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Abstract. A C∗-algebra has the ideal property if any ideal (closed, two-
sided) is generated (as an ideal) by its projections. We prove a theorem which
implies, in particular, that an AH algebra (AH stands for “approximately
homogeneous”) stably isomorphic to a C∗-algebra with the ideal property
has the ideal property. It is shown that, for any AH algebra A with the
ideal property and slow dimension growth, the projections in M∞(A) satisfy
the Riesz decomposition and interpolation properties and K0(A) is a Riesz
group. We prove a theorem which describes the partially ordered set of all
the ideals generated by projections of an AH algebra A; the special case when
the projections in M∞(A) satisfy the Riesz decomposition property is also
considered. This theorem generalizes a result of G.A. Elliott which gives the
ideal structure of an AF algebra. We answer — jointly with M. Dadarlat —
a question of G.K. Pedersen, constructing extensions of C∗-algebras with the
ideal property which do not have the ideal property.
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1. INTRODUCTION

A C∗-algebra has the ideal property if any ideal (closed, two-sided) is generated (as
an ideal) by its projections. An AH algebra is a C∗-algebra which is the inductive
limit of a sequence of finite direct sums of C∗-algebras of the form PC(X, Mn)P ,
where X is a finite, connected CW-complex and P is a projection of C(X, Mn). In
this paper we continue our study of the AH algebras with the ideal property (see
[25], [26]). This class of C∗-algebras is a common generalization of the two most
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important classes of AH algebras: the simple AH algebras and the real rank zero
AH algebras (see [4]), for which a lot of interesting results have been proved in the
last years. The ideal property is very important since, in general, any real rank
zero C∗-algebra or any simple, unital C∗-algebra has the ideal property ([4]). The
study of the AH algebras with the ideal property is part of an important problem
of E.G. Effros ([10]) (namely: Find suitable topological invariants for AH algebras)
and it is also related to G.A. Elliott’s remarkable Project of the classification of
the separable, amenable C∗-algebras by invariants containing K-theory ([16]), for
which the AH algebras and their extensions are important tools. Therefore, the
properties and the structure of the AH algebras with the ideal property have a
special importance.

In this paper we show that the ideal property is preserved by stable isomor-
phism in the class of AH algebras. In fact, we prove a more general result (Theo-
rem 2.1), which implies that an AH algebra stably isomorphic to a C∗-algebra
with the ideal property has itself the ideal property (see Corollary 2.7).

It is shown that, for any AH algebra A with the ideal property and with
slow dimension growth, the projections in M∞(A) satisfy the Riesz decomposition
and interpolation properties and K0(A) is a Riesz group (Theorem 3.1). We used
this result to deduce that for such kind of C∗-algebras A, K0(A)/torK0(A) is an
unperforated Riesz group (Theorem 3.4).

We have been also interested in the study of the partially ordered set of
ideals generated by projections of an AH algebra A. We proved that there is
an order isomorphism from this partially ordered set of ideals to the partially
ordered set of ideals of D(A ⊗ K) — the abelian local semigroup of Murray-von
Neumann equivalence classes of projections in A⊗K — and that if, moreover, the
projections in M∞(A) satisfy the Riesz decomposition property (e.g. this happens
when A has the ideal property and slow dimension growth (see Theorem 3.1))
then the same partially ordered set of ideals of A is also order isomorphic with
the partially ordered set of ideals of D(A) and also, with the partially ordered
set of ideals of K0(A) (Theorem 4.1). Actually, the above mentioned partially
odered sets are proved to be lattices (see also Theorem 4.1). Note that recently,
the ideals generated by projections in an AH algebra played a role in the proof
of the surprising fact that there are inductive limits of AH algebras which are
not AH algebras (see [6]). Our above result (Theorem 4.1) gives in particular a
description of the ideal structure of an AH algebra with the ideal property and
generalizes a result of G.A. Elliott ([13]) giving the ideal structure of an AF algebra.
We prove also that the partially ordered set of ideals generated by projections of a
separable C∗-algebra is shape invariant (Proposition 4.13). (M. Dadarlat obtained
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independently the same result.) We use this fact and other results of us to prove
that two AH algebras with the ideal property and with slow dimension growth
for which there is a graded, ordered, scaled isomorphism between their total K-
theory groups which commutes with the Bockstein operations have isomorphic
ideal lattices (Proposition 4.14).

