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Abstract. We study the pseudospectral theory of a variety of non-self-
adjoint constant coefficient and variable coefficient differential operators,
showing that the phenomenon of non-trivial pseudospectra is typical rather
than exceptional. We prove that the pseudospectra provide more stable in-
formation about the operators under various limiting procedures than does
the spectrum.
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1. INTRODUCTION

It is well established that the spectrum of a self-adjoint operator is of crucial
importance in understanding its action in various applied contexts. For highly
non-self-adjoint operators, on the other hand, there is increasing evidence that
the spectrum is often not very helpful, and that the pseudospectra are of more
importance. We refer to [20], [21] for references to the increasing literature on
this concept, and for a series of examples in which the pseudospectra have been
computed and displayed graphically.

The goal of the first part of this paper is to determine the stability (in the
sense of [1], [2], [18]) of certain sequences of ordinary differential operators acting
over an increasing sequence of bounded intervals. In particular, we prove that the
pseudospectra converge to a specified limit as the widths of the intervals become
infinite. We always impose Dirichlet boundary conditions (DBCs), but discuss the
effect of making other choices of boundary conditions at the end of the paper. The
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operators concerned are not self-adjoint, and our analysis covers the case of the
one-dimensional convection-diffusion operator studied in detail in [15], [21].

In Section 5 we treat elliptic partial differential operators with variable co-
efficients acting on L2(RN ), including variable coefficient convection-diffusion op-
erators of the form

Af(x) := −δ∆f(x) + a(x) · ∇f(x).

The new feature of these operators is that they are compactly supported
perturbations of self-adjoint operators, but this does not prevent the instability of
the spectrum under the limit δ → 0. Our results once again support the view that
the pseudospectra have substantial importance when investigating non-self-adjoint
operators; see Section 5 for further details.

Our theorems extend the work of [1], [2], [14], [15], [17], [21] by providing
a further range of operators for which one cannot compute the spectrum by the
standard process of restricting the operator to a bounded interval, computing the
spectrum there and then taking the limit as the interval expands. It now appears
that these features are fairly typical for differential operators of the type which
occur throughout applied mathematics.

Our analysis will be described in the language of pseudospectral theory;
this could have been avoided but we find that the geometrical pictures it affords
provide very useful motivation. Let A be a closed densely defined operator on
a Hilbert space H and suppose that Spec(A) is not equal to the entire complex
plane C. Given ε > 0 the pseudospectrum Specε(A) is defined to be the union of
its spectrum with the set of z ∈ C such that

‖(z −A)−1‖ > ε−1.

Equivalently (see [18], Proposition 4.15)

Specε(A) =
⋃
{Spec(A+D) : ‖D‖ < ε}.

The proof of this is elementary because we impose a strict inequality in the defini-
tion of the pseudospectrum, instead of the more conventional non-strict inequality,
thus making the pseudospectrum an open set.

The pseudospectrum of any operator contains the ε-neighbourhood of its
spectrum, and is contained in the ε-neighbourhood of its numerical range under
mild conditions; see Section 3. If A is normal, the pseudospectrum of A is equal
to the ε-neighbourhood of the spectrum, but in general it may be much bigger.
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See [18], [21] for references to the proofs of basic properties of the pseudospectra
and [19] for a discussion of methods of computing the pseudospectra of matrices.

The first part of this paper is devoted to the analysis of the spectrum and
pseudospectra of an elliptic ordinary differential operator of the form

Af(x) :=
2n∑

r=0

ar
drf

dxr
,

where ar are complex constants and a2n 6= 0. We assume that A acts in L2(I)
where I = (−b, b), (0,∞) or R. We assume Dirichlet boundary conditions in the
sense that f(c) = f ′(c) = · · · = f (n−1)(c) = 0 at any finite boundary point c.

As an illustration of the peculiar nature of such operators we mention the
convection-diffusion operator

Af(x) := −f ′′(x)− 2f ′(x).

When acting on L2(R), this operator is normal with spectrum the parabolic curve

{x+ iy : y2 = 2x}.

However, for any finite b, the operator acting in L2(−b, b) has discrete real spec-
trum which converges as b→∞ to the real interval [1,∞). The lack of connection
between the spectra of these operators is remedied if one considers the pseudospec-
tra instead ([15]). Similar conclusions follow for general even order constant coef-
ficient ODEs from our general theory in Section 4, which extends and completes
earlier results of Reddy ([14]).

