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Abstract. This work introduces operator space analogues of the Separable
Extension Property (SEP) for Banach spaces, the Complete Separable Exten-
sion Property (CSEP) and the Complete Separable Complemention Property
(CSCP). The results use the technique of a new proof of Sobczyk’s Theorem,
which also yields new results for the SEP in the non-separable situation,

e.g.,
` ∞
⊕

n=1
Zn

´
c0

has the (2 + ε)-SEP for all ε > 0 if Z1, Z2, . . . have the 1-

SEP; in particular, c0(`
∞) has the SEP. It is proved that e.g., c0(R⊕C) has

the CSEP (where R, C denote Row, Column space respectively) as a conse-
quence of the general principle: if Z1, Z2, . . . is a uniformly exact sequence

of injective operator spaces, then
` ∞
⊕

n=1
Zn

´
c0

has the CSEP. Similarly, e.g.,

K0
def
=

` ∞
⊕

n=1
Mn

´
c0

has the CSCP, due to the general principle:
` ∞
⊕

n=1
Zn

´
c0

has the CSCP if Z1, Z2, . . . are injective separable operator spaces. Further
structural results are obtained for these properties, and several open problems
and conjectures are discussed.
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0. INTRODUCTION

We study here “quantized” or “operator space” versions of the following well known
extension property for Banach spaces.

Definition 0.1. A Banach space Z is said to have the Separable Extension
Property (SEP) provided for all separable Banach spaces Y , closed linear subspaces
X, and bounded linear operators T : X → Z, there exists a bounded linear
operator T̃ : Y → Z extending T .

That is, we have the diagram

(0.1)
Y

∪ ↘T̃

X −→
T

Z.

If λ > 1 is such that T̃ can always be chosen with ‖T̃‖ 6 λ‖T‖, we say Z

has the λ-SEP.

In 1941, A. Sobczyk proved that c0 has the SEP; in fact, he showed that c0

has the 2-SEP, and “2” is best possible ([29]). In 1978, M. Zippin established the
deep converse to this result: If Z is a separable infinite-dimensional Banach space
with the SEP, then Z is isomorphic to c0 ([35]). These results in a sense “end” the
study of separable Banach spaces with the SEP. To the contrary, we show below
that “quantized” versions of the SEP yield a rich “open-ended” theory. These
quantized versions are founded on a new proof for Sobczyk’s theorem, given in
Section 1, which actually yields new information for non-separable spaces Z with
the SEP. For example, we obtain in Corollary 1.7 that c0(`∞) has the SEP; in
fact the (2 + ε)-SEP for all ε > 0. This follows immediately from the new result,
Corollary 1.5: if Z1, Z2, . . . have the 1-SEP, then (Z1⊕Z2⊕ · · ·)c0 has the (2 + ε)-
SEP, for all ε > 0. A modification of our argument, due to T. Oikhberg, yields
the satisfying permanence property: if λ > 1 and Z1, Z2, . . . have the λ-SEP, then
(Z1 ⊕ Z2 ⊕ · · ·)c0 has the (λ2 + λ + ε)-SEP for all ε > 0. (After circulating the
first draft of this paper, I learned that previously known results yield that c0(`∞)
has the 2-SEP — see Remark 1.15 (iii) after Corollary 1.14 below.)

Other proofs of Sobczyk’s theorem have been given by A. Pe lczyński ([23])
and W. Veech ([32]). We show in Corollary 1.23 below that Veech’s argument
yields the isometric result: Let c0 $ Y ⊂ `∞ with Y separable, and set Z = Y/c0.
Then the short exact sequence

0 −→ c0 −→ Y −→ Z −→ 0
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admits a norm-one lift.
That is, letting π : Y → Z be the quotient map, there is a norm-one operator

L : Z → Y with
Y

π−→ Z

L ↖
xI

Z

.

Equivalently, c0 is contractively cocomplemented in Y ; that is, there is a linear
projection P from Y onto c0 with ‖I − P‖ = 1.

(This result immediately yields that c0 has the 2-SEP, in virtue of the in-
jectivity of `∞.) In Theorem 1.19, we use Veech’s argument to obtain another
generalization of Sobczyk’s theorem: Suppose X, Y, Z are Banach spaces with Y

separable and X ⊂ Y , and suppose (Tn) is a sequence of operators from X to Z

with Tn → 0 in the Strong Operator Topology (SOT). If (Tn) admits an extension
(T ′n) to Y with (T ′n) relatively compact in the SOT, then (Tn) admits an extension
(T̃n) to Y with T̃n → 0 in the SOT.

That is, setting T = (Tn), T ′ = (T ′n), T̃ = (T̃n), we have:
Hypotheses:

Y
T ′−→ `∞(Z)

∪ ∪
X

T−→ c0(Z)
+ (T ′n) SOT–relatively compact.

Conclusion:
Y

∪ ↘T̃

X −→
T

c0(Z).

The first quantized version of the SEP that we study is the Complete Sepa-
rable Extension Property (CSEP) for operator spaces. The definition is obtained
by simply inserting “Completely” before “Separable” in the definition of the SEP.
Again, if in the diagram (0.1), T̃ may always be chosen with ‖T̃‖cb 6 λ‖T‖cb, we
say Z has the λ-CSEP.

We now briefly recall the following basic concept. (For fundamental back-
ground and references, see [22] and [25].)

By an operator space X, we mean a Banach space X which is a closed lin-
ear subspace of L(H), the bounded linear operators on some Hilbert space H,
endowed with its natural tensor product structure with K, the space of compact
operators on separable infinite dimensional Hilbert space (which we take as `2 for
definiteness). Thus K ⊗op X denotes the closed linear span in L(`2 ⊗2 H) of the
operators K ⊗ T where K ∈ K and T ∈ X (and `2 ⊗2 H is the Hilbert-space
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tensor product of `2 and H). Given operator spaces X and Y , a linear operator
T : X → Y is called completely bounded if

I ⊗ T : K⊗op X → K⊗op Y

is bounded, where I denotes the identity operator on K; then we set ‖T‖cb =
‖I ⊗ T‖. It then follows easily that if Xi, Yi are operator spaces and Ti : Xi → Yi

are completely bounded, then T1 ⊗ T2 is completely bounded, with ‖T1 ⊗ T2‖cb 6

‖T1‖cb‖T2‖cb. Now many natural Banach space concepts have their operator space
versions. Thus, operator spaces X and Y are called completely isomorphic if
there exists an invertible T : X → Y with T and T−1 completely bounded. If
‖T‖cb‖T−1‖cb 6 λ, we say X and Y are λ-completely isomorphic. We then define
dcb(X, Y ), the completely bounded distance between X and Y , by dcb(X, Y ) =
inf{λ > 1 : X is λ-completely isomorphic to Y }. If X ⊂ Y , with Y an operator
space and X a closed linear subspace, then X is regarded as an operator subspace
of Y , via its natural structure K ⊗op X ⊂ K ⊗op Y . X is called completely
complemented if there is a completely bounded projection from Y onto X. We
may then loosely say: A separable operator space X has the CSEP provided it is
completely complemented in every separable operator superspace. (After the first
draft of this paper was completed, it was discovered that this “loose” statement
is actually a theorem, see [21].)

Of course K may be identified with a certain Banach space of infinite matri-
ces, namely those representing compact operators on `2 (with respect to its natural
basis). For an operator space X, K ⊗op X may also be visualized as a Banach
space of infinite matrices, all of whose elements come from X. We let Mn denote
all n×n matrices of complex scalars, regarded as L(`2n); we also let M00 denote all
infinite matrices of scalars, with only finitely many non-zero entries. Thus we may
regard Mn ⊂ Mn+1 ⊂ · · · ⊂ M00 ⊂ K. Now it follows easily that if Pn : K → Mn

is the canonical projection, then

(0.2) Pn ⊗ I → I ⊗ I in the SOT, on K⊗op X.

For T : X → Y a bounded linear operator, n > 1, we define ‖T‖n by

(0.3) ‖T‖n = ‖Pn ⊗ T‖.

(Equivalently, if In = Identity in L(`2n), ‖T‖n = ‖In ⊗ T‖.) It then follows easily
from (0.2) that T is completely bounded iff (‖T‖n) is bounded, and then

(0.4) ‖T‖cb = sup
n
‖T‖n.
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(This easy fact is sometimes taken as the definition of complete-boundedness.)
Visualizing K⊗op X as infinite matrices, we easily then have (by the closed graph
theorem) that a bounded linear operator T : X → Y is completely bounded exactly
when (Txij) belongs to K⊗op Y for each (xij) in K⊗op X; of course then (I ⊗T )
(xij) = (Txij).

Evidently the concept of an operator space is completely captured by the
Banach space K⊗op X. Remarkable axioms of Z.J. Ruan (cf. [10], [25]) abstractly
characterize this tensor product, without reference to the ambient Hilbert space.
Finally, we note that any Banach space X can be regarded as an operator space
via the so-called MIN structure (where ‖(xij)‖MIN = sup{‖(x∗(xij))‖ : x∗ ∈ X∗,
‖x∗‖ = 1} (with ‖x∗(xij)‖ the norm in L(H)). Thus formally, Banach space theory
is “subsumed” by operator space theory. However this observation is useless for
a Banach space X unless it is closely related to L(H) and its natural subspaces,
preduals of such, etc. In fact, we can alternatively say that operator space theory
is simply a special (but very deep!) case of the general theory of tensor products
of Banach spaces.

What are some examples of operator spaces with the CSEP? Of course c0 has
this property; we may “visualize” c0 as an operator space, by simply identifying
it with the space of diagonal matrices in K. Similarly, we define R, the operator
Row Space, to be the space of all matrices in K with entries only in the first row;
of course we then define C, the Column Space, as all matrices with entries only in
the first column.

It is easily seen that R and C have the 1-CSEP. We prove (see Corollary
2.15) that c0(R⊕C) has the (2 + ε)-CSEP for all ε > 0. (Throughout, direct sums
of operator spaces are taken in the `∞-sense.) A deep open problem: Let X be
separable with the CSEP. Is X completely isomorphic to a subspace of c0(R⊕C)?
Of course an affirmative answer would be the direct analogue of Zippin’s theorem
for the CSEP. The CSEP structure problem even for subspaces of c0(R ⊕ C) is
somewhat involved, however. In Section 4, we distinguish 21 (apparently) different
infinite-dimensional operator subspaces of c0(R⊕C) with the CSEP, representing
six isomorphically distinct Banach spaces; it is conceivable that this is the full list
(up to complete isomorphism) of all infinite-dimensional separable spaces with the
CSEP.

The proof that c0(R⊕C) has the CSEP uses the concept of uniformly exact
families of operator spaces (see Definition 2.5 below). Using Oikhberg’s modifica-
tion of our argument in Section 1 mentioned above, we obtain in Corollary 2.10
that if Z1, Z2, . . . are operator spaces so that {Z1, Z2, . . .} is uniformly exact and
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the Zj’s all have the λ-CSEP for some λ > 1, then (Z1 ⊕ Z2 ⊕ · · ·)c0 also has the
CSEP.

We show in Proposition 2.11 that for all n, M∞,n and Mn,∞ are 1-uniformly
exact (where, e.g., M∞,n denotes the ∞× n-matrices in K). Since M∞,n, Mn,∞

both have the 1-CSEP, we in fact obtain the following “almost isometric” version
of the isometric lifting property for c0 mentioned above (via Corollary 2.9): Fix
n, and suppose

X = c0(M∞,n ⊕Mn,∞) $ Y ⊂ `∞(M∞,n ⊕Mn,∞)

with Y separable; set Z = Y/X. Then the short exact sequence

0 −→ X −→ Y −→ Z −→ 0

admits an almost completely contractive lift. That is, letting π : Y → Z be the
quotient map, then given ε > 0, there exists an L : Z → Y with ‖L‖cb < 1 + ε and

Y
π−→ Z

L ↖
xI

Z

.

(This immediately yields that c0(M∞,n⊕Mn,∞) has the (2+ε)-CSEP for all ε > 0,
in view of the fact that L(H) is operator-isometrically injective (see [25]).)

Added in proof. Recent joint work of A. Arias and myself yields that this
short exact sequence admits a completely contractive lift, and hence c0(M∞,n ⊕
Mn,∞) has the 2-CSEP. See A. Arias and H.P. Rosenthal, M-complete approximate
identities in operator spaces, Studia Math., to appear.

We also show that our argument for Theorem 1.19 (via Veech’s technique
([32])) immediately extends to the operator space version (Theorem 2.37). In
particular, we obtain for fixed n, that c0(Mn) is completely contractively cocom-
plemented in Y for any separable Y with c0(Mn) $ Y ⊂ `∞(Mn). Thus c0(Mn)
has the 2-CSEP.

Although the CSEP thus has its isometric aspects, the fundamental con-
stant that enters in the CSEP is 2, unless we are already dealing with injective
operator spaces (i.e., no restrictions on separability in the fundamental diagram
(0.1) for completely bounded maps). Indeed, we show in Proposition 2.40 that
if X is separable with the λ-CSEP and λ < 2, then X is reflexive, whence (via
Proposition 2.36) X is λ-injective.