The extension problem for AH algebras is difficult and important. While
it is well-known that extensions of AH algebras are not AH algebras in general
(the Toeplitz extension gives a trivial example), we proved in [26] that the class
of the AH algebras with the ideal property has a “good behavior” with respect
to extensions (e.g., we showed there that if 0 → I → A → B → 0 is an exact
sequence of AH algebras, then A has the ideal property if and only if I and B

have the ideal property). In this paper we prove that in fact this behavior is
“not very good”. To be more precise, we settle — jointly with M. Dadarlat — a
problem of G.K. Pedersen, constructing extensions of C∗-algebras with the ideal
property which do not have the ideal property. In fact, we prove that there are
extensions of simple AT algebras (i.e. AH algebras over the torus T) with real
rank zero by simple AT algebras with real rank zero which do not have the ideal
property (Theorem 5.1). (Note that any C∗-algebra with real rank zero has the
ideal property, by a result in [4].)

In this paper we shall use the version of the slow dimension growth condition
defined in [18].

Let A be a C∗-algebra. By an ideal in A we shall mean a closed, two-sided
ideal of A; the fact that I is an ideal of A will be denoted by I/A. By the ideal of A

generated by a family of projections of A we shall mean the closed, two-sided ideal
of A generated by that family of projections. D(A) will denote the abelian local
semigroup of Murray-von Neumann equivalence classes of projections in A, the
addition of two classes being defined when they have orthogonal representatives.
If p is a projection in A, we shall denote by [p] its class in D(A). By an ideal in D(A)
we shall understand a nonempty hereditary subset which is closed under addition,
where defined. The projections of A will be denoted by P(A). If p, q ∈ P(A) we
shall write p ∼ q if p and q are Murray-von Neumann equivalent (i.e. there is a
partial isometry v ∈ A such that v∗v = p and vv∗ = q) and we shall write p . q if
p ∼ q′ 6 q for some q′ ∈ P(A). We shall denote by M∞(A) the algebraic inductive
limit of the matrix algebras Mn(A) (where n ∈ N) under the embeddings:

Mn(A) 3 a 7→ a⊕ 0 ∈ Mn+1(A).

If p ∈ M∞(A) is a projection, its class in K0(A) will be denoted by [p];
sometimes, in order to avoid confusion, we shall write [p]K0(A). Also, if p ∈ P(A),
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the difference between [p] ∈ D(A) and [p] ∈ K0(A) will follow from the context.
By an ideal of K0(A) we shall mean a subgroup H of K0(A) such that H+ :=
H ∩K0(A)+ is hereditary (i.e., if 0 6 g 6 h for some g ∈ K0(A) and h ∈ H+, then
g ∈ H) and H = H+ −H+. The real rank of A ([4]) will be denoted by RR(A)
and the topological stable rank of A ([28]) will be denoted by tsr(A).

We shall denote by K the C∗-algebra of compact operators on `2(N).
A C∗-algebra is called an AT algebra if it is isomorphic to the inductive limit

of a sequence of finite direct sums of C∗-algebras of the form C(T,Mn), where n

may vary (called circle algebras).

2. STABLE ISOMORPHISM

In this section we shall give the answer to the following natural

Question. Let A be an AH algebra. Suppose that A is stably isomorphic
to a C∗-algebra B which has the ideal property. Is it true that A has also the ideal
property?

The answer is positive, and it follows from the following more general result:

Theorem 2.1. Let A and E be AH algebras such that RR(E) = 0 and E

has a non-zero, minimal projection. Let B be a C∗-algebra and let F be an AF
algebra. Suppose that:

A⊗ E ∼= B ⊗ F.

If B has the ideal property, then A has the ideal property.

The proof of the above theorem will need the following five propositions.

Proposition 2.2. Let A be a C∗-algebra with the ideal property. Then
Mn(A) has the ideal property for every n.

Proof. Let I be an ideal of Mn(A). It is known that there is an ideal J of
A such that I = Mn(J). Since A has the ideal property, J is generated by its
projections and hence I = J ⊗Mn(C) is generated by the projections e ⊗ 1 ∈ I,
where e is a projection of J . Hence I is generated by its projections.

Proposition 2.3. If a C∗-algebra A is the inductive limit of a net (Aλ)λ∈Λ

of C∗-algebras with the ideal property, then A has the ideal property.

Proof. Let A = lim
→

(Aλ,Φλ, γ) and let I be an ideal of A. For each λ ∈ Λ,
let Φλ,∞ : Aλ → A be the canonical ∗-homomorphsim. Then

I = lim
→

(Iλ,Φλ, γ|Iλ)
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where Iλ = {x ∈ Aλ : Φλ,∞(x) ∈ I} ([2]). Now let x ∈ I and let ε > 0. Then,
there is λ0 ∈ Λ and a ∈ Iλ0 such that:

‖x− Φλ0,∞(a)‖ <
ε

2
.

