HIGHER DIMENSIONAL NEVANLINNA-PICK INTERPOLATION THEORY

RALF MEYER

Communicated by William B. Arveson

Abstract

We compute completely isometric representations of quotients of the operator algebra \mathcal{S}_{d} generated by the d-shift introduced by Arveson. This gives rise to a higher dimensional generalization of Nevanlinna-Pick interpolation theory.

Quotients of \mathcal{S}_{d} of dimension r admit a completely isometric representation by $r \times r$-matrices. There is an efficient criterion to decide whether an r-dimensional algebra of $r \times r$-matrices is a quotient of \mathcal{S}_{d}.

KEYWORDS: Dilation theory, d-contractions, Nevanlinna-Pick interpolation theory.
MSC (2000): Primary 47L55; Secondary 47A57, 47L60, 47L80, 47L30.

1. INTRODUCTION

In [3], Arveson defines the d-shift $\mathbf{S}=\left(S_{1}, \ldots, S_{d}\right)$, acting on a certain Hilbert space H_{d}^{2}. The definitions of the d-shift and of H_{d}^{2} are recalled in Section 2 together with some properties we will need in the following. We write $\mathbb{B}(\mathcal{H})$ for the C^{*}-algebra of bounded operators on a Hilbert space \mathcal{H}. Let

$$
\mathbb{D}_{d}:=\left\{\left.\left(z_{1}, \ldots, z_{d}\right) \in \mathbb{C}^{d}| | z_{1}\right|^{2}+\cdots+\left|z_{d}\right|^{2}<1\right\}
$$

be the open Euclidean unit ball and let $\overline{\mathbb{D}}_{d}$ be its closure. We write $\mathcal{O}\left(\mathbb{D}_{d}\right)$ for the algebra of holomorphic functions on \mathbb{D}_{d} and $\mathcal{O}\left(\overline{\mathbb{D}}_{d}\right)$ for the algebra of functions holomorphic in a neighborhood of $\overline{\mathbb{D}}_{d}$. Let \mathcal{S}_{d} be the norm closed unital subalgebra of $\mathbb{B}\left(H_{d}^{2}\right)$ generated by S_{1}, \ldots, S_{d}. We call $f \in \mathcal{O}\left(\mathbb{D}_{d}\right)$ a multiplier on H_{d}^{2} iff $f \cdot g \in H_{d}^{2}$ for all $g \in H_{d}^{2}$ and write \mathcal{M}_{d} for the algebra of multipliers. We have inclusions $\mathcal{M}_{d} \subset \mathbb{B}\left(H_{d}^{2}\right)$ and

$$
\mathcal{O}\left(\overline{\mathbb{D}}_{d}\right) \subset \mathcal{S}_{d} \subset \mathcal{M}_{d} \subset H_{d}^{2} \subset \mathcal{O}\left(\mathbb{D}_{d}\right)
$$

Assume given $z_{1}, \ldots, z_{m} \in \mathbb{D}_{d}$ and $n \times n$-matrices $T_{1}, \ldots, T_{m} \in \mathbb{M}_{n}$. There is $f \in \mathbb{M}_{n}\left(\mathcal{M}_{d}\right)$ with $\|f\| \leqslant 1$ and $f\left(z_{j}\right)=T_{j}$ for all j if and only if the block matrix with entries

$$
\begin{equation*}
\frac{1-T_{i} T_{j}^{*}}{1-\left\langle z_{i}, z_{j}\right\rangle} \in \mathbb{M}_{n} \tag{1.1}
\end{equation*}
$$

is positive definite. Here $\left\langle z_{i}, z_{j}\right\rangle$ stands for the Hilbert space inner product on \mathbb{C}^{d} with unit ball \mathbb{D}_{d}. There is a bounded $f \in \mathbb{M}_{n}\left(\mathcal{M}_{d}\right)$ with $f\left(z_{j}\right)=T_{j}$ for all j and positive real part in $\mathbb{B}\left(H_{d}^{2}\right)$ if the matrix with entries

$$
\begin{equation*}
\frac{T_{i}+T_{j}^{*}}{1-\left\langle z_{i}, z_{j}\right\rangle} \in \mathbb{M}_{n} \tag{1.2}
\end{equation*}
$$

is positive definite and invertible. If we allow for f to be an unbounded multiplier, it suffices to assume that the matrix in (1.2) is positive definite. In the scalar valued case $n=1$, the solution f is unique if the matrix in (1.1) or (1.2) is positive and not invertible. The unique solution is a rational function with poles outside \mathbb{D}_{d}. There is an algorithm to compute it.

The same conditions (1.1) and (1.2) occur in classical Nevanlinna-Pick interpolation theory ([13], [11] and [14]), which is the special case $d=1$. For $d=1$, the 1 -shift is the usual unilateral shift, \mathcal{S}_{1} is the algebra $\overline{\mathcal{O}}(\overline{\mathbb{D}})$ of continuous functions on $\overline{\mathbb{D}}$ holomorphic on \mathbb{D}, and $\mathcal{M}_{1} \cong H^{\infty}(\mathbb{D})$. Thus Nevanlinna-Pick interpolation theory is a special case of the assertions above.

After submitting the article, I learned that some of these interpolation results have been obtained independently also by Arias and Popescu([2]) and by Davidson and Pitts ([6]). These authors work with a non-commutative version of the d-shift and obtain interpolation results in that setting. Dividing out the commutator ideal then yields results about interpolation in $\mathbb{M}_{n}\left(\mathcal{M}_{d}\right)$. In this way, Theorem 4.1 and Theorem 7.3 become special cases of results in [2] and [6].

A map $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ between operator algebras is called completely contractive iff the induced maps $\varphi_{(n)}: \mathbb{M}_{n}(\mathcal{A}) \rightarrow \mathbb{M}_{n}(\mathcal{B})$ are contractive for all $n \in \mathbb{N}([12])$. Completely isometric maps and complete quotient maps are defined by requiring that $\varphi_{(n)}$ be isometric or a quotient map for all $n \in \mathbb{N}$, respectively.

The essential step in the proof of the interpolation results is to obtain a completely isometric representation of the quotient algebra $\mathcal{M}_{d} / I\left(z_{1}, \ldots, z_{m}\right)$. Here $I\left(z_{1}, \ldots, z_{n}\right)$ denotes the ideal of functions vanishing in the points z_{1}, \ldots, z_{n}. As for the 1-dimensional case ([15]), it turns out that the compression of the standard representation $\mathcal{M}_{d} \rightarrow \mathbb{B}\left(H_{d}^{2}\right)$ to the subspace $H_{d}^{2} \ominus I\left(z_{1}, \ldots, z_{m}\right)$ is completely isometric. Having this, one can solve the interpolation problem as in [15].

More generally, for suitable ideals $I \subset \mathcal{O}\left(\mathbb{D}_{d}\right)$, the representation of $\mathcal{M}_{d} /(I \cap$ $\left.\mathcal{M}_{d}\right)$ on $H_{d}^{2} \ominus\left(I \cap H_{d}^{2}\right)$ is completely isometric. This is proved by reduction to the case of finite codimensional ideals. For those, one can replace \mathcal{M}_{d} / I by $\mathcal{Q}:=\mathcal{S}_{d} / I$. The proof that the representation of \mathcal{Q} on $H_{d}^{2} \ominus I$ is completely isometric is based on the universal property of the d-shift and the fact that \mathcal{Q} can be represented completely isometrically at all, a consequence of [5].

We obtain a completely isometric representation of \mathcal{S}_{d} / I for all ideals $I \subset \mathcal{S}_{d}$. In good cases, the canonical representation on $H_{d}^{2} \ominus I$ is completely isometric. We call such ideals inner. In general, one must add a representation coming from a spherical operator, that is, a d-tuple $\mathbf{Z}=\left(Z_{1}, \ldots, Z_{d}\right)$ of commuting normal
operators satisfying $Z_{1} Z_{1}^{*}+\cdots+Z_{d} Z_{d}^{*}=1$. It is quite remarkable that \mathcal{S}_{d} / I has a completely isometric representation by $r \times r$-matrices if $\operatorname{dim} \mathcal{S}_{d} / I=r$.

The main difference between our methods and those of [2] and [6] is that we construct completely isometric representations of quotients of \mathcal{S}_{d} and reduce questions about \mathcal{M}_{d} to \mathcal{S}_{d}. In contrast, [2] and [6] work mostly with \mathcal{M}_{d} and have little to say about quotients of \mathcal{S}_{d}.

In Section 8 we start with an r-dimensional commutative subalgebra $\mathcal{A} \subset \mathbb{M}_{r}$ and ask whether it can be written as a quotient of \mathcal{S}_{d} by an inner ideal. There is an efficient algorithm to decide this question and obtain the quotient map $\mathcal{S}_{d} \rightarrow \mathcal{A}$. Having such a quotient map is very useful to check numerically whether a given representation of \mathcal{A} is completely contractive.

A necessary condition for $\mathcal{A} \subset \mathbb{M}_{r}$ to be a quotient of \mathcal{S}_{d} by an inner ideal is that $\mathcal{A} \cdot \mathcal{A}^{*}=\mathbb{M}_{r}$. In that case, we call \mathcal{A} expanding. If \mathcal{A} is expanding, a certain Hermitian sesquilinear form θ on \mathcal{A} is defined. This form is diagonal in a suitable basis X_{1}, \ldots, X_{r} of \mathcal{A} :

$$
\theta\left(\sum_{j=1}^{r} a_{j} X_{j}, \sum_{k=1}^{r} b_{k} X_{k}\right)=\sum_{j=1}^{r} \varepsilon_{j} a_{j} \bar{b}_{j}
$$

with certain $\varepsilon_{j} \in\{-1,0,1\}$ and always $\varepsilon_{r}=-1$. Let $\mathrm{p}(\mathcal{A})$, o (\mathcal{A}), and $\mathrm{n}(\mathcal{A})+1$ be the numbers of positive, zero, and negative ε_{j}. These numbers are invariants of \mathcal{A}. The basis X_{j} can be ordered so that all the positive ε_{j} come first. \mathcal{A} is a quotient of \mathcal{S}_{d} iff $\mathrm{n}(\mathcal{A})=0$ and $\mathrm{p}(\mathcal{A}) \leqslant d$. The map sending $S_{j} \mapsto X_{j}$ for $j=1, \ldots, \mathrm{p}(\mathcal{A})$ and $S_{j} \mapsto 0$ for $j>\mathrm{p}(\mathcal{A})$ is a complete quotient map. This criterion shows that the quotients of \mathcal{S}_{r-1} form a closed subset with non-empty interior of the space of r-dimensional commutative subalgebras of \mathbb{M}_{r}.

2. PREPARATIONS: THE d-SHIFT

Arveson ([3]) defines a positive definite inner product on the space $\mathbb{C}\left[z_{1}, \ldots, z_{d}\right]$ of polynomials in d variables. The Hilbert space H_{d}^{2} is the completion of $\mathbb{C}\left[z_{1}, \ldots, z_{d}\right]$ with respect to this inner product. There is a canonical continuous embedding $H_{d}^{2} \subset \mathcal{O}\left(\mathbb{D}_{d}\right)$. The d-shift is the operator of multiplication by the coordinate functions, $\left(S_{j} f\right)(z):=z_{j} f(z)$ for all $f \in H_{d}^{2}, z \in \mathbb{D}_{d}, j=1, \ldots, d$.