K is often regarded as the quantized version of c0, although K0
def= (M1 ⊕

M2⊕· · ·⊕Mn⊕· · ·)c0 is another possible candidate. What has become of K in our
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quantization of Sobczyk’s theorem? E. Kirchberg establishes in [17] that K fails
the CSEP. In fact, Kirchberg obtains a separable C∗-algebra A and a (two-sided)
ideal J ⊂ A with J ∗-isomorphic to K and J completely uncomplemented in A
(and moreover A/J is an exact C∗-algebra). Now we note that our positive results
hold under a formally weaker hypothesis, that of families of operator spaces of finite
matrix type (see Definition 2.29). T. Oikhberg has established that if conversely
Z1, Z2, . . . are separable operator spaces and {Z1, Z2, . . .} is not of finite matrix
type, then (Z1 ⊕ Z2 ⊕ · · ·)c0 fails the CSEP (see [21]).

In particular, K0 fails the CSEP (which seems quite surprising since c0(Mn)
has the 2-CSEP for all n). (Actually, it follows from Kirchberg’s work ([17]) and
the complete isomorphic invariance of exactness for C∗-algebras (cf. [25]), that
K0 fails the CSEP, see Remarks 4.4 Section 4, [33].) It turns out that in these
counterexamples, the “culprit” is the lack of local reflexivity of the containing
operator space.

In Section 3, we study a different quantized version of the SEP, the Complete
Separable Complementation Property (CSCP), which goes as follows: A separable
locally reflexive operator space Z has the CSCP provided every complete isomorph
of Z is completely complemented in every separable locally reflexive operator su-
perspace. Equivalently, there exists a completely bounded T̃ so that the diagram
(0.1) holds, provided Y is separable locally reflexive and T is a complete surjective
isomorphism. We now indeed obtain that K0 has the CSCP. It follows from the
proof that if e.g., A is a separable nuclear C∗-algebra, and J is a ∗-subalgebra
∗-isomorphic to K0, then J is (4 + ε)-completely complemented in A, for all ε > 0
(Corollary 3.7).

The main result of Section 3, Theorem 3.3, (again via the Oikhberg mod-
ification mentioned above) goes as follows: Let Z1, Z2, . . . be separable operator
spaces so that for some λ > 1, Zj is λ-injective for all j. Then (Z1 ⊕ Z2 ⊕ · · ·)c0

has the CSCP.
After the first draft of this paper was completed, it was discovered that

K itself has the CSCP (see [21]). It follows directly from Theorem 3.3 that( ∞⊕
n=1

(Mn,∞ ⊕M∞,n)
)

c0

has the CSCP. Looking at the natural completely com-

plemented subspaces of this space, as well as K itself, it follows that are at least
11 different Banach isomorphism types among the separable infinite-dimensional
operator spaces with the CSCP, and apparently at least 11 different primary such
spaces (see Section 4 for the relevant definition, and Proposition 4.4 and Conjec-
ture 4.5 for the various examples). Taking finite direct sums of these, we obtain a
finite but apparently astronomically large list of separable spaces with the CSCP.
The deep open question here is thus: Does every separable space with the CSCP,
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completely embed in K? Of course an affirmative answer would yield the “true”
quantized version of Zippin’s Theorem ([35]), and also imply it! A more accessible
problem: Classify the infinite-dimensional completely complemented subspaces of
K up to complete isomorphism.

1. THE SEPARABLE EXTENSION PROPERTY

This section is devoted to the pure Banach space category.

Definition 1.1. A Banach space Z is said to have the Separable Extension
Property (the SEP) if for all separable Banach spaces Y , (closed linear) subspaces
X, and (bounded linear) operators T : X → Z, there exists an operator T̃ : Y → Z

extending T . Z is said to have the λ-SEP provided for all such X and Y , T̃ may
be chosen with ‖T̃‖ 6 λ‖T‖.

We recall also

Definition 1.2. Z is said to be λ-injective provided for arbitrary Banach
spaces X and Y with X ⊂ Y , every operator T from X to Z has an extension T̃

from Y to Z with ‖T̃‖ 6 λ‖T‖.

The results in this section yield new properties of certain non-reflexive Ba-
nach spaces. In the separable space setting, the techniques yield a new proof of
Sobczyk’s theorem that c0 has the SEP ([31]), and also yield an intuition base for
the operator-space discoveries given in the following sections. The main “external”
motivation for the Banach category itself is in the non-separable setting, however,
because of the profound discovery of M. Zippin ([35]): Every infinite dimensional
separable Banach space with the SEP is isomorphic to c0. We note also that if Z is
a finite-dimensional Banach space, then Z has the λ-SEP iff Z is λ-injective iff Z

has the λ-SEP just with respect to finite-dimensional spaces Y and subspaces X.
The quantitative characterization of the finite-dimensional λ-injectives remains as
one of the profound open questions in Banach space theory.

We also note the classical theorem that a Banach space Z is 1-injective iff
Z is isomorphic to C(Ω) for some Stonian compact Hausdorff space Ω (real or
complex scalars). In particular, `∞ is 1-injective and an n-dimensional Banach
space is 1-injective iff it is isometric to `∞n . It also remains a deep open problem
whether every infinite-dimensional λ-injective is isomorphic to a 1-injective. We
note in passing the author’s result that `∞ is the smallest λ-injective; i.e., every
infinite-dimensional λ-injective contains a subspace isomorphic to `∞ ([27]).

It can easily be seen that a Banach space Z has the SEP iff it has the λ-SEP
for some λ > 1. I am indebted to M. Zippin for pointing out that this holds for
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general Z and not just the special case of separable Z (see the Remark following
the proof of Proposition 2.3 in the next section).

Before stating the main result of this section, we give the following notation:
Given Z1, Z2, . . . Banach spaces, (Zj)c0 denotes the space (Z1⊕Z2⊕· · ·)c0 ; i.e., the
space of all sequences (zj), zj ∈ Zj for all j, with ‖zj‖ → 0; under the natural norm
‖(zj)‖ = sup

j
‖zj‖. Similarly (Zj)`∞ denotes the space of all bounded sequences

(zj) with zj ∈ Zj for all j, under the same norm as above. Thus (Zj)c0 is a subspace
of (Zj)`∞ . Now for a fixed space Z, c0(Z) denotes the space (Z ⊕ Z ⊕ · · ·)c0 ,
and similarly `∞(Z) = (Z ⊕ Z ⊕ · · ·)`∞ . The reader is thus cautioned that for
example, (`2n)c0 denotes the space (`21 ⊕ `22 ⊕ · · ·)c0 , while c0(`2n) denotes the space
(`2n ⊕ `2n ⊕ · · ·)c0 , for fixed n.

The main result of this section is as follows.

Theorem 1.3. Let Z1, Z2, . . . be 1-injective Banach spaces, X, Y be Banach
spaces with X ⊂ Y and Y/X separable, and set Z = (Zj)c0 . Then for every non-
zero operator T : X → Z and every ε > 0, there exists a T̃ : Y → Z extending T

with ‖T̃‖ < (2 + ε)‖T‖.

Before giving the proof, we give several consequences.

Corollary 1.4. Let Z be as in Theorem 1.3. Then Z is 2+ε-complemented
in every superspace Y with Y/Z separable.

Recall that if X ⊂ Y , X, Y Banach spaces, X is called λ-complemented in
Y if there is a (bounded linear) projection P mapping Y onto X with ‖P‖ 6 λ;
Y is called a superspace of Z if Z ⊂ Y . Of course 1.2 follows immediately from
Theorem 1.3.

We shall see that the proof of Theorem 1.3 yields

Corollary 1.5. Let Z1, Z2, . . . be Banach spaces with the 1-SEP. Then
(Zj)c0 has the 2 + ε-SEP for all ε > 0.

Remark 1.6. T. Oikhberg has observed that a modification of our argument
actually yields that if the Zj ’s have the λ-SEP, then (Zj)c0 has the (λ(1 + λ) + ε)-
SEP for all ε > 0. See Remark 1.13 below.

We note in passing that Corollary 1.5 covers certain situations not handled
by Theorem 1.3. For example, let Γ be an uncountable set, and let `∞c (Γ) denote
the space of all scalar-valued functions on Γ with countable support. It is easily
seen that `∞c (Γ) has the 1-SEP; however it is known that `∞c (Γ) is not injective;
i.e., not λ-injective for any λ. Corollary 1.5 thus yields that c0(`∞c (Γ)) has the
(2 + ε)-SEP for all ε > 0.
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We note finally the following result, which is perhaps the main “external”
motivation for this section.

Corollary 1.7. Let ε > 0. Then c0(`∞) has the (2 + ε)-SEP. Moreover
c0(`∞) is (2 + ε)-complemented in every superspace in which it is of separable
codimension.

Remark 1.8. After circulating the first draft of this paper, I learned that
this corollary follows from a known result concerning M -ideals in Banach spaces;
moreover, one obtains that “ε” may be deleted in the statment. See Remark 1.15 (iii)
below.

We now pass to the proof of Theorem 1.3. We first state a reformulation.
We abuse terminology slightly and say that given Banach spaces X, Z1, Z2, . . .,
and operators Tj : X → Zj for all j, that (Tn) tends to zero in the SOT (Strong
Operator Topology) provided ‖Tnx‖ → 0 for all x ∈ X. (Of course if Z1 = Zn for
all n, this is what it means to say Tn → 0 in the SOT.)

Theorem 1.9. Let Z1, Z2, . . ., X, and Y be Banach spaces satisfying the
hypotheses of Theorem 1.3. Let (Tj) be a sequence of operators with Tj : Y → Zj

for all j, so that Tj |X → 0 in the SOT and sup
j
‖Tj‖ = 1. For every ε > 0, there

exists a sequence (Sj) of operators so that for all j,
(i) Sj : Y → Zj;

(ii) X ⊂ ker Sj;
(iii) ‖Sj‖ 6 1 + ε

2 ;
so that (Tj − Sj) → 0 in the SOT.

We first show that Theorem 1.9 ⇒ Theorem 1.3. (The equally easy con-
verse is not needed, and left to the reader. Of course the converse motivated the
formulation of Theorem 1.9.)

Let T : X → Z be as in the statement of Theorem 1.3; without loss of
generality, suppose ‖T‖ = 1. Let (Tj) be the corresponding sequence so that
Tx = (Tjx) for all x ∈ X. Now for each j, since Zj is 1-injective, choose T ′j : Y →
Zj with ‖T ′j‖ = ‖Tj‖ and T ′j |X = Tj . Of course then sup

j
‖T ′j‖ = sup

j
‖Tj‖ = 1.

Let us abuse notation and let Tj denote also the extended operator T ′j for all j.
Now the hypotheses of Theorem 1.9 hold; choose (Sj) satisfying its conclusion.
Now define T̃ : Y → (Zj)`∞ by

(1.1) T̃ (y) = (Tj − Sj)(y) for all y ∈ Y.

It follows from the conclusion of Theorem 1.9 that T̃ actually has its range in
Z = (Zj)c0 , and (ii) of Theorem 1.9 insures that T̃ extends T ; of course ‖T̃‖ < 2+ε,
proving Theorem 1.9.
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We next require the following rather surprising

Lemma 1.10. Let Z1, Z2, . . . , X, Y , and (Tj) be as in Theorem 1.9. Assume
further that Y/X is finite-dimensional and let F be a finite-dimensional subspace
of Y with X ⊕ F = Y ; let P be the projection of Y onto F with kernel X. Then

(1.2) lim
n→∞

‖TnP‖ 6 1.

Proof. Suppose not. By passing to a subsequence, we can suppose without
loss of generality that there is a C > 1 so that

(1.3) ‖TnP‖ > C for all n.

So for each n, choose xn ∈ X and fn ∈ F with

(1.4) ‖xn ⊕ fn‖ = 1 and ‖Tnfn‖ > C.

Of course then ‖fn‖ 6 ‖P‖ for all n; since F is finite-dimensional, we can suppose
by passing to a further subsequence, that

(1.5) fn → f in norm,

for a certain f in F . But then ‖Tn(fn − f)‖ → 0 as n → ∞, whence by (1.4)
and (1.5),

(1.6) ‖Tnf‖ > C for all n sufficiently large.

But also since xn ⊕ fn − xn ⊕ f → 0 in norm by (1.5),

(1.7) lim
n→∞

‖xn ⊕ f‖ = 1 by (1.4).

Now let ε > 0 with 1 + ε < C, and by (1.7), choose k with

(1.8) ‖xk ⊕ f‖ 6 1 + ε.

Then since ‖Tn‖ 6 1 for all n,

(1.9) ‖Tn(xk ⊕ f)‖ = ‖Tn(xk) + Tn(f)‖ 6 1 + ε.

Hence since lim
n→∞

‖Tn(xk)‖ = 0 by hypothesis,

(1.10) lim
n→∞

‖Tnf‖ 6 1 + ε.

This of course contradicts (1.6).



340 Haskell Rosenthal

Remark 1.11. Lemma 1.10 does not require the hypothesis that the Zj ’s be
1-injective, and furthermore it immediately yields the conclusion of Theorem 1.9 in
case Y/X is finite-dimensional. Indeed, choose m so that ‖TnP‖ < 1+ε for n > m.
Let Sn = 0 for n < m and Sn = TnP for n > m. Then Tn − Sn = Tn(I − P ) for
n > m, so for y ∈ Y , since (I−P )y ∈ X, lim

n→∞
‖(Tn−Sn)(y)‖ = ‖Tn(I−P )(y)‖ = 0.

