define unitary operators Ut and Yn

on H by

(Utξ)(x, y, p) = eiptξ(x, y, p) and (Ynξ)(x, y, p) = ξ(x, y, p + n).

For any T ∈ B(H) and n ∈ Z define an(T ) ∈ B(H) by

an(T ) =
1
2π

π∫
−π

UtTU−1
t e−int dt.
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This and all other operator integrals are taken in the weak operator sense, i.e.

〈an(T )ξ, η〉 =
1
2π

π∫
−π

〈UtTU−1
t ξ, η〉e−int dt

for all ξ, η ∈ H.
We regard an(T ) as a sort of Fourier coefficient of T ; similarly, for N ∈ N

we define the Cesaro mean σN (T ) by

σN (T ) =
N∑
−N

(
1− |n|

N + 1

)
an(T ) =

1
2π

π∫
−π

UtTU−1
t KN (t) dt,

where KN is the Fejér kernel

KN (t) =
N∑

n=−N

(
1− |n|

N + 1

)
e−int =

1
N + 1

(
sin((N + 1)t/2)

sin(t/2)

)2

.

Lemma 2.3. For any T ∈ B(H) we have σN (T ) → T (weak operator) as
N → ∞. If the map t 7→ UtTU−1

t is continuous for the norm topology on B(H)
then σN (T ) → T in norm as N →∞.

Proof. For the weak operator statement, pick ξ, η ∈ H and observe that the
map

t 7→ 〈(UtTU−1
t − T )ξ, η〉

is continuous and vanishes at t = 0. Therefore its integral against KN goes to zero
as N →∞ (e.g. see [11]), hence

〈(σN (T )− T )ξ, η〉 =
1
2π

π∫
−π

〈(U−1
t TUt − T )ξ, η〉KN (t) dt → 0.

This shows that σN (T ) → T (weak operator).
For the norm statement, note that the function t 7→ ‖U−1

t TU−1
t − T‖ is

continuous and vanishes at zero. Therefore

‖σN (T )− T‖ =
1
2π

∥∥∥∥
π∫

−π

(UtTU−1
t − T )KN (t) dt

∥∥∥∥
6

1
2π

π∫
−π

‖UtTU−1
t − T‖KN (t) dt → 0

as N →∞.
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Lemma 2.4. For any T ∈ B(H), the operator Ynan(T ) preserves constant p

subspaces of H = L2(R× T× Z) (p ∈ Z).

Proof. Note that Ynan(T ) commutes with Us for all s:

Ynan(T )Us =
1
2π

Yn

π∫
−π

UtTU−1
t Use−int dt =

1
2π

YnUs

π∫
−π

Ut−sTU−1
t−se

−int dt

=
1
2π

einsUsYn

π∫
−π

UtTU−1
t e−in(t+s) dt = UsYnan(T ).

But the operators Us generate the von Neumann algebra l∞(Z) ⊂ B(H), so we
conclude that Ynan(T ) preserves the constant p subspaces of H.

Lemma 2.5. Let T ∈ B(H). Suppose T commutes with the operators Vf ,Wk,
and Xr defined by

(Vfξ)(x, y, p) = f(x, y)ξ(x, y, p)

(Wkξ)(x, y, p) = e−ick(p2h̄ν+py)ξ(x + k, y, p)

(Xrξ)(x, y, p) = ξ(x− 2h̄rµ, y − 2h̄rν, p + r)

for all f ∈ L∞(R× T), k ∈ 2πZ, and r ∈ Z. Then an(T ) satisfies

(an(T )ξ)(x, y, p) = g(x, y, p)ξ(x, y, p− n)

for some g ∈ L∞(R× T× Z), and the function g satisfies

(∗) g(x + k, y, p) = e−ick((n2−2np)h̄ν−ny)g(x, y, p)

(k ∈ 2πZ) and

(†) g(x, y, p) = g(x− 2h̄rµ, y − 2h̄rν, p + r)

(r ∈ Z).
The function Φ ∈ L∞(R× T× Z) defined by Φ(x, y, p) = 0 for p 6= n and

Φ(x, y, n) = g(x− h̄nµ, y − h̄nν, n)

satisfies condition (i) of Definition 2.1, and an(T ) = Φ where Φ acts on H as in
Definition 2.1.
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Proof. Every Vf commutes with T by hypothesis and with both Ut and Yn

by easy computations. It follows that Vf also commutes with Ynan(T ). Thus
Ynan(T ), which preserves constant p subspaces by Lemma 2.4, must be a multi-
plication operator on each constant p subspace of H. So an(T ) has the form