Since Iλ0 is an ideal of Aλ0 and Aλ0 has the ideal property, it follows that
there are a1, a2, . . . , an, b1, b2, . . . , bn ∈ Aλ0 and projections e1, e2, . . . , en ∈ Iλ0

(for some positive integer n) such that:

∥∥∥a−
n∑

i=1

aieibi

∥∥∥ <
ε

2
.

This implies:∥∥∥Φλ0,∞(a)−
n∑

i=1

Φλ0,∞(ai)Φλ0,∞(ei)Φλ0,∞(bi)
∥∥∥ <

ε

2
.

Hence: ∥∥∥x−
n∑

i=1

Φλ0,∞(ai)Φλ0,∞(ei)Φλ0,∞(bi)
∥∥∥ < ε

which ends the proof since all the Φλ0,∞(ei)’s are projections in I.

Proposition 2.4. Let A be a C∗-algebra with the ideal property and let E

be an AF algebra. Then A⊗ E has the ideal property.

Proof. Since, obviously, a finite direct sum of C∗-algebras with the ideal
property is a C∗-algebra which has the ideal property, the proof follows using
Proposition 2.2 and Proposition 2.3.

Proposition 2.5. Let A be an AH algebra with the ideal property, and let
p be a projection in A. Then pAp is an AH algebra with the ideal property.

Proof. This follows essentially from the equivalence (a) ⇔ (b) in [25], Theo-
rem 3.1.

Proposition 2.6. Let A and B be AH algebras such that RR(B) = 0 and
B has a non-zero, minimal projection. If A⊗B has the ideal property, then A has
the ideal property.

Proof. Since A is an AH algebra, there is an increasing sequence (pn)∞n=1 of
projections in A such that:

(2.1) A =
∞⋃

n=1

pnApn.
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(If A = lim
→

(An,Φn,m) and An =
kn⊕
i=1

Pn,iC(Xn,i,M[n,i])Pn,i with Xn,i finite, con-

nected CW-complexes and Pn,i projections in C(Xn,i,M[n,i]), then for any n one

may take pn to be the canonical image in A of the identity of An.) Let e 6= 0 be

a minimal projection of B. By [4], RR(eBe) = 0. In particular, eBe is the closed

linear span of its projections. But, since 0 6= e is a minimal projection of B, the

projections of eBe are only 0 and e. Hence:

(2.2) eBe = Ce ∼= C.

For any n, define qn = pn ⊗ e ∈ A⊗ B. Obviously, (qn)∞n=1 is an increasing

sequence of projections in A⊗B. We have:

∞⋃
n=1

qn(A⊗B)qn =
∞⋃

n=1

(pnApn ⊗ eBe)
(2.2)∼=

∞⋃
n=1

pnApn

(2.1)∼= A.

Hence:

A ∼= lim
→

qn(A⊗B)qn.

But, since each qn is a projection in the AH algebra with the ideal property

A⊗B, by Proposition 2.5 it follows that each qn(A⊗B)qn has the ideal property.

Now the proof follows from Proposition 2.3.

Proof of Theorem 2.1. By Proposition 2.4 it follows that B ⊗ F has the

ideal property. Hence A⊗E has the ideal property. Now the proof ends applying

Proposition 2.6.

Proposition 2.7. An AH algebra which is strongly Morita equivalent to a

σ-unital C∗-algebra with the ideal property has the ideal property.

Proof. By [3], strong Morita equivalence is the same as stable ismorphism

when both C∗-algebras are σ-unital. Now the result follows from Theorem 2.1.
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3. THE RIESZ DECOMPOSITION PROPERTY

The main result of this section is Theorem 3.1 which says that for “many” AH
algebras A with the ideal property, the projections in M∞(A) satisfy the Riesz
decomposition and interpolation properties and K0(A) is a Riesz group. Some
consequences of this theorem are also discussed.

Theorem 3.1. Let A be an AH algebra with the ideal property and with slow
dimension growth. Then the projections in M∞(A) satisfy the Riesz interpolation
and decomposition properties and K0(A) is a Riesz group.

Proof. By [25], Theorem 2.6, A is shape equivalent with an AH algebra B

with real rank zero and with slow dimension growth. Now, since the projections
in M∞(B) satisfy cancellation (as well as those from M∞(A)) — because B and
A have stable rank one by [25], Theorem 4.1 — it follows, by a result of S. Zhang
([30], Corollary 1.6), that K0(B) is a Riesz group. Since the above mentioned
shape equivalence obviously implies that:

(K0(A),K0(A)+) ∼= (K0(B),K0(B)+)

as ordered groups, it follows that K0(A) is a Riesz group. Since, as observed before,
the projections in M∞(A) satisfy cancellation, it follows that the projections in
M∞(A) satisfy the Riesz interpolation and decomposition properties (note that in
K0(A) these properties are equivalent ([19], 2.1)).