The inner product of H_{d}^{2} can be characterized most easily by its reproducing kernel. Define $\langle z, x\rangle:=z_{1} \bar{x}_{1}+\cdots+z_{d} \bar{x}_{d}$ for $z, x \in \mathbb{D}_{d}$ and $u_{x}(z):=(1-\langle z, x\rangle)^{-1}$. We have $u_{x} \in H_{d}^{2}$ for all $x \in \mathbb{D}_{d}$ and

$$
\begin{equation*}
\left\langle f, u_{x}\right\rangle=f(x) \tag{2.1}
\end{equation*}
$$

for all $f \in H_{d}^{2}$. Especially,

$$
\begin{equation*}
\left\langle u_{x}, u_{y}\right\rangle=(1-\langle y, x\rangle)^{-1} \tag{2.2}
\end{equation*}
$$

Moreover, the vectors $\left\{u_{x}\right\}$ span a dense subset of H_{d}^{2}. Thus $(x, y) \mapsto u_{y}(x)$ is a reproducing kernel for the Hilbert space H_{d}^{2}. It also follows that

$$
\begin{equation*}
M_{f}^{*}\left(u_{x}\right)=\overline{f(x)} u_{x} \tag{2.3}
\end{equation*}
$$

where M_{f}^{*} is the adjoint of the operator M_{f} of multiplication by f. Thus u_{x} is a joint eigenvector for \mathbf{S}^{*} with eigenvalue \bar{x}. There are no further joint eigenvectors for \mathbf{S}^{*}. The spectrum of the operator algebra \mathcal{S}_{d} is homeomorphic to $\overline{\mathbb{D}}_{d}$. Thus functional calculus provides an inclusion $\mathcal{O}\left(\overline{\mathbb{D}}_{d}\right) \subset \mathcal{S}_{d}$.

A d-contraction is a d-tuple of commuting operators $\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right)$ on a Hilbert space \mathcal{H} satisfying

$$
\begin{equation*}
\left\|T_{1} \xi_{1}+\cdots+T_{d} \xi_{d}\right\|^{2} \leqslant\left\|\xi_{1}\right\|^{2}+\cdots+\left\|\xi_{d}\right\|^{2} \tag{2.4}
\end{equation*}
$$

for all $\xi_{1}, \ldots, \xi_{d} \in \mathcal{H}$. An equivalent condition is that the $1 \times d$-matrix

$$
\left(\begin{array}{llll}
T_{1} & T_{2} & \cdots & T_{d}
\end{array}\right)
$$

be a contraction. The d-shift is the universal d-contraction in the following sense: If \mathbf{T} is a d-contraction on \mathcal{H}, then there is a unique completely contractive representation $\varphi: \mathcal{S}_{d} \rightarrow \mathbb{B}(\mathcal{H})$ sending $S_{j} \mapsto T_{j}$. Conversely, if φ is a completely contractive representation of \mathcal{S}_{d}, then $\varphi(\mathbf{S})=\left(\varphi\left(S_{1}\right), \ldots, \varphi\left(S_{d}\right)\right)$ is a d-contraction. Arveson obtains much more detailed spatial information. We need some notation to formulate his results.

For $n \in \mathbb{N} \cup\{0, \infty\}$, let ℓ_{n}^{2} be the n-dimensional Hilbert space and let $n \cdot \mathbf{S}$ be the direct sum of n copies of the d-shift \mathbf{S} acting on $\ell_{n}^{2} \otimes H_{d}^{2}$. A spherical operator is a d-tuple $\mathbf{Z}=\left(Z_{1}, \ldots, Z_{d}\right)$ of commuting normal operators satisfying $Z_{1} Z_{1}^{*}+\cdots+Z_{d} Z_{d}^{*}=1$. Let A be a set of operators on \mathcal{H}. A closed subspace \mathcal{K} is called co-invariant for A iff its orthogonal complement is A-invariant. Equivalently, \mathcal{K} is invariant for $A^{*}:=\left\{T \in \mathbb{B}(\mathcal{H}) \mid T^{*} \in A\right\}$. Let $C^{*}(A)$ be the C^{*}-algebra generated by A. A closed subspace \mathcal{K} is called full for A iff $C^{*}(A) \cdot \mathcal{K}$ is dense in \mathcal{H}.

Theorem 2.1. (Arveson, [3]) Let $d \in \mathbb{N}$ and let $\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right)$ be a d-contraction acting on some separable Hilbert space. Let $n \in \mathbb{N} \cup\{0, \infty\}$ be the rank of the operator $1-T_{1} T_{1}^{*}-\cdots-T_{d} T_{d}^{*}$.

Then there is a pair $(\mathbf{Z}, \mathcal{K})$ consisting of a spherical operator \mathbf{Z} and a full coinvariant subspace \mathcal{K} for the operator $n \cdot \mathbf{S} \oplus \mathbf{Z}$ such that \mathbf{T} is unitarily equivalent to the compression of $n \cdot \mathbf{S} \oplus \mathbf{Z}$ to \mathcal{K}.

For $d=1$, a spherical operator is a unitary operator and the dilation $n \cdot \mathbf{S} \oplus \mathbf{Z}$ occurring in Theorem 2.1 is the von Neumann-Wold decomposition of an isometry.

Up to a constant, the reproducing kernel of H_{d}^{2} is the $1 /(d+1)$ st power of the Bergman kernel

$$
K_{\mathbb{D}_{d}}(x, y)=\frac{d!}{\pi^{d}}(1-\langle x, y\rangle)^{-(d+1)}
$$

of the domain $\mathbb{D}_{d}([9])$. Thus H_{d}^{2} is a "twisted Bergman space" in the terminology of [4]. These spaces are studied in harmonic analysis because they carry a natural projective representation of the automorphism group of the domain:

Theorem 2.2. Let $h \in \operatorname{Aut}\left(\mathbb{D}_{d}\right)$ be an automorphism of \mathbb{D}_{d}, that is, a holomorphic map $\mathbb{D}_{d} \rightarrow \mathbb{D}_{d}$ with holomorphic inverse. Let

$$
\delta(z):=(\operatorname{det} D h(z))^{1 /(d+1)}
$$

where any holomorphic branch of the root is chosen, and let $(T f)(z):=\delta(z) f(h(z))$ for $f \in H_{d}^{2}, z \in \mathbb{D}_{d}$. Then T defines a unitary operator $H_{d}^{2} \rightarrow H_{d}^{2}$. This gives rise to a projective representation of $\operatorname{Aut}\left(\mathbb{D}_{d}\right)$ on H_{d}^{2}.

Moreover, $M_{f \circ h} \circ T=T \circ M_{f}$ for all $f \in \mathcal{S}_{d}$, so that $f \mapsto f \circ h$ is a completely isometric automorphism of \mathcal{S}_{d}.

The proof is based on the behavior of the Bergman kernel under biholomorphic mappings ([9], Proposition 6.1.7), which implies

$$
(\operatorname{det} D h(z))^{\lambda} \overline{(\operatorname{det} D h(w))^{\lambda}} K_{\mathbb{D}_{d}}(h(z), h(w))^{\lambda}=K_{\mathbb{D}_{d}}(z, w)^{\lambda}
$$

for all $\lambda \in \mathbb{R}, z, w \in \mathbb{D}_{d}$, and $h \in \operatorname{Aut}\left(\mathbb{D}_{d}\right)$. See [1].

3. COMPLETELY ISOMETRIC REPRESENTATIONS OF QUOTIENTS OF \mathcal{S}_{d}

Let $I \subset \mathcal{S}_{d}$ be a closed ideal. Let $\widehat{I} \subset \operatorname{Spec}\left(\mathcal{S}_{d}\right)$ be the set of all maximal ideals containing I. Hence $\widehat{I} \cong \operatorname{Spec}\left(\mathcal{S}_{d} / I\right)$. Identify $\operatorname{Spec}\left(\mathcal{S}_{d}\right) \cong \overline{\mathbb{D}}_{d}$ and consider $\widehat{I} \subset \overline{\mathbb{D}}_{d}$. Let $\partial \widehat{I}$ be the smallest compact subset of \widehat{I} such that $\widehat{I}=\widehat{\hat{I} \cap \mathbb{D}_{d}} \cup \partial \widehat{I}$. Thus

$$
\partial \widehat{I}:=\overline{\widehat{I} \backslash \overline{\widehat{I} \cap \mathbb{D}_{d}}}
$$

The ideal I is called inner iff $\partial \widehat{I}=\emptyset$ or equivalently $\widehat{I} \cap \mathbb{D}_{d}$ is dense in \widehat{I}. For example, the ideal $I:=\{0\}$ is inner because $\widehat{I}=\overline{\mathbb{D}}_{d}$.

Let $P: H_{d}^{2} \rightarrow H_{d}^{2} \ominus I$ be the orthogonal projection onto the orthogonal complement of I. Let $\varphi_{0}: \mathcal{S}_{d} \rightarrow \mathbb{B}\left(H_{d}^{2} \ominus I\right)$ be the compression $f \mapsto P f P$. The $\operatorname{map} \varphi_{0}$ is a unital, completely contractive homomorphism because the closure \bar{I} of I in H_{d}^{2} is \mathcal{S}_{d}-invariant. Moreover, $\operatorname{ker} \varphi_{0}=\bar{I} \cap \mathcal{S}_{d} \supset I$. Consequently, φ_{0} descends to a completely contractive representation of the quotient algebra \mathcal{S}_{d} / I. It sends $\left[S_{j}\right]$, the class of S_{j} in the quotient, to $S(I)_{j}:=P S_{j} P$.

Let $\mathbf{N}(I)$ be a spherical operator with spectrum $\partial \widehat{I}$, acting on some Hilbert space \mathcal{H}_{∂}. Compose the Gelfand transformation for the commutative Banach algebra \mathcal{S}_{d} / I with the functional calculus for the normal multi-operator $\mathbf{N}(I)$ to get a completely contractive representation $\varphi_{\partial}: \mathcal{S}_{d} / I \rightarrow C(\widehat{I}) \rightarrow \mathbb{B}\left(\mathcal{H}_{\partial}\right)$ sending $\left[S_{j}\right] \mapsto \mathbf{N}(I)_{j}$. Thus

$$
\psi:=\varphi_{0} \oplus \varphi_{\partial}: \mathcal{S}_{d} / I \rightarrow \mathbb{B}\left(\left(H_{d}^{2} \ominus I\right) \oplus \mathcal{H}_{\partial}\right), \quad \psi\left[S_{j}\right]:=S(I)_{j} \oplus N(I)_{j},
$$

is a completely contractive representation of \mathcal{S}_{d} / I.

THEOREM 3.1. The representation ψ is completely isometric. If I is inner, then the representation $\varphi_{0}: \mathcal{S}_{d} / I \rightarrow \mathbb{B}\left(H_{d}^{2} \ominus I\right)$ is completely isometric.

Proof. Any quotient of a unital operator algebra by a closed ideal is again a unital operator algebra ([5]). Thus \mathcal{S}_{d} / I has a unital, completely isometric representation $\rho: \mathcal{S}_{d} / I \rightarrow \mathbb{B}(\mathcal{H})$. Let \mathcal{A} be the closure of the range of ψ, that is, the unital operator algebra generated by the multi-operator $\mathbf{S}(I) \oplus \mathbf{N}(I)$ on $H_{d}^{2} \ominus I \oplus \mathcal{H}_{\partial}$. The theorem follows once the homomorphism $h: \mathcal{A} \rightarrow \mathbb{B}(\mathcal{H})$ sending $\psi\left(S_{j}\right)$ to $\rho\left[S_{j}\right]$ is shown to be well defined and completely contractive. Then h is completely isometric.

The multi-operator $\rho[\mathbf{S}]=\left(\rho\left[S_{1}\right], \ldots, \rho\left[S_{d}\right]\right)$ is a d-contraction. We leave it to the reader to show that \mathcal{H} can be chosen to be separable (or to extend Theorem 2.1 to the case of d-contractions on non-separable Hilbert spaces).

