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Abstract. We compute completely isometric representations of quotients
of the operator algebra Sd generated by the d-shift introduced by Arveson.
This gives rise to a higher dimensional generalization of Nevanlinna-Pick
interpolation theory.

Quotients of Sd of dimension r admit a completely isometric represen-
tation by r× r-matrices. There is an efficient criterion to decide whether an
r-dimensional algebra of r × r-matrices is a quotient of Sd.
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1. INTRODUCTION

In [3], Arveson defines the d-shift S = (S1, . . . , Sd), acting on a certain Hilbert
space H2

d . The definitions of the d-shift and of H2
d are recalled in Section 2

together with some properties we will need in the following. We write B(H) for
the C∗-algebra of bounded operators on a Hilbert space H. Let

Dd := {(z1, . . . , zd) ∈ Cd
∣∣ |z1|2 + · · ·+ |zd|2 < 1}

be the open Euclidean unit ball and let Dd be its closure. We write O(Dd) for
the algebra of holomorphic functions on Dd and O(Dd) for the algebra of functions
holomorphic in a neighborhood of Dd. Let Sd be the norm closed unital subalgebra
of B(H2

d) generated by S1, . . . , Sd. We call f ∈ O(Dd) a multiplier on H2
d iff

f · g ∈ H2
d for all g ∈ H2

d and write Md for the algebra of multipliers. We have
inclusions Md ⊂ B(H2

d) and

O(Dd) ⊂ Sd ⊂Md ⊂ H2
d ⊂ O(Dd).
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Assume given z1, . . . , zm ∈ Dd and n × n-matrices T1, . . . , Tm ∈ Mn. There
is f ∈ Mn(Md) with ‖f‖ 6 1 and f(zj) = Tj for all j if and only if the block
matrix with entries

(1.1)
1− TiT

∗
j

1− 〈zi, zj〉
∈ Mn

is positive definite. Here 〈zi, zj〉 stands for the Hilbert space inner product on Cd

with unit ball Dd. There is a bounded f ∈ Mn(Md) with f(zj) = Tj for all j and
positive real part in B(H2

d) if the matrix with entries

(1.2)
Ti + T ∗j

1− 〈zi, zj〉
∈ Mn

is positive definite and invertible. If we allow for f to be an unbounded multiplier,
it suffices to assume that the matrix in (1.2) is positive definite. In the scalar
valued case n = 1, the solution f is unique if the matrix in (1.1) or (1.2) is positive
and not invertible. The unique solution is a rational function with poles outside Dd.
There is an algorithm to compute it.

The same conditions (1.1) and (1.2) occur in classical Nevanlinna-Pick inter-
polation theory ([13], [11] and [14]), which is the special case d = 1. For d = 1, the
1-shift is the usual unilateral shift, S1 is the algebra O(D) of continuous functions
on D holomorphic on D, and M1

∼= H∞(D). Thus Nevanlinna-Pick interpolation
theory is a special case of the assertions above.

After submitting the article, I learned that some of these interpolation results
have been obtained independently also by Arias and Popescu([2]) and by Davidson
and Pitts ([6]). These authors work with a non-commutative version of the d-shift
and obtain interpolation results in that setting. Dividing out the commutator ideal
then yields results about interpolation in Mn(Md). In this way, Theorem 4.1 and
Theorem 7.3 become special cases of results in [2] and [6].

A map ϕ : A → B between operator algebras is called completely contractive
iff the induced maps ϕ(n) : Mn(A) → Mn(B) are contractive for all n ∈ N ([12]).
Completely isometric maps and complete quotient maps are defined by requiring
that ϕ(n) be isometric or a quotient map for all n ∈ N, respectively.

The essential step in the proof of the interpolation results is to obtain a com-
pletely isometric representation of the quotient algebra Md/I(z1, . . . , zm). Here
I(z1, . . . , zn) denotes the ideal of functions vanishing in the points z1, . . . , zn. As
for the 1-dimensional case ([15]), it turns out that the compression of the standard
representation Md → B(H2

d) to the subspace H2
d 	 I(z1, . . . , zm) is completely

isometric. Having this, one can solve the interpolation problem as in [15].
More generally, for suitable ideals I ⊂ O(Dd), the representation of Md/(I ∩

Md) on H2
d 	 (I ∩H2

d) is completely isometric. This is proved by reduction to the
case of finite codimensional ideals. For those, one can replace Md/I by Q := Sd/I.
The proof that the representation of Q on H2

d 	 I is completely isometric is based
on the universal property of the d-shift and the fact that Q can be represented
completely isometrically at all, a consequence of [5].

We obtain a completely isometric representation of Sd/I for all ideals I ⊂ Sd.
In good cases, the canonical representation on H2

d 	 I is completely isometric. We
call such ideals inner. In general, one must add a representation coming from
a spherical operator, that is, a d-tuple Z = (Z1, . . . , Zd) of commuting normal
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operators satisfying Z1Z
∗
1 + · · ·+ ZdZ

∗
d = 1. It is quite remarkable that Sd/I has

a completely isometric representation by r × r-matrices if dimSd/I = r.
The main difference between our methods and those of [2] and [6] is that

we construct completely isometric representations of quotients of Sd and reduce
questions about Md to Sd. In contrast, [2] and [6] work mostly with Md and have
little to say about quotients of Sd.

In Section 8 we start with an r-dimensional commutative subalgebra A ⊂ Mr

and ask whether it can be written as a quotient of Sd by an inner ideal. There is an
efficient algorithm to decide this question and obtain the quotient map Sd → A.
Having such a quotient map is very useful to check numerically whether a given
representation of A is completely contractive.