Remark 3.2. Observe that one can prove the above theorem without using
S. Zhang’s result [30], Corollary 1.6 or [25], Theorem 2.6. Indeed, since the C∗-
algebra A has cancellation (by [25], Theorem 4.1), it suffices to prove that the
projections in M∞(A) satisfy the Riesz decomposition property. Let p, q1, q2 be

projections in M∞(A). If A = lim
→

(An,Φn,m), where An =
kn⊕
i=1

Ai
n and (An,Φn,m)

has slow dimension growth, then we may suppose that p, q1, q2 ∈ M∞(Ai
1) for

some i. Then, using [25], Lemma 2.11, [22], 2.9 and [17], Lemma 2.13 and working
as in the proof of [19], Theorem 2.7 or as in the proof of [22], Theorem 3.7) (see
also the proof of [24], Theorem 3.1) — and using that for m large enough and any
j either the partial homomorphism Φi,j

1,m : Ai
1 → Aj

m satisfies rank(Φi,j
1,m(1Ai

1
)) >

(dim(Xm,j)+2)rank(1Ai
1
) or we may suppose that Φi,j

1,m(p1),Φ
i,j
1,m(q1) and Φi,j

1,m(q2)
belong to a finite dimensional C∗-algebra of Aj

m — it follows that the projections
in M∞(A) have the Riesz decomposition property. The first proof is shorter and
more “elegant” while this proof is more “elementary”.
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Theorem 3.3. Let A be a unital AH algebra with the ideal property and

with slow dimension growth. Then the state space of (K0(A), [1A]) is a Choquet

simplex.

Proof. It follows from Theorem 3.1 and [19], Theorem 1.2.

Theorem 3.4. Let A be an AH algebra with the ideal property and with slow

dimension growth. Then K0(A)/torK0(A) is an unperforated Riesz group.

Proof. By Theorem 3.1 and [25], Theorem 5.1 (a), K0(A) is a weakly un-

perforated Riesz group. By [15], 4.5, it follows that K0(A)/torK0(A) is a Riesz

group. The fact that K0(A)/torK0(A) is unperforated follows from [20], 8.1.

4. THE IDEAL STRUCTURE

The main result of this section is Theorem 4.1 which describes the partially ordered

set of all the ideals generated by projections of an AH algebra. In particular, this

theorem gives the ideal structure of an AH algebra with the ideal property. Other

special cases and consequences are also discussed.

Theorem 4.1. Let A be an AH algebra. Then there is a lattice isomorphism:

{I / A | I is generated by projections} ∼→ {J | J is an ideal of D(A⊗K)}.

If moreover the projections in M∞(A) satisfy the Riesz decomposition prop-

erty, then there are lattice isomorphisms:

{I / A | I is generated by projections} ∼→ {J | J is an ideal of D(A)}
∼→ {L | L is an ideal of K0(A)}.

Before starting the proof, observe that for each of the above mentioned par-

tially ordered sets it’s far from obvious that it is a lattice.

To prove the above theorem we shall need several preliminary results. The

first one is a lemma which was pointed out to us by G.A. Elliott, who remarked

that its proof could be obtained using the argument on page 227 in [14]. We shall

give a different proof, inspired by the proof of [30], Theorem 2.3, which seems to

be simpler.
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Lemma 4.2. Let A be a C∗-algebra. Then there is an order isomorphism:

{I / A⊗K | I is generated by projections} ∼→ {J | J is an ideal of D(A⊗K)}.

Proof. Let D(·) be a map from the set of the ideals of A ⊗ K generated
by projections to the set of ideals of D(A ⊗ K), where for any ideal I of A ⊗ K
generated by projections, D(I) is the set of equivalence classes of projections in I.
Consider also E(·) the map from the set of ideals of D(A⊗K) to the set of ideals
of A⊗K generated by projections, where E(J) is defined to be the ideal of A⊗K
generated by the projections P ∈ A ⊗ K with [P ] ∈ J . We shall prove that D(·)
and E(·) are mutual inverses.

Note that for any ideal I of A⊗K which is generated by its projections we
have that I = E(D(I)). Since the inclusion J ⊆ D(E(J)) is obvious, we need only
to prove that D(E(J)) ⊆ J , since D(·) and E(·) are obviously inclusion-preserving.