We thus obtain the following consequence:

Corollary 1.12. Let X ⊂ Y with Y/X finite-dimensional, (Zj) a given
sequence of Banach spaces, and T : Y → (Zj)`∞ a bounded linear operator with
TX ⊂ (Zj)c0 . Then given ε > 0, there exists T̃ : Y → (Zj)c0 so that T̃ extends
T |X and ‖T̃‖ < (2 + ε)‖T‖.

We now pass to the

Proof of Theorem 1.9. By the above remarks, we may assume that Y/X is
infinite-dimensional. We may then choose y1, y2, . . . so that y1, y2, . . . are linearly
independent over X, and Y is the closed linear span of X and of the yn’s. For all
k, let Fk = [y1, . . . , yk] and Yk = X +Fk. Thus Fk is k-dimensional, X∩Fk = {0},
and

(1.11)
∞⋃

k=1

Yk = Y.

(Throughout, for any (finite or infinite) sequence (wj) of elements of a Banach
space, [(wj)] denotes the closed linear span of the wj ’s.)

For each k, let Pk : Yk → Fk be the projection of Yk onto Fk with kernel X.
Let ε > 0. We shall construct for each k, a sequence

(
S

(k)
n

)
of operators with the

following properties for all n;

S(k)
n : Yk → Zn,(1.12)

X ⊂ ker S(k)
n ,(1.13) ∥∥S(k)

n

∥∥ < 1 +
ε

2
,(1.14)

S(k+1)
n |Yk = S(k)

n ,(1.15)

and also

(1.16) S(k)
n = TnPk for all n sufficiently large.

Once S
(k)
n has been constructed satisfying (1.12)–(1.16) for all k and appro-

priate n’s, for each n let Sn be the unique bounded linear operator from Y to Zn

so that

(1.17) Sn|Yk = S(k)
n .
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(As ordered pairs in Y ×Zn, Sn =
∞⋃

n=1
S

(k)
n ). It follows from (1.14) and (1.15) that

Sn is well defined and of course ‖Sn‖ 6 1+ ε
2 < 1+ε; (1.13) yields that X ⊂ ker Sn.

Of course then (Tn − Sn) is a uniformly bounded sequence of operators; for each
k and y ∈ Yk, we have by (1.16) and (1.17) that

(1.18) (Tn − Sn)(y) = (Tn − TnPk)(y) = Tn(I − Pk)(y)

for all n sufficiently large, whence since (I − Pk)(y) ∈ X,

(1.19) ‖(Tn − Sn)(y)‖ → 0.

Thus ‖(Tn−Sn)(y)‖ → 0 for all y ∈ Y , since this holds on the dense subset
∞⋃

k=1

Yk.

Hence (Sn) satisfies the conclusion of Theorem 1.9.
We now construct the sequences

(
S

(k)
n

)∞
n=1

by induction on k. For conve-

nience, set S
(0)
n = 0 for all n. Let k > 0 and suppose S

(k)
n has been defined, satis-

fying (1.12)–(1.14) for all n and (1.16) for all n sufficiently large. By Lemma 1.10,
choose Mk+1 so that for all n > Mk+1

(1.20) ‖TnPk+1‖ < 1 +
ε

2

and also (in case k > 1) so that (1.16) holds. Now define S
(k+1)
n = TnPk+1

for n > Mk+1. For n < Mk+1, since Zn is 1-injective, simply choose S
(k+1)
n an

extension of S
(k)
n from Yk to Yk+1 with

∥∥S
(k+1)
n

∥∥ =
∥∥S

(k)
n

∥∥.
(This procedure is also valid in the setting of Corollary 1.5; in this case we

have that Y will be assumed separable; the assumption that Zn has the 1-SEP,
allows us again to choose S

(k+1)
n as above.)

We now have that S
(k+1)
n satisfies (1.12)–(1.14) and (1.16) (for “k” = k + 1)

for all appropriate n. Finally, we check that (1.15) holds. For n < Mk+1, this is
immediate. For n > Mk+1, we have since PkPk+1 = Pk, that

(1.21) S(k)
n = TnPk = TnPk+1|Yk = S(k+1)

n |Yk

as desired.

Remark 1.13. (i) A modification of this argument yields that if one instead
assumes the Zj ’s are λ-injective in Theorem 1.3, then one obtains that T̃ may be
chosen as in the conclusion, with ‖T̃‖ < (λ(1 + λ) + ε)‖T‖. It follows as above
that if Z1, Z2, . . . have the λ-SEP, then (Zj)c0 has the (λ(1 + λ) + ε)-SEP for all
ε > 0. The modification and these attendant consequences are due to T. Oikhberg.
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Briefly, assume the Zj ’s are λ-injective and the Tj ’s as in Theorem 1.9, we obtain
the Sj ’s satisfying the conclusion with ‖Sj‖ < λ + ε

2 for all j, as follows: we
construct for each k, a sequence S

(k)
n of operators so that there is an Mk so that

for all n,

(a) if n < Mk then S
(k)
n : Y → Zn and

∥∥S
(k)
n

∥∥ < λ + ε
2 ;

(b) if n > Mk, S
(k)
n : Yk → Zn, S

(k)
n = TnPk, and

∥∥S
(k)
n

∥∥ < 1 + ε
2λ ;

(c) (1.13) and (1.15) hold.

(This modification holds in the complete category also; we give the full details
in the next section.)

(ii) Oikhberg has recently further noted that one may eliminate “ε > 0” in
the statements of Theorems 1.3 and 1.9, by instead constructing S

(k)
n in the proof

of Theorem 1.9 so that
∥∥S

(k)
n

∥∥ 6 1 and S
(k)
n = (1 − 2−k)TnPk for n > Mk say,

satisfying (1.15) for n < Mk and (1.12), (1.13) for all n. The same variation may
be used to eliminate “ε > 0” in the preceding remark.

We note now a further consequence of the proof of Theorem 1.3. Given λ > 1
and Banach spaces X, Y with X ⊂ Y , we say that X is λ-cocomplemented in Y

if there is a (linear) projection P from Y onto X with ‖I − P‖ 6 λ. We say that
X is contractively cocomplemented provided X is 1-cocomplemented; X is almost
contractively cocomplemented provided X is (1 + ε)-cocomplemented for all ε > 0.

Corollary 1.14. Let Z1, Z2, . . . be 1-injective Banach spaces, X = (Zj)c0 ,
and let Y be a (closed linear) subspace of (Zj)`∞ with Y/X separable. Then X is
almost contractively cocomplemented in Y .

Proof. We easily deduce this from Theorem 1.9. Define Tn : Y → Zn by
y = (T1(y), T2(y), . . . , Tn(y), . . .) for all y ∈ Y . (Tn is just the restriction of the
nth coordinate projection on (Zj)`∞ to Y .)

Let ε > 0 and (Sn) be chosen satisfying the conclusion of Theorem 1.9. Now
defining P (y) = (Tn(y) − Sn(y)) for all y ∈ Y , it follows that P is a projection
from Y onto X. Indeed, since Tn−Sn → 0 in the SOT, P has its range in X. But
if x ∈ X, Sn(x) = 0 for all n and so x = (Tn(x))∞n=1 = (Tn(x) − Sn(x))∞n=1. Of
course then (I − P )(y) = (Sn(y)) so

‖I − P‖ = sup
n
‖Sn‖ 6 1 +

ε

2
< 1 + ε.

Remark 1.15. (i) Corollary 1.4 is actually “stronger” than Theorem 1.3.
Indeed, let X, Y and T : X → (Zj)c0 be as in the statement of Theorem 1.3.
It follows easily from the 1-injectivity of the Zj ’s that also (Zj)`∞ is 1-injective.
Hence we may choose T ′ : Y → (Zj)`∞ extending T so that ‖T ′‖ = ‖T‖. Now let
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Ỹ denote the closed linear span of (Zj)c0 and T ′(Y ). Then Ỹ /(Zj)c0 is separable,
so given ε > 0, choose P a projection from Ỹ onto (Zj)c0 with ‖I − P‖ < 1 + ε.
Of course then ‖P‖ < 2 + ε. Now T̃ = PT is the desired extension of T , with
‖T̃‖ < (2 + ε)‖T‖.

(ii) Using the modification of the proof of Theorem 1.9 given above, we obtain
the following generalization: Let Z1, Z2, . . . be λ-injective Banach spaces, and X

and Y as in Corollary 1.14. Then for all ε > 0, X is (λ2+ε)-cocomplemented in Y .
(iii) After the first draft of this paper was completed, it was brought to my at-

tention by Bill Johnson that Corollary 1.14 actually follows from a known theorem
concerning M -ideals in Banach spaces, and in fact one obtains the stronger con-
clusion that X is contractively cocomplemented in Y (X, Y as in Corollary 1.14).
The theorem, due to T. Ando ([2]), T. Andersen ([1]), and later refined by M. Choi
and E. Effros ([8]), yields the following result (see Theorem 2.1, page 59 of [13]).
Consider a short isometric exact sequence 0 → X → Y → Z → 0. Assume that
Z is separable and X is an M -ideal in Y and an L1-predual; then the sequence
admits a contractive lift. Equivalently, regarding X ⊂ Y , then X is contractively
cocomplemented in Y . To obtain Corollary 1.14, we use the known theorem that
each Zj in its hypotheses is isometric to C(Ωj) for some extremely disconnected
space Ωj . Making this identification, it then follows that X is actually an algebraic
closed ideal in (Zj)`∞ , which of course may be regarded as a C(Ω)-space. Thus
X is an M -ideal and an L1-predual, and the result follows. However we note that
the generalization of Corollary 1.14 given in the previous remark does not follow
from this M -ideal result (unless every λ-injective Banach space is isomorphic to a
1-injective, a famous open problem, as noted above).

Lemma 1.10 and Remark 1.11 yield an interesting consequence for (Zj)c0 ,
for general Banach spaces Z1, Z2, . . ..

Definition 1.16. Let X ⊂ Y be given Banach spaces. X is said to be
locally complemented in Y if there is a λ > 1 so that

(1.22)
X is λ-complemented in Z for all X ⊂ Z ⊂ Y

with Z/X finite-dimensional.

When (1.22) holds, we say X is locally λ-complemented in Z.

Corollary 1.17. Let Z1, Z2, . . . be arbitrary Banach spaces. Then (Zj)c0

is locally almost contractively cocomplemented in (Zj)`∞ .

The statement means that (Zj)c0 is almost contractively cocomplemented
in Y for all Y with (Zj)c0 ⊂ Y ⊂ (Zj)`∞ and Y/(Zj)c0 finite-dimensional. Thus
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(Zj)c0 is locally (2 + ε)-complemented in (Zj)`∞ , for all ε > 0. The proof of
Corollary 1.17 follows immediately from Remark 1.11 and the argument for Corol-
lary 1.14.

Remark 1.18. W. Johnson and T. Oikhberg have obtained a stronger result
when the Zj ’s are separable ([15]); see Remark 1.24.

As noted above, our argument yields a new proof of Sobczyk’s Theorem that
c0 has the SEP, but we pay an “ε” price, for in fact c0 has the 2-SEP by [29],
(and “2” is the best possible here). We recapture this result through the following
extension theorem, whose proof uses a technique due to W. Veech ([32]).

Theorem 1.19. Let Z be an arbitrary Banach space, X ⊂ Y separable
Banach spaces, and T : Y → `∞(Z) a bounded linear operator so that

(i) T (X) ⊂ c0(Z);
(ii) (Tn) is relatively compact in the SOT, where T (y) = (Tn(y)) for all y.

Then there exists an operator T̃ : Y → c0(Z) extending T |X with ‖T̃‖ 6 2‖T‖.

Remark 1.20. The hypotheses hold for any finite-dimensional Z. This eas-
ily yields the fact that c0 has the 2-SEP; we give the detailed proof in Corollary 1.23
below.

Theorem 1.19 is a consequence of the following two simple lemmas.

Lemma 1.21. There exists a norm | · | on L(Y, Z) so that letting M =
(L(Y, Z), | · |), then the M-topology coincides with the SOT topology on bounded
subsets of L(Y, Z).

Proof. Let d1, d2, . . . be a countable dense subset of the unit ball of Y and
define | · | by

(1.23) |S| =
∞∑

n=1

‖S(dn)‖
2n

.

It is easily verified that M is a normed linear space. Moreover, if (Tn) is a bounded
sequence in L(Y,Z) and T ∈ L(Y, Z), then Tn → T in the SOT iff Tn(dj) → T (dj)
for all j iff |Tn − T | → 0.

Lemma 1.22. Let (M, ρ) be a metric space, S be a closed subset of M, and
(Tn) be a sequence in M so that {T1, T2, . . .} is relatively compact and all cluster
points of (Tn) lie in S. There exists a sequence (Sn) of points in S so that

(1.24) ρ(Tn, Sn) → 0 as n →∞.
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Proof. Define dn by

(1.25) dn = dist(Tn,S) def= inf{ρ(Tn, S) : S ∈ S}.

Of course (1.24) is simply the assertion that dn → 0 as n → ∞. Were this false,
by passing to a subsequence if necessary, we can assume without loss of generality
that there is a d > 0 so that

(1.26) dn > d for all n.