A necessary condition for A ⊂ Mr to be a quotient of Sd by an inner ideal is
that A · A∗ = Mr. In that case, we call A expanding. If A is expanding, a certain
Hermitian sesquilinear form θ on A is defined. This form is diagonal in a suitable
basis X1, . . . , Xr of A:

θ

( r∑
j=1

ajXj ,
r∑

k=1

bkXk

)
=

r∑
j=1

εjajbj

with certain εj ∈ {−1, 0, 1} and always εr = −1. Let p(A), o(A), and n(A)+1 be
the numbers of positive, zero, and negative εj . These numbers are invariants of A.
The basis Xj can be ordered so that all the positive εj come first. A is a quotient
of Sd iff n(A) = 0 and p(A) 6 d. The map sending Sj 7→ Xj for j = 1, . . . ,p(A)
and Sj 7→ 0 for j > p(A) is a complete quotient map. This criterion shows that
the quotients of Sr−1 form a closed subset with non-empty interior of the space of
r-dimensional commutative subalgebras of Mr.

2. PREPARATIONS: THE d-SHIFT

Arveson ([3]) defines a positive definite inner product on the space C[z1, . . . , zd] of
polynomials in d variables. The Hilbert space H2

d is the completion of C[z1, . . . , zd]
with respect to this inner product. There is a canonical continuous embedding
H2

d ⊂ O(Dd). The d-shift is the operator of multiplication by the coordinate
functions, (Sjf)(z) := zjf(z) for all f ∈ H2

d , z ∈ Dd, j = 1, . . . , d.
The inner product of H2

d can be characterized most easily by its reproducing
kernel. Define 〈z, x〉 := z1x1 + · · ·+ zdxd for z, x ∈ Dd and ux(z) := (1−〈z, x〉)−1.
We have ux ∈ H2

d for all x ∈ Dd and

(2.1) 〈f, ux〉 = f(x)

for all f ∈ H2
d . Especially,

(2.2) 〈ux, uy〉 = (1− 〈y, x〉)−1.

Moreover, the vectors {ux} span a dense subset of H2
d . Thus (x, y) 7→ uy(x) is a

reproducing kernel for the Hilbert space H2
d . It also follows that

(2.3) M∗
f (ux) = f(x)ux,
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where M∗
f is the adjoint of the operator Mf of multiplication by f . Thus ux is a

joint eigenvector for S∗ with eigenvalue x. There are no further joint eigenvectors
for S∗. The spectrum of the operator algebra Sd is homeomorphic to Dd. Thus
functional calculus provides an inclusion O(Dd) ⊂ Sd.

A d-contraction is a d-tuple of commuting operators T = (T1, . . . , Td) on a
Hilbert space H satisfying

(2.4) ‖T1ξ1 + · · ·+ Tdξd‖2 6 ‖ξ1‖2 + · · ·+ ‖ξd‖2

for all ξ1, . . . , ξd ∈ H. An equivalent condition is that the 1× d-matrix

(T1 T2 · · · Td )

be a contraction. The d-shift is the universal d-contraction in the following sense:
If T is a d-contraction on H, then there is a unique completely contractive repre-
sentation ϕ : Sd → B(H) sending Sj 7→ Tj . Conversely, if ϕ is a completely con-
tractive representation of Sd, then ϕ(S) =

(
ϕ(S1), . . . , ϕ(Sd)

)
is a d-contraction.

Arveson obtains much more detailed spatial information. We need some notation
to formulate his results.

For n ∈ N ∪ {0,∞}, let `2n be the n-dimensional Hilbert space and let n · S
be the direct sum of n copies of the d-shift S acting on `2n ⊗ H2

d . A spherical
operator is a d-tuple Z = (Z1, . . . , Zd) of commuting normal operators satisfying
Z1Z

∗
1 + · · ·+ZdZ

∗
d = 1. Let A be a set of operators on H. A closed subspace K is

called co-invariant for A iff its orthogonal complement is A-invariant. Equivalently,
K is invariant for A∗ := {T ∈ B(H) | T ∗ ∈ A}. Let C∗(A) be the C∗-algebra
generated by A. A closed subspace K is called full for A iff C∗(A) · K is dense
in H.

Theorem 2.1. (Arveson, [3]) Let d ∈ N and let T = (T1, . . . , Td) be a
d-contraction acting on some separable Hilbert space. Let n ∈ N ∪ {0,∞} be the
rank of the operator 1− T1T

∗
1 − · · · − TdT

∗
d .

Then there is a pair (Z,K) consisting of a spherical operator Z and a full co-
invariant subspace K for the operator n ·S⊕Z such that T is unitarily equivalent
to the compression of n · S⊕ Z to K.

For d = 1, a spherical operator is a unitary operator and the dilation n ·S⊕Z
occurring in Theorem 2.1 is the von Neumann-Wold decomposition of an isometry.

Up to a constant, the reproducing kernel of H2
d is the 1/(d + 1)st power of

the Bergman kernel

KDd
(x, y) =

d!
πd

(1− 〈x, y〉)−(d+1)

of the domain Dd ([9]). Thus H2
d is a “twisted Bergman space” in the terminology

of [4]. These spaces are studied in harmonic analysis because they carry a natural
projective representation of the automorphism group of the domain:
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Theorem 2.2. Let h ∈ Aut(Dd) be an automorphism of Dd, that is, a
holomorphic map Dd → Dd with holomorphic inverse. Let

δ(z) :=
(
detDh(z)

)1/(d+1)
,

where any holomorphic branch of the root is chosen, and let (Tf)(z) := δ(z)f
(
h(z)

)
for f ∈ H2

d , z ∈ Dd. Then T defines a unitary operator H2
d → H2

d . This gives rise
to a projective representation of Aut(Dd) on H2

d .
Moreover, Mf◦h◦T = T ◦Mf for all f ∈ Sd, so that f 7→ f ◦h is a completely

isometric automorphism of Sd.