Let [P ] ∈ D(E(J)). Then there are projections Pi and elements Xi and Yi

in A⊗K such that: ∥∥∥ n∑
i=1

XiPiYi − P
∥∥∥ < 1

and [Pi] ∈ J , 1 6 i 6 n. By [20], 10.7 (see also [12]), it follows that P .P1⊕P2⊕
· · · ⊕ Pn. Now, using the fact that A⊗K = lim

→
(A⊗Mn) and a simple argument,

it follows that there are projections P ′i ∈ A⊗K such that P ′i ∼ Pi, i = 1, 2, . . . , n,
P ′iP

′
j = 0 if i 6= j, i, j = 1, 2, . . . , n and:

P .
n∑

i=1

P ′i in A⊗K.

Since [P ′i ] = [Pi] ∈ J , i = 1, 2, . . . , n and J is an ideal in D(A⊗K), it follows
that [P ] ∈ J .

Remark 4.3. Let Φ : E → F be an order isomorphism of partially ordered
sets, where any two elements in E have a supremum and any two elements in F

have an infimum. Then E and F are lattices and Φ is a lattice isomorphism.

Using this remark obtained in a conversation with Mircea Martin, it easily
follows that {I / A ⊗ K | I is generated by projections} and {J | J is an ideal in
D(A⊗K)} in the above lemma are in fact lattices.

Lemma 4.4. ([6], [27]; the implication (a) ⇒ (b) below is contained in the
proof of [26], Theorem 3.1) Let A = lim

→
(An,Φn,m) be an AH algebra, where An =

kn⊕
i=1

Ai
n, Ai

n = Pn,iC(Xn,i,M[n,i])Pn,i, Xn,i are finite, connected CW-complexes and

Pn,i ∈ C(Xn,iM[n,i]) are projections. Then, the following are equivalent:
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(i) I is generated by its projections;
(ii) I = lim

→
(In,Φn,m|In), with each In consisting of a direct sum of full blocks

of An.

The following result was obtained in a conversation with M. Dadarlat.

Lemma 4.5. Let A be an AH algebra. Then there is a lattice isomorphism:

{I / A⊗K | I is generated by projections}
∼→ {J / A | J is generated by projections}.

Proof. Let A = lim
→

(An,Φn,m), where

An =
kn⊕
i=1

Ai
n, Ai

n = Pn,iC(Xn,i,M[n,i])Pn,i,

Xn,i are finite, connected CW-complexes and Pn,i are projections in C(Xn,iM[n,i]).
Let I be an ideal of A⊗K generated by projections. Then, it is known that there
is a unique ideal J of A such that:

(∗) I = J ⊗K.

We shall prove that J is also generated by projections. Let K = lim
→

(Mn,

Ψn,m). Since I is an ideal of the AH algebra A ⊗ K generated by projections,
Lemma 4.4 implies that for any n there is Fn ⊆ {1, 2, . . . , kn} such that:

I = lim
→

(( ⊕
i∈Fn

Ai
n

)
⊗Mn,

(
Φn,m

∣∣∣ ⊕
i∈Fn

Ai
n

)
⊗Ψn,m

)
=

(
lim
→

( ⊕
i∈Fn

Ai
n,Φn,m

∣∣∣ ⊕
i∈Fn

Ai
n

))
⊗

(
lim
→

(Mn,Ψn,m)
)

=
(

lim
→

( ⊕
i∈Fn

Ai
n,Φn,m

∣∣∣ ⊕
i∈Fn

Ai
n

))
⊗K.

By the uniqueness of the decomposition (∗), it follows that:

J = lim
→

( ⊕
i∈Fn

Ai
n,Φn,m

∣∣∣ ⊕
i∈Fn

Ai
n

)
which, applying again Lemma 4.4, implies that J is an ideal of A generated by its
projections.

Hence we can define a map:

Λ : {I / A⊗K | I is generated by projections}
→ {J / A | J is generated by projections}
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by:
I 7→ J

where I = J ⊗K and J / A.
Since K is generated by projections (as an ideal of K), we can also define a

map:
Γ : {J / A | J is generated by projections}

→ {I / A⊗K | I is generated by projections}

by:
J 7→ J ⊗K.

It is clear that Λ and Γ are mutual inverses and that they are inclusion
preserving, and this together with Remark 4.3 end the proof.

The following lemma is inspired by the proof of [30], Theorem 2.3 (see also
[14]).

Lemma 4.6. Let A be a C∗-algebra such that the projections in M∞(A)
satisfy the Riesz decomposition property. Then there is a lattice isomorphism:

{I / A | I is generated by projections} ∼→ {J | J is an ideal of D(A)}.