2. THE SPECTRUM

The precise domain of the ordinary differential operator A on L2(I) is described
as follows. We may write A = A0 + A1 where A0 := a2nd2n/dx2n has domain
Wn,2

0 (I) ∩ W 2n,2(I). The perturbation A1 is relatively bounded with relative
bound 0, so the domain of A equals that of A0; the adjoint operator has the same
domain. One may also define A by quadratic form methods. In this case one
considers the sectorial form

Q(f, g) := 〈Af, g〉

initially defined on C∞c (I). The operator A is then that operator associated with
the closure of the form Q as described in [7]; the domain of the closure is precisely
Wn,2

0 (I).
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The spectrum of the operator A acting on L2(R) may be determined by
Fourier analysis ([5], Chapter 3). If

p(ξ) :=
2n∑

r=0

arξ
r,

then the spectrum of A, which is normal, is

Spec(A) = {p(iξ) : ξ ∈ R}.

There are several definitions of the essential spectrum for closed operators,
and we follow [3], Chapter 3, Section 2 which defines it via the theory of Fredholm
operators. Since the essential spectrum is invariant under relatively compact per-
turbations, the essential spectrum of an elliptic differential operator is not changed
by local perturbations of the coefficients ([7], [3]). However, in the non-normal case
the non-essential spectrum may be quite different from the set of isolated eigen-
values of finite multiplicity. For the operator A on L2(R) its spectrum coincides
with its essential spectrum.

Let Ab denote the restriction of A to L2(−b, b) subject to DBCs. Ab has
compact resolvent so its spectrum is discrete. The eigenvalues may be computed
by standard methods. We do not provide a systematic description of the spectrum,
but note that the case of the convection-diffusion operator, Example 2.3 below,
shows that it does not generally converge in any sense to the spectrum of A as
b→∞. The link between the two involves the pseudospectra and is mediated by
the operator acting on L2(0,∞), to which we now turn.

Let A,B,C denote our operator acting on L2(R), L2(0,∞) and L2(−∞, 0)
respectively. Among these operators only A is normal.

Lemma 2.1. The spectrum of B is the union of the spectrum of A, the set of
L2 eigenvalues of B and the complex conjugate of the set of L2 eigenvalues of B∗.

Proof. If λ ∈ Spec(A) then there exists ξ ∈ R such that p(iξ) = λ. Let
ϕ ∈ C∞c (R) satisfy ϕ(x) = 0 if x 6 1 or x > 4, and ϕ(x) = 1 if 2 6 x 6 3. Then
define fn ∈ C∞c (0,∞) for positive n by

fn(x) := eiξxϕ(x/n).

A direct computation establishes that

lim
n→∞

‖Bfn − λfn‖/‖fn‖ = 0

and this proves that λ ∈ Spec(B).
Since B+C differs from A only by imposing DBCs at 0, the difference of the

resolvents is of finite rank. If λ /∈ Spec(A) then it follows that B − λI and C − λI
are Fredholm operators. Thus λ ∈ Spec(B) if and only if λ is an eigenvalue of B
or λ is an eigenvalue of B∗.
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The computation of the eigenvalues of B and B∗ involves studying the lo-
cation of the solutions of p(z) = λ. Given λ, let R be large enough so that all
solutions of p(z) = λ lie inside the circle {|z| = R}. Let γ0 be the anticlock-
wise closed curve composed of the straight line from −iR to iR and the semicircle
{Reiθ : π/2 6 θ 6 3π/2}. Then the number of roots of p(z) = λ which have
negative real parts equals the winding number of λ with respect to the closed
curve γ1(t) := p(γ0(t)). Note that for large enough R the semicircular part of
γ0 corresponds to a part of γ1 which winds approximately n times anticlockwise
around the origin.

The following theorem is due to Reddy ([14]); analogues for Toeplitz and
Wiener-Hopf operators have a long ancestry ([1], [2], [9], [15]).

Theorem 2.2. We have λ ∈ Spec(B) \ Spec(A) if and only if the winding
number of the curve γ1 around λ is not equal to n.

Proof. We assume for simplicity that the solutions of p(z) = λ are distinct;
the proof may easily be modified to deal with the general case. Assuming that
λ /∈ Spec(A), every solution of p(z) = λ has non-zero real part. If there are
n + 1 (or more) solutions z1, . . . , zn+1 with Re(zr) < 0 then there exists a linear
combination

f(x) :=
n+1∑
r=1

αrezrx

which lies in L2(0,∞) and satisfies the boundary conditions at 0. One may directly
check that λ is an eigenvalue of B with eigenvector f . If there are n or fewer
solutions which satisfy Re(z) < 0 then λ is not an eigenvalue of B.