(an(T )ξ)(x, y, p) = g(x, y, p)ξ(x, y, p− n)

for some g ∈ L∞(R× T× Z).
Next observe that every Wk commutes with both T and Ut, hence Wk com-

mutes with an(T ). So

(an(T )Wkξ)(x, y, p) = g(x, y, p)e−ick((p−n)2h̄ν+(p−n)y)ξ(x + k, y, p− n)

equals

(Wkan(T )ξ)(x, y, p) = e−ick(p2h̄ν+py)g(x + k, y, p)ξ(x + k, y, p− n),

which implies (∗).
Similarly, we have XrUt = eirtUtXr, hence Xr commutes with UtTU−1

t and
therefore with an(T ), which implies that

(an(T )Xrξ)(x, y, p) = g(x, y, p)ξ(x− 2h̄rµ, y − 2h̄rν, p + r − n)

equals

(Xran(T )ξ)(x, y, p) = g(x− 2h̄rµ, y− 2h̄rν, p + r)ξ(x− 2h̄rµ, y− 2h̄rν, p + r− n).

From this we obtain (†).
Finally, define Φ as in the statement of the lemma. It follows more or less

immediately from (∗) that Φ satisfies condition (i) of Definition 2.1. Furthermore
it follows from (†) that the action of Φ on H given in Definition 2.1 agrees with
the action of an(T ), that is, taking r = n− p,

(an(T )ξ)(x, y, p) = g(x, y, p)ξ(x, y, p− n)

= g(x− 2h̄(n− p)µ, y − 2h̄(n− p)ν, n)ξ(x, y, p− n)

= Φ(x− h̄(n− 2p)µ, y − h̄(n− 2p)ν, n)ξ(x, y, p− n)

=
∑

q

Φ(x− h̄(q − 2p)µ, y − h̄(q − 2p)ν, q)ξ(x, y, p− q).

(Note that even if Φ does not satisfy condition (ii) of Definition 2.1, it still acts
as a bounded operator on H. In fact YnΦ is a multiplication operator and so the
operator norm of Φ equals ‖Φ‖∞.)
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Theorem 2.6. Let T ∈ B(H). Then T ∈ Nh̄ if and only if T commutes
with the operators Vf ,Wk, and Xr defined in Lemma 2.5 for all f ∈ L∞(R × T),
k ∈ 2πZ, and r ∈ Z.

Proof. The forward direction can be proved by checking that every Φ ∈ Sc ⊂
B(H) commutes with Vf ,Wk, and Xr. This is an elementary calculation and we
omit it.

Suppose T commutes with Vf ,Wk, and Xr; we must show that T ∈ Nh̄.
Since σN (T ) → T (weak operator) by Lemma 2.3, it will suffice to show that
σN (T ) ∈ Nh̄ for all N ∈ N; and since σN (T ) is a linear combination of the Fourier
coefficients an(T ) it will suffice to show that an(T ) ∈ Nh̄ for all n ∈ N.

Let g and Φ be the functions defined in Lemma 2.5 and let (hm) be a sequence
of functions in C∞(R × T) with supp(hm) ⊂ [−1/m, 1/m] × [−1/m, 1/m] and
‖hm‖1 = 1. Define the smoothings Φm of Φ by twisted convolution:

Φm(x, y, p) =
∫

R×T

hm(r, s)Φ(x− r, y − s, p)eicpxs dr ds.

Then each Φm satisfies condition (i) of Definition 2.1 because

Φm(x + k, y, p) =
∫

hm(r, s)Φ(x + k − r, y − s, p)eicp(x+k)s dr ds

=
∫

hm(r, s)eickp(y−s)Φ(x− r, y − s, p)eicp(x+k)s dr ds

= eickpyΦm(x, y, p),

and each Φm satisfies condition (ii) of Definition 2.1 because it is C∞ and sup-
ported on p = n. So Φm ∈ Sc, and a standard application of Fubini’s theorem and
dominated convergence shows that Φm → Φ weak* in L∞(R × T × Z). Thus the
multiplication operators YnΦm weak operator converge to YnΦ, so that Φm → Φ
(weak operator). This shows that an(T ) = Φ belongs to Nh̄.

The corresponding characterization of the C∗-algebra Dh̄ can be stated most
naturally in terms of the action of the Heisenberg group G on the Dh̄ given in [12].