The proof is based on the behavior of the Bergman kernel under biholomor-
phic mappings ([9], Proposition 6.1.7), which implies(

detDh(z)
)λ(

detDh(w)
)λ
KDd

(
h(z), h(w)

)λ = KDd
(z, w)λ

for all λ ∈ R, z, w ∈ Dd, and h ∈ Aut(Dd). See [1].

3. COMPLETELY ISOMETRIC REPRESENTATIONS OF QUOTIENTS OF Sd

Let I ⊂ Sd be a closed ideal. Let Î ⊂ Spec(Sd) be the set of all maximal
ideals containing I. Hence Î ∼= Spec(Sd/I). Identify Spec(Sd) ∼= Dd and consider

Î ⊂ Dd. Let ∂Î be the smallest compact subset of Î such that Î = Î ∩ Dd ∪ ∂Î.
Thus

∂Î := Î \ Î ∩ Dd.

The ideal I is called inner iff ∂Î = ∅ or equivalently Î ∩ Dd is dense in Î. For
example, the ideal I := {0} is inner because Î = Dd.

Let P : H2
d → H2

d 	 I be the orthogonal projection onto the orthogonal
complement of I. Let ϕ0 : Sd → B(H2

d 	 I) be the compression f 7→ PfP . The
map ϕ0 is a unital, completely contractive homomorphism because the closure I
of I in H2

d is Sd-invariant. Moreover, kerϕ0 = I ∩ Sd ⊃ I. Consequently, ϕ0

descends to a completely contractive representation of the quotient algebra Sd/I.
It sends [Sj ], the class of Sj in the quotient, to S(I)j := PSjP .

Let N(I) be a spherical operator with spectrum ∂Î, acting on some Hilbert
space H∂ . Compose the Gelfand transformation for the commutative Banach
algebra Sd/I with the functional calculus for the normal multi-operator N(I) to
get a completely contractive representation ϕ∂ : Sd/I → C(Î) → B(H∂) sending
[Sj ] 7→ N(I)j . Thus

ψ := ϕ0 ⊕ ϕ∂ : Sd/I → B
(
(H2

d 	 I)⊕H∂

)
, ψ[Sj ] := S(I)j ⊕N(I)j ,

is a completely contractive representation of Sd/I.
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Theorem 3.1. The representation ψ is completely isometric. If I is inner,
then the representation ϕ0 : Sd/I → B(H2

d 	 I) is completely isometric.

Proof. Any quotient of a unital operator algebra by a closed ideal is again
a unital operator algebra ([5]). Thus Sd/I has a unital, completely isometric
representation ρ : Sd/I → B(H). Let A be the closure of the range of ψ, that
is, the unital operator algebra generated by the multi-operator S(I) ⊕ N(I) on
H2

d 	I⊕H∂ . The theorem follows once the homomorphism h : A → B(H) sending
ψ(Sj) to ρ[Sj ] is shown to be well defined and completely contractive. Then h is
completely isometric.

The multi-operator ρ[S] =
(
ρ[S1], . . . , ρ[Sd]

)
is a d-contraction. We leave it to

the reader to show that H can be chosen to be separable (or to extend Theorem 2.1
to the case of d-contractions on non-separable Hilbert spaces).

Apply Theorem 2.1 to ρ[S]. This yields n ∈ N∪{0,∞}, a spherical operator Z
acting on some Hilbert space HZ, and a full co-invariant subspace K of

(3.1) Ĥ := (`2n ⊗H2
d)⊕HZ,

such that ρ[S] is unitarily equivalent to the compression of n · S ⊕ Z to K. Let
ρ̂ : Sd → B(Ĥ) be the representation defined by ρ̂(Sj) := n · Sj ⊕ Zj . Since K is
co-invariant for n · S⊕ Z, its orthogonal complement K⊥ is ρ̂(Sd)-invariant. Let

H2 := Ĥ 	 ρ̂(I) · Ĥ = {ξ ∈ Ĥ | ξ⊥ρ̂(f)η for all f ∈ I, η ∈ Ĥ}.

We claim that K ⊂ H2. Equivalently, ρ̂(f)η⊥K for all f ∈ I, η ∈ Ĥ. This is
evident for η ∈ K⊥ because K⊥ is ρ̂(Sd)-invariant. Since the compression of ρ̂(f)
to K is ρ[f ] = ρ(0) = 0, we also get ρ̂(f)η⊥K for η ∈ K. Thus ρ̂(f)η⊥K for all
η ∈ K⊥ ⊕K = Ĥ as desired. Equation (3.1) implies immediately that

H2
∼=

(
`2n ⊗ (H2

d 	 I)
)
⊕ (HZ 	 ρ̂(I)HZ).

Since Z is normal and ρ̂(I)HZ is Z-invariant, the subspace ρ̂(I)HZ is also invariant
for Z∗, that is, a reducing subspace. Thus C∗(n · S ⊕ Z) maps Ĥ 	 ρ̂(I)HZ ⊃ K
into itself. Since K is full, it follows that ρ̂(I) ·HZ = {0}. Therefore, Spec(Z) ⊂ Î.