Apply Theorem 2.1 to $\rho[\mathbf{S}]$. This yields $n \in \mathbb{N} \cup\{0, \infty\}$, a spherical operator \mathbf{Z} acting on some Hilbert space $\mathcal{H}_{\mathbf{Z}}$, and a full co-invariant subspace \mathcal{K} of

$$
\begin{equation*}
\widehat{\mathcal{H}}:=\left(\ell_{n}^{2} \otimes H_{d}^{2}\right) \oplus \mathcal{H}_{\mathbf{z}} \tag{3.1}
\end{equation*}
$$

such that $\rho[\mathbf{S}]$ is unitarily equivalent to the compression of $n \cdot \mathbf{S} \oplus \mathbf{Z}$ to \mathcal{K}. Let $\widehat{\rho}: \mathcal{S}_{d} \rightarrow \mathbb{B}(\widehat{\mathcal{H}})$ be the representation defined by $\widehat{\rho}\left(S_{j}\right):=n \cdot S_{j} \oplus Z_{j}$. Since \mathcal{K} is co-invariant for $n \cdot \mathbf{S} \oplus \mathbf{Z}$, its orthogonal complement \mathcal{K}^{\perp} is $\widehat{\rho}\left(\mathcal{S}_{d}\right)$-invariant. Let

$$
\mathcal{H}_{2}:=\widehat{\mathcal{H}} \ominus \widehat{\rho}(I) \cdot \widehat{\mathcal{H}}=\{\xi \in \widehat{\mathcal{H}} \mid \xi \perp \widehat{\rho}(f) \eta \text { for all } f \in I, \eta \in \widehat{\mathcal{H}}\}
$$

We claim that $\mathcal{K} \subset \mathcal{H}_{2}$. Equivalently, $\widehat{\rho}(f) \eta \perp \mathcal{K}$ for all $f \in I, \eta \in \widehat{\mathcal{H}}$. This is evident for $\eta \in \mathcal{K}^{\perp}$ because \mathcal{K}^{\perp} is $\widehat{\rho}\left(\mathcal{S}_{d}\right)$-invariant. Since the compression of $\widehat{\rho}(f)$ to \mathcal{K} is $\rho[f]=\rho(0)=0$, we also get $\widehat{\rho}(f) \eta \perp \mathcal{K}$ for $\eta \in \mathcal{K}$. Thus $\widehat{\rho}(f) \eta \perp \mathcal{K}$ for all $\eta \in \mathcal{K}^{\perp} \oplus \mathcal{K}=\widehat{\mathcal{H}}$ as desired. Equation (3.1) implies immediately that

$$
\mathcal{H}_{2} \cong\left(\ell_{n}^{2} \otimes\left(H_{d}^{2} \ominus I\right)\right) \oplus\left(\mathcal{H}_{\mathbf{z}} \ominus \widehat{\rho}(I) \mathcal{H}_{\mathbf{z}}\right)
$$

Since \mathbf{Z} is normal and $\widehat{\rho}(I) \mathcal{H}_{\mathbf{Z}}$ is \mathbf{Z}-invariant, the subspace $\widehat{\rho}(I) \mathcal{H}_{\mathbf{Z}}$ is also invariant for \mathbf{Z}^{*}, that is, a reducing subspace. Thus $C^{*}(n \cdot \mathbf{S} \oplus \mathbf{Z})$ maps $\widehat{\mathcal{H}} \ominus \widehat{\rho}(I) \mathcal{H}_{\mathbf{Z}} \supset \mathcal{K}$ into itself. Since \mathcal{K} is full, it follows that $\widehat{\rho}(I) \cdot \mathcal{H}_{\mathbf{Z}}=\{0\}$. Therefore, $\operatorname{Spec}(\mathbf{Z}) \subset \widehat{I}$.

The homomorphism $\psi: \mathcal{S}_{d} \rightarrow \mathcal{A}$ gives rise to a continuous map $\psi^{*}:$ $\operatorname{Spec}(\mathcal{A}) \rightarrow \operatorname{Spec}\left(\mathcal{S}_{d}\right) \cong \overline{\mathbb{D}}_{d}$. We claim that

$$
\begin{equation*}
\psi^{*}(\operatorname{Spec}(\mathcal{A}))=\widehat{I} \tag{3.2}
\end{equation*}
$$

This is of course a necessary condition for $\mathcal{S}_{d} / I \cong \mathcal{A}$. Since ψ annihilates I, it is clear that $\psi^{*}(\operatorname{Spec}(\mathcal{A})) \subset \widehat{I}$. Let $x \in \widehat{I} \cap \mathbb{D}_{d}$. Then $u_{x} \perp I$ by equation (2.1). Consequently,

$$
f \mapsto\left\|u_{x}\right\|_{2}^{-2}\left\langle f u_{x}, u_{x}\right\rangle=\left\|u_{x}\right\|_{2}^{-2}\left\langle u_{x}, f^{*} u_{x}\right\rangle=f(x)
$$

is a well defined and contractive linear functional on \mathcal{A}. Thus $x \in \operatorname{Spec}(\mathcal{A})$. Hence $\widehat{I} \cap \mathbb{D}_{d} \subset \operatorname{Spec}(\mathcal{A})$ and $\overline{\widehat{I} \cap \mathbb{D}_{d}} \subset \operatorname{Spec}(\mathcal{A})$ by compactness. The other points of $\widehat{I} \cap \partial \mathbb{D}_{d}$ are in $\partial \widehat{I}=\operatorname{Spec}(\mathbf{N}(I)) \subset \operatorname{Spec}(\mathcal{A})$. Equation (3.2) follows.

Since $\operatorname{Spec}(\mathcal{A}) \cong \widehat{I}$, the Gelfand transformation gives rise to a completely contractive homomorphism $g_{1}: \mathcal{A} \rightarrow C(\widehat{I})$. Since \mathbf{Z} is a normal operator with
spectrum contained in \widehat{I}, functional calculus for \mathbf{Z} gives rise to a $*$-representation $g_{2}: C(\widehat{I}) \rightarrow \mathbb{B}\left(\mathcal{H}_{\mathbf{Z}}\right)$. Let $f: \mathcal{A} \rightarrow \mathbb{B}\left(H_{d}^{2} \ominus I\right)$ be the compression to the first summand. Let $n \cdot f: \mathcal{A} \rightarrow \mathbb{B}\left(\ell_{n}^{2} \otimes\left(H_{d}^{2} \ominus I\right)\right)$ be the direct sum of n copies of f, that is, $n \cdot f: x \mapsto \operatorname{id}_{\ell_{n}^{2}} \otimes f(x)$. Clearly, $n \cdot f$ is a completely contractive representation.

Thus we get a completely contractive representation $n \cdot f \oplus\left(g_{2} \circ g_{1}\right): \mathcal{A} \rightarrow$ $\mathbb{B}\left(\mathcal{H}_{2}\right)$ that maps $\psi(\mathbf{S})$ to the compression of $\widehat{\rho}(\mathbf{S})$ to \mathcal{H}_{2}. Compressing further to $\mathcal{H} \cong \mathcal{K} \subset \mathcal{H}_{2}$, we see that h is well defined and completely contractive, as desired.

Suppose that I has finite codimension r, so that $\mathcal{Q}:=\mathcal{S}_{d} / I$ is r-dimensional. Since the spectrum \widehat{I} of \mathcal{Q} is finite, we get $\partial \widehat{I}=\widehat{I} \cap \partial \mathbb{D}_{d}$. Let $\partial \widehat{I}$ have s elements x_{1}, \ldots, x_{s}. We choose $\mathbf{N}(I)$ as a diagonal multi-operator on $\mathcal{H}_{\partial}:=\mathbb{C}^{s}$. By Theorem 3.1, $\varphi_{0} \oplus \varphi_{\partial}$ is a completely isometric representation of \mathcal{Q}. Let $\mathcal{Q}_{0}:=\varphi_{0}(\mathcal{Q})$.

Corallary 3.2. The operator algebra \mathcal{Q} is completely isometrically isomorphic to the orthogonal direct sum $\mathcal{Q}_{0} \oplus \mathbb{C} \oplus \cdots \oplus \mathbb{C}$, with s copies of \mathbb{C} corresponding to $x_{1}, \ldots, x_{s} \in \operatorname{Spec}(\mathcal{Q}) \cap \partial \mathbb{D}_{d}$. In addition, $\operatorname{dim} H_{d}^{2} \ominus I=r-s$.

Thus \mathcal{Q} has a completely isometric representation by $r \times r$-matrices.
Proof. We claim that $\operatorname{Spec}\left(\mathcal{Q}_{0}\right) \subset \mathbb{D}_{d}$. The orthogonal projection of $1 \in H_{d}^{2}$ to $H_{d}^{2} \ominus I$ is a cyclic vector for \mathcal{Q}_{0}. Hence $\operatorname{dim} \mathcal{Q}_{0}=\operatorname{dim} H_{d}^{2} \ominus I$ is finite. Let $x \in \operatorname{Spec}\left(\mathcal{Q}_{0}\right)$ and let $\mathcal{Q}_{0}^{*} \subset \mathbb{B}\left(H_{d}^{2} \ominus I\right)$ be the algebra of adjoints of elements of \mathcal{Q}_{0}. The map $q \mapsto \overline{q(x)}$ is a character of \mathcal{Q}_{0}^{*}. Since $H_{d}^{2} \ominus I$ is finite dimensional, elementary linear algebra shows that there is an eigenvector $\eta \in H_{d}^{2} \ominus I$ with $\varphi_{0}(f)^{*} \eta=\overline{f(x)} \eta$ for all $f \in \mathcal{S}_{d}$. Since $H_{d}^{2} \ominus I$ is \mathcal{S}_{d}^{*}-invariant, $\eta \in H_{d}^{2}$ is also a joint eigenvector for \mathbf{S}^{*}. But we know all joint eigenvectors of \mathbf{S}^{*} : They are the vectors u_{x} with $x \in \mathbb{D}_{d}$. Therefore $x \in \mathbb{D}_{d}$.

Since $\operatorname{Spec}\left(\mathcal{Q}_{0}\right) \subset \mathbb{D}_{d}$, evaluation at x_{1}, \ldots, x_{s} provides s linearly independent linear functionals on the kernel of the quotient map $\mathcal{Q} \rightarrow \mathcal{Q}_{0}$. Therefore, $\operatorname{dim} \mathcal{Q}_{0} \leqslant r-s$. The canonical map $\mathcal{Q} \rightarrow \mathcal{Q}_{0} \oplus \mathbb{C}^{s}$ is completely isometric by Theorem 3.1. Dimension counting shows that it is a completely isometric isomorphism and that $\operatorname{dim} \mathcal{Q}_{0}=r-s$. Hence also $\operatorname{dim} H_{d}^{2}=r-s$.

The kernel of $\varphi_{0}: \mathcal{S}_{d} \rightarrow \mathbb{B}\left(H_{d}^{2} \ominus I\right)$ is equal to the relative closure of I with respect to the H_{d}^{2}-norm. Thus Corollary 3.2 implies that a finite codimensional ideal $I \subset \mathcal{S}_{d}$ is inner if and only if it is relatively closed with respect to the H_{d}^{2}-norm.

4. QUOTIENTS OF \mathcal{M}_{d}

We are going to use Theorem 3.1 to compute completely isometric representations of quotients $\mathcal{M}_{d} /\left(I \cap \mathcal{M}_{d}\right)$ for suitable ideals $I \subset \mathcal{O}\left(\mathbb{D}_{d}\right)$. To explain when an ideal $I \subset \mathcal{O}\left(\mathbb{D}_{d}\right)$ is suitable, we need some notation. For $x \in \mathbb{D}_{d}$, let \mathcal{O}_{x} be the ring of germs of holomorphic functions near x. There is a canonical map $\pi_{x}: \mathcal{O}\left(\mathbb{D}_{d}\right) \rightarrow \mathcal{O}_{x}$. Let $I_{x}:=\pi_{x}(I) \cdot \mathcal{O}_{x}$ be the ideal in \mathcal{O}_{x} generated by the image of I. We call I local iff $\pi_{x}(f) \in I_{x}$ for all $x \in \mathbb{D}_{d}$ already implies $f \in I$. Equivalently, I is the ring of global sections of a coherent sheaf on \mathbb{D}_{d}.

It is clear that a local ideal is closed in the topology of locally uniform convergence. Conversely, if the ideal I is closed in this topology, it is local. This deep theorem is due to Henri Cartan ([7], p. 181).