Definition 2.7. ([12], p. 557) For r, s, t ∈ R, let U(r,s,t) be the unitary
operator on H defined by

(U(r,s,t)ξ)(x, y, p) = eip(t+cs(x+h̄pµ−r))ξ(x− r, y − s, p).

Then L(r,s,t)(T ) = U(r,s,t)TU−1
(r,s,t) defines an action L of G on B(H), where we

take (r, s, t) ∈ R3 ∼= G. A short computation shows that this action preserves Sc,
hence it preserves Dh̄ and Nh̄.
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By specializing to the three coordinate axes in G ∼= R3 we get three actions
α, β, γ of R, defined by

αr(T ) = U(r,0,0)TU∗
(r,0,0)

βs(T ) = U(0,s,0)TU∗
(0,s,0)

γt(T ) = U(0,0,t)TU∗
(0,0,t).

(Note that U(0,0,t) equals the unitary Ut of Definition 2.2. Thus, for instance,

an(T ) = 1
2π

π∫
−π

γt(T )e−int dt.)

For Φ ∈ Sc ⊂ B(H) we have

αr(Φ)(x, y, p) = Φ(x− r, y, p)

βs(Φ)(x, y, p) = eipscxΦ(x, y − s, p)

γt(Φ)(x, y, p) = eiptΦ(x, y, p).

Lemma 2.8. Let Φ ∈ Sc. Then there exists K > 0 such that

‖αr(Φ)− Φ‖ 6 Kr and ‖βs(Φ)− Φ‖ 6 Ks

for all r, s > 0.

Proof. By condition (ii) of Definition 2.1, together with the fact that |∂Φ/∂x|
is periodic in x, there exists a positive function f ∈ L1(Z) such that∣∣∣∣∂Φ

∂x
(x, y, p)

∣∣∣∣ 6 f(p)

for all p ∈ Z. So for r > 0 we have

|(αr(Φ)− Φ)(x, y, p)| = |Φ(x− r, y, p)− Φ(x, y, p)| 6 r · f(p).

It follows that ‖αr(Φ)− Φ‖ 6 r · ‖f‖1.
Now use condition (ii) of Definition 2.1 to find a positive function f1 such

that pf1(p) ∈ L1(Z) and |Φ(x, y, p)| 6 f1(p) for all p ∈ Z and a positive function
f2 ∈ L1(Z) such that ∣∣∣∣∂Φ

∂y
(x, y, p)

∣∣∣∣ 6 f2(p)

for all p ∈ Z. Also note that

sup
06x<2π

|eipcsx − 1| 6 2πcps.
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Then

|(βs(Φ)− Φ)(x, y, p)| = |eipcsxΦ(x, y − s, p)− Φ(x, y, p)|
6 |eipcsx − 1|f1(p) + |Φ(x, y − s, p)− Φ(x, y, p)|
6 (2πcpf1(p) + f2(p))s

for all x ∈ [0, 2π). But for any x ∈ [0, 2π) and k ∈ 2πZ we have

(βs(Φ)− Φ)(x + k, y, p) = eipcs(x+k)Φ(x + k, y − s, p)− Φ(x + k, y, p)

= eipcs(x+k)eickp(y−s)Φ(x, y − s, p)− eickpyΦ(x, y, p)

= eicpky(βs(Φ)− Φ)(x, y, p),

so that the previous estimate holds for all x ∈ R. It follows that ‖βs(Φ) − Φ‖ 6(
2πc‖pf1‖1 + ‖f2‖1

)
s.

Theorem 2.9. Let T ∈ Nh̄. Then T ∈ Dh̄ if and only if the maps r 7→ αr(T )
and s 7→ βs(T ) are continuous for the norm topology on Nh̄.

Proof. “⇒” The set of operators T for which α and β are norm-continuous is
easily seen to be norm-closed. Thus it suffices to show that every Φ ∈ Sc ⊂ B(H)
has this property. This was shown in Lemma 2.8.

“⇐” Let T ∈ Nh̄ and suppose α and β are norm-continuous for T . It follows
that γ is also norm-continuous for T by the identity

γt = β−1
t′ α−1

t′ βt′αt′

where t′ =
√

t/c. Thus σN (T ) → T in norm as N →∞ by Lemma 2.3. Therefore,
to prove that T ∈ Dh̄ it will suffice to show that each σN (T ) ∈ Dh̄, or indeed that
each an(T ) ∈ Dh̄.