The homomorphism ψ : Sd → A gives rise to a continuous map ψ∗ :
Spec(A) → Spec(Sd) ∼= Dd. We claim that

(3.2) ψ∗
(
Spec(A)

)
= Î .

This is of course a necessary condition for Sd/I ∼= A. Since ψ annihilates I, it
is clear that ψ∗

(
Spec(A)

)
⊂ Î. Let x ∈ Î ∩ Dd. Then ux⊥I by equation (2.1).

Consequently,

f 7→ ‖ux‖−2
2 〈fux, ux〉 = ‖ux‖−2

2 〈ux, f
∗ux〉 = f(x)

is a well defined and contractive linear functional on A. Thus x ∈ Spec(A). Hence

Î ∩ Dd ⊂ Spec(A) and Î ∩ Dd ⊂ Spec(A) by compactness. The other points of
Î ∩ ∂Dd are in ∂Î = Spec

(
N(I)

)
⊂ Spec(A). Equation (3.2) follows.

Since Spec(A) ∼= Î, the Gelfand transformation gives rise to a completely
contractive homomorphism g1 : A → C(Î). Since Z is a normal operator with
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spectrum contained in Î, functional calculus for Z gives rise to a ∗-representation
g2 : C(Î) → B(HZ). Let f : A → B(H2

d 	 I) be the compression to the first
summand. Let n · f : A → B

(
`2n ⊗ (H2

d 	 I)
)

be the direct sum of n copies
of f , that is, n · f : x 7→ id`2n

⊗ f(x). Clearly, n · f is a completely contractive
representation.

Thus we get a completely contractive representation n · f ⊕ (g2 ◦ g1) : A →
B(H2) that maps ψ(S) to the compression of ρ̂(S) to H2. Compressing further
to H ∼= K ⊂ H2, we see that h is well defined and completely contractive, as
desired.

Suppose that I has finite codimension r, so that Q := Sd/I is r-dimensional.
Since the spectrum Î of Q is finite, we get ∂Î = Î ∩ ∂Dd. Let ∂Î have s elements
x1, . . . , xs. We choose N(I) as a diagonal multi-operator on H∂ := Cs. By Theo-
rem 3.1, ϕ0 ⊕ ϕ∂ is a completely isometric representation of Q. Let Q0 := ϕ0(Q).

Corallary 3.2. The operator algebra Q is completely isometrically isomor-
phic to the orthogonal direct sum Q0⊕C⊕· · ·⊕C, with s copies of C corresponding
to x1, . . . , xs ∈ Spec(Q) ∩ ∂Dd. In addition, dimH2

d 	 I = r − s.
Thus Q has a completely isometric representation by r × r-matrices.

Proof. We claim that Spec(Q0) ⊂ Dd. The orthogonal projection of 1 ∈ H2
d

to H2
d 	 I is a cyclic vector for Q0. Hence dimQ0 = dimH2

d 	 I is finite. Let
x ∈ Spec(Q0) and let Q∗0 ⊂ B(H2

d 	 I) be the algebra of adjoints of elements
of Q0. The map q 7→ q(x) is a character of Q∗0. Since H2

d 	 I is finite dimensional,
elementary linear algebra shows that there is an eigenvector η ∈ H2

d 	 I with
ϕ0(f)∗η = f(x)η for all f ∈ Sd. Since H2

d 	 I is S∗d -invariant, η ∈ H2
d is also a

joint eigenvector for S∗. But we know all joint eigenvectors of S∗: They are the
vectors ux with x ∈ Dd. Therefore x ∈ Dd.

Since Spec(Q0) ⊂ Dd, evaluation at x1, . . . , xs provides s linearly indepen-
dent linear functionals on the kernel of the quotient map Q → Q0. Therefore,
dimQ0 6 r− s. The canonical map Q → Q0⊕Cs is completely isometric by The-
orem 3.1. Dimension counting shows that it is a completely isometric isomorphism
and that dimQ0 = r − s. Hence also dimH2

d = r − s.

The kernel of ϕ0 : Sd → B(H2
d 	 I) is equal to the relative closure of I with

respect to the H2
d -norm. Thus Corollary 3.2 implies that a finite codimensional

ideal I ⊂ Sd is inner if and only if it is relatively closed with respect to the
H2

d -norm.
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4. QUOTIENTS OFMd

We are going to use Theorem 3.1 to compute completely isometric representations
of quotients Md/(I ∩ Md) for suitable ideals I ⊂ O(Dd). To explain when an
ideal I ⊂ O(Dd) is suitable, we need some notation. For x ∈ Dd, let Ox be
the ring of germs of holomorphic functions near x. There is a canonical map
πx : O(Dd) → Ox. Let Ix := πx(I) · Ox be the ideal in Ox generated by the
image of I. We call I local iff πx(f) ∈ Ix for all x ∈ Dd already implies f ∈ I.
Equivalently, I is the ring of global sections of a coherent sheaf on Dd.

It is clear that a local ideal is closed in the topology of locally uniform
convergence. Conversely, if the ideal I is closed in this topology, it is local. This
deep theorem is due to Henri Cartan ([7], p. 181).

Let Dx ⊂ O′
x be the space of functionals of the form l(f) = P (∂z1, . . . , ∂zk)

f(x), where P is some polynomial in differentiation operators. Thus Dx is the dual
space of the ring of formal power series at x with its canonical product topology.
We view Dx ⊂ O(Dd)′ in the obvious way and let D be the linear span of the
subspaces Dx.