If there are n+1 (or more) solutions z1, . . . , zn+1 of p(z) = λ with Re(zr) > 0
then there exists a linear combination

f(x) :=
n+1∑
r=1

αre−zrx

which lies in L2(0,∞) and satisfies the boundary conditions at 0. One may directly
check that λ is an eigenvalue of B∗ with eigenvector f . If there are n or fewer
solutions which satisfy Re(z) > 0 then λ is not an eigenvalue of B∗.

Example 2.3. Let

Af(x) := −f ′′(x)− 2f ′(x)

acting on L2(R). The spectrum of A is the parabola y2 = 4x. Every point inside
the parabola has winding number 2 with respect to γ1 while every point outside
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has winding number 1 (for large enough R). Therefore the operator B on L2(0,∞)
has spectrum consisting of the parabola together with its interior. The operator
Ab on L2(−b, b) has spectrum consisting of the real eigenvalues 1+π2n2/4b2 where
n = 1, 2, . . ., which does not converge to the spectrum of A or B as b → ∞. See
[15] for further discussion of this case.

Example 2.4. Let A be the differential operator associated with the poly-
nomial

p(iξ) := 2ξ6 − 6ξ2 + ξ10 + iξ + ic ξ(ξ2 − 1/4)(ξ2 − 1)

where c is a real constant. For small c > 0 the complement of the spectrum of the
operator B on L2(0,∞) subject to DBCs is connected but as c increases two lobes
come together and overlap leaving a hole in the spectrum. See Figure 1, which
has c = 9.

Figure 1. Polynomial spectrum.
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3. THE NUMERICAL RANGE

The material in this section is all standard, but is included for completeness. If A

is a closed linear operator with dense domain D in a Hilbert space H, its numerical

range

Num(A) := {〈Af, f〉 : ‖f‖ = 1}

is a convex subset of C. The ε-neighbourhood of any subset S of C is defined by

Nε(S) := {s+ x : s ∈ S and |x| < ε}.

Lemma 3.1. If A is a closed linear operator on H then

Nε (Spec(A)) ⊆ Specε(A)

for all ε > 0. If the complement of Num(A) is a connected set containing at least

one point not in Spec(A) then one also has

Specε(A) ⊆ Nε (Num(A)) .

Proof. The first statement follows from standard resolvent estimates; see [3],

Corollary 2.3. If Num(A) ⊆ {Re(z) > 0} then either every z with Re(z) < 0 lies

in Spec(A) or no such z does; see Theorem 2.24 of [3]. In the latter case −A is the

generator of a one-parameter contraction semigroup Tt = e−At and if Re(z) < 0

we have

‖(A− z)−1‖ 6

∞∫
0

‖Tt‖etRe(z) dt 6
1

|Re(z)|
.

The second statement of the theorem follows by applying the above argument

to αA+ β where α and β depend upon the choice of z /∈ Num(A).

Corollary 3.2. If A is a bounded linear operator on H then for any ε > 0,

Nε (Spec(A)) ⊆ Specε(A) ⊆ Nε (Num(A)) .

We comment that one may also prove this without any use of semigroup

theory.
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Lemma 3.3. Let H0 be a closed linear subspace of H and let A be a closed
sectorial normal linear operator on H. Let A0 be the restriction of A to H0 in the
sense of quadratic forms. Then

Num(A0) ⊆ conv(SpecA).

Proof. Let Q be the closed sectorial form associated with A. Then A0 is by
definition the closed operator associated with the restriction Q0 of the form Q to
H0. Since A is normal we have

Num(A0) = {Q0(f, f) : ‖f‖ = 1, f ∈ H0}
⊆ {Q(f, f) : ‖f‖ = 1, f ∈ H}
⊆ conv(SpecA).

Corollary 3.4. Let AI be a constant coefficient even order differential
operator acting on L2(I) subject to DBCs, where I is any interval in R. Then

Num(AI) ⊆ conv{p(iξ) : ξ ∈ R}.

Proof. If A is the same operator acting on L2(R) then A is normal with
spectrum {p(iξ) : ξ ∈ R}. The restriction of A to L2(I) in the sense of quadratic
forms is precisely the restriction which satisfies DBCs at the endpoints of I.