Now α and γ commute, so

‖αr(an(T ))− an(T )‖ =
1
2π

∥∥∥∥
π∫

−π

(αr(γt(T ))− γt(T ))e−int dt

∥∥∥∥
6

1
2π

π∫
−π

‖αr(γt(T ))− γt(T )‖dt

=
1
2π

π∫
−π

‖αr(T )− T‖dt = ‖αr(T )− T‖.

Since T is norm-continuous for α, this shows that an(T ) is as well; the same
argument shows that an(T ) is norm-continuous for β.
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Using the fact that αr(Ynan(T )) = Ynαr(an(T )), we get that αr(Ynan(T )) is
continuous in norm as a function of r. Similarly, a short computation shows
that βs(Yn) is continuous in norm as a function of s, hence βs(Ynan(T )) =
βs(Yn)βs(an(T )) is also continuous in norm. It is then standard that the func-
tions g and Φ defined in Lemma 2.5 must be uniformly continuous. We let Φ act
on H by the formula given in Definition 2.1, so that an(T ) = Φ as operators.

Now, just as in the proof of Theorem 2.6, we can smooth Φ by taking a twisted
convolution with a C∞ approximate unit of L1-norm one, to get a sequence (Φm)
in Sc. But since Φ is continuous, Φm → Φ in sup norm (= operator norm), hence
an(T ) = Φ ∈ Dh̄.

Corollary 2.10. Dh̄ consists of precisely the elements of Nh̄ for which the
action of G is norm-continuous.

Proof. Norm-continuity for G implies norm-continuity for α and β, so one
direction follows immediately from Theorem 2.9. For the other direction, we also
know from Theorem 2.9 that every element of Dh̄ is norm-continuous for α and β,
and that this implies norm-continuity for γ as well (as in the proof of Theorem 2.9).
But α, β, and γ generate G, so this is enough.

3. THE NONCOMMUTATIVE SUB-RIEMANNIAN METRIC

There is a natural noncommutative sub-Riemannian metric on Nh̄, and it can be
presented in both local and global forms. The local version is a sort of noncommu-
tative exterior derivative, while the global version is the noncommutative Lipschitz
algebra that is the former’s domain.

Definition 3.1. Let E = Nh̄⊕Nh̄; we regard it as a Hilbert bimodule over
Nh̄ with left and right Nh̄-valued inner products given by

〈x1 ⊕ x2, y1 ⊕ y2〉l = x1y
∗
1 + x2y

∗
2

and

〈x1 ⊕ x2, y1 ⊕ y2〉r = x∗1y1 + x∗2y2.

Let δ1 and δ2 be the generators of the actions α and β defined in the last section,
i.e.

δ1(x) = lim
r→0

αr(x)− x

r
and δ2(x) = lim

s→0

βs(x)− x

s
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for all x ∈ Nh̄ for which the limits exist in the weak operator sense. Define
Lh̄ = dom(δ1) ∩ dom(δ2) and define d : Lh̄ → E by d(x) = δ1(x)⊕ δ2(x). Give Lh̄

the norm
‖x‖L = max(‖x‖, ‖d(x)‖l, ‖d(x)‖r)

where ‖ · ‖l and ‖ · ‖r are the left and right Hilbert module norms on E.

In the case h̄ = 0, δ1 and δ2 are genuine partial derivatives, and d(x) is the
projection of the exterior derivative of x onto the cotangent subbundle dual to B.

The following alternative characterization of Lh̄ is useful. It follows immedi-
ately from [7], Proposition 3.1.6.

Lemma 3.2. Let x ∈ Nh̄. Then x ∈ Lh̄ if and only if sup
r>0

‖αr(x)− x‖/r and

sup
s>0

‖βs(x)− x‖/s are finite.

Theorem 3.3. The map d and its domain Lh̄ have the following properties:
(i) d is an unbounded derivation with (weak*)-closed graph.
(ii) Lh̄ is a dual Banach algebra. It contains Sc and is densely contained

in Dh̄.
(iii) If h̄ = 0 then Lh̄ is naturally identified with the algebra of functions on

Mc which are Lipschitz for the sub-Riemannian metric defined in Section 1, and
‖d(x)‖l = ‖d(x)‖r equals the Lipschitz number of x, for any x ∈ L0

∼= Lip (Mc).

Proof. (i) The fact that d is a derivation, i.e. is linear and satisfies the Liebniz
formula d(xy) = xd(y)+d(x)y, is an elementary calculation. Weak*-closure of the
graph follows from [7], Proposition 3.1.6.