The ideal structure of the ring Ox is quite well understood. It turns out that
an ideal J ⊂ Ox is automatically of the form N⊥ := {f ∈ Ox | f⊥N} for some
subspace N ⊂ Dx, where f⊥N means l(f) = 0 for all l ∈ N . Hence a local ideal
I ⊂ O(Dd) satisfies I = (I⊥ ∩ D)⊥.

We claim that any local ideal I ⊂ O(Dd) can be described as the intersec-
tion of a net of finite codimensional local ideals (Ij). We will use this to reduce
assertions about arbitrary local ideals to the finite codimensional case. Actually,
one can construct a decreasing sequence of ideals whose intersection is I. Since
the proof of this stronger statement is rather unpleasant, we prefer to work with
nets.

To prove the claim, we consider a finite subset j := {l1, . . . , lm} ⊂ I⊥∩D. By
definition of D, these differentiation operators involve only derivatives up to some
finite order s at finitely many points of Dd. Let I ′j ⊂ O(Dd) be the ideal of functions
vanishing in these finitely many points up to order s and let Ij := I+ I ′j ⊂ O(Dd).
It is not hard to see that Ij is a local ideal of finite codimension that is annihilated
by the functionals l1, . . . , lm. If we let j run through all finite subsets of I⊥ ∩ D,
we obtain a net of ideals (Ij) with

⋂
Ij ⊃ I and

⋂
Ij ⊂ (I⊥ ∩ D)⊥ = I.

If I ⊂ O(Dd) is a local ideal, we write H2
d 	 I for H2

d 	 (I ∩H2
d), Md/I for

Md/(I ∩Md), and Sd/I for Sd/(I ∩ Sd). The subspaces I ∩Md and I ∩H2
d are

closed with respect to the norms of Md and H2
d , respectively. It can happen easily

that I ∩Md = 0. In this case, most assertions in the following are rather empty.
If I ⊂ O(Dd) is a finite codimensional local ideal, then each element of

O(Dd)/I can be represented by a polynomial. Thus Sd/I ∼= Md/I ∼= H2
d 	 I ∼=

O(Dd)/I. Furthermore, I ∩ Sd is relatively closed with respect to the H2
d -norm

and thus inner.
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Theorem 4.1. Let I ⊂ O(Dd) be a local ideal. The subspace H2
d 	 I ⊂ H2

d

is co-invariant for Md. The compression ϕ : Md → B(H2
d 	 I) of the standard

representation of Md to H2
d 	 I descends to a completely isometric representation

of Md/I. Its image ϕ(Md) is equal to the weak closure of ϕ(Sd) and equal to the

commutant of ϕ(S), that is, the set of operators commuting with ϕ(S).

Let T ∈ Mn

(
B(H2

d 	 I)
)

commute with 1n ⊗ ϕ(S). If ‖T‖ 6 1, then T =
ϕ(n)(T̂ ) for some T̂ ∈ Mn(Md) with ‖T̂‖ 6 1.

Proof. The subspace H2
d	I is the orthogonal complement of the closed Md-

invariant subspace I ∩H2
d and thus co-invariant for Md. Hence ϕ is a completely

contractive representation with kernel I ∩H2
d ∩Md = I ∩Md.

We will show the following: if T ∈ Mn

(
B(H2

d 	 I)
)

commutes with 1n⊗ϕ(S)
and ‖T‖ 6 1, then there is a net (T̂j) in Mn(Sd) with ‖T̂j‖ 6 1 for all j such that
ϕ(n)(T̂j) converges towards T in the weak operator topology. Thus the commutant
of 1n ⊗ S and the weak closure of Mn

(
ϕ(Sd)

)
are equal.

The unit ball of Mn(Md) is weakly compact. Hence a subnet of (T̂j) con-
verges weakly towards some T̂ ∈ Mn(Md). Necessarily, ϕ(n)(T̂ ) = T because ϕ is
continuous with respect to the weak operator topology. The theorem follows.

It remains to construct the net (T̂j). We assume that n = 1 to simplify

notation. The argument is the same in the matrix valued case.

Let (Ij) be a net of finite codimensional local ideals in O(Dd) with I =
⋂
Ij .

Let P : H2
d → H2

d 	 I and Pj : H2
d → H2

d 	 Ij be the orthogonal projections. Let
ϕj : Sd → B(H2

d 	 Ij) be the compression of the standard representation.

P1 = P (1) ∈ H2
d	I is a cyclic vector for ϕ(Sd). Since T and ϕ(Sd) commute,

T (f) = P (T (P1) ·f) for all f ∈ H2
d	I. Thus PjTPj(f) = PjT (f) = Pj(T (P1) ·f)

for all f ∈ H2
d 	 Ij . Since Sd/Ij ∼= O(Dd)/Ij , the operator PjTPj ∈ B(H2

d 	 Ij)

must be in the range of ϕj . The homomorphism ϕj is a complete quotient map by
Theorem 3.1. Hence there is T̂j ∈ Sd with ‖T̂j‖ 6 1 and ϕj(T̂j) = (1−1/j)PjTPj .
Thus 〈ϕ(T̂j)ξ, η〉 = (1− 1/j)〈Tξ, η〉 for all ξ, η ∈ H2

d 	 Ij . Hence lim〈ϕ(T̂j)ξ, η〉 =

〈Tξ, η〉, whenever ξ, η ∈ Σ :=
∞⋃

j=1

H2
d 	 Ij .