Proof. Let D : {I / A | I is generated by projections} → {J | J is an ideal of
D(A)} be the map given by:

D(I) = the set of equivalence classes of projections in I

for any ideal I of A generated by projections, and let E : {J | J is an ideal of
D(A)} → {I / A | I is generated by projections} be the map given by:

E(J) = the ideal of A generated by the projections P ∈ A with [P ] ∈ J

for any ideal J of D(A).
Note that, for any ideal I of A which is generated by its projections, we have

that I = E(D(I)). Since the inclusion J ⊆ D(E(J)) is obvious, we need only to
prove that D(E(J)) ⊆ J , since D(·) and E(·) are obviously inclusion-preserving
maps (see also Remark 4.3).

Let [P ] ∈ D(E(J)). Then there are projections Pi and elements Xi and Yi

in A such that: ∥∥∥ n∑
i=1

XiPiYi − P
∥∥∥ < 1



400 Cornel Pasnicu

and [Pi] ∈ J , 1 6 i 6 n. By [20], 10.7 (see also [12]), it follows that P .P1 ⊕
P2 ⊕ · · · ⊕ Pn. Since the projections in M∞(A) satisfy the Riesz decomposition
property, it follows that there are projections Ri in M∞(A), i = 1, 2, . . . , n such
that:

P ∼
n⊕

i=1

Ri in M∞(A)

and Ri 6 Pi, 1 6 i 6 n. But then, by a standard general argument, it follows that
there are pairwise orthogonal projections Qi in A such that Qi ∼ Ri in M∞(A)
(i = 1, 2, . . . , n) and:

P =
n∑

i=1

Qi

(see e.g. [23], Lemma 7.2.3). Since also Qi .Pi in A (i = 1, 2, . . . , n) and J is an

ideal of D(A), it follows that [Qi] ∈ J , i = 1, 2, . . . , n and hence [P ] =
n∑

i=1

[Qi] (in

D(A)) belongs to J .

The following four results have been inspired by results and proofs in Sec-
tion 10 of [20].

Lemma 4.7. Let A be a C∗-algebra with an approximate unit consisting of
projections and such that the projections in M∞(A) satisfy the Riesz decomposition
property. Then any projection in a matrix algebra Mn(A) is equivalent to an
orthogonal sum of n projections from A.

Proof. This follows as in the proof of [20], Lemma 10.4.

Lemma 4.8. Let A be an AH algebra. Let I be an ideal of A generated by pro-
jections. Denote by i : I → A the canonical inclusion and let H = K0(i)(K0(I)).
Then H is an ideal of K0(A) and I equals the ideal generated by the set:

{p ∈ A | p is a projection and [p] ∈ H}.

Proof. By the six-term exact sequence in K-theory associated with the exact
sequence of C∗-algebras 0 → I

i→ A
π→ A/I → 0 (where π : A → A/I is the

canonical map) it follows that H = kerK0(π). But K0(A/I) is a partially ordered
group, since A/I being an AH algebra is stably finite. Hence H+(:= H ∩K0(A)+)
is hereditary. Now, since I has an approximate unit of projections ([27] or the
proof of [26], Theorem 3.1), it follows that K0(I) = K0(I)+ − K0(I)+. Hence
H = K0(i)(K0(I)) = {[p]K0(A) − [q]K0(A) | p and q are projections in M∞(I)}.
This, together with the fact that {[p]K0(A) | p is a projection in M∞(I)} ⊂ H+,
imply that H = H+ −H+.
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Since I is generated by its projections, in order to prove the last part of the
lemma, it is enough to prove that:

P(I) = {p ∈ A | p is a projection and [p] ∈ H}.

Since the inclusion P(I) ⊆ {p ∈ P(A) | [p] ∈ H} follows from the fact —
proved above — that H = {[p]K0(A)− [q]K0(A) | p and q are projections in M∞(I)},
we have to prove only that {p ∈ P(A) | [p] ∈ H} ⊆ P(I). For this purpose, let
p ∈ P(A) be such that [p] ∈ H = kerK0(π). Hence [π(p)] = 0 in K0(A/I), and so
there is a projection q ∈ M∞(A/I) such that π(p) ⊕ q ∼ q. Since A/I is stably
finite (being an AH algebra) it follows that π(p) = 0, that is p ∈ I as desired.

Lemma 4.9. Let A be an AH algebra such that the projections in M∞(A)
satisfy the Riesz decomposition property, let H be an ideal of K0(A) and let I be
the ideal of A generated by the set:

{p ∈ A | p is a projection and [p] ∈ H}.

Then:
(i) Let p be a projection in M∞(A). Then [p] ∈ H if and only if p ∈ M∞(I).
(ii) H equals the subgroup of K0(A) generated by the set:

{[p] | p is a projection in M∞(I)}.