(ii) The norm ‖ · ‖L equals the graph norm when Lh̄ is identified with the
graph of d by the map x 7→ x⊕ d(x) and E is given the max of its left and right
Hilbert norms (which is equivalent to the von Neumann algebra norm on E). Thus
Lh̄ is isometric to a weak*-closed subspace of a dual Banach space, hence Lh̄ is a
dual space. It is an algebra because dom(δ1) and dom(δ2) are both algebras (being
domains of derivations).

Sc ⊂ Lh̄ follows from Lemma 2.8 and Lemma 3.2. Lh̄ ⊂ Dh̄ follows from
Theorem 2.9 and Lemma 3.2, using the fact that continuity of an R-action is
equivalent to continuity at 0. Also, Lh̄ is dense in Dh̄ because it contains Sc.

(iii) Let h̄ = 0. It is straightforward to check that D0 and N0 are, respec-
tively, naturally isomorphic to C(Mc) and L∞(Mc); this simply involves taking
the Fourier transform in the p variable. Now if f ∈ L∞(Mc) is Lipschitz for the
sub-Riemannian metric then it satisfies

‖f ◦ ϕ− f‖∞ 6 L(f) · h
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for any isometry ϕ of Mc such that dB(ϕ(ρ), ρ) = h for all ρ ∈ Mc, where L(f) is
the Lipschitz number of f . Taking

ϕ(r, s, t) = (r − h cos θ, s− h sin θ, t− hr sin θ),

this shows that Lip (Mc) ⊂ L0 by Lemma 3.2; and

‖d(f)‖2
l (ρ) = |δ1(f)(ρ)|2 + |δ2(f)(ρ)|2 6 L(f)2

for almost every ρ ∈ Mc, so ‖d(f)‖ 6 L(f).
Conversely, let f be any function in L0 and let ρ, σ ∈ Mc. By [5], Theorem 2.7

there exists a constant velocity geodesic p : [0, 1] → Mc which is everywhere
tangent to the subbundle B of TMc defined in Section 1 and which satisfies p(0) =
ρ, p(1) = σ, and l(p) = dB(ρ, σ). Then the function g = f ◦ p : [0, 1] → C satisfies
g(0) = f(ρ), g(1) = f(σ), and g′(t) = 〈d(f)(t), dp(t)〉 for almost every t ∈ [0, 1].
This implies that g is Lipschitz with

L(g) 6 ‖dg‖ = ‖d(f)‖ · l(p),

so
|f(ρ)− f(σ)|

dB(ρ, σ)
=

g(0)− g(1)
l(p)

6 L(g)/l(p) 6 ‖d(f)‖.

Taking the supremum over all ρ and σ shows that f is Lipschitz and L(f) 6

‖d(f)‖.

We conclude this section with a proof that the unit ball of Lh̄ is compact
in operator norm. In the commutative case, this is true for Lip (X) precisely
when X is compact. In addition it was proved for noncommutative Lipschitz
algebras associated to noncommutative tori in [15] and [16], and our proof here
uses basically the same method. These results also follow from an unpublished
theorem of Rieffel which deals with the general situation of a Lie group acting on
a Banach space ([13]). I do not know whether that line of reasoning implies our
current result (it is not obvious because R2, the Lie group that appears here, is
not compact).

Lemma 3.4. For any ε > 0 there exists N large enough such that ‖x −
σn(x)‖ 6 ε for all x ∈ ball (Lh̄) and n > N .

Proof. Recall that γt = β−1
t′ α−1

t′ βt′αt′ where t′ =
√

t/c. Now for any y ∈
ball(Lh̄) we have

‖αt′(y)− y‖, ‖βt′(y)− y‖ 6 t′ · ‖d(y)‖ 6 t′,
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so that ‖γt(x)− x‖ 6 4t′ for any x ∈ ball(Lh̄). So we have

‖x− σn(x)‖ 6
1
2π

π∫
−π

‖x− γt(x)‖Kn(t) dt 6
1
2π

π∫
−π

4
√

t/cKn(t) dt,

and the last formula goes to zero as n →∞. This is what we needed to show.

Theorem 3.5. The unit ball of Lh̄ is compact in operator norm.

Proof. Let (xk) be any sequence in ball(Lh̄); we will find a convergent sub-
sequence.