Since Σ is dense inH2
d	I and {ϕ(T̂j)} is uniformly bounded, ϕ(T̂j) converges

in the weak operator topology towards T . By the way,
(
ϕ(T̂j)

)
converges even in

the ∗-strong operator topology. That is, T̂jξ → Tξ and T̂ ∗j ξ → T ∗ξ for all ξ.

For I = {0}, Theorem 4.1 asserts that Sd is weakly dense in Md.
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5. THE FANTAPPIÈ TRANSFORM

Composing the adjoint of the inclusion H2
d → O(Dd) with the canonical conjugate

linear isomorphism (H2
d)′ → H2

d , we obtain a continuous, conjugate linear map F :
O(Dd)′ → H2

d . This map is characterized by l(f) = 〈f,F(l)〉 for all l ∈ O(Dd)′ and
f ∈ H2

d . Define δx ∈ O(Dd)′ by δx(f) := f(x) for all f ∈ O(Dd). Equation (2.1)
asserts that F(δx) = ux, so that F(δx)(y) = ux(y) = (1−〈y, x〉)−1 = δx(uy). Since
the functionals δx span a weak-∗-dense subspace of O(Dd)′, we conclude that

(5.1) F(l)(y) = l(uy) for all l ∈ O(Dd)′, y ∈ Dd.

We might call F the Fantappiè transform because (5.1) without conjugations is
the definition of the Fantappiè transform for the domain Dd ([8]). The main
theorem about the Fantappiè transform in [8] asserts in our special case that F is
a homeomorphism from O(Dd)′ onto O(Dd).

Proposition 5.1. Let I ⊂ O(Dd) be a local ideal. Define N := I⊥ ∩ D ⊂
O(Dd)′.

The subspace F(N) ⊂ H2
d 	I is dense. Every function in F(N) is a rational

function. Thus rational functions are dense in H2
d 	 I. In particular, if I has

finite codimension, then H2
d 	 I contains only rational functions.

Proof. Since I is local, I = N⊥ and therefore I ∩H2
d = F(N)⊥. Thus F(N)

is dense in H2
d 	 I. If l(f) = P (∂z1, . . . , ∂zd)f(x0) for a certain polynomial P of

degree k, then F(l)(y) = l(uy) = p(y)(1 − 〈y, x0〉)−k−1 for another polynomial p.
Thus F(N) contains only rational functions.

The commutative algebra O(Dd) acts on its dual space O(Dd)′ by f · l(h) :=
l(f · h) for all f, h ∈ O(Dd), l ∈ O(Dd)′. Using the Fantappiè transform, we get a
corresponding action on O(Dd) by f · F(l) := F(f · l). We have

(5.2) 〈g,F(f · l)〉 = f · l(g) = l(f · g) = 〈f · g,F(l)〉 = 〈Mfg,F(l)〉 = 〈g,M∗
fF(l)〉

for all f ∈Md, l ∈ O(Dd)′, g ∈ H2
d . Hence

(5.3) M∗
f

(
F(l)

)
= F(f · l)

for all f ∈ Md, l ∈ O(Dd)′. If f ∈ O(Dd) is not necessarily a multiplier, we
still define a bounded linear map M∗

f : O(Dd) → O(Dd) by (5.3) and view M∗
f

as a densely defined unbounded operator on H2
d . However, already for d = 1 the

adjoint of M∗
f need not be densely defined. Thus M∗

f may fail to be contained in
the adjoint of another unbounded operator.

Let f ∈ O(Dd). We say that M∗
f has positive real part and write ReM∗

f > 0
iff the R-bilinear form ξ, η 7→ Re〈M∗

f ξ, η〉 on O(Dd) is positive definite. Observe
that the map f 7→ Re〈M∗

f ξ, η〉 is a continuous functional on O(Dd) for fixed
ξ, η ∈ O(Dd). Therefore, the set of functions f ∈ O(Dd) with ReM∗

f > 0 is closed
in the topology of locally uniform convergence.

Let I ⊂ O(Dd) be a local ideal, I⊥ ⊂ O(Dd)′ its annihilator, and f ∈
O(Dd)/I. Then l 7→ f · l well defines a bounded linear map I⊥ → I⊥ because I
is an ideal. Using (5.3), we define a bounded operator M∗

f : F(I⊥) → F(I⊥) and
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view M∗
f as an unbounded operator on H2

d 	 I ⊃ F(I⊥). This operator is densely
defined by Proposition 5.1. We say that M∗

f has positive real part iff the R-bilinear
form a, b 7→ Re〈M∗

fF(a),F(b)〉 on I⊥ is positive definite. It should be evident how
to carry these definitions over to matrix valued holomorphic functions.

Theorem 5.2. Let T ∈ Mn(O(Dd)/I). Then there is T̂ ∈ Mn

(
O(Dd)

)
with

T = [T̂ ] such that M∗
T̂

has positive real part if and only if M∗
T has positive real

part.
If M∗

T is bounded and ReM∗
T is positive and invertible, then T̂ can be chosen

such that M∗
T̂
∈ Mn(Md) is bounded and ReM∗

T̂
is positive and invertible.

Proof. The second half is easier because it does not involve unbounded op-
erators. In [10] the positive cone of an operator algebra A is defined to be the set
of all x ∈ A for which x + x∗ is positive and invertible. Functional calculus with
C(z) := (1− z)/(1 + z) is a bijection between the positive cone and the open unit
ball of A.

Assume that MT is bounded and that 2ReMT := MT + M∗
T is invertible.