Choose n1 < n2 < · · · so that (Tni
) converges to S, say. By hypothesis, S ∈ S.

Now ρ(Tni
, S) → 0 as i →∞, yet ρ(Tni

, S) > dist(Tni
,S) > dni

> d > 0 for all i,
a contradiction.

Proof of Theorem 1.19. We may assume without loss of generality that
‖T‖ = 1. Let M be as in Lemma 1.21, and define S by

(1.27) S = {S ∈ L(Y,Z) : ‖S‖ 6 1 and X ⊂ ker S}.

Now, the hypotheses imply that all SOT-cluster points of (Tn) lie in S. Indeed, if
Tni

→ T in the SOT, then for x ∈ X, Tni
(x) → T (x), but Tni

(x) → 0 in norm;
of course ‖T‖ 6 1 since ‖Tj‖ 6 1 for all j. Thus the hypotheses of Lemma 1.22
apply (where of course M is endowed with the standard metric, ρ(x, y) = |x− y|).
Hence we may choose a sequence (Sn) in S so that |Tn − Sn| → 0 as n →∞; i.e.,
by Lemma 1.21,

(1.28) Tn − Sn → 0 in the SOT.

Now define T̃ by T̃ (y) = (Tn−Sn)(y) for all y ∈ Y . Then T̃ is the desired extension
of T |X.

We may now deduce the following rather surprising consequence of this proof,
analogous to Corollary 1.14.

Corollary 1.23. Let Z be a finite-dimensional Banach space and Y be a
separable subspace of `∞(Z) containing c0(Z). Then c0(Z) is contractively cocom-
plemented in Y .

Proof. Of course we assume Y 6= c0(Z). Let T denote the identity injection
of Y into `∞(Z), and let y = (T1(y), T2(y), . . . , Tn(y), . . .) for all y ∈ Y . Since Z

is finite-dimensional and of course Tn : Y → Z with ‖Tn‖ 6 1 for all n, (Tn) is
relatively compact in the SOT on L(Y, Z). Now choose (Sn) as in the proof of
Theorem 1.19. It follows that defining P : Y → c0(Z) by

P (y) = (Tn)(y)− Sn(y)) for all y ∈ Y

then P is a linear projection from Y onto c0(Z), and (I − P )(y) = (Sn(y)) for all
y, whence ‖I − P‖ = sup ‖Sn‖ = 1.
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Remark 1.24. This result has been obtained in [15], using a different ar-

gument. The authors of [15] also study the family of separable Banach spaces Z

so that Z is complemented in Y for all separable Y with c0(Z) ⊂ Y ⊂ `∞(Z),

obtaining quite nice results, including the fact that there exists a sequence (En) of

finite dimensional Banach spaces so that Z = (En)c0 fails this property. It is also

proved in [15] that for Z separable, c0(Z) is locally contractively cocomplemented

in `∞(Z), thus removing the “almost” from Corollary 1.17 above, when the Zj ’s

are separable.

As noted in the introduction, we immediately obtain the following isometric

property for c0 itself.

Corollary 1.25. c0 is contractively cocomplemented in any separable su-

perspace which lies in `∞.

In turn, this yields Sobczyk’s Theorem.

Corollary 1.26. c0 has the 2-SEP.

Proof. Let X ⊂ Y be separable Banach spaces and let T : X → c0 be

a given bounded linear operator. Define the sequence (fn) in X∗ by Tx =

(f1(x), f2(x), . . .) for all x. Now fixing n, ‖fn‖ 6 ‖T‖; let f ′n be a Hahn-Banach

extension of fn to Y . Let T ′ : Y → `∞ be defined by T ′(y) = (f ′1(y), f ′2(y), . . .).

Then of course ‖T ′‖ = ‖T‖. Let Ỹ denote the closed linear span of Y and c0, and

choose P a projection from Ỹ onto c0 with ‖I − P‖ = 1. Then T̃ = PT ′ yields

the desired extension of T to Y with ‖T̃‖ 6 2‖T‖.

Remark 1.27. Corollary 1.25 also follows directly from the M -ideal theorem

cited in Remark 1.15 (iii).

2. THE COMPLETE SEPARABLE EXTENSION PROPERTY

As noted in the Introduction, most of the results of the previous section follow

from their operator space versions given here. However the techniques of proof

come from the arguments in Section 1, so we have chosen to present the Banach

category first, in the interest of clarity.

We first recall the definition given in the Introduction.
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Definition 2.1. An operator space Z is said to have the Complete Separable
Extension Property (the CSEP) if for any separable operator space Y , subspace X,
and completely bounded operator T : X → Z, there exists a completely bounded
operator T̃ : Y → Z extending T . Z is said to have the λ-CSEP provided for all
such X and Y , T̃ may be chosen with ‖T̃‖cb 6 λ‖T‖cb.

Again, we have the operator space analogue of injectivity in Banach spaces.

Definition 2.2. An operator space Z is said to be isomorphically injective
provided for arbitrary operator spaces X and Y with X ⊂ Y , every completely
bounded map T : X → Z admits a completely bounded extension T̃ : Y → Z. Z is
called λ-injective if the extension T̃ may always be chosen with ‖T̃‖cb 6 λ‖T‖cb.
Finally, Z is called isometrically injective if it is 1-injective.

It is a basic theorem in operator space theory that L(H) is isometrically
injective for all Hilbert spaces H. The theorem was proved for the fundamental
case of completely positive maps and self-adjoint operator spaces in the domain
by W.B. Arveson ([5]), and later, in general, by V. Paulsen (cf. [22]) and G. Witt-
stock ([34]). See also [25] for a proof from the abstract operator-space viewpoint.
It follows easily that an operator space X is isomorphically injective provided it
is completely complemented in some complete isometric embedding X̃ into L(H);
moreover if P : L(H) → X̃ is a completely bounded projection, then X is λ-
injective, where λ = ‖P‖cb. We will mainly be concerned with isometrically injec-
tive operator spaces here. Unlike the Banach space category, there are separable
infinite-dimensional examples. A complete classification of these has been given
by G. Robertson ([27]) (see Section 4 below). See also work of Z.J. Ruan giving
a characterization of the 1-injectives as “corners” of injective C∗-algebras ([28]).
Finally, we note that the 1-CSEP is studied for C∗-algebras by R.R. Smith and
D.P. Williams ([30]).

The 1-injectivity of L(H) easily yields the following result.

Proposition 2.3. Let X be a separable operator space. The following are
equivalent:

(i) X has the CSEP;
(ii) X is completely complemented in every separable operator space Y with

X ⊂ Y ;
(iii) There is a λ > 1 so that X is λ-completely complemented in every

separable operator space Y with Y ⊃ X.
Moreover, if X satisfies (iii), X has the λ-CSEP.

Proof. (i) ⇒ (ii). Trivial.
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(ii) ⇒ (iii). We may assume X ⊂ L(H) (with H separable infinite-dimen-
sional Hilbert space). We shall prove

(iii′) there is a λ > 1 so that X is completely λ-complemented in every
separable superspace of X contained in L(H).

Were this false, we could choose Y1, Y2, . . . separable operator subspaces of
L(H), so that for all n, X ⊂ Yn but X is not completely n-complemented in
Yn. Then letting Y = [Y1, Y2, . . .], Y is separable, X ⊂ Y ⊂ L(H), but X is
not-completely complemented in Y , a contradiction.

Now suppose X satisfies (iii′). Let then Y ⊂ Z be separable operator spaces
and T : Y → X a completely bounded operator. Choose T̃ : Z → L(H) extending
T , with ‖T̃‖cb = ‖T‖cb (by the fundamental theorem cited above). Now letting
E = X + TY , E is separable, so choose P : E → X a completely bounded
projection with ‖P‖cb 6 λ. Then T ′

def= PT̃ is an extension of T to Z, and
‖T ′‖cb 6 ‖P‖cb‖T̃‖cb 6 λ‖T‖cb, proving that X has the λ-CSEP (so of course
(iii)) holds).

Remark 2.4. I am indebted to M. Zippin for the following simple argument,
which shows that any Banach space (respective operator space) Z with the SEP
(respective CSEP) has the λ-SEP (respective λ-CSEP) for some λ > 1. If not,
we can choose for every n, separable Banach spaces (respective operator spaces)
Xn ⊂ Yn and bounded (respective completely bounded) operators Tn : Xn → Z

so that ‖Tn‖ < 1
n2 (respective ‖Tn‖cb < 1

n2 ) and for any bounded (respective
completely bounded) extension T̃n : Yn → Z, ‖T̃n‖ > n (respective ‖T̃n‖cb > n).
Now let Y = (Y1 ⊕ Y2 ⊕ · · ·)c0 and X = (X1 ⊕X2 ⊕ · · ·)c0) and define T : X → Z

by T ((xn)) =
∑

Tnxn for all (xn) ∈ X. Then T is a bounded (respective com-
pletely bounded) operator from X into Z with no bounded (respective completely
bounded) extension T̃ : Y → Z.

We next pass to a rather strong condition on operator spaces, which we will
use to produce examples of spaces with the CSEP.

Definition 2.5. A family Z of operator spaces is called uniformly exact if
there is a C > 1 and a function n : N → N so that for all Z ∈ Z and all k and
k-dimensional subspaces F of Z, there exists a G ⊂ Mn(k) with

(2.1) dcb(F,G) 6 C.

In case C works, we say Z is C-uniformly exact . In case n works, we say n
is a uniformity function for Z. We say an operator space Z is uniformly exact
(respective C-uniformly exact) in case Z = {Z} has the corresponding property.
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It follows that an operator space Z is C-exact as defined in [25] precisely when
every finite dimensional subspace of Z is C + ε-uniformly exact for every ε > 0. If
X is a Banach space endowed with the MIN operator space structure, then X is
(1 + ε)-uniformly exact for every ε > 0. We may now state the main result of this
section, (which yields Theorem 1.3 in view of the last comment above).

Theorem 2.6. Let Z1, Z2, . . . be λ-injective operator spaces so that
{Z1, Z2, . . .} is C-uniformly exact for some C > 1, and set Z = (Zj)c0 . Let X ⊂ Y

be operator spaces with X ⊂ Y and Y/X separable. Then for every non-zero com-
pletely bounded operator T : X → Z and every ε > 0, there exists a completely
bounded operator T̃ : Y → Z extending T with ‖T̃‖cb < (Cλ2 + λ + ε)‖T‖cb.

Remark 2.7. We had originally obtained this result for λ = 1. This more
general result follows via the proof-modification due to Oikhberg, mentioned in
Section 1.

We give again several consequences before passing to the proof.

Corollary 2.8. Let Z be as in Theorem 2.6 and let ε > 0. Then Z is
completely (Cλ2 + λ + ε)-complemented in every operator superspace Y with Y/Z

separable.

Of course this corollary follows immediately from Proposition 2.3. Insert-
ing “completely” before the “cocomplemented” definition given preceding Corol-
lary 1.14, we again discover the following consequence of the proof of Theorem 2.6.

Corollary 2.9. Let Z1, Z2, . . . satisfy the hypotheses of Proposition 2.3,
Z = (Zj)c0 , and let Y be an operator space with (Zj)c0 ⊂ Y ⊂ (Zj)`∞ and Y/Z

separable; let ε > 0. Then Z is (Cλ2 + ε)-completely cocomplemented in Y .

We may thus conclude, if {Z1, Z2, . . .} is (1 + ε)-uniformly exact for every
ε > 0 and the Zj’s are 1-injective, then Z is almost completely contractively co-
complemented in Y .

Again, we have the following analogue of Corollary 1.5 (which follows imme-
diately from Proposition 2.3 if the Zj ’s are 1-injective).

Corollary 2.10. If Z1, Z2, . . . are operator-spaces with the λ-CSEP and
{Z1, Z2, . . .} is C-uniformly exact, then (Zj)c0 has the (Cλ2 +λ+ ε)-CSEP for all
ε > 0.

The next result, combined with Theorem 2.6, yields our examples of separable
spaces with the CSEP.
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Proposition 2.11. For all n, M∞,n and Mn,∞ are 1-uniformly exact, with
uniformity function n(k) = k · n.

Remark 2.12. Every isometrically injective separable operator space Z is
completely isometric to a subspace of M∞,n ⊕Mn,∞ for some n. It thus follows
from Corollary 2.9 that, for such Z’s, c0(Z) is almost completely contractively
cocomplemented in Y for all separable Y with c0(Z) ⊂ Y ⊂ `∞(Z).

The following corollary gives the main “separable” motivation for Theo-
rem 2.6.

Corollary 2.13. For all n, c0(M∞,n ⊕ Mn,∞) has the (2 + ε)-CSEP for
all ε > 0.

Remark 2.14. As noted in the introduction, Kirchberg’s work in [17] yields
that (Mn)c0 fails the CSEP. In view of this, it seems rather surprising that the
above family of spaces has the CSEP with a good uniform constant.

Of course Corollary 2.13 yields the immediate

Corollary 2.15. c0(R⊕ C) has the (2 + ε)-CSEP for all ε > 0.

The fundamental open problem for the characterization of separable spaces
with the CSEP goes as follows:

Problem 2.16. Let X be a separable operator space with the CSEP. Is
X completely isomorphic to a completely contractively complemented subspace of
c0(R⊕ C)?