Let $\mathcal{D}_{x} \subset \mathcal{O}_{x}^{\prime}$ be the space of functionals of the form $l(f)=P\left(\partial z_{1}, \ldots, \partial z_{k}\right)$ $f(x)$, where P is some polynomial in differentiation operators. Thus \mathcal{D}_{x} is the dual space of the ring of formal power series at x with its canonical product topology. We view $\mathcal{D}_{x} \subset \mathcal{O}\left(\mathbb{D}_{d}\right)^{\prime}$ in the obvious way and let \mathcal{D} be the linear span of the subspaces \mathcal{D}_{x}.

The ideal structure of the ring \mathcal{O}_{x} is quite well understood. It turns out that an ideal $J \subset \mathcal{O}_{x}$ is automatically of the form $N^{\perp}:=\left\{f \in \mathcal{O}_{x} \mid f \perp N\right\}$ for some subspace $N \subset \mathcal{D}_{x}$, where $f \perp N$ means $l(f)=0$ for all $l \in N$. Hence a local ideal $I \subset \mathcal{O}\left(\mathbb{D}_{d}\right)$ satisfies $I=\left(I^{\perp} \cap \mathcal{D}\right)^{\perp}$.

We claim that any local ideal $I \subset \mathcal{O}\left(\mathbb{D}_{d}\right)$ can be described as the intersection of a net of finite codimensional local ideals $\left(I_{j}\right)$. We will use this to reduce assertions about arbitrary local ideals to the finite codimensional case. Actually, one can construct a decreasing sequence of ideals whose intersection is I. Since the proof of this stronger statement is rather unpleasant, we prefer to work with nets.

To prove the claim, we consider a finite subset $j:=\left\{l_{1}, \ldots, l_{m}\right\} \subset I^{\perp} \cap \mathcal{D}$. By definition of \mathcal{D}, these differentiation operators involve only derivatives up to some finite order s at finitely many points of \mathbb{D}_{d}. Let $I_{j}^{\prime} \subset \mathcal{O}\left(\mathbb{D}_{d}\right)$ be the ideal of functions vanishing in these finitely many points up to order s and let $I_{j}:=I+I_{j}^{\prime} \subset \mathcal{O}\left(\mathbb{D}_{d}\right)$. It is not hard to see that I_{j} is a local ideal of finite codimension that is annihilated by the functionals l_{1}, \ldots, l_{m}. If we let j run through all finite subsets of $I^{\perp} \cap \mathcal{D}$, we obtain a net of ideals $\left(I_{j}\right)$ with $\bigcap I_{j} \supset I$ and $\bigcap I_{j} \subset\left(I^{\perp} \cap \mathcal{D}\right)^{\perp}=I$.

If $I \subset \mathcal{O}\left(\mathbb{D}_{d}\right)$ is a local ideal, we write $H_{d}^{2} \ominus I$ for $H_{d}^{2} \ominus\left(I \cap H_{d}^{2}\right), \mathcal{M}_{d} / I$ for $\mathcal{M}_{d} /\left(I \cap \mathcal{M}_{d}\right)$, and \mathcal{S}_{d} / I for $\mathcal{S}_{d} /\left(I \cap \mathcal{S}_{d}\right)$. The subspaces $I \cap \mathcal{M}_{d}$ and $I \cap H_{d}^{2}$ are closed with respect to the norms of \mathcal{M}_{d} and H_{d}^{2}, respectively. It can happen easily that $I \cap \mathcal{M}_{d}=0$. In this case, most assertions in the following are rather empty.

If $I \subset \mathcal{O}\left(\mathbb{D}_{d}\right)$ is a finite codimensional local ideal, then each element of $\mathcal{O}\left(\mathbb{D}_{d}\right) / I$ can be represented by a polynomial. Thus $\mathcal{S}_{d} / I \cong \mathcal{M}_{d} / I \cong H_{d}^{2} \ominus I \cong$ $\mathcal{O}\left(\mathbb{D}_{d}\right) / I$. Furthermore, $I \cap \mathcal{S}_{d}$ is relatively closed with respect to the H_{d}^{2}-norm and thus inner.

Theorem 4.1. Let $I \subset \mathcal{O}\left(\mathbb{D}_{d}\right)$ be a local ideal. The subspace $H_{d}^{2} \ominus I \subset H_{d}^{2}$ is co-invariant for \mathcal{M}_{d}. The compression $\varphi: \mathcal{M}_{d} \rightarrow \mathbb{B}\left(H_{d}^{2} \ominus I\right)$ of the standard representation of \mathcal{M}_{d} to $H_{d}^{2} \ominus I$ descends to a completely isometric representation of \mathcal{M}_{d} / I. Its image $\varphi\left(\mathcal{M}_{d}\right)$ is equal to the weak closure of $\varphi\left(\mathcal{S}_{d}\right)$ and equal to the commutant of $\varphi(\mathbf{S})$, that is, the set of operators commuting with $\varphi(\mathbf{S})$.

Let $T \in \mathbb{M}_{n}\left(\mathbb{B}\left(H_{d}^{2} \ominus I\right)\right)$ commute with $1_{n} \otimes \varphi(\mathbf{S})$. If $\|T\| \leqslant 1$, then $T=$ $\varphi_{(n)}(\widehat{T})$ for some $\widehat{T} \in \mathbb{M}_{n}\left(\mathcal{M}_{d}\right)$ with $\|\widehat{T}\| \leqslant 1$.

Proof. The subspace $H_{d}^{2} \ominus I$ is the orthogonal complement of the closed $\mathcal{M}_{d^{-}}$ invariant subspace $I \cap H_{d}^{2}$ and thus co-invariant for \mathcal{M}_{d}. Hence φ is a completely contractive representation with kernel $I \cap H_{d}^{2} \cap \mathcal{M}_{d}=I \cap \mathcal{M}_{d}$.

We will show the following: if $T \in \mathbb{M}_{n}\left(\mathbb{B}\left(H_{d}^{2} \ominus I\right)\right)$ commutes with $1_{n} \otimes \varphi(\mathbf{S})$ and $\|T\| \leqslant 1$, then there is a net $\left(\widehat{T}_{j}\right)$ in $\mathbb{M}_{n}\left(\mathcal{S}_{d}\right)$ with $\left\|\widehat{T}_{j}\right\| \leqslant 1$ for all j such that $\varphi_{(n)}\left(\widehat{T}_{j}\right)$ converges towards T in the weak operator topology. Thus the commutant of $1_{n} \otimes \mathbf{S}$ and the weak closure of $\mathbb{M}_{n}\left(\varphi\left(\mathcal{S}_{d}\right)\right)$ are equal.

The unit ball of $\mathbb{M}_{n}\left(\mathcal{M}_{d}\right)$ is weakly compact. Hence a subnet of $\left(\widehat{T}_{j}\right)$ converges weakly towards some $\widehat{T} \in \mathbb{M}_{n}\left(\mathcal{M}_{d}\right)$. Necessarily, $\varphi_{(n)}(\widehat{T})=T$ because φ is continuous with respect to the weak operator topology. The theorem follows.

It remains to construct the net $\left(\widehat{T}_{j}\right)$. We assume that $n=1$ to simplify notation. The argument is the same in the matrix valued case.

Let $\left(I_{j}\right)$ be a net of finite codimensional local ideals in $\mathcal{O}\left(\mathbb{D}_{d}\right)$ with $I=\bigcap I_{j}$. Let $P: H_{d}^{2} \rightarrow H_{d}^{2} \ominus I$ and $P_{j}: H_{d}^{2} \rightarrow H_{d}^{2} \ominus I_{j}$ be the orthogonal projections. Let $\varphi_{j}: \mathcal{S}_{d} \rightarrow \mathbb{B}\left(H_{d}^{2} \ominus I_{j}\right)$ be the compression of the standard representation.
$P 1=P(1) \in H_{d}^{2} \ominus I$ is a cyclic vector for $\varphi\left(\mathcal{S}_{d}\right)$. Since T and $\varphi\left(\mathcal{S}_{d}\right)$ commute, $T(f)=P(T(P 1) \cdot f)$ for all $f \in H_{d}^{2} \ominus I$. Thus $P_{j} T P_{j}(f)=P_{j} T(f)=P_{j}(T(P 1) \cdot f)$ for all $f \in H_{d}^{2} \ominus I_{j}$. Since $\mathcal{S}_{d} / I_{j} \cong \mathcal{O}\left(\mathbb{D}_{d}\right) / I_{j}$, the operator $P_{j} T P_{j} \in \mathbb{B}\left(H_{d}^{2} \ominus I_{j}\right)$
must be in the range of φ_{j}. The homomorphism φ_{j} is a complete quotient map by Theorem 3.1. Hence there is $\widehat{T}_{j} \in \mathcal{S}_{d}$ with $\left\|\widehat{T}_{j}\right\| \leqslant 1$ and $\varphi_{j}\left(\widehat{T}_{j}\right)=(1-1 / j) P_{j} T P_{j}$. Thus $\left\langle\varphi\left(\widehat{T}_{j}\right) \xi, \eta\right\rangle=(1-1 / j)\langle T \xi, \eta\rangle$ for all $\xi, \eta \in H_{d}^{2} \ominus I_{j}$. Hence $\lim \left\langle\varphi\left(\widehat{T}_{j}\right) \xi, \eta\right\rangle=$ $\langle T \xi, \eta\rangle$, whenever $\xi, \eta \in \Sigma:=\bigcup_{j=1}^{\infty} H_{d}^{2} \ominus I_{j}$.

Since Σ is dense in $H_{d}^{2} \ominus I$ and $\left\{\varphi\left(\widehat{T}_{j}\right)\right\}$ is uniformly bounded, $\varphi\left(\widehat{T}_{j}\right)$ converges in the weak operator topology towards T. By the way, $\left(\varphi\left(\widehat{T}_{j}\right)\right)$ converges even in the $*$-strong operator topology. That is, $\widehat{T}_{j} \xi \rightarrow T \xi$ and $\widehat{T}_{j}^{*} \xi \rightarrow T^{*} \xi$ for all ξ.

For $I=\{0\}$, Theorem 4.1 asserts that \mathcal{S}_{d} is weakly dense in \mathcal{M}_{d}.

5. THE FANTAPPIE TRANSFORM

Composing the adjoint of the inclusion $H_{d}^{2} \rightarrow \mathcal{O}\left(\mathbb{D}_{d}\right)$ with the canonical conjugate linear isomorphism $\left(H_{d}^{2}\right)^{\prime} \rightarrow H_{d}^{2}$, we obtain a continuous, conjugate linear map \mathcal{F} : $\mathcal{O}\left(\mathbb{D}_{d}\right)^{\prime} \rightarrow H_{d}^{2}$. This map is characterized by $l(f)=\langle f, \mathcal{F}(l)\rangle$ for all $l \in \mathcal{O}\left(\mathbb{D}_{d}\right)^{\prime}$ and $f \in H_{d}^{2}$. Define $\delta_{x} \in \mathcal{O}\left(\mathbb{D}_{d}\right)^{\prime}$ by $\delta_{x}(f):=f(x)$ for all $f \in \mathcal{O}\left(\mathbb{D}_{d}\right)$. Equation (2.1) asserts that $\mathcal{F}\left(\delta_{x}\right)=u_{x}$, so that $\mathcal{F}\left(\delta_{x}\right)(y)=u_{x}(y)=(1-\langle y, x\rangle)^{-1}=\overline{\delta_{x}\left(u_{y}\right)}$. Since the functionals δ_{x} span a weak-*-dense subspace of $\mathcal{O}\left(\mathbb{D}_{d}\right)^{\prime}$, we conclude that

$$
\begin{equation*}
\mathcal{F}(l)(y)=\overline{l\left(u_{y}\right)} \quad \text { for all } l \in \mathcal{O}\left(\mathbb{D}_{d}\right)^{\prime}, y \in \mathbb{D}_{d} \tag{5.1}
\end{equation*}
$$

We might call \mathcal{F} the Fantappiè transform because (5.1) without conjugations is the definition of the Fantappiè transform for the domain $\mathbb{D}_{d}([8])$. The main theorem about the Fantappiè transform in [8] asserts in our special case that \mathcal{F} is a homeomorphism from $\mathcal{O}\left(\mathbb{D}_{d}\right)^{\prime}$ onto $\mathcal{O}\left(\overline{\mathbb{D}}_{d}\right)$.