The operator C(MT ) has norm strictly less than 1, hence can be lifted to an
operator ̂C(MT ) ∈ Mn(Md) of norm strictly less than 1 by Theorem 4.1. Then
C
( ̂C(MT )

)
∈ Mn(Md) is the desired lifting of T .

In the unbounded situation, the assertion is proved by compressing to the
complements of finite codimensional ideals. Let (Ij) be a net of finite codimen-
sional local ideals inO(Dd) with I =

⋂
Ij . Let Pj : H2

d → H2
d	Ij be the orthogonal

projection. Proposition 5.1 implies that PjM
∗
TPj is defined on all of H2

d 	 Ij . We
have RePjM

∗
TPj > 0, so that 1/j +PjM

∗
TPj has positive and invertible real part.

Hence there is T̂j ∈ Mn(Md) with positive and invertible real part whose
compression to H2

d 	 Ij is 1/j + PjM
∗
TPj . View T̂j as a holomorphic function

Dd → Mn, then Re T̂j(x) > 0 for all x ∈ Dd. Thus (T̂j) is a normal family. A subnet
of (T̂j) converges locally uniformly towards a holomorphic function T̂ : Dd → Mn.
Since ReM

T̂j
> 0 for all j, it follows that ReM

T̂
> 0. Furthermore, [T̂ ] = [T ] in

Mn(O(Dd)/Ij) for all j and thus [T̂ ] = T in Mn(O(Dd)/I).

6. UNIQUENESS AND CONSTRUCTION OF SOLUTIONS

For scalar valued interpolation, we show that Sarason’s criterion (see [15]) for the
uniqueness of solutions generalizes to our situation. Let I ⊂ O(Dd) be a local
ideal and ξ ∈ H2

d 	 I with ‖ξ‖ = 1. Let T ∈ Md/I satisfy ‖T‖ = 1. We call ξ
a maximal vector for T iff ‖Tξ‖ = 1. Let T ∈ O(Dd)/I satisfy ReM∗

T > 0. We
call ξ a zero vector for ReM∗

T iff ξ ∈ O(Dd) ⊂ H2
d and Re〈ξ,M∗

T ξ〉 = 0. If M∗
T is

bounded, this is equivalent to ξ ∈ ker ReM∗
T , that is, M∗

T ξ = −Tξ.
If I has finite codimension, then a maximal vector for T exists and can be

computed explicitly whenever ‖T‖ = 1. A zero vector for ReM∗
T exists and can

be computed explicitly whenever ReM∗
T > 0 and ReM∗

T is not invertible.
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Theorem 6.1. Let I ⊂ O(Dd) be a local ideal.
Let T ∈Md/I with ‖T‖ = 1. If ξ ∈ H2

d 	 I is a maximal vector for T , then
there is a unique f ∈Md with ‖f‖ 6 1 and [f ] = T . Namely, f(z) = (Tξ)(z)/ξ(z)
for all z ∈ Dd with ξ(z) 6= 0.

Let T ∈ O(Dd)/I with ReM∗
T > 0. If ξ ∈ H2

d 	 I is a zero vector for T ,
then there is a unique f ∈ O(Dd) with ReM∗

f > 0 and [f ] = T . Namely, f(z) =
−(M∗

T ξ)(z)/ξ(z) for all z ∈ Dd with ξ(z) 6= 0. If T ∈Md/I, then −M∗
T ξ = Tξ.

If I is finite codimensional, then the solution is a rational function in both
cases.

Proof. We consider first the case ‖T‖ 6 1. By Theorem 4.1, there is f ∈Md

with ϕ(f) = T and ‖f‖ = 1. Since ‖fξ‖ = 1 and ‖P⊥I (fξ)‖ = ‖Tξ‖ = 1, it follows
that f · ξ = Tξ. View f, ξ, and Tξ as holomorphic functions on Dd. Since ξ 6= 0,
the set of those z ∈ Dd with ξ(z) 6= 0 is dense. On this set, f(z) = (Tξ)(z)/ξ(z).
This determines f uniquely on all of Dd.

If I is finite codimensional, then H2
d 	 I only contains rational functions

by Proposition 5.1. Thus f is a rational function as a quotient of two rational
functions.

In the case ReM∗
T > 0 we use Theorem 5.2 to obtain a lift f ∈ O(Dd) with

ReM∗
f > 0. The remaining assertions follow as above if we show that f ·ξ = −M∗

T ξ.
Since f lifts T , we have M∗

f ξ = M∗
T ξ. Let l ∈ O(Dd)′ and η := F(l). Using

〈M∗
f ξ, η〉 = l(M∗

T ξ), 〈ξ,M∗
f η〉 = l(f · ξ), and Re〈ξ,M∗

f ξ〉 = 0, we compute

Re〈ξ + λη,M∗
f (ξ + λη)〉 = Re

[
λ(〈ξ,M∗

f η〉+ 〈M∗
T ξ, η〉) + |λ|2〈η,M∗

f η〉
]

= Re
[
λl(f · ξ +M∗

T ξ) + |λ|2〈η,M∗
f η〉

]
for all λ ∈ C. Since ReM∗

f > 0, this expression is non-negative for all λ ∈ C.
Hence l(f · ξ +M∗

T ξ) = 0 for all l ∈ O(Dd)′. Therefore, f · ξ = −M∗
T ξ.

Theorem 6.2. Let I ⊂ O(Dd) be a local ideal. Then Md ∩ I is dense
in H2

d ∩ I with respect to the H2
d -norm. In particular, if H2

d ∩ I 6= {0}, then
Md ∩ I 6= {0}.