A more “refined” version of this problem is given in Section 4 below.
It seems very likely that the fundamental problem reduces to the

Embedding Problem 2.17. Let X be a separable operator space with the
CSEP. Is X completely isomorphic to a subspace of c0(R⊕ C)?

In turn, Corollary 2.9 leads us to the following

Quantitative Embedding Problem 2.18. Let λ > 1, and let X be sep-
arable with the λ-CSEP. Is there a β depending only on λ, and an n (depending
on X), so that dcb(Y, X) 6 β for some subspace Y of c0(M∞,n ⊕Mn,∞)?

Before dealing with the proofs of the results stated above, we give some infor-
mation concerning the relationship between the CSEP and isomorphic injectivity
for operator spaces. The following result follows quickly from known theorems.



The complete separable extension property 351

Proposition 2.19. Let X be a non-reflexive operator space. If X is com-
pletely isomorphic to a completely complemented subspace of some C∗-algebra, then
X contains a subspace completely isomorphic to c0. If moreover X is completely
isomorphic to a completely complemented subspace of some von Neumann algebra,
then X contains a subspace completely isomorphic to `∞.

Comment 2.20. This result also holds if one deletes the term “completely”
from all occurrences in its statement.

Proof. Suppose first, without loss of generality that X ⊂ A, A a C∗-algebra,
and P : A → X is a completely bounded projection onto A. Since P is non-
weakly compact, a result of H. Pfister ([24]) yields that there exists a commutative
C∗-subalgebra Ã of A with P |Ã non-weakly compact. By the uniqueness of the
operator-space structure for C∗-algebras, it follows that Ã has MIN as its inherited
operator space structure. By a result of A. Pe lczyński ([23]), there exists a subspace
E of Ã with E isomorphic (and hence completely isomorphic) to c0, so that P |E is a
Banach isomorphism. Since P is completely bounded and E has the MIN structure,
P |E is in fact a complete isomorphism onto its range, proving the first assertion.
Now if A is a von Neumann algebra, then of course A is also a dual Banach space,
and in fact the canonical projection Π : A∗∗ → A is then completely bounded.
Now of course E∗∗ is completely isomorphic to `∞; regarding E∗∗ = E⊥⊥ ⊂ A∗∗,
the operator T defined by T = PΠ|E∗∗ is then a non-weakly compact completely
bounded operator into X. By a result of the author ([27]), it follows that there
is a subspace Z of E∗∗ with Z isomorphic to `∞ and T |Z a Banach isomorphism.
Again, E∗∗ has the MIN structure, hence so does Z, so as before, T |Z is a complete
isomorphism of Z onto its range.

The following result is now immediate.

Corollary 2.21. Let X be a non-reflexive operator space. If X has the
CSEP and is separable, X contains a subspace completely isomorphic to c0. If X

is isomorphically injective, X contains a subspace completely isomorphic to `∞.

The next result shows that reflexive separable operator spaces are isomor-
phically injective provided they have the CSEP.

Proposition 2.22. Let X be a reflexive separable operator space with the
λ-CSEP. Then X is a λ-injective operator space.

Proof. Assume X ⊂ L(H) (with H separable infinite-dimensional Hilbert
space) and let S be the family of separable subspaces Y of L(H), with X ⊂ Y ;
direct S by inclusion. For each α ∈ S, let Pα : Y → X be a complete projection
of Y onto X, with ‖Pα‖cb 6 λ. We may now use the reflexivity of Y and the
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Tychonoff theorem to produce a completely bounded projection from L(H) onto
Y . For each α ∈ S, define P̃α : L(H) → X by P̃α(v) = 0 if v /∈ α; P̃α(v) = Pα(v)
if v ∈ α. P̃α is neither continuous nor linear; nevertheless, the weak-compactness
of the ball of X yields a subnet (Pαβ

)β∈D of (Pα)α∈S so that Pv
def= lim

β∈D
Pαβ

(v)

exists weakly for all v ∈ B(H). Since of course every v ∈ B(H) is contained in
some α ∈ S, it follows that P is indeed a linear projection from L(H) into X.
Finally, we also have that for all n,

‖P‖n 6 lim
α∈S

‖Pα‖n 6 λ

whence ‖P‖cb 6 λ, showing that X is indeed λ-injective.

Comment 2.23. This (rather outrageous) use of the Tychonoff theorem is
due to J. Lindenstrauss.

Remark 2.24. We show in Proposition 2.40 below that if X is a separable
operator space with the λ-CSEP and λ < 2, then X is reflexive and (hence is
λ-injective).

Work of G. Pisier yields immediately that every separable reflexive operator
space which is isomorphically injective is Hilbertian, i.e., Banach isomorphic to
Hilbert space (cf. [26]). Evidently Corollary 2.21 also yields that every isomorphi-
cally injective separable operator space is reflexive (and so Hilbertian).

Of course the natural (and far from obvious!) special problem in this setting
is then as follows:

Let X be a separable infinite-dimensional isomorphically injective operator
space. Is X completely isomorphic to R, C, or R⊕ C?

(This problem has been solved affirmatively for X isometrically injective by
A. Robertson ([26]).) A remarkable result of T. Oikhberg ([20]) yields that the
answer is affirmative if X is completely isomorphic to a subspace of R ⊕ C. Fi-
nally, we note the following quantitative problem, whose positive solution implies
an affirmative answer to the preceding question, in virtue of Oikhberg’s result.

Let X be a separable operator space which is λ-injective. Is there a β, de-
pending only on λ, and an n (depending on X) so that dcb(X, Y ) 6 β for some
subspace Y of M∞,n ⊕Mn,∞?

Before dealing with the main result of this section, we give the

Proof of Proposition 2.11. We identify M∞,n with C ⊗ Rn endowed with its
natural operator space structure (where Rn denotes the n-dimensional row space).
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Letting e1, . . . , en be the natural orthonormal basis of Rn, any vector v ∈ C ⊗Rn

has the form

(2.2) v =
n∑

i=1

ui ⊗ ei for unique u1, . . . , un ∈ C.

In fact, the map Pi which sends v to ui yields a projection from C ⊗ Rn onto C.
Now, letting F be a k-dimensional subspace of C ⊗ Rn and setting Vi = PFi, we
have that Vi is a subspace of C with dim Vi 6 k for all i, and clearly

(2.3) F ⊂ span
16i6n

Vi ⊗ ei ⊂ V ⊗Rn

where V = V1 + · · · + Vn. Evidently m
def= dimV 6 k · n; by homogeneity of C,

V ⊗Rn is completely isometric to Mm,n, which in turn is completely isometric to
a subspace of Mk·n. The proof for Mn,∞ is of course the same.

We now prove Theorem 2.6, giving the full details of the modification of
our original argument, due to T. Oikhberg. We shall see the argument is essen-
tially the same as the one alluded to in section one after inserting the appropriate
quantizations. We first give the reformulation analogous to Theorem 1.9.

Theorem 2.25. Let Z1, Z2, . . ., X, and Y be operator spaces satisfying the
hypotheses of Theorem 2.6. Let (Tj) be a sequence of completely bounded operators,
with Tj : Y → Zj for all j, so that Tj |X → 0 in the SOT, and sup

j
‖Tj‖cb = 1.

For every ε > 0, there exists a sequence (Sj) of completely bounded operators so
that for all j,

(i) Sj : Y → Zj,
(ii) X ⊂ ker Sj,

(iii) ‖Sj‖cb < Cλ + ε
2λ ,

so that (Tj − Sj) → 0 in the SOT.

We first give the proof that Theorem 2.25 ⇒ Theorem 2.6. Let T : X → Z be
as in the statement of Theorem 2.6, and let (T̃j) be the sequence so that Tx = (T̃jx)
for all x ∈ X. For each j, since Zj is λ-injective, we may chose T ′j : Y → Zj with
‖T ′j‖cb 6 λ‖T̃j‖cb and T ′j |X = T̃j . Of course then

(2.4) sup
j
‖T ′j‖cb

def= β 6 λ‖T‖cb.

Let Tj = T ′j/β for all j. Now the hypotheses of Theorem 2.25 hold; choose (Sj)

satisfying its conclusion. Now define ˜̃
T : Y → (Zj)`∞ by

(2.5) ˜̃
T (y) = (Tj − Sj)(y) for all y ∈ Y.
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It follows from the conclusion of Theorem 2.25 that ˜̃
T actually has its range

in Z = (Zj)c0 , and Theorem 2.25 (ii) insures that ˜̃
T extends 1

β T . Thus defining

T̃ = β
˜̃
T , T̃ extends T and by (2.4) and Theorem 2.25 (iii)

(2.6) ‖T̃‖cb < β
(

1 + Cλ +
ε

2

)
< (Cλ2 + λ + ε)‖T‖cb.

We need again the analogue for Lemma 1.10, which actually holds with no
uniform exactness assumption.

Lemma 2.26. Let Z1, Z2, . . . be arbitrary operator spaces, X ⊂ Y operator
spaces with Y/X finite-dimensional, and (Tj) a sequence of completely bounded
operators so that for all j, Tj : Y → Zj with ‖Tj‖cb 6 1, so that Tj |X → 0 in the
SOT. Let F be a finite-dimensional subspace of Y with X ⊕ F = Y , and let P be
the projection of Y onto F with kernel X. Then for all positive integers n,

(2.7) lim
j→∞

‖TjP‖n 6 1.

Proof. Suppose not. Then by passing to a subsequence if necessary, we can
fix an n and without loss of generality, choose C > 1 and (Aj) a norm-one sequence
in Mn(Y ) = L(`2n)⊗ Y with

(2.8) ‖(I ⊗ Tj) · (I ⊗ P )(Aj)‖ > C for all j.

Now setting

(2.9) Aj =

 yj
11 · · · yj

1n
...

...
yj

n1 · · · yj
nn


for each j, choose Uj ∈ Mn(X) and Vj ∈ Mn(F ) so that

(2.10) Aj = Uj ⊕ Vj

whence by (2.8) and the fact that (I ⊗ P )(Aj) = Vj

(2.11) ‖(I ⊗ Tj)(Vj)‖ > C.

Of course for each j, we may set

(2.12)(i) Uj =

 xj
11 · · · xj

1n
...

...
xj

n1 · · · xj
nn
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and

(2.12)(ii) Vj =

 f j
11 · · · f j

1n
...

...
f j

n1 · · · f j
nn

 .

Thus (2.11) means that

(2.13)

∥∥∥∥∥∥∥
Tjf

j
11 · · · Tjf

j
1n

...
...

Tjf
j
n · · · Tjf

j
nn


∥∥∥∥∥∥∥ > C for all j.

Since F is a finite-dimensional space, P is bounded and of course completely
bounded; in particular, the sequences (Uj) and (Vj) are both bounded, so by
compactness of bounded subsets of Mn(F ), by passing to a further subsequence if
necessary, we may assume for some V ∈ Mn(F ) that

(2.14) Vj → V in norm.

(In other words, we have

V =

 f11 · · · f1n
...

...
fn1 · · · fnn


and for each i and k, f j

ik → fik in norm.) But then

(2.15) ‖(I ⊗ Tj)(Vj − V )‖ → 0

whence by (2.11)

(2.16) lim
j→∞

‖(I ⊗ Tj)(V )‖ > C.

That is

lim
j→∞

∥∥∥∥∥∥∥
Tjf11 · · · Tjf1n

...
...

Tjfn1 · · · Tjfnn

∥∥∥∥∥∥∥ > C.

Now also

(2.17) ‖Uj ⊕ V ‖ → 1
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since ‖Uj ⊕ Vj‖ = ‖Aj‖ = 1 for all j and by (2.14), ‖Uj ⊕ Vj‖ − ‖Uj ⊕ V ‖ → 0.
Now fix ε > 0 with 1 + ε < C, and choose k with

(2.18) ‖Uk ⊕ V ‖ < 1 + ε (using (2.17)).

Then for all j,

(2.19) ‖(I ⊗ Tj)(Uk ⊕ V )‖ 6 ‖Tj‖cb‖Uk ⊕ V ‖ < 1 + ε.

Since Tj |X → 0 in the SOT, I ⊗ Tj |Mn(X) → 0 in the SOT, whence

(2.20) lim
j→∞

‖(I ⊗ Tj)(Uk ⊕ V )‖ − ‖I ⊗ Tj)(V )‖ = 0.

Thus we obtain from (2.19) and (2.20) that

(2.21) lim
j→∞

‖(I ⊗ Tj)(V )‖ 6 1 + ε,

contradicting (2.16).

We now apply a useful result of R. Smith to obtain the following consequence.

Corollary 2.27. Let Z1, Z2, . . ., X, Y , and (Tj), F and P be as in
Lemma 2.26, and assume {Z1, Z2, . . .} is C-uniformly exact. Then

(2.22) lim
j→∞

‖TjP‖cb 6 C.

Proof. Roger Smith’s lemma ([29]) yields that for all n, operator spaces X,
and linear maps T : X → Mn,

(2.23) ‖T‖cb = ‖T‖n.

(See [25] for the operator space formulation and another proof.) Let k = dim F

and n = n(k) where n is the C-uniformity function for {Z1, Z2, . . .}. Then fixing
j, the range of TjP is a subspace of Zj of dimension at most n, hence we obtain
from (2.23) and Definition 2.5 that

(2.24) ‖TjP‖cb 6 C‖T‖n

which immediately yields (2.22) in virtue of Lemma 2.26.