As in Lemma 2.5, Ynan(xk) is the operator of multiplication by some function
gk

n ∈ L∞(R× T× Z). Now

‖αr(Ynan(xk))− Ynan(xk)‖ = ‖αr(an(xk))− an(xk)‖

6
1
2π

π∫
−π

‖(αr(γt(xk))− γt(xk))e−int‖dt

=
1
2π

π∫
−π

‖αr(xk)− xk‖dt 6 r‖δ1(xk)‖ 6 r.

Similarly, ‖βs(Ynan(xk))−Ynan(xk)‖ 6 s, and this implies that the function gk
n is

Lipschitz with Lipschitz number at most 2. Since [0, 2π]×T×{0} is compact, we
may choose a subsequence g

kj
n which converges in sup norm on this set; by (∗) and

(†) of Lemma 2.5 this implies that g
kj
n converges in sup norm on all of R×T×Z.

Allowing n to vary, finding successive subsequences for which g
kj
n converges, and

diagonalizing, we get a subsequence (xkj
) of (xk) such that (gkj

n ) converges in sup
norm for all n.

Let x be a weak operator cluster point of (xkj ) and let Ynan(xk) be multi-
plication by gn. Then gn is a weak*-cluster point of (gkj

n ) in L∞(R× T× Z), but
since (gkj

n ) already converges in sup norm we have g
kj
n → gn.

Given ε > 0, by Lemma 3.4 we can find a positive integer N such that
‖x − σN (x)‖ 6 ε and ‖xkj − σN (xkj )‖ 6 ε for all j. Taking M large enough so
that j > M implies

‖gn − gkj
n ‖∞ 6

ε

(2N + 1)
for all |n| 6 N , we get

‖σN (x)− σN (xkj
)‖ 6

N∑
n=−N

(
1− |n|

N + 1

)
‖an(x)− an(xkj

)‖

=
N∑

n=−N

(
1− |n|

N + 1

)
‖gn − gkj

n ‖ 6 ε.
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Thus

‖x− xkj
‖ 6 ‖x− σN (x)‖+ ‖σN (x)− σN (xkj

)‖+ ‖σN (xkj
)− xkj

‖ 6 3ε

for j > M . So xkj → x in operator norm.

4. FURTHER PROPERTIES

In this section we first identify the sub-Riemannian noncommutative Lipschitz

algebra Lh̄ defined in Section 3 with a noncommutative Hölder algebra. This

generalizes the classical fact (see [10]) that the sub-Riemannian metric on the

Heisenberg manifolds is comparable to the square root of the Riemannian metric

in the z direction. Then we use work of Sauvageot ([14]) to establish the existence

of a heat semigroup on Nh̄ and identify its generator with a noncommutative

Laplacian.

Definition 4.1. Let A,B,C ∈ (0, 1] and define LA,B,C
h̄ to be the set of

x ∈ Nh̄ for which there exists a constant K > 0 such that

‖x− αr(x)‖ 6 KrA, ‖x− βs(x)‖ 6 KsB , ‖x− γt(x)‖ 6 KtC

for all r, s, t > 0. Let L(x) = LA,B,C(x) be the smallest possible value of K and

norm LA,B,C
h̄ by

‖x‖A,B,C = max(‖x‖, L(x)).

Note that A′ 6 A,B′ 6 B,C ′ 6 C implies LA,B,C
h̄ ⊂ LA′,B′,C′

h̄ . Indeed, if

K = max(LA,B,C(x), 2‖x‖) then

‖x− αr(x)‖ 6

{
KrA 6 KrA′

for r 6 1
2‖x‖ 6 KrA′

for r > 1,

and similarly for β and γ, so that LA′,B′,C′
(x) 6 max(LA,B,C(x), 2‖x‖).

Note also that L1,1,1
h̄ = dom(α′)∩dom(β′)∩dom(γ′) by an obvious extension

of Lemma 3.2. For this reason we can realize L1,1,1
h̄ as the domain of a derivation

into the Hilbert module Nh̄ ⊕ Nh̄ ⊕ Nh̄ in the same way that we treated Lh̄ in

Definition 3.1. However, for non-unit values of A,B, or C, Hilbert modules are

not appropriate. We instead use a construction from [16] to handle this case.
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Definition 4.2. Let

F =
∞⊕

t>0

(Nh̄ ⊕Nh̄ ⊕Nh̄)

be the l∞ direct sum of von Neumann algebras. Regard it as a dual operator
Nh̄-bimodule with left action given by the diagonal embedding of Nh̄ in F and
right action given by the embedding

x 7→
⊕
t>0

(αt(x)⊕ βt(x)⊕ γt(x)).