Proposition 5.1. Let $I \subset \mathcal{O}\left(\mathbb{D}_{d}\right)$ be a local ideal. Define $N:=I^{\perp} \cap \mathcal{D} \subset$ $\mathcal{O}\left(\mathbb{D}_{d}\right)^{\prime}$.

The subspace $\mathcal{F}(N) \subset H_{d}^{2} \ominus I$ is dense. Every function in $\mathcal{F}(N)$ is a rational function. Thus rational functions are dense in $H_{d}^{2} \ominus I$. In particular, if I has finite codimension, then $H_{d}^{2} \ominus I$ contains only rational functions.

Proof. Since I is local, $I=N^{\perp}$ and therefore $I \cap H_{d}^{2}=\mathcal{F}(N)^{\perp}$. Thus $\mathcal{F}(N)$ is dense in $H_{d}^{2} \ominus I$. If $l(f)=P\left(\partial z_{1}, \ldots, \partial z_{d}\right) f\left(x_{0}\right)$ for a certain polynomial P of degree k, then $\mathcal{F}(l)(y)=\overline{l\left(u_{y}\right)}=p(y)\left(1-\left\langle y, x_{0}\right\rangle\right)^{-k-1}$ for another polynomial p. Thus $\mathcal{F}(N)$ contains only rational functions.

The commutative algebra $\mathcal{O}\left(\mathbb{D}_{d}\right)$ acts on its dual space $\mathcal{O}\left(\mathbb{D}_{d}\right)^{\prime}$ by $f \cdot l(h)$:= $l(f \cdot h)$ for all $f, h \in \mathcal{O}\left(\mathbb{D}_{d}\right), l \in \mathcal{O}\left(\mathbb{D}_{d}\right)^{\prime}$. Using the Fantappiè transform, we get a corresponding action on $\mathcal{O}\left(\overline{\mathbb{D}}_{d}\right)$ by $f \cdot \mathcal{F}(l):=\mathcal{F}(f \cdot l)$. We have

$$
\begin{equation*}
\langle g, \mathcal{F}(f \cdot l)\rangle=f \cdot l(g)=l(f \cdot g)=\langle f \cdot g, \mathcal{F}(l)\rangle=\left\langle M_{f} g, \mathcal{F}(l)\right\rangle=\left\langle g, M_{f}^{*} \mathcal{F}(l)\right\rangle \tag{5.2}
\end{equation*}
$$

for all $f \in \mathcal{M}_{d}, l \in \mathcal{O}\left(\mathbb{D}_{d}\right)^{\prime}, g \in H_{d}^{2}$. Hence

$$
\begin{equation*}
M_{f}^{*}(\mathcal{F}(l))=\mathcal{F}(f \cdot l) \tag{5.3}
\end{equation*}
$$

for all $f \in \mathcal{M}_{d}, l \in \mathcal{O}\left(\mathbb{D}_{d}\right)^{\prime}$. If $f \in \mathcal{O}\left(\mathbb{D}_{d}\right)$ is not necessarily a multiplier, we still define a bounded linear map $M_{f}^{*}: \mathcal{O}\left(\overline{\mathbb{D}}_{d}\right) \rightarrow \mathcal{O}\left(\overline{\mathbb{D}}_{d}\right)$ by (5.3) and view M_{f}^{*} as a densely defined unbounded operator on H_{d}^{2}. However, already for $d=1$ the adjoint of M_{f}^{*} need not be densely defined. Thus M_{f}^{*} may fail to be contained in the adjoint of another unbounded operator.

Let $f \in \mathcal{O}\left(\mathbb{D}_{d}\right)$. We say that M_{f}^{*} has positive real part and write $\operatorname{Re} M_{f}^{*} \geqslant 0$ iff the \mathbb{R}-bilinear form $\xi, \eta \mapsto \operatorname{Re}\left\langle M_{f}^{*} \xi, \eta\right\rangle$ on $\mathcal{O}\left(\overline{\mathbb{D}}_{d}\right)$ is positive definite. Observe that the map $f \mapsto \operatorname{Re}\left\langle M_{f}^{*} \xi, \eta\right\rangle$ is a continuous functional on $\mathcal{O}\left(\mathbb{D}_{d}\right)$ for fixed $\xi, \eta \in \mathcal{O}\left(\overline{\mathbb{D}}_{d}\right)$. Therefore, the set of functions $f \in \mathcal{O}\left(\mathbb{D}_{d}\right)$ with $\operatorname{Re} M_{f}^{*} \geqslant 0$ is closed in the topology of locally uniform convergence.

Let $I \subset \mathcal{O}\left(\mathbb{D}_{d}\right)$ be a local ideal, $I^{\perp} \subset \mathcal{O}\left(\mathbb{D}_{d}\right)^{\prime}$ its annihilator, and $f \in$ $\mathcal{O}\left(\mathbb{D}_{d}\right) / I$. Then $l \mapsto f \cdot l$ well defines a bounded linear map $I^{\perp} \rightarrow I^{\perp}$ because I is an ideal. Using (5.3), we define a bounded operator $M_{f}^{*}: \mathcal{F}\left(I^{\perp}\right) \rightarrow \mathcal{F}\left(I^{\perp}\right)$ and
view M_{f}^{*} as an unbounded operator on $H_{d}^{2} \ominus I \supset \mathcal{F}\left(I^{\perp}\right)$. This operator is densely defined by Proposition 5.1. We say that M_{f}^{*} has positive real part iff the \mathbb{R}-bilinear form $a, b \mapsto \operatorname{Re}\left\langle M_{f}^{*} \mathcal{F}(a), \mathcal{F}(b)\right\rangle$ on I^{\perp} is positive definite. It should be evident how to carry these definitions over to matrix valued holomorphic functions.

Theorem 5.2. Let $T \in \mathbb{M}_{n}\left(\mathcal{O}\left(\mathbb{D}_{d}\right) / I\right)$. Then there is $\widehat{T} \in \mathbb{M}_{n}\left(\mathcal{O}\left(\mathbb{D}_{d}\right)\right)$ with $T=[\widehat{T}]$ such that $M_{\widehat{T}}^{*}$ has positive real part if and only if M_{T}^{*} has positive real part.

If M_{T}^{*} is bounded and $\operatorname{Re} M_{T}^{*}$ is positive and invertible, then \widehat{T} can be chosen such that $M_{\widehat{T}}^{*} \in \mathbb{M}_{n}\left(\mathcal{M}_{d}\right)$ is bounded and $\operatorname{Re} M_{\widehat{T}}^{*}$ is positive and invertible.

Proof. The second half is easier because it does not involve unbounded operators. In [10] the positive cone of an operator algebra \mathcal{A} is defined to be the set of all $x \in \mathcal{A}$ for which $x+x^{*}$ is positive and invertible. Functional calculus with $\mathcal{C}(z):=(1-z) /(1+z)$ is a bijection between the positive cone and the open unit ball of \mathcal{A}.

Assume that M_{T} is bounded and that $2 \operatorname{Re} M_{T}:=M_{T}+M_{T}^{*}$ is invertible. The operator $\mathcal{C}\left(M_{T}\right)$ has norm strictly less than 1 , hence can be lifted to an operator $\mathcal{C}\left(\widehat{M}_{T}\right) \in \mathbb{M}_{n}\left(\mathcal{M}_{d}\right)$ of norm strictly less than 1 by Theorem 4.1. Then $\mathcal{C}\left(\mathcal{C}\left(\widehat{M}_{T}\right)\right) \in \mathbb{M}_{n}\left(\mathcal{M}_{d}\right)$ is the desired lifting of T.

In the unbounded situation, the assertion is proved by compressing to the complements of finite codimensional ideals. Let $\left(I_{j}\right)$ be a net of finite codimensional local ideals in $\mathcal{O}\left(\mathbb{D}_{d}\right)$ with $I=\bigcap I_{j}$. Let $P_{j}: H_{d}^{2} \rightarrow H_{d}^{2} \ominus I_{j}$ be the orthogonal projection. Proposition 5.1 implies that $P_{j} M_{T}^{*} P_{j}$ is defined on all of $H_{d}^{2} \ominus I_{j}$. We have $\operatorname{Re} P_{j} M_{T}^{*} P_{j} \geqslant 0$, so that $1 / j+P_{j} M_{T}^{*} P_{j}$ has positive and invertible real part.

Hence there is $\widehat{T}_{j} \in \mathbb{M}_{n}\left(\mathcal{M}_{d}\right)$ with positive and invertible real part whose compression to $H_{d}^{2} \ominus I_{j}$ is $1 / j+P_{j} M_{T}^{*} P_{j}$. View \widehat{T}_{j} as a holomorphic function $\mathbb{D}_{d} \rightarrow \mathbb{M}_{n}$, then $\operatorname{Re} \widehat{T}_{j}(x) \geqslant 0$ for all $x \in \mathbb{D}_{d}$. Thus $\left(\widehat{T}_{j}\right)$ is a normal family. A subnet of (\widehat{T}_{j}) converges locally uniformly towards a holomorphic function $\widehat{T}: \mathbb{D}_{d} \rightarrow \mathbb{M}_{n}$. Since $\operatorname{Re} M_{\widehat{T}_{j}} \geqslant 0$ for all j, it follows that $\operatorname{Re} M_{\widehat{T}} \geqslant 0$. Furthermore, $[\widehat{T}]=[T]$ in $\mathbb{M}_{n}\left(\mathcal{O}\left(\mathbb{D}_{d}\right) / I_{j}\right)$ for all j and thus $[\widehat{T}]=T$ in $\mathbb{M}_{n}\left(\mathcal{O}\left(\mathbb{D}_{d}\right) / I\right)$.

6. UNIQUENESS AND CONSTRUCTION OF SOLUTIONS

For scalar valued interpolation, we show that Sarason's criterion (see [15]) for the uniqueness of solutions generalizes to our situation. Let $I \subset \mathcal{O}\left(\mathbb{D}_{d}\right)$ be a local ideal and $\xi \in H_{d}^{2} \ominus I$ with $\|\xi\|=1$. Let $T \in \mathcal{M}_{d} / I$ satisfy $\|T\|=1$. We call ξ a maximal vector for T iff $\|T \xi\|=1$. Let $T \in \mathcal{O}\left(\mathbb{D}_{d}\right) / I$ satisfy $\operatorname{Re} M_{T}^{*} \geqslant 0$. We call ξ a zero vector for $\operatorname{Re} M_{T}^{*}$ iff $\xi \in \mathcal{O}\left(\overline{\mathbb{D}}_{d}\right) \subset H_{d}^{2}$ and $\operatorname{Re}\left\langle\xi, M_{T}^{*} \xi\right\rangle=0$. If M_{T}^{*} is bounded, this is equivalent to $\xi \in \operatorname{ker} \operatorname{Re} M_{T}^{*}$, that is, $M_{T}^{*} \xi=-T \xi$.

If I has finite codimension, then a maximal vector for T exists and can be computed explicitly whenever $\|T\|=1$. A zero vector for $\operatorname{Re} M_{T}^{*}$ exists and can be computed explicitly whenever $\operatorname{Re} M_{T}^{*} \geqslant 0$ and $\operatorname{Re} M_{T}^{*}$ is not invertible.

Theorem 6.1. Let $I \subset \mathcal{O}\left(\mathbb{D}_{d}\right)$ be a local ideal.
Let $T \in \mathcal{M}_{d} / I$ with $\|T\|=1$. If $\xi \in H_{d}^{2} \ominus I$ is a maximal vector for T, then there is a unique $f \in \mathcal{M}_{d}$ with $\|f\| \leqslant 1$ and $[f]=T$. Namely, $f(z)=(T \xi)(z) / \xi(z)$ for all $z \in \mathbb{D}_{d}$ with $\xi(z) \neq 0$.