The next result follows from this corollary in the same manner as the corre-
sponding Banach space result follows from Lemma 1.10 (see Remark 1.11).
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Corollary 2.28. Let X ⊂ Y be operator spaces with Y/X finite-dimen-
sional, (Zj) a sequence of operator spaces so that {Z1, Z2, . . .} is C-uniformly
exact, and T : Y → (Zj)`∞ a non-zero completely bounded operator with TX ⊂
(Zj)c0 . Then given ε > 0, there exists T̃ : Y → (Zj)c0 so that T̃ extends T |X and
‖T̃‖cb 6 (C + 1 + ε)‖T‖cb.

Proof of Theorem 2.25. Assume (in virtue of Corollary 2.28) that Y/X is
infinite-dimensional, and let y1, y2, . . ., Fk, Yk and Pk be as in the proof of Theo-
rem 1.9; let ε > 0. We construct for each k, a sequence

(
S

(k)
n

)
of operators so that

there is an Mk such that for all n,

if n < Mk, then S(k)
n : Y → Zn and

∥∥S(k)
n

∥∥
cb

< Cλ +
ε

2λ
;(2.25)

if n > Mk, S(k)
n : Yk → Zn, S(k)

n = TnPk and
∥∥S(k)

n

∥∥
cb

< C +
ε

2λ2
;(2.26)

X ⊂ ker S(k)
n ;(2.27)

S(k+1)
n |Yk = S(k)

n .(2.28)

Letting Sn =
⋃

k=1

S
(k)
n , it follows that Sn is a well-defined completely bounded

operator with ‖Sn‖cb 6 Cλ+ ε
2λ < Cλ+ ε

λ for all n. Just as before, it then follows
that (Sn) satisfies the conclusion of Theorem 2.25.

Again, we construct the sequences
(
S

(k)
n

)∞
n=1

by induction on k, setting

S
(0)
n = 0 for all n. Let k > 0 and suppose S

(k)
n , Mk have been defined, satisfying

(2.25)–(2.27). By Corollary 2.27, choose Mk+1 > Mk so that for all n > Mk+1,

(2.29) ‖TnPk+1‖cb < C +
ε

2λ2
.

Now for n > Mk+1, let S
(k+1)
n = TnPk+1. Since also S

(k)
n = TnPk by (2.26), we

have that (2.28) holds.
Now for Mk 6 n < Mk+1, since Zn is a λ-injective operator space, choose

S
(k+1)
n a linear extension of S

(k)
n from Yk to Y with

(2.30)
∥∥S(k+1)

n

∥∥
cb

6 λ
∥∥S(k)

n

∥∥
cb

< Cλ +
ε

2λ
(by (2.26)).

Finally, for n < Mk, let S
(k+1)
n = S

(k)
n . Evidently (2.28) holds for all n < Mk+1,

and of course we have that (2.25)–(2.27) hold replacing “k” by “k + 1”. (Again
the procedure is also valid in the setting of Corollary 2.10, since the separability
of Y and the assumption that Zn has the λ-CSEP allows us to do this.)

Theorem 2.25 (and hence Theorem 2.6) holds under a hypotheses weaker
than that of uniform exactness. Here is the relevant concept.



358 Haskell Rosenthal

Definition 2.29. A family Z of operator spaces is said to be of finite matrix
type if there is a C > 1 so that for any finite-dimensional operator space F there
is an n = n(F ) so that

(2.31) ‖T‖cb 6 C‖T‖n for all linear operators T : F → Z and all Z ∈ Z.

If C works, we say that Z is of C-finite matrix type, or briefly, Z is C-finite; if
the function n works, we say that Z is C-finite with function n.

(Note that the domain of n is the family of all finite-dimensional operator
spaces.) An operator space Z is C-finite provided {Z} is C-finite.

Thanks to the result of R. Smith cited in the proof of Corollary 2.27, it
follows that if Z is C-uniformly exact, Z is C-finite.

Proposition 2.30. Theorems 2.6 and 2.14 both hold if one replaces the as-
sumption that {Z1, Z2, . . .} is C-uniformly exact by the assumption that
{Z1, Z2, . . .} is C-finite.

Of course it follows that also Corollaries 2.9 and 2.10 hold under this weaker
assumption. T. Oikhberg has actually obtained a converse to this result, which
goes as follows (see [21]): Let Z1, Z2, . . . be separable operator spaces so that (Zj)c0

has the CSEP. Then {Z1, Z2, . . .} is of finite matrix type.

Proposition 2.30 follows readily from the argument for Theorem 2.25 and the
following simple, useful result about operator spaces:

Fact 2.31. Let Y, Z be operator spaces and T : Y → Z be a completely
bounded map; let X be a (closed linear) subspace of Y , let ker T ⊃ X, π : Y → Y/X

be the quotient map, and T̃ : Y/X → Z be the canonical map with T = T̃ π. Then

(i) ‖T‖n = ‖T̃‖n for all n,

and hence

(ii) ‖T‖cb = ‖T̃‖cb.

(This fact in turn follows from the natural, elementary result: if n > 1 and
(yij) ∈ Mn(Y ) (regarded as contained in M00(Y )), then ‖π(yij)‖ = inf{‖(yij) −
(xij)‖ : (xij) ∈ Mn(X)}).

Proof of Proposition 2.30. The main new observation is that the conclusion
of Corollary 2.27 holds if we assume instead that {Z1, Z2, . . .} is C-finite. Indeed,
let G = Y/X and let n = n(G), where n is as in Definition 2.29. Now fix j, let
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π : Y → Y/X be the quotient map, and T̃j : G → Zj the canonical map with
T̃jπ = TjP . Then

(2.31)

‖TjP‖cb = ‖T̃j‖cb
6 C‖T̃j‖n

= C‖TjP‖n

by Fact 2.31

since Zj is C-exact

by Fact 2.31.

Hence we deduce from Lemma 2.26 that

lim
j→∞

‖TjP‖cb 6 C

as desired. The proof of the modified statement of Theorem 2.25 is now identical
to the argument given above, whence Proposition 2.30 follows.

We finally deal with certain quantized formulations of the later results of
Section 1. We first note that Corollary 2.9 follows from Theorem 2.25 in exactly
the same way as Corollary 1.14 follows from Theorem 1.9. We also have the
following quantized form of local complementability (Definition 1.16).

Definition 2.32. Let X ⊂ Y be given operator spaces. X is said to be
completely locally complemented in Y if there is a λ > 1 so that

(2.32)
X is a completely λ-complemented in Z for all

X ⊂ Z ⊂ Y with Z/X finite-dimensional.

When (2.32) holds, we say X is completely locally λ-complemented in Z. We also
say that X is completely locally λ-cocomplemented in Y if for all X ⊂ Z ⊂ Y with
Z/X finite-dimensional there exists a projection P : Z → X with ‖I − P‖cb 6 λ.

Proposition 2.30, Corollary 2.28 and the arguments for Corollary 1.17 now
immediately yield the following result.

Corollary 2.33. Let Z1, Z2, . . . be a sequence of operator spaces so that
{Z1, Z2, . . .} is C-finite, and let Z = (Zj)c0 . Then Z is completely locally (C + ε)-
cocomplemented in (Zj)`∞ .

Corollary 1.12 also immediately yields

Corollary 2.34. Let Z1, Z2, . . . be a sequence of one-injective operator
spaces and again let Z = (Zj)c0 . Then Z is Banach (2 + ε)-locally complemented
in any operator superspace.

Remark 2.35. Corollary 2.34 has also been obtained in a different way in
[15].

The concept of local complementability may be used to refine the formulation
of Proposition 2.22, as follows.
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Proposition 2.36. Let X be a reflexive operator space, and suppose that
X is completely locally λ-complemented in every operator space Y with X ⊂ Y .
Then X is λ-injective.

Proof. The proof is really the same as the argument for Proposition 2.22. We
assume that X ⊂ L(H) for H a (not necessarily separable) Hilbert space, and then
let S be the family of subspaces Y of H with X ⊂ Y and dim Y/X < ∞. S is again
directed by inclusion, and the argument that X is completely λ-complemented in
L(H) now follows just as before.

We finally note the quantized versions of Theorem 1.19 and its consequences.

Theorem 2.37. Replace “bounded” by “completely bounded” and “‖T̃‖ 6

2‖T‖” by “‖T̃‖cb 6 2‖T‖cb” in the statement of Theorem 1.19.

Proof. Assume without loss of generality that ‖T‖cb = 1. Let M be as in
Lemma 1.21, and define S by

(2.33) S = {S ∈ L(Y, Z)| ‖S‖cb 6 1 and X ⊂ ker S}.

Again, we see that all SOT-cluster points of (Tn) lie in S, for if Tni → S in the
SOT, also for each fixed k, ‖Tni

− S‖k → 0, whence ‖Tni
‖k → ‖S‖k, so ‖S‖k 6 1,

and thus ‖S‖cb 6 1. Of course also S(X) = 0 for all x ∈ X; so S ∈ S. This
argument also shows that S is SOT-closed. The rest of the argument is the same
as for Theorem 1.19.

The next result follows again immediately from Theorem 2.37 and the proof
of Corollary 1.23.

Corollary 2.38. Let Z be a finite-dimensional operator space and Y a sep-
arable subspace of `∞(Z) containing c0(Z). Then c0(Z) is completely contractively
cocomplemented in Y .

Corollary 2.39. c0(Mn) has the 2-CSEP, for all n.

This follows immediately from Corollary 2.38 and the fact that Mn is a 1-
injective operator space. The next section gives a “saving property” for the space
(Mn)c0 in view of its failure to have the CSEP.

Our last result of this section shows that separable non-injective operator
spaces cannot have the λ-CSEP if λ < 2.
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Proposition 2.40. Let X be a separable operator space with the λ-CSEP.
If λ < 2, then X is reflexive (and hence is λ-injective by Proposition 2.22).

We first require the corresponding “pure” Banach space result. (This may
be part of the subject’s folklore. The argument I give is due to W.B. Johnson,
and I am most grateful to him for providing this elegant proof.)

Lemma 2.41. Let X be a separable Banach space containing a subspace Y

isomorphic to c0. Given ε > 0, there exists a subspace Z of Y so that Z is (1 + ε)-
isomorphic to c0 and Z is (1 + ε)-complemented in X.

Proof. Let δ > 0 be such that (1 + δ)2 < 1 + ε. By a result of R.C. James
([14]), we may chose a subspace E of Y with E (1 + δ)-isomorphic to c0. It follows
that we may choose a basis (ej) for E so that for all (cj) in c0,

(2.34) sup
j

∑
|cj | 6

∥∥∥∑
cjej

∥∥∥ 6 (1 + δ) sup |cj |.

Let (fn) be a Hahn-Banach extension to X of the biorthogonal functionals to (en).
By passing to a subsequence, we may assume without losing the generality that
(fn) converges w∗ in X∗. Now define gn by

(2.35) gn =
f2n − f2n−1

2
.

It follows that gn → 0 w∗ and moreover (by (2.34)),

(2.36) ‖gn‖ 6 1 + δ for all n.

Finally, let zn = e2n − e2n−1 for all n; then let Z = [zn]. Of course Z is (1 + ε)-
isomorphic to c0, and (gn) is biorthogonal to (zn). Thus we may define a projection
P : X → Z by

(2.37) Px =
∑

gn(x)zn for all x ∈ X.

It follows that if x ∈ X, then

(2.38)
‖Px‖ 6 (1 + δ) sup

n
|gn(x)|

6 (1 + δ)2‖x‖

by (2.34)

by (2.36).

Hence P is indeed a projection onto Z with ‖P‖ < 1 + ε.
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Proof of Proposition 2.40. Suppose to the contrary that X is not reflexive.
Then X contains a subspace isomorphic to c0 by Corollary 2.21. Now let ε > 0, to
be decided later, and choose by Lemma 2.41 a subspace Z of X which is (Banach)
(1+ε)-isomorphic to c0 and (1+ε)-complemented in X. Now let Y be a separable
subspace of Z∗∗ with Z ⊂ Y , let i : Z → X be the identity injection, and also let
P : X → Z be a projection with ‖P‖ < 1 + ε. Since X has the λ-CSEP, letting Y

have its natural operator space structure, we find a completely bounded extension
ı̃ : Y → X with ‖̃ı‖cb 6 λ. But then letting Q = P ı̃, Q is a projection from Y

onto Z and

(2.39) ‖Q‖ < (1 + ε)λ.

Since Z is (1 + ε)-isomorphic to c0, it now follows that if Ỹ is separable with
c0 ⊂ Ỹ ⊂ `∞, then

(2.40) c0 is (1 + ε)2λ-complemented in Ỹ .

But this implies that c0 itself has the (1 + ε)2λ-SEP, hence by Sobczyk’s re-
sult ([29]), (1 + ε)2λ > 2. Of course we then need only choose ε > 0 with
(1 + ε)2λ < 2, to arrive at the desired contradiction.

3. THE COMPLETE SEPARABLE COMPLEMENTATION PROPERTY

In this section we study the following concept, more general than the CSEP.