Define a map d : LA,B,C
h̄ → F by d(x) =

⊕
dt(x) with

dt(x) =
x− αt(x)

tA
⊕ x− βt(x)

tB
⊕ x− γt(x)

tC
.

Theorem 4.3. The map d and its domain LA,B,C
h̄ have the following prop-

erties:
(i) d is an unbounded derivation with weak*-closed graph.
(ii) LA,B,C

h̄ is a dual Banach algebra. It is densely contained in Dh̄ and, if
C < 1, it contains Sc.

(iii) The unit ball of LA,B,C
h̄ is compact in operator norm.

Proof. (i) It is routine to check that d is a derivation. To verify weak*-
closedness of the graph, let (xλ) ⊂ LA,B,C

h̄ be a net which weak operator converges
to x ∈ Nh̄ and suppose that d(xλ) weak operator converges to

⊕
y1

t ⊕y2
t ⊕y3

t ∈ F .
By the Krien-Smulian theorem we may assume that (xλ) is bounded in norm.
Then, restricting attention to the tth summand of F , we have dt(xλ) → y1

t⊕y2
t⊕y3

t .
Thus

xλ − αt(xλ)
tA

→ y1
t

(weak operator), but the left side also converges to (x − αt(x))/tA. An identical
argument applies to the other two summands of dt(x) and so we conclude that
dt(xλ) → dt(x). Boundedness of the net then implies that x ∈ LA,B,C

h̄ and d(xλ) →
d(x).

(ii) LA,B,C
h̄ is a dual Banach algebra by the same easy argument used in

Theorem 3.3 (ii). It is contained in Dh̄ by Theorem 2.9. Also, as remarked above,
it contains L1,1,1

h̄ . We claim that L1,1,1
h̄ contains all Φ ∈ Sc which are zero for all

but a finite number of values of p. This implies density in Dh̄ by Lemma 2.3.
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To prove the claim it suffices to consider only those Φ ∈ Sc for which
Φ(x, y, p) = 0 unless p = n, for some fixed n ∈ Z. For such Φ the operator
norm equals the L∞ norm, and so

‖γt(Φ)− Φ‖ = ‖(eint − 1)Φ‖∞ 6 nt‖Φ‖∞.

Together with Lemma 2.8, this implies Φ ∈ L1,1,1
h̄ , as claimed.

Now suppose C < 1 and let Φ be any function in Sc. Choose N > 1 +
2/(1−C). Then by part (ii) of Definition 2.1, there exists a constant K such that
|pNΦ(x, y, p)| 6 K for x ∈ [0, 2π] and all y and p. By Part (i) of Definition 2.1,
this implies that pNΦ is bounded on all of R × T × Z. Now, for any t > 0 define
Φq(x, y, p) = δp,qΦ(x, y, p) and Φ′ = Φ−

∑
|p|6t−1/(N−1)+1

Φq. Then ‖Φq‖∞ 6 q−NK

and so we can bound the operator norm of Φ′ by

‖Φ′‖ 6
∑

|q|>t−1/(N−1)+1

q−NK 6 2

∞∫
t−1/(N−1)

q−NK dq

= 2
(t−1/(N−1))1−N

N − 1
K =

2tK

N − 1
.

Thus ‖γt(Φ′)−Φ′‖ 6 4tK/(N − 1), so that ‖γt(Φ′)−Φ′‖/tC is bounded for t 6 1.
Moreover, we have

|(γt(Φq)−Φq)(x, y, p)| = |(eiqt−1)Φq(x, y, p)| 6 |qt|‖Φ‖∞ 6 (t+ t1−1/(N−1))‖Φ‖∞

for |q| 6 t−1/(N−1) + 1, so that for t 6 1 and |q| 6 t−1/(N−1) + 1 we have

‖γt(Φq)− Φq‖ 6 2t1−1/(N−1)‖Φ‖∞.

Hence

‖γt(Φ− Φ′)− (Φ− Φ′)‖ 6 (2t−1/(N−1) + 3) · 2t1−1/(N−1)‖Φ‖∞ 6 12tC‖Φ‖∞.

We conclude that ‖γt(Φ)− Φ‖/tC is bounded for t 6 1. But for t > 1 we have

‖γt(Φ)− Φ‖ 6 2‖Φ‖ 6 2tC‖Φ‖,

so that ‖γt(Φ)− Φ‖/tC is bounded for all t > 0. Thus Φ ∈ LA,B,C
h̄ .