4. THE PSEUDOSPECTRUM

Although there is no relationship between the spectrum of Ab, the operator acting
on L2(−b, b), and the spectra of A or B, the pseudospectra of these operators are
closely related. The conclusion we reach can be summarised in the statement that

(4.1) lim
b→∞

Specε(Ab) = Specε(B)

for all ε > 0. Such a formula is well known for Toeplitz and Wiener-Hopf operators.
It was in principle already contained in Henry Landau’s papers [10], [11], [12], it
was rediscovered and explicitly stated in [15], and a new approach to the problem
along with generalizations of former results is in [1], [2]. The formula was proved by
Reddy ([14]) for constant coefficient differential operators subject to “triangular”
boundary conditions, but it is new for Dirichlet boundary conditions. It will
be apparent that our method actually applies to much more general boundary
conditions as well. We break the proof down into several small lemmas.
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Lemma 4.1. If ε > 0 then any compact subset K of Nε (Spec(A)) lies in
Specε(Ab) provided b is large enough.

Proof. Using the normality of A one can prove that if λ ∈ Nε (Spec(A)) then
there exists f ∈ Dom(A) such that

‖Af − λf‖ < ε‖f‖.

Since C∞c (R) is dense in Dom(A) for the graph norm, there exists g ∈ C∞c (R) such
that

‖Ag − λg‖ < ε‖g‖.

For large enough b we have g ∈ Dom(Ab) and can deduce that λ ∈ Specε(Ab).
For a compact subset K of Specε(A) we need only observe that every step may be
carried out uniformly with respect to λ ∈ K.

Lemma 4.2. Let K be any compact subset of Spec(B) \ Spec(A) and let
ε > 0. Then K ⊂ Specε(Ab) provided b is large enough.

Proof. We first observe that K can be written as a finite union of compact
subsets, each of which is contained in a single component of Spec(B) \ Spec(A).
We need only consider one such component, within which the winding number m
is constant. There are two cases depending upon whether m > n or m < n, and
we consider only the first for brevity. For each λ ∈ K there exists an eigenvector
f ∈ Dom(B) for λ of the form

f(x) :=
n+1∑
r=1

αrezrx

where Re(zr) < 0 for all 1 6 r 6 n+ 1.
Let ϕ be a smooth function on [0,∞) which satisfies ϕ(x) = 1 if x 6 1 and

ϕ(x) = 0 if x > 2. Then for n > 0 put

fn(x) := f(x+ b)ϕ((x+ b)/n).

One may check that fn ∈ Dom(Ab) for all large enough b. Moreover

lim
n→∞

lim
b→∞

‖Abfn − λfn‖/‖fn‖ = 0.

Given ε > 0 this implies that λ ∈ Specε(Ab) for all large enough b. The corre-
sponding result for K depends upon observing that the estimates are uniform with
respect to λ ∈ K.
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It follows from the proof of the next theorem that if K is a compact subset
of Specε(B) \ Spec(B) then K ⊆ Specε(Ab) for all large enough b. By combining
this with Lemmas 4.1 and 4.2 we finally deduce that if K is a compact subset of
Specε(B) thenK ⊆ Specε(Ab) for all large enough b. In the reverse direction it also
follows from the following theorem that ifK∩Specε(B) = ∅ thenK∩Specε(Ab) = ∅
for all large enough b. These two statements complete the proof of (4.1).

Theorem 4.3. We have

lim
b→∞

‖(λ−Ab)−1‖ = ‖(λ−B)−1‖

uniformly for all λ in any compact subset of C \ Spec(B).

Proof. We use a twisting idea taken from [5], Section 8.6 or [4], [6]. Let H1

be the operator on H1 := L2(R)⊕ L2(−b, b) defined by

H1 =
(
A 0
0 Ab

)
and let H2 be the operator on H2 := L2(−b,∞)⊕ L2(−∞, b) defined by

H2 =
(
B+ 0
0 B−

)
where B+ and B− are given by the same formula as A and satisfy DBCs at −b
and b, respectively. The spectra of B+, B− and H2 are all equal to the spectrum
of B already determined. Indeed there exist unitary equivalences which enable us
to see that