Definition 3.1. A separable locally reflexive operator space Z has the Com-
plete Separable Complementation Property (the CSCP) if whenever Y is a separa-
ble locally reflexive operator space, X is a subspace of Y , and T : X → Z is a com-
plete surjective isomorphism, T has a completely bounded extension T̃ : Y → Z.

In other words, Z has the CSCP provided it is locally reflexive and every
complete isomorph of Z is completely complemented in every separable locally
reflexive operator superspace.

Remark 3.2. After the first draft of this paper was completed, it was dis-
covered that a locally reflexive separable Z has the CSCP provided it is com-
pletely complemented in every locally reflexive separable operator superspace Y

with Z ⊂ Y ⊂ L(H) (see [21]).

Evidently this property is invariant under complete isomorphisms. The main
result of this section is as follows.
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Theorem 3.3. Let λ > 1 and let Z1, Z2, . . . be separable λ-injective operator
spaces. Then (Zj)c0 has the CSCP.

Corollary 3.4. K0 has the CSCP.

In fact, our proof yields that if Y is a C-locally reflexive separable superspace
of (Zj)c0 , then (Zj)c0 is completely Cλ3 + Cλ2 + λ + ε-complemented in Y , for
all ε > 0. As in the preceding section, this theorem follows via the modification
of T. Oikhberg of our original construction for the case λ = 1. Because of the
known structure of the separable isometric injectives ([26]), Theorem 3.3 for the
case λ = 1 is equivalent to: (M∞,n ⊕ Mn,∞)c0 has the CSCP. After the first
draft of this paper was completed, it was discovered that K (the space of compact
operators on `2), has the CSCP. (The proof uses Corollary 3.4 — see [21].) The
main structural problem for this property is as follows:

Problem 3.5. Is every space with the CSCP completely isomorphic to a
subspace of K?

We discuss further aspects of this problem in Section 4. Let us also note that
by T. Oikhberg’s result (see [21]), Theorem 3.3 fails without the assumption of
local reflexivity in the definition of the CSCP. Positive motivation for Theorem 3.3
and Definition 3.1 is given by the following result:

Corollary 3.6. Let Z1, Z2, . . . be as in the statement of Theorem 3.3, A
be a separable nuclear C∗-algebra, and Z̃ be a subspace of A which is completely
isomorphic to (Zj)c0 . Then Z̃ is completely complemented in A.

This follows immediately from Theorem 3.3, in virtue of the fact that nuclear
C∗-algebras are 1-locally reflexive ([9]). The quantitative version of Theorem 3.3
yields

Corollary 3.7. Let A be a separable nuclear C∗-algebra and K0 be a sub-
space which is completely isometric to K0 = (Mn)c0 . Then for all ε > 0, K0 is
completely (3 + ε)-complemented in A.

Corollary 3.6 also suggests the following

Problem 3.8. Let Z be a separable operator space which completely embeds
in some nuclear C∗-algebra. Suppose that every complete embedding of Z into a
nuclear separable C∗-algebra A is completely complemented in A. Does Z have
the CSCP?

We now deal with the proof of Theorem 3.3. As has been the case in the
preceding section, the arguments hold in considerable generality; local comple-
mentability (cf. Definition 2.32) plays a key role in the discussion.
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Theorem 3.9. Let λ > 1, and let Z1, Z2, . . . be λ-injective operator spaces
and X ⊂ Y operator spaces with X locally complemented in Y and Y/X separable.
Let T : X → Z be a completely bounded operator, where Z = (Zj)c0 . Then T

admits a completely bounded extension T̃ : Y → Z.

Remark 3.10. The proof yields that if X is completely locally β-cocomple-
mented in Y , then for all ε > 0, T̃ may be chosen with ‖T̃‖cb < (βλ2 +λ+ε)‖T‖cb
(if T 6= 0).

We first note an immediate consequence.

Corollary 3.11. Let Z1, Z2, . . . and Z be as in Theorem 3.9 and let Y be
an operator space with Z ⊂ Y , Y/Z separable, and Z locally complemented in Y .
Then Z is completely complemented in Y .

Remark 3.12 Again, we obtain that if Z is completely locally β-cocomple-
mented in Y,Z is completely (βλ2 + λ + ε)-complemented in Y for all ε > 0.

As before, we first reformulate Theorem 3.9.

Theorem 3.13. Let Z1, Z2, . . ., Z, X, and Y be operator spaces satisfying
the hypotheses of Theorem 3.9, and suppose X is completely locally C-cocomple-
mented in Y . Let (Tj) be a sequence of completely bounded operators with Tj :
Y → Zj for all j, so that Tj |X → 0 in the SOT and sup

j
‖Tj‖cb = 1. For every

ε > 0, there exists a sequence (Sj) of completely bounded operators so that for all j:

(i) Sj : X → Zj;

(ii) X ⊂ ker Sj;

(iii) ‖Sj‖cb < Cλ + ε
2λ ,

so that (Tj − Sj) → 0 in the SOT.

The proof that Theorem 3.13 ⇒ Theorem 3.9 is again the same as the one
showing Theorem 2.25⇒ Theorem 2.6; this proof also yields the quantitative state-
ment in the Remarks following Theorem 3.7, as well as the following quantitative
variation of Corollary 3.11 (all objects as in its statement): If Z is completely
locally C-cocomplemented in Y , then Z is (Cλ + ε)-cocomplemented in Y for all
ε > 0.

The proof of Theorem 3.9 (i.e., of Theorem 3.13) is analogous to the proofs
of Theorems 1.3 and 2.6; it requires a different (again rather surprising) lemma,
replacing Lemmas 1.10 and 2.26.
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Lemma 3.14. Let Z1, Z2, . . ., X, Y be arbitrary operator spaces with X ⊂
Y and Y/X finite-dimensional. Let (Tn) be a sequence of completely bounded
operators with Tj : Y → Zj for all j, so that Tn|X → 0 in the SOT. Let P

and Q be linear projections on Y with ker P = ker Q = X and dim Range P =
dim Range Q = dim Y/X. Then

(3.1) lim
n→∞

‖TnP − TnQ‖cb = 0.

Hence

(3.2) lim
n→∞

‖TnP‖cb = lim
n→∞

‖TnQ‖cb.

Proof. Let Sn = TnQ for all n. Then

(3.3) Tn − Sn → 0 in the SOT.

Indeed, if y ∈ Y , (Tn − Sn)(y) = Tn(I −Q)(y) → 0 in norm since (I −Q)y ∈ X.
Let F = Range P . Since F is finite-dimensional, (3.3) yields

(3.4) ‖(Tn − Sn)|F‖ → 0

whence

(3.5) ‖(Tn − Sn)|F‖cb 6 (dim F )‖(Tn − Sn)|F‖ → 0.

Now

(3.6) QP = Q since Q(I − P ) = 0.

Hence

‖TnP − TnQ‖cb = ‖TnP − SnP‖ by (3.6)(3.7)

6 ‖(Tn − Sn)|F‖cb‖P‖cb → 0.

(Note that P is completely bounded since it is a continuous finite rank operator.)

Remark 3.15. This proof could be given “more conceptually” by noting
that ker(P −Q) ⊃ X and hence the operator Tn(P −Q) “lives” on Y/X, a finite-
dimensional space; in fact Tn(P −Q) = Tn((I −Q)− (I −P )) → 0 in the SOT on
Y/X, so the cb-norms of the sequence (Tn(P − Q)), as operators on Y/X, go to
zero.

The proof of Theorem 3.13 is actually identical to that for Theorem 2.25
once we draw the following consequence of Lemma 3.14.



366 Haskell Rosenthal

Lemma 3.16. Assuming the hypotheses of Lemma 3.14, let X ⊂ Y0 ⊂ Y

with Y0/X finite-dimensional and let P : Y0 → Y0 be a finite-rank projection with
ker P = X and rank P = dim Y0/X. Then

(3.8) lim
j→∞

‖TjP‖cb 6 C.

Proof. By hypotheses, there exists a projection Q with ker P = X and
rank Q = dim Y0/X, so that ‖Q‖cb 6 C. Hence of course

(3.9) lim
n→∞

‖TnQ‖cb 6 C.

Now (3.8) follows immediately from Lemma 3.14, in virtue of (3.2).

Comment 3.17. Lemma 3.16 holds for arbitrary Zj ’s; i.e., the assumption
of λ-injectivity is not needed here.

The proof of Theorem 3.13 is now word for word the same as that for Theo-
rem 2.25, except that we replace Corollary 2.27 by Lemma 3.16 in the discussion.

We need one last ingredient for the proof of Theorem 3.3 (the main result in
this section).

(If X ⊂ Y , we identify X∗∗ with X⊥⊥ ⊂ Y ∗∗.)

Lemma 3.18. Let X and Y be operator spaces with X ⊂ Y , X∗∗ isomorphi-
cally injective, and Y locally reflexive. Then X is completely locally complemented
in Y .

Remark 3.19. The proof yields that if X∗∗ is λ-injective and Y is C-locally
reflexive, then for all ε > 0, X is completely locally (Cλ +C + ε)-cocomplemented
in Y , hence X is completely locally (Cλ + C + 1 + ε)-complemented in Y .

We delay the proof of this lemma, showing instead how we obtain Theo-
rem 3.13. In fact, we have the more general

Theorem 3.20. Let Z1, Z2, . . . be reflexive λ-injective operator spaces, Z =
(Zj)c0 , and X ⊂ Y be operator spaces with Y/X separable and Y locally reflexive.
Let T : X → Z be a complete surjective isomorphism. Then T admits a completely
bounded extension T̃ : Y → Z.

Remark 3.21. (i) If Y is C-locally reflexive and ‖T‖cb‖T−1‖cb = γ, we
obtain for ε > 0 that T̃ may be chosen with

‖T̃‖cb < (Cγλ3 + Cλ2 + λ + ε)‖T‖cb.
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(ii) As noted in Section 2, every separable isomorphically injective operator
space is reflexive, so Theorem 3.20 indeed yields Theorem 3.3. Actually, more
care in the proof yields that the conclusion of Theorem 3.20 holds if one deletes
the reflexivity assumption from its hypotheses. Hence we obtain the “quantized”
version of Corollary 1.4 (with a worse constant): Let Z be as in Theorem 3.20
(but drop the assumption that the Zj’s are reflexive). Then Z is (Cλ3 + Cλ2 +
λ+ε)-completely complemented in every C-locally reflexive superspace Y with Y/Z

separable.

Proof of Theorem 3.20. Let C and γ be as in Remark 3.21 (i). It follows
from the hypotheses that X∗∗ is completely γ-isomorphic to (Zj)`∞ , a λ-injective
operator space. Hence X∗∗ is completely (γλ + 1)-cocomplemented in Y ∗∗, so the
proof of Lemma 3.18 yields that given ε > 0, X is completely locally (C(γλ+1)+ε)-
cocomplemented in Y . Hence (by playing with ε) we obtain from Theorem 3.9
that the extension T̃ may be chosen with

(3.10) ‖T̃‖cb 6 (Cγλ3 + Cλ2 + λ + ε)‖T‖cb.

We now deal with Lemma 3.18. Let us first recall the precise concept of
operator space local reflexivity (reformulated in the spirit of the original Banach
space concept given by J. Lindenstrauss and H.P. Rosenthal in [18], as refined in
[16]).

Definition 3.22. An operator space X is called C-locally reflexive if for
all ε > 0, and finite dimensional subspaces F and G of X∗ and X∗∗ respectively,
there exists a linear operator T : G → X satisfying

(3.11) 〈Tg, f〉 = 〈g, f〉 for all g ∈ G, f ∈ F

and

(3.12) ‖T‖cb < C + ε.

As shown in [16], Banach spaces are thus 1-locally reflexive. Remarkable
permanence properties given in [11] yield that if X is a C-locally reflexive operator
space, then every subspace of X is C-locally reflexive; moreover as noted above,
nuclear C∗-algebras are 1-locally reflexive.

Lemma 3.16 is an immediate consequence of the following technical result
(whose proof is the operator space analogue of an argument in [12]).
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Sublemma 3.23. Let X ⊂ Y be operator spaces with dim Y/X < ∞ so that
Y is C-locally reflexive and X∗∗ is completely β-cocomplemented in Y ∗∗. Then for
all ε > 0, X is completely (Cβ + ε)-cocomplemented in Y .

Let us first deduce Lemma 3.18. Let ε > 0. Assuming that X∗∗ is λ-injective,
X∗∗ is completely λ-complemented in Y ∗∗. Now assuming Y is C-locally reflexive,
if Y0 is a subspace of Y with X ⊂ Y0 and Y0/X finite-dimensional, Y0 is also
C-locally reflexive and of course X∗∗ is also completely λ-complemented in Y ∗∗

0 ,
hence X∗∗ is completely (λ+1)-cocomplemented in Y ∗∗

0 . Thus by Sublemma 3.23,
X is completely (C(λ + 1) + ε)-cocomplemented in Y0.

Proof of Sublemma 3.23. Of course we identify X∗∗ with X⊥⊥. Let F = X⊥.
The hypotheses actually imply that there exists a projection P from Y ∗ onto X⊥

satisfying

(3.13) ‖P‖cb 6 β.

Indeed, if Q is a projection on Y ∗∗ with ker Q = X∗∗ and ‖Q‖cb 6 β, then
P = Q∗|Y ∗ has the desired property, where we regard Y ∗ ⊂ Y ∗∗∗. (In fact, the
range of Q∗ equals X⊥⊥⊥ = X⊥, because Y/X is finite-dimensional.)