Proof. Observe that since I is an ideal of A, the hypothesis implies easily
that the projections in M∞(I) satisfy also the Riesz decomposition property. Also
— as remarked before — by [27] or by the proof of [26], Theorem 3.1 it follows
that I has an approximate unit of projections. The proof goes now as in the proof
of [20], Lemma 10.8 (b) and (c) and using Lemma 4.7.

Lemma 4.10. Let A be an AH algebra such that the projections in M∞(A)
satisfy the Riesz decomposition property. Then there is a lattice isomorphism:

{I / A | I is generated by projections} ∼→ {H | His an ideal of K0(A)}.

More precisely, there are inclusion-preserving inverse maps sending each
ideal I of A generated by projections to K0(iI)(K0(I)) (where iI : I → A is the
canonical inclusion), and sending each ideal H of K0(A) to the ideal of A generated
by those projections p ∈ A for which [p] ∈ H.

Proof. By the previous two lemmas, the maps described in the lemma are
inclusion-preserving inverse bijections. Also, by Lemma 4.5 or by Lemma 4.6,
{I / A | I is generated by projections} is a lattice.
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Proof of Theorem 4.1. Combining Lemma 4.2 with Remark 4.3 and Lem-
ma 4.5 we obtain a lattice isomorphism:

{I / A | I is generated by projections} ∼→ {J | J is an ideal of D(A⊗K)}.

Suppose now that the projections in M∞(A) satisfy the Riesz decomposition
property. The fact that there is a lattice isomorphism:

{I / A | I is generated by projections} ∼→ {J | J is an ideal of D(A)}

follows from Lemma 4.6, which says that this is true in a much more general
setting. Finally, the fact that there is a lattice isomorphism:

{I / A | I is generated by projections} ∼→ {L | L is an ideal of K0(A)}

follows from Lemma 4.10.

Remarks 4.11. (i) Theorem 4.1 gives, in particular, the ideal structure of
an AH algebra A with the ideal property (with a special case when the projections
of M∞(A) satisfy the Riesz decomposition property).

(ii) Theorem 4.1 generalizes a result of G.A. Elliott in [13] concerning the
ideal structure of an AF algebra.

Corollary 4.12. Let A be an AH algebra with the ideal property and with
slow dimension grouwth. Then there are lattice isomorphisms:

{I | I is an ideal of A} ∼→ {J | J is an ideal of D(A⊗K)}
∼→ {K | K is an ideal of D(A)}
∼→ {L | L is an ideal of K0(A)}.

Proof. It follows from Theorem 4.1 and Theorem 3.1.

Our next result has been also obtained, independently, by M. Dadarlat.

Proposition 4.13. Let A and B be separable C∗-algebras. If A and B are
shape equivalent, then there is an order isomorphism:

{I / A | I is generated by projections} ∼→ {J / B | J is generated by projections}.

Proof. Let

A1
Φ1−→ A2

Φ2−→ A3
Φ3−→ A4

Φ4−→ · · ·
α1↘ β1↗ α2↘ β2↗ α3↘ β3↗

B1
Ψ1−→ B2

Ψ2−→ B3
Ψ3−→ · · ·
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be a diagram of C∗-algebras and homomorphisms which is commutative within
homotopy and suppose that A = lim

→
(An,Φn), B = lim

→
(Bn,Ψn).

To simplify the notation, we shall denote in the same way any element in
some An and its canonical image in A. We shall make the same convention for the
elements of the Bn’s and their canonical images in B.

We shall define now a map:

Λ :{I / A | I is generated by projections}
→ {J / B | J is generated by projections}.

Let I be an ideal of A generated by a family (pi)i of projections. Approxi-
mating these projections in the An’s (in fact, in the canonical images of the An’s
in A) we may suppose that each pi belongs to some An (close enough projections
are unitarily equivalent). So, for each i let n be a natural number (depending on
i) such that pi ∈ An. Let qi = αn(pi) ∈ Bn. Define Λ(I) to be the ideal of B

generated by the family of projections (qi)i. Observe that Λ is well defined (the
above diagram is commutative within homotopy and homotopic projections are
unitarily equivalent).

Now, define a map:

Γ : {J / B | J is generated by projections}
→ {I / A | I is generated by projections}

in a similar way, but using the maps βn instead of αn. Observe that Λ and Γ
are inverse bijections, since the above diagram is commutative within homotopy
and homotopic projections are unitarily equivalent (βn(αn(pi)) is homotopic to
Φn(pi)). Also, we used again the fact that if in a C∗-algebra D we have a family
of projections (ek)k and if (uk)k is a family of unitaries in D̃ = D + C · 1, then
the ideal generated in D by (ek)k is clearly equal to the ideal generated in D by
(ukeku∗k)k. Obviously, Λ and Γ are inclusion-preserving.