(4.2) ‖(λ−B)−1‖ = ‖(λ−B±)−1‖ = ‖(λ−H2)−1‖

for all λ /∈ Spec(B). Since A is normal and Spec(A) ⊆ Spec(B) we also have

(4.3) ‖(λ−A)−1‖ = dist(λ,Spec(A))−1 6 dist(λ,Spec(B))−1 6 ‖(λ−B)−1‖

for all λ /∈ Spec(B), by Lemma 3.1.
We prove the existence of a b-dependent unitary operator V : H1 → H2 such

that

(4.4) lim
b→∞

‖(V H1V
−1 − λ)−1 − (H2 − λ)−1‖ = 0.
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We follow the construction of Theorem 8.6.1 of [5] replacing r by b and replacing
σ by a smooth function σ : R → [0, π/2] such that σ(s) = 0 if s 6 −1/3 and
σ(s) = π/2 if s > 1/3. This leads to the formula

V H1V
−1 = H2 + P

where

(4.5) lim
b→∞

‖P (H2 − λ)−1‖ = 0

for all λ /∈ Spec(H2). Here P is a differential operator of order at most 2n − 1
whose coefficients have support in (−b/3, b/3) and vanish uniformly as b→∞. By
combining (4.5) with

(V H1V
−1 − λ)−1 = (H2 − λ)−1

(
1 + P (H2 − λ)−1

)−1

we can now deduce (4.4) and hence

lim
b→∞

‖(H1 − λ)−1‖ = ‖(H2 − λ)−1‖

for all λ /∈ Spec(B), the RHS being independent of b. The theorem follows by
combining this with (4.2) and (4.3) and observing that the above estimates are
uniform on any compact set K disjoint from Spec(B).

5. VARIABLE COEFFICIENT CONVECTION-DIFFUSION OPERATORS

In this section we consider the operator

Af(x) := −δ∆f(x) + a(x) · ∇f(x)

acting on L2(RN ), where a is a real, bounded, possibly discontinuous function and
δ > 0. This operator is a relatively bounded perturbation with relative bound zero
of the operator B := −δ∆, so it has the same domain W 2,2(RN ) and its spectrum
is contained in {z : Re(z) > c} for some real c. The operator is said to become stiff
as δ → 0 and we wish to investigate the limit of the spectrum and pseudospectra
in this limit. The limit may be problematical if a is not a Lipschitz continuous
function, because then the limiting operator

(5.1) A0f(x) := a(x) · ∇f(x)

need not generate a flow on RN . The corresponding problem for higher order
operators with discontinuous lower order coefficients is, however, not so clear.

Under the following condition one has no problems about the limit δ → 0.
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Theorem 5.1. Suppose that a ∈W 1,∞ and that ∇·a(x) 6 0 for all x ∈ RN .
Then Spec(A) ⊆ {λ : Re(λ) > 0} and Specε(A) ⊆ {λ : Re(λ) > −ε} for all ε > 0.

Proof. An integration by parts shows that the hypotheses imply that

Re〈Af, f〉 > 0

for all f ∈ Dom(A). This implies that e−At is a contraction semigroup for t > 0,
from which the statements of the theorem follow.

The conditions on a in the above theorem can be relaxed if we are only
interested in the spectrum, but we shall see later that this is misleading.

Theorem 5.2. If a ∈ L∞ and Af = λf for some f ∈ Dom(A) and some
λ ∈ C, then Re(λ) > 0. If moreover lim

|x|→∞
a(x) = 0 then Spec(A) ⊆ {λ : Re(λ) >

0}.

Proof. Elliptic regularity theorems imply that f , which a priori only belongs
to W 2,2, is actually bounded and continuous. We need to use the fact that e−At

is a contraction semigroup on L∞. This is intuitively obvious on probabilistic
grounds, but we include a proof for completeness; the most general results of this
genre which we know are [8] and [13] — several other abstract approaches assume
that the semigroup on L2 is contractive, which is not the case for our operators.
Let C0 denote the space of bounded, continuous functions on RN which vanish
at ∞. We have A = B + A0 where B and A0 are defined above. The operator
−B generates a positivity preserving holomorphic contraction semigroup on L2

and on C0. The operator A0 is a class P perturbation in both spaces in the sense
of [3], Theorem 3.5, provided a is a bounded continuous function. Therefore −A
generates a strongly continuous semigroup on both spaces. Now A is dissipative
in the sense of [3], Theorem 2.25 on C0, so the semigroup on C0 is a contraction
semigroup. That is