Let $T \in \mathcal{O}\left(\mathbb{D}_{d}\right) / I$ with $\operatorname{Re} M_{T}^{*} \geqslant 0$. If $\xi \in H_{d}^{2} \ominus I$ is a zero vector for T, then there is a unique $f \in \mathcal{O}\left(\mathbb{D}_{d}\right)$ with $\operatorname{Re} M_{f}^{*} \geqslant 0$ and $[f]=T$. Namely, $f(z)=$ $-\left(M_{T}^{*} \xi\right)(z) / \xi(z)$ for all $z \in \mathbb{D}_{d}$ with $\xi(z) \neq 0$. If $T \in \mathcal{M}_{d} / I$, then $-M_{T}^{*} \xi=T \xi$.

If I is finite codimensional, then the solution is a rational function in both cases.

Proof. We consider first the case $\|T\| \leqslant 1$. By Theorem 4.1, there is $f \in \mathcal{M}_{d}$ with $\varphi(f)=T$ and $\|f\|=1$. Since $\|f \xi\|=1$ and $\left\|P_{I}^{\perp}(f \xi)\right\|=\|T \xi\|=1$, it follows that $f \cdot \xi=T \xi$. View f, ξ, and $T \xi$ as holomorphic functions on \mathbb{D}_{d}. Since $\xi \neq 0$, the set of those $z \in \mathbb{D}_{d}$ with $\xi(z) \neq 0$ is dense. On this set, $f(z)=(T \xi)(z) / \xi(z)$. This determines f uniquely on all of \mathbb{D}_{d}.

If I is finite codimensional, then $H_{d}^{2} \ominus I$ only contains rational functions by Proposition 5.1. Thus f is a rational function as a quotient of two rational functions.

In the case $\operatorname{Re} M_{T}^{*} \geqslant 0$ we use Theorem 5.2 to obtain a lift $f \in \mathcal{O}\left(\mathbb{D}_{d}\right)$ with $\operatorname{Re} M_{f}^{*} \geqslant 0$. The remaining assertions follow as above if we show that $f \cdot \xi=-M_{T}^{*} \xi$.

Since f lifts T, we have $M_{f}^{*} \xi=M_{T}^{*} \xi$. Let $l \in \mathcal{O}\left(\mathbb{D}_{d}\right)^{\prime}$ and $\eta:=\mathcal{F}(l)$. Using $\left\langle M_{f}^{*} \xi, \eta\right\rangle=l\left(M_{T}^{*} \xi\right),\left\langle\xi, M_{f}^{*} \eta\right\rangle=l(f \cdot \xi)$, and $\operatorname{Re}\left\langle\xi, M_{f}^{*} \xi\right\rangle=0$, we compute

$$
\begin{aligned}
\operatorname{Re}\left\langle\xi+\lambda \eta, M_{f}^{*}(\xi+\lambda \eta)\right\rangle & =\operatorname{Re}\left[\bar{\lambda}\left(\left\langle\xi, M_{f}^{*} \eta\right\rangle+\left\langle M_{T}^{*} \xi, \eta\right\rangle\right)+|\lambda|^{2}\left\langle\eta, M_{f}^{*} \eta\right\rangle\right] \\
& =\operatorname{Re}\left[\bar{\lambda} l\left(f \cdot \xi+M_{T}^{*} \xi\right)+|\lambda|^{2}\left\langle\eta, M_{f}^{*} \eta\right\rangle\right]
\end{aligned}
$$

for all $\lambda \in \mathbb{C}$. Since $\operatorname{Re} M_{f}^{*} \geqslant 0$, this expression is non-negative for all $\lambda \in \mathbb{C}$. Hence $l\left(f \cdot \xi+M_{T}^{*} \xi\right)=0$ for all $l \in \mathcal{O}\left(\mathbb{D}_{d}\right)^{\prime}$. Therefore, $f \cdot \xi=-M_{T}^{*} \xi$.

Theorem 6.2. Let $I \subset \mathcal{O}\left(\mathbb{D}_{d}\right)$ be a local ideal. Then $\mathcal{M}_{d} \cap I$ is dense in $H_{d}^{2} \cap I$ with respect to the H_{d}^{2}-norm. In particular, if $H_{d}^{2} \cap I \neq\{0\}$, then $\mathcal{M}_{d} \cap I \neq\{0\}$.

Proof. Let P_{I} be the orthogonal projection $H_{d}^{2} \rightarrow H_{d}^{2} \cap I$. Since the closed linear span of the functions $u_{x}, x \in \mathbb{D}_{d}$, is norm dense in H_{d}^{2}, the closed linear span of the functions $P_{I}\left(u_{x}\right)$ is norm dense in $H_{d}^{2} \cap I$. Thus it suffices to show that $\eta:=P_{I}\left(u_{x}\right)$ lies in $\mathcal{M}_{d} \cap I$ for all $x \in \mathbb{D}_{d}$. By definition,

$$
\eta=u_{x}-P_{I}^{\perp}\left(u_{x}\right) \in \mathbb{C} \cdot u_{x}+\left(H_{d}^{2} \ominus I\right)=H_{d}^{2} \ominus I_{x}
$$

where $I_{x}:=\{f \in I \mid f(x)=0\}$. If $f \in \mathcal{O}\left(\mathbb{D}_{d}\right)$, then $f \cdot \eta-f(x) \eta \in I_{x}$. Thus the projection of $f \cdot \eta$ to $H_{d}^{2} \ominus I_{x}$ equals $f(x) \eta$. Consequently, the rank one operator $T:=|\eta\rangle\left\langle u_{x}\right|$ is the compression of M_{η} to $H_{d}^{2} \ominus I_{x}$. Evidently, $u_{x} /\left\|u_{x}\right\|_{H_{d}^{2}}$ is a maximal vector for $T /\|T\|$. Thus Theorem 6.1 implies that $g(z):=u_{x}(x) \eta(z) / u_{x}(z)$ is the unique lifting of T to a multiplier with minimal norm $\|T\|$. In particular, $g \in \mathcal{M}_{d}$. Since $u_{x} \in \mathcal{O}\left(\overline{\mathbb{D}}_{d}\right) \subset \mathcal{M}_{d}$, it follows that $\eta \in \mathcal{M}_{d}$ as desired.

7. INTERPOLATION IN FINITELY MANY POINTS

Let $z_{1}, \ldots, z_{m} \in \mathbb{D}_{d}, T_{1}, \ldots, T_{m} \in \mathbb{M}_{n}$. All $f \in \mathbb{M}_{n}\left(\mathcal{M}_{d}\right)$ with $f\left(z_{j}\right)=T_{j}$ have the same class $[T]$ in $\mathbb{M}_{n}\left(\mathcal{M}_{d} / I\left(z_{1}, \ldots, z_{m}\right)\right)$. Represent $\mathcal{M}_{d} / I\left(z_{1}, \ldots, z_{m}\right)$ completely isometrically on $\mathcal{H}:=H_{d}^{2} \ominus I\left(z_{1}, \ldots, z_{m}\right)$. By (2.1), the vectors $e_{j}:=u_{z_{j}}, j=$ $1, \ldots, m$, are a basis of \mathcal{H}. If $f \in \mathbb{M}_{n}\left(\mathcal{M}_{d}\right)$, then

$$
\begin{equation*}
M_{f}^{*}\left(u_{x} \otimes \xi\right)=u_{x} \otimes\left(f(x)^{*} \xi\right) \tag{7.1}
\end{equation*}
$$

for all $x \in \mathbb{D}_{d}, \xi \in \mathbb{C}^{n}$ by (2.3). Consequently,
(7.2) $\left\langle M_{f}^{*}\left(u_{x} \otimes \xi\right), u_{y} \otimes \eta\right\rangle=\left\langle u_{x}, u_{y}\right\rangle \cdot\left\langle f(x)^{*} \xi, \eta\right\rangle=(1-\langle y, x\rangle)^{-1} \cdot\left\langle f(x)^{*} \xi, \eta\right\rangle$.

Thus $[T]^{*}$ can be computed explicitly with respect to the basis $\left\{e_{j}\right\}$.
This basis is not orthonormal but a linearly independent frame. Recall that a set of vectors $\left(\xi_{j}\right)_{j \in J}$ in a Hilbert space \mathcal{H} is called a frame iff there are numbers $A, B \in(0, \infty)$ such that, for all $\eta \in \mathcal{H}$,

$$
A\|\eta\|^{2} \leqslant \sum_{j \in J}\left|\left\langle\xi_{j}, \eta\right\rangle\right|^{2} \leqslant B\|\eta\|^{2}
$$

Proposition 7.1. Let \mathcal{H} be a Hilbert space, $\left(\xi_{j}\right)_{j \in J}$ a frame, and $T \in \mathbb{B}(\mathcal{H})$. Then T has positive real part iff the matrix with entries

$$
\begin{equation*}
\widetilde{T}_{i j}:=\left\langle T \xi_{j}, \xi_{i}\right\rangle+\left\langle\xi_{j}, T \xi_{i}\right\rangle \tag{7.3}
\end{equation*}
$$

is positive definite.
Proof. With every frame one can associate a bounded linear map $\sigma: \mathcal{H} \rightarrow$ $\ell^{2}(J)$ mapping η to $\left(\left\langle\eta, \xi_{j}\right\rangle\right)_{j \in J}$. Moreover, $\sigma^{*} \sigma$ is invertible. If T has positive real part, then so has $\sigma T \sigma^{*} \in \mathbb{B}\left(\ell^{2}(J)\right)$ because

$$
\begin{equation*}
\operatorname{Re}\left(\sigma T \sigma^{*}\right)=\frac{1}{2}\left(\sigma T \sigma^{*}+\sigma T^{*} \sigma^{*}\right)=\sigma \operatorname{Re}(T) \sigma^{*} \tag{7.4}
\end{equation*}
$$

Conversely, if $\sigma T \sigma^{*}$ has positive real part then so has $\sigma^{*} \sigma T \sigma^{*} \sigma \in \mathbb{B}(\mathcal{H})$ and hence T because $\sigma^{*} \sigma$ is invertible. Let $\left\{\delta_{j}\right\}_{j \in J}$ be the canonical basis of $\ell^{2}(J)$. Then $\sigma^{*} \delta_{j}=\xi_{j}$ and thus

$$
\left\langle 2 \operatorname{Re}\left(\sigma T \sigma^{*}\right) \delta_{j}, \delta_{i}\right\rangle=\left\langle 2 \sigma \operatorname{Re}(T) \sigma^{*} \delta_{j}, \delta_{i}\right\rangle=\left\langle 2 \operatorname{Re}(T) \xi_{j}, \xi_{i}\right\rangle=\left\langle T \xi_{j}, \xi_{i}\right\rangle+\left\langle\xi_{j}, T \xi_{i}\right\rangle .
$$

Hence the matrix \widetilde{T} belongs to the operator $2 \operatorname{Re}\left(\sigma T \sigma^{*}\right)$.
If σ is invertible (as in our finite dimensional situation) then the matrix described in (7.3) is invertible iff T has invertible real part by (7.4).