Proposition 4.14. Let A and B be AH algebras with the ideal property and
with slow dimension growth. If there is a graded isomorphism of ordered, scaled
groups:

(K(A),K(A)+,
∑

(A)) ∼→ (K(B),K(B)+,
∑

(B))

which commutes with the Bockstein operations ([9], [7]; see also [8], [11]), then
there is a lattice isomorphism:

{I | I is an ideal of A} ∼→ → {J | J is an ideal of B}.

Proof. By [25], Theorem 2.15, it follows that A and B are shape equivalent.
Now, use the above proposition and Lemma 4.5.
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5. EXTENSIONS AND THE IDEAL PROPERTY

In this section we shall give the answer to the following

Question. (G.K. Pedersen) Is it true that if

0 → I → A → B → 0

is an extension of C∗-algebras such that I and B have the ideal property, then A

has the ideal property?

In [26], Theorem 3.1, we proved that if I,A and B above are all AH algebras,
then the answer is “yes”. Even though this might have been thought as an encour-
aging evidence for a positive answer to the above question of G.K. Pedersen, the
answer however — obtained jointly with M. Dadarlat — turns out to be negative:

Theorem 5.1. (joint with M. Dadarlat) There are extensions of C∗-algebras

0 → I → A → B → 0

such that:
(i) I and B are simple AT algebras with RR(I) = RR(B) = 0;
(ii) RR(A) = tsr(A) = 1;

and A does not have the ideal property.

In order to prove the above theorem we shall need the following result:

Lemma 5.2. (joint with M. Dadarlat) Let A be a C∗-algebra generated (as
an ideal of A) by its projections. Let I be an ideal of A such that I 6= A.

Then, either A/I is not stably finite or the index map δ0 : K0(A/I) → K1(I)
is not injective.

Proof. By contradiction. Suppose that A/I is stably finite and that δ0 is
injective. By the six-term exact sequence in K-theory associated with the exact
sequence 0 → I

i→ A
π→ A/I → 0 (where i : I → A is the canonical inclusion

and π : A → A/I is the canonical surjection), we get that δ0 ◦ K0(π) = 0. Now,
let p be an arbitrary projection of A. It follows that (δ0 ◦ K0(π))([p]) = 0, i.e.
δ0([π(p)]) = 0. Since δ0 is injective, we get that [π(p)] = 0 in K0(A)/I), which
implies — since A/I is stably finite — that π(p) = 0, i.e. p ∈ I. Hence any
projection of A is also a projection of I. Since A is generated (as an ideal of A)
by its projections and I is an ideal of A, it follows that A ⊆ I, and hence A = I,
which is a contradiction. This ends the proof.
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Proof of Theorem 5.1. Let B ∈ N (where N is the “bootstrap” category
defined in [29]) such that B has the ideal property, is stably finite and K0(B) = Z,
and let I be a stable, σ-unital C∗-algebra with the ideal property and such that
K1(I) is a non-zero, torsion free group. By the Universal Coefficient Theorem
([29], Theorem 1.17) there is an extension of C∗-algebras:

0 → I → A → B → 0

such that the index map δ0 : K0(B) = Z → K1(I) 6= {0} is injective (i.e. δ0(1) 6=
0). Then, by Lemma 5.2, it follows that A is not generated (as an ideal of A) by
its projections, and hence A does not have the ideal property.

We can take B = C and I = D ⊗ K, where D is a Bunce-Deddens algebra
([5]). Since D is a simple AT algebra ([5]), it follows that I is also a simple
AT algebra (K is simple). On the other hand, by [1], D has real rank zero and
hence, by [4], RR(I) = 0. Also, note that K1(I) = Z, since it is well-known that
K1(D) = Z. We want to prove now that tsr(A) = RR(A) = 1. Indeed, tsr(I) = 1
(I is an inductive limit of circle algebras which have stable rank one and now use
[28]), and obviously, tsr(C) = 1 and the index map δ1 : K1(B) = {0} → K0(I) is
zero. These things imply that tsr(A) = 1 (see e.g. [21]). By [4], Proposition 1.2 it
follows that RR(A) is zero or one. But since A does not have the ideal property,
it follows that RR(A) 6= 0 and hence RR(A) = 1. This ends the proof since,
obviously, B = C is simple, stably finite, RR(C) = 0 and K0(C) = Z.

Remark 5.3. The above proof of Theorem 5.1 shows in fact how one could
construct a lot of examples of extensions A of C∗-algebras I and B with the ideal
property which do not have the ideal property (with I and B not necessarily simple
AT algebras of real rank zero).
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