(5.2) ‖e−Atf‖∞ 6 ‖f‖∞

for all f ∈ L2 ∩C0 and all t > 0 provided a is bounded and continuous. If a is not
continuous then we construct a sequence an of bounded continuous functions which
converges to a boundedly and pointwise, and let An be the associated operators.
The operators An converge to A in the strong resolvent sense ([3], Corollary 3.18),
so the semigroups converge strongly in L2. We observe that (5.2) is preserved
under L2 norm limits. The validity of (5.2) for all f ∈ L2 ∩ L∞ is deduced by
constructing a sequence fn ∈ L2∩C0 which converges to f in L2 norm and satisfies
‖fn‖∞ 6 ‖f‖∞ for all n. Applying (5.2) to the eigenfunction f we conclude that
Re(λ) > 0.
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If a vanishes at infinity then A0 is a relatively compact perturbation of B
and so A has the same essential spectrum as B, namely [0,∞). All other points
of the spectrum are isolated eigenvalues of finite multiplicity by Weyl’s essential
spectrum theorem ([16], Theorem 13.14), and were dealt with in the first part of
the proof. Note that [16] uses a different definition of essential spectrum, so the
text must be read carefully.

In order to construct counterexamples to the corresponding statement about
the limit of the pseudospectra as δ → 0, we need to make some hypotheses about
the vector field a(x) on RN . We assume that S is a compact subset of RN with
C2 boundary and that a vanishes outside S. We assume that a is C1 inside S and
that there is a C2 function ϕ on RN such that a(x) · ∇ϕ(x) = 1 for all x ∈ S.

The significance of this assumption may be seen by supposing that γ is a
flow line of the vector field, more precisely

γ′(t) = a(γ(t)) ∈ S

for all t0 6 t 6 t1. It is easy to prove under the above assumption on ϕ that

ϕ(γ(t1)) = ϕ(γ(t0)) + t1 − t0

so ϕ measures the passage along the flow lines. The existence of ϕ implies that
the flow lines cannot be closed loops.

Theorem 5.3. Let the operator A on L2(RN ) be given by

Af(x) := −δ∆f(x) + a(x) · ∇f(x)

where a satisfies the above conditions and δ > 0. Let K be any compact subset of
C and let ε > 0. Then

K ⊆ Specε(A)

for all small enough δ > 0. If A0 is any extension of the operator initially defined
on C2

c (RN ) by (5.1) then Spec(A0) = C.

Proof. Given λ ∈ C we construct a function f ∈ Dom(A) such that

‖Af − λf‖ < ε‖f‖

provided δ is small enough. It will be apparent that the construction is uniform
for λ in any compact subset of C.

We put
f(x) := eλϕ(x)ψ(x)
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where ψ is a C2 function on RN satisfying the following conditions for a parameter
β ∈ (0, 1) to be determined. We assume that 0 6 ψ 6 1, that ψ = 1 on S, that
|supp(ψ) \ S| 6 c1β, that |∇ψ| 6 c2β

−1 and finally that |∆ψ| 6 c3β
−2.

If x ∈ S then a direct calculation shows that

Af(x) = −δ∆eλϕ(x) + λf(x)

so
‖(Af − λf)|S‖ 6 c4δ.

If x /∈ S then |∆f(x)| 6 c5β
−2, a(x) · ∇f(x) = 0 and |f(x)| 6 c6. Since we neeed

only integrate over a set of measure c1β we deduce that

‖(Af − λf)|Rn \ S‖ 6 c7δβ
−3/2 + c8β

1/2.

Putting β := δ1/2 we conclude that

lim
δ→0

‖Af − λf‖ = 0.

On the other hand we also have

lim
δ→0

‖f‖2 =
∫
S

e2Re(λ)ϕ(x) dNx > 0

so the proof of the statements concerning A is completed.
Applying the same proof to A0 we deduce that Specε(A0) = C for all ε > 0.

Letting ε→ 0 the final statement of the theorem follows.

Corollary 5.4. Given δ > 0, let

Af(x) := −δd2f

dx2
+ a(x)

df
dx

where a is a positive C1 function on [−b, b] and a(x) = 0 for all |x| > b. Let K be
any compact subset of C and let ε > 0. Then

K ⊆ Specε(A)

for all small enough δ > 0.