Theorem 7.2. Let $z_{1}, \ldots, z_{m} \in \mathbb{D}_{d}$ and let $T_{1}, \ldots, T_{m} \in \mathbb{M}_{n}$.
There is $F \in \mathcal{O}\left(\mathbb{D}_{d}, \mathbb{M}_{n}\right)$ with $F\left(z_{j}\right)=T_{j}$ for all j and $\operatorname{Re} M_{F}^{*} \geqslant 0$ if and only if the block matrix $A \in \mathbb{M}_{m} \otimes \mathbb{M}_{n}$ with entries

$$
\frac{T_{i}+T_{j}^{*}}{1-\left\langle z_{i}, z_{j}\right\rangle} \in \mathbb{M}_{n}
$$

is positive definite.
Proof. Let v_{1}, \ldots, v_{n} be the standard basis of \mathbb{C}^{n}. Then the vectors $e_{i} \otimes$ v_{j} form a frame for $\mathcal{H} \otimes \ell_{n}^{2}$. Equation (7.2) implies $\left\langle[T]^{*}\left(e_{j} \otimes v_{\mu}\right), e_{i} \otimes v_{\nu}\right\rangle+$ $\left\langle e_{j} \otimes v_{\mu},[T]^{*}\left(e_{i} \otimes v_{\nu}\right)\right\rangle=\left\langle\left(T_{j}^{*}+T_{i}\right) v_{\mu}, v_{\nu}\right\rangle\left(1-\left\langle z_{i}, z_{j}\right\rangle\right)^{-1}$. By Proposition 7.1, $[T]^{*}$ has positive real part iff the matrix A is positive definite. The assertion now follows from Theorem 5.2.

Theorem 7.3. Let $z_{1}, \ldots, z_{m} \in \mathbb{D}_{d}$ and let $T_{1}, \ldots, T_{m} \in \mathbb{M}_{n}$.
There is $F \in \mathbb{M}_{n}\left(\mathcal{M}_{d}\right)$ with $\|F\| \leqslant 1$ and $F\left(z_{j}\right)=T_{j}$ for all $j=1, \ldots$, m iff the block matrix $A^{\prime} \in \mathbb{M}_{m} \otimes \mathbb{M}_{n}$ with entries

$$
\frac{1-T_{i} T_{j}^{*}}{1-\left\langle z_{i}, z_{j}\right\rangle} \in \mathbb{M}_{n}
$$

is positive definite.

Proof. Let $B:=\left(\beta_{i, j}\right)$ be the matrix whose entries are the inner products

$$
\beta_{i, j}:=\left\langle e_{j}, e_{i}\right\rangle=\left(1-\left\langle z_{i}, z_{j}\right\rangle\right)^{-1}
$$

by (2.2). Since the inner product in H_{d}^{2} is positive definite, the matrix B is positive and invertible. Thus we can form the vectors

$$
\widetilde{e}_{j}:=B^{-1 / 2} e_{j}=\sum_{k=1}^{m}\left(B^{-1 / 2}\right)_{k j} e_{k}
$$

A straightforward computation shows that $\left\{\widetilde{e}_{j}\right\}$ is an orthonormal basis. Moreover, the operator $B: e_{j} \rightarrow \sum_{k} \beta_{k j} e_{k}$ still has the matrix $\left(\beta_{i j}\right)$ in the basis $\left(\widetilde{e}_{j}\right)$ because B and $B^{-1 / 2}$ commute. Some linear algebra and (7.2) yield

$$
\begin{aligned}
{[T]^{*} \widetilde{e}_{j} \otimes \xi } & =\sum_{k=1}^{m}[T]^{*}\left(B^{-1 / 2}\right)_{k j} e_{k} \otimes \xi=\sum_{k=1}^{m}\left(B^{-1 / 2}\right)_{k j} e_{k} \otimes T_{k}^{*} \xi \\
& =\sum_{k, l=1}^{m} \widetilde{e}_{l}\left(B^{1 / 2}\right)_{l k}\left(B^{-1 / 2}\right)_{k j} \otimes T_{k}^{*} \xi \\
& =\left(B^{1 / 2} \otimes \operatorname{id}_{\mathbb{C}^{n}}\right) \circ \operatorname{diag}\left(T_{1}^{*}, \ldots, T_{m}^{*}\right) \circ\left(B^{-1 / 2} \otimes \operatorname{id}_{\mathbb{C}^{n}}\right)\left(\widetilde{e}_{j} \otimes \xi\right)
\end{aligned}
$$

Hence with respect to the orthonormal basis \widetilde{e}_{j}, the operator $[T]$ is given by

$$
[T]=(B \otimes \mathrm{id})^{-1 / 2} \operatorname{diag}\left(T_{1}, \ldots, T_{n}\right)(B \otimes \mathrm{id})^{1 / 2}
$$

because $B \otimes \mathrm{id}$ is self-adjoint. This operator has norm at most 1 iff

$$
1-[T] \circ[T]^{*}=1-(B \otimes \mathrm{id})^{-1 / 2} \operatorname{diag}\left(T_{i}\right)(B \otimes \mathrm{id}) \operatorname{diag}\left(T_{j}^{*}\right)(B \otimes \mathrm{id})^{-1 / 2}
$$

is positive. Since $B \otimes \mathrm{id}$ is invertible, this is equivalent to the positivity of $B \otimes$ $\mathrm{id}-\operatorname{diag}\left(T_{i}\right)(B \otimes \mathrm{id}) \operatorname{diag}\left(T_{j}^{*}\right)$. This is the matrix A^{\prime}.

8. ALGEBRAS OF MATRICES

Fix $r \in \mathbb{N}$. Let E be the set of all commutative unital subalgebras of \mathbb{M}_{r} with $\operatorname{dim} \mathcal{A}=r$. For example, if $T \in \mathbb{M}_{r}$ is a single operator with r different eigenvalues, then the unital subalgebra generated by T is of this form. We consider E as a subset of the Grassmannian manifold of r-dimensional vector subspaces of \mathbb{M}_{r}. This yields a natural topology on E.

An algebra $\mathcal{A} \in E$ is called expanding iff $\mathcal{A} \cdot \mathcal{A}^{*}=\mathbb{M}_{r}$. Dimension counting shows that this is equivalent to the bijectivity of the linear map $m: \mathcal{A} \otimes \mathcal{A}^{*} \rightarrow \mathbb{M}_{r}$, $x \otimes y^{*} \mapsto x \cdot y^{*}$. Let x_{1}, \ldots, x_{r} be a basis of \mathcal{A}. By definition, \mathcal{A} is expanding iff the matrices $x_{i} x_{j}^{*}$ are linearly independent. This in turn is equivalent to the nonvanishing of a certain determinant. Thus the set of expanding algebras is dense in E. We are going to define invariants $\mathrm{p}(\mathcal{A})$ and $\mathrm{n}(\mathcal{A})$ for expanding algebras \mathcal{A} that determine whether \mathcal{A} is a quotient of \mathcal{S}_{d}.

We call $\xi \in \mathbb{C}^{n}$ a co-eigenvector for \mathcal{A} iff ξ is a joint eigenvector for \mathcal{A}^{*}.
An expanding algebra \mathcal{A} has a cyclic vector. In fact, any co-eigenvector ξ is cyclic because $\mathcal{A}^{*} \cdot \xi=\mathbb{C} \xi$ implies $\mathbb{C}^{r}=\mathbb{M}_{r} \cdot \xi=\mathcal{A} \cdot \mathcal{A}^{*} \xi=\mathcal{A} \cdot \xi$. If ξ is cyclic, then the map $\mathcal{A} \rightarrow \mathbb{C}^{r}, x \mapsto x \cdot \xi$, is bijective. Thus if ξ_{1} and ξ_{2} are two cyclic vectors, then there are $T_{1}, T_{2} \in \mathcal{A}$ with $\xi_{2}=T_{1} \xi_{1}$ and $\xi_{1}=T_{2} \xi_{2} . T_{1} T_{2}$ is the unique element of \mathcal{A} with $T_{1} T_{2} \xi_{2}=\xi_{2}$, so that $T_{1} T_{2}=1$. Similarly, $T_{2} T_{1}=1$, so that T_{1} and T_{2} are inverses of each other.

For $x \in \mathbb{M}_{r}$, we define a sesquilinear form $\theta_{x}: \mathcal{A}^{\prime} \times \mathcal{A}^{\prime} \rightarrow \mathbb{C}$ on the dual \mathcal{A}^{\prime} by

$$
\theta_{x}\left(l_{1}, l_{2}\right):=\left(l_{1} \otimes l_{2}^{*}\right)\left(m^{-1}(x)\right)
$$

for $l_{1}, l_{2} \in \mathcal{A}^{\prime}$, where $l_{2}^{*}\left(y^{*}\right):=\overline{l_{2}(y)}$ for all $y \in \mathcal{A}^{*}$. This form is associated to $m^{-1}(x) \in \mathcal{A} \otimes \mathcal{A}^{*}$ in a natural way. This is the reason for working on the dual of \mathcal{A}. If x is self-adjoint, then θ_{x} is Hermitian, that is, $\overline{\theta_{x}\left(l_{1}, l_{2}\right)}=\theta_{x}\left(l_{2}, l_{1}\right)$.

Let ξ be a cyclic vector and let $x:=-P_{\xi}$ be the negative of the orthogonal projection onto $\mathbb{C} \xi$. The above construction applied to $-P_{\xi}$ yields a Hermitian sesquilinear form θ_{ξ}. Let $\mathrm{p}(\mathcal{A}), \mathrm{o}(\mathcal{A})$, and $\mathrm{n}(\mathcal{A})+1$ be the number of positive, zero, and negative eigenvalues of θ_{ξ}. By definition, $\mathrm{p}(\mathcal{A})+\mathrm{o}(\mathcal{A})+\mathrm{n}(\mathcal{A})=r-1$.

These numbers do not depend on the choice of the cyclic vector ξ. For if η is another cyclic vector, then $\eta=T \xi$ for an invertible operator $T \in \mathcal{A}$. Thus $P_{\eta}=c T P_{\xi} T^{*}$ for some constant $c>0$. Therefore, $m^{-1}\left(P_{\eta}\right)=c T \cdot m^{-1}\left(P_{\xi}\right) \cdot T^{*}$. Multiplication by T is an invertible transformation on \mathcal{A}. Let $T^{\prime}: \mathcal{A}^{\prime} \rightarrow \mathcal{A}^{\prime}$ be the transpose of it. Then $\theta_{\eta}\left(l_{1}, l_{2}\right)=c \theta_{\xi}\left(T^{\prime} l_{1}, T^{\prime} l_{2}\right)$ for all $l_{1}, l_{2} \in \mathcal{A}^{\prime}$. Thus the forms θ_{η} and θ_{ξ} have the same numbers of positive, negative, and zero eigenvalues. Hence the numbers $\mathrm{p}(\mathcal{A}), \mathrm{o}(\mathcal{A}), \mathrm{n}(\mathcal{A})$ are well defined invariants of the algebra \mathcal{A}.

Let ξ be even a co-eigenvector, not just cyclic. Let $I_{\xi}:=\left\{T \in \mathcal{A} \mid T^{*} \xi=0\right\}$ be the corresponding maximal ideal. Choose any basis X_{1}, \ldots, X_{r-1} of I_{ξ} and let $X_{r}:=1$. Express $m^{-1}\left(-P_{\xi}\right)$ in this basis:

$$
\begin{equation*}
-P_{\xi}=\sum_{j, k=1}^{r} c_{j k} X_{j} X_{k}^{*} \tag{8.1}
\end{equation*}
$$

Since $X_{k}^{*} \xi=0$ for all $k \leqslant r-1$, we get $-\xi=-P_{\xi}(\xi)=\sum_{j=1}^{r} c_{j r} X_{j} \xi$. Since also $-\xi=-X_{r} \xi$, it follows that $c_{j r}=0$ for $j \leqslant r-1$ and $c_{r r}=-1$. Since $-P_{\xi}$ is
self-adjoint, $\overline{c_{j k}}=c_{k j}$ and thus $c_{r j}=0$ for $j \leqslant-1$. Diagonalizing the form $\left(c_{j k}\right)$, we obtain another basis T_{j} of I_{ξ} such that

$$
-P_{\xi}=\varepsilon_{1} T_{1} T_{1}^{*}+\cdots+\varepsilon_{r-1} T_{r-1} T_{r-1}^{*}-1
$$

with certain $\varepsilon_{j} \in\{-1,0,+1\}$. We may assume the T_{j} ordered so that all the positive ε_{j} come first. The sesquilinear form θ_{ξ} on \mathcal{A}^{\prime} is equal to

$$
\theta_{\xi}\left(l_{1}, l_{2}\right)=\sum_{j=1}^{r-1} \varepsilon_{j} l_{1}\left(T_{j}\right) \overline{l_{2}\left(T_{j}\right)}-l_{1}(1) l_{2}(1)
$$

Thus $\mathrm{p}(\mathcal{A}), \mathrm{o}(\mathcal{A})$, and $\mathrm{n}(\mathcal{A})$ are equal to the number of positive, zero, and negative ε_{j}. It follows that $\mathrm{n}(\mathcal{A}) \geqslant 0$.