Now define G by

(3.14) G = P ∗(Y ∗∗).

Of course G is finite-dimensional; hence since Y is C-locally reflexive, given
ε > 0, choose T : G → Y a linear operator with

(3.15) ‖T‖cb < C +
ε

β

and

(3.16) 〈Tg, f〉 = 〈g, f〉 for all g ∈ G, f ∈ F.

Finally, define H by

(3.17) H = T (G).

We now claim that H yields the desired decomposition of Y . Now it follows
immediately from (3.14) that

(3.18) Y ∗∗ = F⊥ ⊕G.
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This and (3.16) imply that T is one-to-one and H∩X = {0}. Indeed, suppose
g ∈ G and Tg = 0. Then 〈Tg, f〉 = 〈g, f〉 = 0 for all f ∈ F , whence by (3.18),
g = 0. But if Tg ∈ X, then since X⊥ = F , 〈Tg, f〉 = 0 = 〈g, f〉 for all f ∈ F , so
of course g = Tg = 0.

Since dim Y/X = dim Y ∗∗/X∗∗ = dim G, we have now deduced

(3.19) Y = X ⊕H.

Now let R be the projection from Y onto H with ker R = X. We claim

(3.20) ‖R‖cb < Cβ + ε.

We need the fundamental duality pairing for operator spaces. Fix K1, . . . ,Km

in K. Then given y1, . . . , ym in Y , y∗1 , . . . , y∗` in Y ∗, and L1, . . . , L` in K, we define

(3.21)
〈 m∑

i=1

Ki ⊗ yi,
∑̀
j=1

Lj ⊗ y∗j

〉
=

∑
i,j

y∗j (yi)Ki ⊗ Lj .

(Here, the last term is an operator on `2 ⊗ `2.) Then we have (cf. [25])

(3.22)
∥∥∥∑

Ki ⊗ yi

∥∥∥ = sup
{∥∥∥〈 ∑

Ki ⊗ yi,
∑

Lj ⊗ y∗j

〉∥∥∥ :
∥∥∥∑

Lj ⊗ y∗j

∥∥∥ = 1
}

.

Now applying this duality statement to Y ∗ rather than Y , it follows by our
definition of P and G, that given g1, . . . , gm in G (and K1, . . . ,Km as above), then

(3.23)

∥∥∥∑
Ki ⊗ gi

∥∥∥ 6 β sup
{∥∥∥〈 ∑

Ki ⊗ gi,
∑

Lj ⊗ fj

〉∥∥∥ :

f1, . . . , f` ∈ F, L1, . . . , L` in K, and
∥∥∥∑

Lj ⊗ fj

∥∥∥ = 1
}

.

Finally, let h1, . . . , hn in H, x1, . . . , xm in X and K1, . . . ,Km as above. We must
prove:

(3.24)
∥∥∥∑

Ki⊗R(xi+hi)
∥∥∥ (trivial)

=
∥∥∥∑

Ki⊗hi

∥∥∥ 6 (Cβ+ε)
∥∥∥∑

Ki⊗(xi+hi)
∥∥∥.

Now choose unique g1, . . . , gm in G with hi = Tgi for all i. Then

(3.25)

∥∥∥∑
Ki ⊗ Tgi

∥∥∥ 6 (C + ε/β)
∥∥∥∑

Ki ⊗ gi

∥∥∥ by (3.15)

6 (C + ε/β)β sup
{∥∥∥〈 ∑

Ki ⊗ gi,
∑

Lj ⊗ fj

〉∥∥∥ :

fi’s ∈ F , Lj ’s in K, and
∥∥∥∑

Lj ⊗ fj

∥∥∥ = 1
}

by (3.23)

= (Cβ + ε) sup
{∥∥∥〈 ∑

Ki ⊗ (xi + Tgi),
∑

Lj ⊗ fj

〉∥∥∥ :

fi’s ∈ F , Lj ’s in K and
∥∥∥∑

Lj ⊗ fj‖ = 1
}

by (3.18) and the fact that F = X⊥

6 (Cβ + ε)
∥∥∥∑

Ki ⊗ (xi + Tgi)
∥∥∥ by (3.21).

This proves (3.24), completing the proof.
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4. EXAMPLES OF SPACES WITH THE CSEP AND THE CSCP

Our preceding results yield certain lists of separable infinite-dimensional operator
spaces with the CSEP and CSCP. It is conceivable that these lists are complete
(up to complete isomorphism).

The results stated in this section are direct consequences of the work in the
preceding sections and previously known facts. The conjectures we formulate here
are strongly believed to be true, and should be “accessible.” On the other hand,
the problems we formulate are (probably) at a considerably deeper level.

We first give a basic definition; the operator space analogue of a well known
Banach space concept.

Definition 4.1. An operator space X is called primary if whenever Y and
Z are operator spaces with X completely isomorphic to Y ⊕Z, then X is completely
isomorphic to Y or Z.

All of our examples of spaces with the CSEP (respective CSCP) are direct
sums of primary spaces with the CSEP (respective CSCP).

We first treat the CSEP. Recall that R, C denote infinite-dimensional row
and column space, respectively, and Rn, Cn n-dimensional row and column space,
respectively.

Proposition 4.2. There are at least six isomorphically different Banach
spaces among the separable infinite-dimensional operator spaces with the CSEP,
namely

(4.1) c0, (`2n)c0 , c0(`2), `2, c0 ⊕ `2, and (`2n)c0 ⊕ `2.

Proof. Standard Banach space results easily yield these spaces are isomorphi-
cally distinct (cf. [7]). Of course Sobczyk’s theorem yields that c0 has the 2-CSEP;
as a Banach space, R is just isometric to `2, and R has the 1-CSEP. Corollary 2.13
yields immediately that (Rn)c0 and c0(R) have the (2+ε)-CSEP for all ε > 0, and
(Rn)c0 is isometric to (`2n)c0 and c0(R) is isometric to c0(`2). Finally, c0 ⊕ R has
the 2-CSEP, and this is just c0 ⊕ `2 in the Banach space category.

Problem 4.3. Let X be a separable infinite-dimensional operator space with
the CSEP. Is X Banach isomorphic to one of the six spaces in (4.1)?

By the results in [7], the first four spaces in (4.1) are primary, and moreover,
every infinite dimensional complemented subspace of c0(`2) (the largest one), is
isomorphic to one of these six. Thus Problem 4.3 has an affirmative answer if
every separable space with the CSEP is completely isomorphic to a subspace of
c0(R)⊕ c0(C).
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Conjecture 4.4. There are at least seven completely isomorphically dis-
tinct separable infinite-dimensional primary operator spaces with the CSEP,
namely:

(4.2) c0, (Rn)c0 , (Cn)c0 , R, C, c0(R), c0(C).

As before, it follows immediately from Corollary 2.13 that all these spaces
have the CSEP (indeed all are completely isometric to completely contractively
complemented subspaces of c0(R) ⊕ c0(C)). It is also easily seen that all these
spaces are isomorphically distinct as operator spaces, and it is essentially trivial
that c0,R, and C are all primary (in fact they are prime). The content of the
conjecture thus becomes: the remaining spaces in (4.2) are all primary.

Problem 4.5. Let X be a separable infinite-dimensional primary operator
space with the CSEP. Is X completely isomorphic to one of the seven spaces listed
in (4.2)?

Conjecture 4.6. There are at least 21 completely isomorphically distinct
separable operator spaces with the CSEP, namely:

(i) the seven spaces listed in (4.2);
(b) the nine spaces c0⊕R, c0⊕C, (Rn)c0 ⊕R, (Rn)c0 ⊕ (Cn)c0 , (Rn)c0 ⊕C,

(Cn)c0 ⊕R, R⊕ C, (Cn)c0 ⊕ C, c0(R)⊕ c0(C);
(iii) the five spaces c0 ⊕ R ⊕ C, (Rn)c0 ⊕ (Cn)c0 ⊕ R, (Rn)c0 ⊕ (Cn)c0 ⊕ C,

(Rn)c0 ⊕R⊕ C, (Rn)c0 ⊕ (Cn)c0 ⊕R⊕ C.
Moreover, any finite direct sum of any of these spaces is again completely isomor-
phic to one of them.

As above, it follows immediately from the results of Section 2 that all these
spaces have the CSEP. We leave the remaining assertions of this conjecture to the
ambitious reader.

Problem 4.7. Is every separable infinite-dimensional operator space with
the CSEP completely isomorphic to one of the 21 spaces in Conjecture 4.6?

We now deal with the CSCP. It is conceivable that the separable infinite-
dimensional operator spaces with the CSCP are precisely those which are com-
pletely isomorphic to completely complemented subspaces of K. Accordingly, we
discuss the evident spaces with this property; recall that K0 denotes the space
(Mn)c0 . The following result is due to J. Arazy and J. Lindenstrauss (see Theo-
rem 5 and Remark (i), p. 107, of [4]).
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Proposition 4.8. There are at least 11 isomorphically distinct Banach
spaces, isomorphic to an infinite-dimensional complemented subspace of K, namely

(i) the seven spaces c0, `2, (`2n)c0 , c0(`2), K0, (M∞,n)c0 , and K;
(ii) the four spaces c0 ⊕ `2, `2 ⊕ (`2n)c0 , `2 ⊕K0, and c0(`2)⊕K0.

It is known that all the spaces in (a), except possibly (M∞,n)c0 , are primary.
The primariness of the first four is noted above ([7]). The result that K and K0

are primary, is due to J. Arazy ([3]). I conjecture that also (M∞,n)c0 is primary,
but this remains an open question.

Problem 4.9. Is every infinite-dimensional completely complemented sub-
space of K Banach-isomorphic to one of the 11 spaces listed in (i) and (ii) of
Proposition 4.8?

It is conceivable that every infinite dimensional complemented subspace of K
is isomorphic to one of these 11 spaces; this problem is raised in [4]. Problem 4.9
might be somewhat more accessible. Of course our motivation here is that by the
results of Section 3 (respective [21] for K itself), all of the spaces listed in Problem
4.9 are Banach-isomorphic to operator spaces with the CSCP.

Conjecture 4.10. There are at least 11 completely isomorphically distinct
primary operator spaces, each completely isometric to a completely contractively
complemented subspace of K, namely:

(i) the seven spaces listed in (4.2);
(b) the four spaces K, K0, (M∞,n)c0 and (Mn,∞)c0 .

Using the known Banach space result, Proposition 4.8, it is not hard to
see that all the listed spaces are completely isomorphically distinct, and all are
completely contractively complemented in K. The content of the conjecture thus
becomes: all these spaces are primary. (It seems likely the work in [3] should yield
that K and K0 are primary operator spaces, but we have not verified this.) Again,
by the results of Section 3, (and [21] for the case of K itself) all these spaces have
the CSCP.

Problem 4.11. Let X be a separable infinite-dimensional primary operator
space with the CSCP. Is X completely isomorphic to one of the spaces listed in (i)
and (ii) of Conjecture 4.10?

Of course a motivation to classify the (apparently finite but rather immense
number of) finite-direct sums of these 11 spaces would be provided by an affirma-
tive answer to the following (obviously deep) problem:



The complete separable extension property 373

Problem 4.12. Is every operator space with the CSCP completely isomor-
phic to a finite direct sum of primary operator spaces?
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23. A. Pe lczyński, Projections in certain Banach spaces, Studia Math. 29(1969), 209–

227.
24. H. Pfitzner, Weak compactness in the dual of a C∗-algebra is determined commu-

tatively, Math. Ann. 298(1994), 349–371.
25. G. Pisier, An introduction to the theory of operator spaces, preprint.
26. A. Guyan Robertson, Injective matricial Hilbert spaces, Math. Proc. Cambridge

Philos. Soc. 110(1991), 183–190.
27. H.P. Rosenthal, On complemented and quasi-complemented subspaces of quotients

of C(S) for Stonian S, Proc. Nat. Acad. U.S.A. Sci. 60(1968), 1165–1169.
28. Z.J. Ruan, Injectivity and operator spaces, Trans. Amer. Math. Soc. 315(1989),

89–104.
29. R.R. Smith, Completely bounded maps between C∗-algebras, J. London Math. Soc.

(2) 27(1983), 157–166.
30. R.R. Smith, D.P. Williams, Separable Injectivity for C∗-algebras, Indiana Univ.

Math. J. 37(1988), 111–133.
31. A. Sobczyk, Projection of the space (m) on its subspace (c0), Bull. Amer. Math.

Soc. 47(1941), 938–947.
32. W.A. Veech, Short proof of Sobczyk’s theorem, Proc. Amer. Math. Soc. 28(1971),

627–628.
33. S. Wassermann, Exact C∗-algebras and related topics, Lecture Notes Ser., vol. 19,

Seoul Nat. Univ. 1994.
34. G. Wittstock, Ein operatorwertigen Hahn-Banach Satz, J. Funct. Anal. 40(1981),

127–150.
35. M. Zippin, The separable extension problem, Israel J. Math. 26(1977), 372–387.

HASKELL ROSENTHAL
Department of Mathematics

The University of Texas at Austin
Austin, TX 78712

USA
E-mail: rosenthl@math.utexas.edu

Received February 20, 1998; revised January 15, 1999.