Proof. We define

ϕ(x) :=

x∫
0

ds
a(s)

for all x ∈ [−b, b], and extend it to a C2 function on R by any convenient proce-
dure.
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Example 5.5. We mention another example for which detailed calculations
can be carried out by the methods of this paper, namely that for which a(x) = α−
if x < 0 and a(x) = α+ if x > 0. This example has different asymptotics on the left
and right as did the examples in [6]. The spectral and pseudospectral behaviour
of this operator as δ → 0 depends upon the signs and relative sizes of α±. The
essential spectrum is always the union of the essential spectra of the two constant
coefficient operators

A±f(x) := −δd2f

dx2
+ α±

df
dx

on L2(R).

Example 5.6. Let A : L2(RN ) → L2(RN ) be the operator

Af(x) := δ∆2f(x) + a(x) · ∇f(x)

where δ > 0. It is easy to prove analogues of Theorems 5.1 and 5.3 by similar
methods. However we are not able to prove a version of Theorem 5.2 because
e−At is not a contraction semigroup on L∞. The determination of the limit of the
spectrum of A as δ → 0 is an open question, but the behaviour of the pseudospectra
suggests that its solution is not of great importance.

We next turn to another class of operators acting on L2(RN ), given by

Hf(x) := −(δ + a(x))∆f(x)

where δ > 0 and a is a non-negative bounded function. It may be seen that H is a
relatively bounded perturbation of H0 := −(δ + ‖a‖∞)∆f(x) with relative bound
less than 1, and we take H to have the same domain, namely W 2,2(RN ).

Lemma 5.7. For any δ > 0, H has real non-negative spectrum and

‖e−Ht‖ 6 (1 + δ−1‖a‖∞)1/2

for all t > 0.

Proof. Let us define the new inner product

〈f, g〉δ :=
∫

RN

(δ + a(x))−1f(x)g(x) dNx

on L2(RN ), the two norms being obviously equivalent. We have

〈Hf, g〉δ = −
∫

RN

(∆f(x))g(x) dNx =
∫

RN

∇f(x) · ∇g(x) dNx
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for all f, g ∈ Dom(H), so H is self-adjoint and non-negative with respect to this
new inner product. Thus Spec(H) ⊆ [0,∞) and

‖e−Htf‖ 6 (δ + ‖a‖∞)1/2‖e−Htf‖δ 6 (δ + ‖a‖∞)1/2‖f‖δ

6 (1 + δ−1‖a‖∞)1/2‖f‖

for all f ∈ L2.

If lim
|x|→∞

a(x) = 0 then the invertible operator relating the two norms on L2

has condition number increasing to +∞ as δ → 0 so the above spectral results
do not tell the full story. We consider only one simple example to illustrate what
presumably happens in much greater generality.

Theorem 5.8. Let S be a compact subset of RN with C2 boundary and let

a(x) :=
{

1, if x ∈ S;
0, otherwise.

If ε > 0 and K is any compact subset of C, then

K ⊆ Specε(H)

for all small enough δ > 0.

Proof. The proof is very similar to that of Theorem 5.3, except that we put
ϕ(x) := x1.

Our final example is simpler than those above, and illustrates the problems
involved in taking a different type of limit. Consider the operator

Af(x) := −f ′′(x)− 2f ′(x)− V (x)f(x)

acting on L2(R) where V is a non-negative potential of compact support. As
a relatively compact perturbation of the same operator with zero potential, its
spectrum is

S := {ξ2 − 2iξ : ξ ∈ R}

together with some possible discrete eigenvalues. By examining the asymptotics
of the eigenfunctions as x→ ±∞, one finds that any eigenvalues must lie outside
S. The computation of the pseudospectra is non-trivial, and we consider a special
degenerate example to illustrate the surprising possibilities.

We replace V by cδ where δ is a delta potential concentrated at the origin
and c > 0. That is we consider the operator

Af(x) := −f ′′(x)− 2f ′(x)
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acting on L2(R) where we impose the internal boundary condition

f ′(0+)− f ′(0−) = −cf(0)

and require f to be continuous at x = 0, as well as everywhere else. It is easy to
show that if c > 2 then

Spec(A) = S ∪ {γ}

where γ := 1− c2/4 is the eigenvalue associated with the eigenfunction

f(x) :=
{

e−(1+c/2)x, if x > 0;
e−(1−c/2)x, if x < 0.

It might be expected that ‖(A − λ)−1‖ would be the same order of magni-
tude as dist(λ, S)−1 if γ is far enough away from S and λ. This hope is dashed
by the following theorem. An alternative statement of the theorem is that the
pseudospectrum of this operator expands to fill the interior of S as c increases.