(iii) This is proved in the same way as Theorem 3.5.
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Theorem 4.4. Lh̄ and L1,1,1/2
h̄ are identical as sets and have isomorphic

norms.

Proof. L1,1,1/2
h̄ ⊂ Lh̄ is clear from the definitions. Conversely, it was noted

in the proof of Lemma 3.4 that if x ∈ ball (Lh̄), then ‖γt(x)− x‖ 6 4
√

t/c. Hence
‖γt(x)− x‖/

√
t is bounded and we get x ∈ L1,1,1/2

h̄ . So Lh̄ = L1,1,1/2
h̄ as sets.

Isomorphism follows from the estimate

‖x‖L 6 max(‖x‖, ‖δ1(x)‖+ ‖δ2(x)‖) 6 max(‖x‖, 2L(x)) 6 2‖x‖A,B,C

together with the open mapping theorem.

As a final topic we consider a natural Laplacian and the heat semigroup it
generates. The following tool is needed.

Definition 4.5. Define τ : Nh̄ → C by

τ(T ) =
1
2π

1∫
0

2π∫
0

Φ(x, y, 0) dxdy

where Φ is the function associated to a0(T ) in Lemma 2.5.

Theorem 4.6. ([12], p. 558) The map τ is a faithful normal finite trace. It
is invariant for the action L given in Definition 2.7.

(The fact that τ is normal follows from the fact that it is the composition of
two normal maps: integration of γt(T ) and integration over T2.)

Proposition 4.7. The GNS representation of Nh̄ associated to τ is unitarily
equivalent to the restriction of its original representation on H = L2(R × T × Z)
to H ′ = L2([0, 2π]× T× Z).

Proof. Define a map Ψ : Nh̄ → H ′ by Ψ(T ) = T (ξ) where ξ(x, y, p) = 1 for
(x, y, p) ∈ [0, 2π]× T× {0} and ξ(x, y, p) = 0 elsewhere. Then for any T ∈ Nh̄ we
have τ(T ) = 〈Tξ, ξ〉, so that Ψ extends to a unitary map from the Hilbert space
of the GNS representation onto H ′. It intertwines the action of Nh̄ because

Ψ(TS) = TS(ξ) = TΨ(S).

Now we define a Laplacian on Sc, and apply a theorem of Sauvageot to
establish the existence of a heat semigroup.
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Definition 4.8. For Φ ∈ Sc define ∆Φ by ∆Φ = δ1(δ1(Φ)) + δ2(δ2(Φ)).
Concretely, we have

∆Φ = Φxx − p2c2x2Φ(x, y, p)− 2ipcxΦy + Φyy.

The fact that ∆Φ ∈ Sc follows immediately from the first definition of ∆Φ, or is
a routine computation from the second.

Theorem 4.9. The operators e−t∆, t > 0, form a weak-operator continuous
semigroup of completely positive normal contractions of Nh̄.

Proof. First we show that δ1 ⊕ δ2 is closed when regarded as an operator
from H ′ into H ′ ⊕H ′.

Identify H ′ with the functions Φ on R× T× Z which satisfy

Φ(x + k, y, p) = eickpyΦ(x, y, p)

for all k ∈ 2πZ and whose restriction to [0, 2π]×T×Z is square integrable. Then
for all r, s, t ∈ R the formula

(U(r,s,t)ξ)(x, y, p) = eip(t+cs(x+h̄pµ−r))ξ(x− r, y − s, p)

from Definition 2.7 defines a unitary operator on H ′. Thus setting α′r(ξ) = U(r,0,0)ξ

and β′s(ξ) = U(0,s,0)ξ gives us two strongly continuous one-parameter unitary
groups on H ′, whose generators D1 and D2 satisfy Di(Φ) = δi(Φ), treating Φ
respectively as an element of H ′ and of Nh̄.

Since D1 and D2 are self-adjoint they are closed, hence

D = D1 ⊕D2 : H ′ 7→ H ′ ⊕H ′

is closed. Also D∗(ξ ⊕ 0) = D1(ξ) = δ1(ξ) and D∗(0⊕ ξ) = D2(ξ) = δ2(ξ), so

D∗D(Φ) = D∗(δ1(Φ)⊕ δ2(Φ)) = δ1(δ1(Φ)) + δ2(δ2(Φ)) = ∆Φ

for all Φ ∈ Sc. The desired conclusion now follows from ([14], Corollary 3.5).
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