As a result, in order to check that \mathcal{A} is expanding, compute the invariants $\mathrm{p}(\mathcal{A})$, etc., and the operators T_{j}, we have to do the following: Find a joint eigenvector ξ for \mathcal{A}^{*}. Compute the coefficients $c_{j k}$ in equation (8.1) (this amounts to inverting the linear map m). Diagonalize the Hermitian matrix $\left(c_{j k}\right)$. There are efficient numerical algorithms for performing these computations.

Theorem 8.1. Assume that $\mathrm{n}(\mathcal{A})=0$ and that $\mathrm{p}(\mathcal{A}) \leqslant d$. Then \mathcal{A} is completely isometric to a quotient of \mathcal{S}_{d} by some inner ideal. Let ξ be a coeigenvector and

$$
1-P_{\xi}=T_{1} T_{1}^{*}+\cdots+T_{p} T_{p}^{*}
$$

for certain $T_{1}, \ldots, T_{p} \in I_{\xi}$. Then $\mathrm{n}(\mathcal{A})=0$ and $\mathrm{p}(\mathcal{A})=p$, and $\left(T_{1}, \ldots, T_{p}, 0, \ldots, 0\right)$ is a d-contraction. The homomorphism $\mathcal{S}_{d} \rightarrow \mathcal{A}$ defined by this d-contraction is a complete quotient map.

Conversely, assume that $I \subset \mathcal{S}_{d}$ is an inner ideal of codimension r. Then $\mathcal{S}_{d} / I \subset \mathbb{B}\left(H_{d}^{2} \ominus I\right) \cong \mathbb{M}_{r}$ is expanding and $\mathrm{n}(\mathcal{A})=0, \mathrm{p}(\mathcal{A}) \leqslant d$.

We mention without proof that if $\mathcal{A} \subset \mathbb{M}_{r}$ is completely isometric to a quotient of \mathcal{S}_{d} by an inner ideal, then it is unitarily equivalent to such a quotient. Thus \mathcal{A} is expanding and satisfies $\mathrm{n}(\mathcal{A})=0, \mathrm{p}(\mathcal{A}) \leqslant d$.

Proof. The constructions above the theorem show that we can write $1-p_{\xi}=$ $T_{1} T_{1}^{*}+\cdots+T_{p} T_{p}^{*}$ if and only if $\mathrm{n}(\mathcal{A})=0$ and $\mathrm{p}(\mathcal{A})=p$. By assumption, the operator $\Delta:=1-T_{1} T_{1}^{*}-\cdots-T_{p} T_{p}^{*}$ is a rank one projection. In particular, $\mathbf{T}=\left(T_{1}, \ldots, T_{p}, 0, \ldots, 0\right)$ is a d-contraction. Let $\varphi: \mathcal{S}_{d} \rightarrow \mathcal{A}$ be the corresponding completely contractive homomorphism sending \mathbf{S} to \mathbf{T}.

Let $\Omega:=\operatorname{Spec}(\mathbf{T})$. This is a finite subset of $\overline{\mathbb{D}}_{d}$. We claim that $\Omega \subset \mathbb{D}_{d}$. Otherwise, there is $x \in \operatorname{Spec}(\mathbf{T})$ with $\|x\|_{2}=1$. Let $X:=\sum_{j=1}^{d} x_{j} T_{j}$. Since \mathbf{T} is a d-contraction, X is a contraction. By construction, 1 is an eigenvalue of X. Let $0 \neq V \subset \mathbb{C}^{r}$ be the corresponding eigenspace with $X \mid V=\mathrm{id}$. Since also $\|X\| \leqslant 1$, it follows that $X\left(\mathbb{C}^{r} \ominus V\right) \perp V$. Thus V is a reducing subspace for X. Some linear algebra shows that the orthogonal projection P_{V} can be written as a polynomial in X and therefore lies in \mathcal{A}. Thus P_{V} commutes with \mathcal{A} and thus also with \mathcal{A}^{*}. Since \mathcal{A} is expanding, P_{V} commutes with $\mathbb{M}_{r}=\mathcal{A} \cdot \mathcal{A}^{*}$. Thus $P_{V}=\mathrm{id}$, that is, $X=1$. This contradicts $T_{1}, \ldots, T_{d} \in I_{\xi} \not \ni 1$.

By Theorem 2.1, the operator \mathbf{T} can be written as the compression of $n \cdot \mathbf{S} \oplus \mathbf{Z}$ to a full co-invariant subspace \mathcal{K}. In the proof of Theorem 3.1, it is shown that
$\operatorname{Spec}(\mathbf{Z}) \subset \widehat{I}$ if \mathbf{Z} is the spherical part of the dilation of a completely contractive representation of \mathcal{S}_{d} / I. Since $\operatorname{Spec}(\mathcal{A}) \cap \partial \mathbb{D}_{d}=\emptyset$, there can be no non-trivial spherical part Z.

The number n is the rank of the defect operator Δ by Theorem 2.1, thus $n=1$. Consequently, \mathbf{T} is the compression of the d-shift \mathbf{S} to a full co-invariant subspace. By Theorem 3.1 and Corollary $3.2, \varphi$ is a complete isometry $\mathcal{S}_{d} / \operatorname{ker} \varphi \cong \mathcal{A}$.

Conversely, let $I \subset \mathcal{S}_{d}$ be an inner ideal of finite codimension r and let $\mathcal{A}:=\mathcal{S}_{d} / I$. Theorem 3.1 asserts that the standard representation of \mathcal{A} on $H_{d}^{2} \ominus I$ is completely isometric. It is shown in [3] that the closed linear span of $\mathcal{S}_{d} \cdot \mathcal{S}_{d}^{*}$ contains the algebra $\mathbb{K}\left(H_{d}^{2}\right)$ of compact operators on $\mathbb{B}\left(H_{d}^{2}\right)$. Thus \mathcal{A} is expanding:

$$
\mathcal{A} \cdot \mathcal{A}^{*}=P_{I}^{\perp} \cdot \mathcal{S}_{d} \cdot P_{I}^{\perp} \cdot \mathcal{S}_{d}^{*} \cdot P_{I}^{\perp}=P_{I}^{\perp} \cdot \mathcal{S}_{d} \cdot \mathcal{S}_{d}^{*} \cdot P_{I}^{\perp} \supset P_{I}^{\perp} \cdot \mathbb{K}\left(H_{d}^{2}\right) \cdot P_{I}^{\perp}=\mathbb{M}_{r}
$$

By Theorem 2.2, the automorphism group of \mathbb{D}_{d} operates completely isometrically on \mathcal{S}_{d}. Since it operates transitively on $\mathbb{D}_{d} \subset \operatorname{Spec}\left(\mathcal{S}_{d}\right)$, we may assume without loss of generality that $0 \in \operatorname{Spec}\left(\mathcal{S}_{d} / I\right)$. Thus $1=u_{0} \in H_{d}^{2} \ominus I$. In fact, 1 is a co-eigenvector for \mathcal{A}. Arveson computes that $1-S_{1} S_{1}^{*}-\cdots-S_{d} S_{d}^{*}$ is the rank one projection onto $\mathbb{C} \cdot 1$. Let $S(I)_{j}:=P_{I}^{\perp} S_{j} P_{I}^{\perp}=P_{I}^{\perp} S_{j}$. We conclude that $P_{I}^{\perp}-S(I)_{1} S(I)_{1}^{*}-\cdots-S(I)_{d} S(I)_{d}^{*}$ is still the rank one projection onto $\mathbb{C} \cdot 1$. Consequently, $\mathrm{n}(\mathcal{A})=0$ and $\mathrm{p}(\mathcal{A}) \leqslant d$.

The sesquilinear form θ depends continuously on $\mathcal{A} \in E$ in a suitable sense. Thus an eigenvalue of θ cannot change its sign without becoming zero in between. Hence if o $(\mathcal{A})=0$, then p and n are constant in a neighborhood of \mathcal{A}. Thus the set of r-dimensional quotients of \mathcal{S}_{r-1} with $\mathrm{p}(\mathcal{A})=r-1$ is an open subset of E. The boundary of this set consists of the r-dimensional quotients of \mathcal{S}_{r-2}. The set of expanding algebras with $\mathrm{n}(\mathcal{A})>0, \mathrm{o}(\mathcal{A})=0$ is an open subset of algebras that are not quotients of any \mathcal{S}_{d}.

Let $\mathcal{A} \cong \mathcal{S}_{d} / I$ and let $\rho: \mathcal{A} \rightarrow \mathbb{B}(\mathcal{H})$ be a representation. Then ρ is completely contractive iff $\rho[\mathbf{S}]$ is a d-contraction. This is quite an efficient criterion to check whether a representation is completely contractive. Furthermore, quotients of \mathcal{A} can be computed explicitly. These are reasons why it is desirable to write an algebra as a quotient of \mathcal{S}_{d}.

REFERENCES

1. J. Arazy, A survey of invariant Hilbert spaces of analytic functions on bounded symmetric domains, in Multivariable Operator Theory (Seattle, 1993), Amer. Math. Soc., Providence, RI, 1995, pp. 7-65.
2. A. Arias, G. Popescu, Noncommutative interpolation and Poisson transforms, Israel J. Math. 115(2000), 205-234.
3. W.B. Arveson, Subalgebras of C^{*}-algebras. III, Multivariable operator theory, Acta Math. 181(1998), 159-228.
4. B. Bagchi, G. Misra, Homogeneous tuples of multiplication operators on twisted Bergman spaces, J. Funct. Anal. 136(1996), 171-213.
5. D.P. Blecher, Z.-J. Ruan, A.M. Sinclair, A characterization of operator algebras, J. Funct. Anal. 89(1990), 188-201.
6. K.R. Davidson, D.R. Pitts, Nevanlinna-Pick interpolation for non-commutative analytic Toeplitz algebras, Integral Equations Operator Theory 31(1998), 321-337.
7. H. Grauert, R. Remmert, Theorie der Steinschen Räume, Springer-Verlag, Berlin 1977.
8. L. Hörmander, Notions of Convexity, Birkhäuser Verlag, Boston 1994.
9. M. Jarnicki, P. Pflug, Invariant Distances and Metrics in Complex Analysis, Walter de Gruyter \& Co., Berlin 1993.
10. R. Meyer, Adjoining a unit to an operator algebra, J. Operator Theory, to appear.
11. R. Nevanlinna, Über beschränkte Funktionen mit vorgeschriebenen Wertzuordnungen, Ann. Acad. Sci. Fenn. Ser. B 13(1919).
12. V.I. Paulsen, Completely Bounded Maps and Dilations, Longman Scientific \& Technical, Harlow 1986.
13. G. PıCK, Über die Beschränkungen analytischer Funktionen, welche durch vorgegebene Funktionswerte bewirkt sind, Math. Ann. 77(1916), 7-23.
14. G. Pick, Über beschränkte Funktionen, die in gegebenen Punkten vorgeschriebene Werte annehmen, Ann. Acad. Sci. Fenn. Ser. B 15(1919).
15. D. Sarason, Generalized interpolation in H^{∞}, Trans. Amer. Math. Soc. 127(1967), 179-203.

RALF MEYER
SFB 478 - Geometrische Strukturen
in der Mathematik
Universität Münster
Hittorfstr. 27 48149 Münster GERMANY
E-mail: rameyer@math.uni-muenster.de