Theorem 5.9. If λ is inside S then

lim
c→∞

‖(A− λ)−1‖ = ∞.

Proof. It suffices to construct a function f ∈ Dom(A) such that

lim
c→∞

‖Af − λf‖/‖f‖ = 0.

We do not display the dependence of all of the quantites on c. Let λ be inside S
and let z1, z2 be the two solutions of −z2 − 2z = λ, so that both zi have negative
real parts. Then put

f(x) :=


0, if x < −δ,
−(x+ δ)2, if −δ 6 x 6 0,
uez1x + vez2x, if x > 0;

where δ > 0 and u, v ∈ C are to be determined. We choose u, v so that f ′(0+) = 1
and f(0+) = −δ2. This ensures the continuity of f at x = 0. The boundary
condition at x = 0 is satisfied if cδ2 − 2δ − 1 = 0, or equivalently

δ := (1 + {1 + c}1/2)/c.

Direct computations show that δ ∼ c−1/2 , u → (z1 − z2)−1 and v → (z2 −
z1)−1 as c→∞. It then follows that ‖Af −λf‖ → 0 and ‖f‖ → k 6= 0 as c→∞,
and this completes the proof.
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6. DISCUSSION

We start by discussing our results for constant coefficient ordinary differential
operators. It might be suspected that the lack of relationship between Spec(Ab)
and Spec(A) is related to the choice of Dirichlet boundary conditions at the ends
of (−b, b). In one sense this is correct — if we were to choose periodic boundary
conditions instead, then it is easy to prove that

lim
b→∞

Spec(Ab) = Spec(A).

However, we know of no theorem which states that the choice of periodic
boundary conditions implies the above limiting formula if A has variable coeffi-
cients. If one passes to similar problems in higher dimensions the problem re-
asserts itself in a form which is even harder to resolve. For example suppose that
the convection-diffusion operator

Af(x) := −∆f(x) + a(x) · ∇f(x)

acting on L2(Rn) is rotationally invariant, so that a(x) = ã(|x|)x for all x ∈ Rn.
Then the natural space cut-off is two balls with centres at the origin and radii
which increase to infinity. One has to impose boundary conditions before one can
start to investigate spectral behaviour, and the natural boundary conditions for
such an operator are again rotationally invariant. Dirichlet boundary conditions
are an obvious choice, and there is no analogue of periodic boundary conditions.

Even if the spectral behaviour of a particular operator acting on L2(Rn) can
be determined by the choice of an appropriate sequence of cut-offs and boundary
conditions, this does not really help the numerical analyst unless one can specify
a general procedure to be followed for a wide class of operators. The developing
view is that even if such a procedure exists, the use of pseudospectra is both
more stable and also in many contexts more relevant for applications to highly
non-normal operators ([21]).

While the results above arise from restricting the operators in question to
smaller subspaces, Section 5 concerns taking singular limits within a fixed Hilbert
space. The theorems which we have proved concerning the limiting behaviour as
δ → 0 of the operators

Af(x) := −δ∆f(x) + a(x) · ∇f(x)

are not entirely surprising in view of the fact that the limit operator is of order
1 and one can prove directly that such operators are problematical if the coeffi-
cients are not Lipschitz continuous. Our point is rather that if one relied upon
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the spectrum this pathology as δ → 0 would be entirely invisible. On the other
hand if one examines the pseudospectra one learns that the limit is singular from
the fact that the pseudospectra expands to fill the entire complex plane as δ → 0.
In other problems for which the behaviour of the singular limit is not so clear, it
seems that one may well learn more by examining the limiting behaviour of the
pseudospectra than by relying upon the spectrum.

Similar comments apply to the operators

Hf(x) := −(δ + a(x))∆f(x)

acting on L2(RN ) studied in the second half of Section 5. Here, however, we have
the further feature that each operator is non-negative and self-adjoint with respect
to a norm equivalent to the usual L2 norm. The pseudospectra may still expand
to fill the entire complex plane as δ → 0 because the invertible operator relating
the two norms has condition number increasing to +∞ as δ → 0.

The final example studied in Section 5, namely

Af(x) := −f ′′(x)− 2f ′(x)− cδ(x)f(x),

where c > 0 and δ is a delta function at the origin, is exactly soluble. It again
illustrates the disadvantages of relying upon the spectrum for information about
the behaviour of the operator as c increases.
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