Proof. Let PI be the orthogonal projection H2
d → H2

d ∩ I. Since the closed
linear span of the functions ux, x ∈ Dd, is norm dense in H2

d , the closed linear
span of the functions PI(ux) is norm dense in H2

d ∩ I. Thus it suffices to show
that η := PI(ux) lies in Md ∩ I for all x ∈ Dd. By definition,

η = ux − P⊥I (ux) ∈ C · ux + (H2
d 	 I) = H2

d 	 Ix,

where Ix := {f ∈ I | f(x) = 0}. If f ∈ O(Dd), then f · η − f(x)η ∈ Ix. Thus the
projection of f · η to H2

d 	 Ix equals f(x)η. Consequently, the rank one operator
T := |η〉〈ux| is the compression of Mη to H2

d 	Ix. Evidently, ux/‖ux‖H2
d

is a max-
imal vector for T/‖T‖. Thus Theorem 6.1 implies that g(z) := ux(x)η(z)/ux(z)
is the unique lifting of T to a multiplier with minimal norm ‖T‖. In particular,
g ∈Md. Since ux ∈ O(Dd) ⊂Md, it follows that η ∈Md as desired.
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7. INTERPOLATION IN FINITELY MANY POINTS

Let z1, . . . , zm ∈ Dd, T1, . . . , Tm ∈ Mn. All f ∈ Mn(Md) with f(zj) = Tj have the
same class [T ] in Mn

(
Md/I(z1, . . . , zm)

)
. RepresentMd/I(z1, . . . , zm) completely

isometrically on H := H2
d 	 I(z1, . . . , zm). By (2.1), the vectors ej := uzj , j =

1, . . . ,m, are a basis of H. If f ∈ Mn(Md), then
(7.1) M∗

f (ux ⊗ ξ) = ux ⊗ (f(x)∗ξ)
for all x ∈ Dd, ξ ∈ Cn by (2.3). Consequently,
(7.2) 〈M∗

f (ux ⊗ ξ), uy ⊗ η〉 = 〈ux, uy〉 · 〈f(x)∗ξ, η〉 = (1− 〈y, x〉)−1 · 〈f(x)∗ξ, η〉.
Thus [T ]∗ can be computed explicitly with respect to the basis {ej}.

This basis is not orthonormal but a linearly independent frame. Recall that
a set of vectors (ξj)j∈J in a Hilbert space H is called a frame iff there are numbers
A,B ∈ (0,∞) such that, for all η ∈ H,

A‖η‖2 6
∑
j∈J

|〈ξj , η〉|2 6 B‖η‖2.

Proposition 7.1. Let H be a Hilbert space, (ξj)j∈J a frame, and T ∈ B(H).
Then T has positive real part iff the matrix with entries

(7.3) T̃ij := 〈Tξj , ξi〉+ 〈ξj , T ξi〉
is positive definite.

Proof. With every frame one can associate a bounded linear map σ : H →
`2(J) mapping η to (〈η, ξj〉)j∈J . Moreover, σ∗σ is invertible. If T has positive real
part, then so has σTσ∗ ∈ B

(
`2(J)

)
because

(7.4) Re(σTσ∗) =
1
2
(σTσ∗ + σT ∗σ∗) = σRe(T )σ∗.

Conversely, if σTσ∗ has positive real part then so has σ∗σTσ∗σ ∈ B(H) and
hence T because σ∗σ is invertible. Let {δj}j∈J be the canonical basis of `2(J).
Then σ∗δj = ξj and thus
〈2 Re(σTσ∗)δj , δi〉 = 〈2σRe(T )σ∗δj , δi〉 = 〈2 Re(T )ξj , ξi〉 = 〈Tξj , ξi〉+ 〈ξj , T ξi〉.

Hence the matrix T̃ belongs to the operator 2 Re(σTσ∗).

If σ is invertible (as in our finite dimensional situation) then the matrix
described in (7.3) is invertible iff T has invertible real part by (7.4).

Theorem 7.2. Let z1, . . . , zm ∈ Dd and let T1, . . . , Tm ∈ Mn.
There is F ∈ O(Dd,Mn) with F (zj) = Tj for all j and ReM∗

F > 0 if and
only if the block matrix A ∈ Mm ⊗Mn with entries

Ti + T ∗j
1− 〈zi, zj〉

∈ Mn

is positive definite.

Proof. Let v1, . . . , vn be the standard basis of Cn. Then the vectors ei ⊗
vj form a frame for H ⊗ `2n. Equation (7.2) implies 〈[T ]∗(ej ⊗ vµ), ei ⊗ vν〉 +
〈ej ⊗ vµ, [T ]∗(ei ⊗ vν)〉 = 〈(T ∗j + Ti)vµ, vν〉(1 − 〈zi, zj〉)−1. By Proposition 7.1,
[T ]∗ has positive real part iff the matrix A is positive definite. The assertion now
follows from Theorem 5.2.



238 Ralf Meyer

Theorem 7.3. Let z1, . . . , zm ∈ Dd and let T1, . . . , Tm ∈ Mn.

There is F ∈ Mn(Md) with ‖F‖ 6 1 and F (zj) = Tj for all j = 1, . . . ,m iff
the block matrix A′ ∈ Mm ⊗Mn with entries

1− TiT
∗
j

1− 〈zi, zj〉
∈ Mn

is positive definite.

Proof. Let B := (βi,j) be the matrix whose entries are the inner products

βi,j := 〈ej , ei〉 = (1− 〈zi, zj〉)−1

by (2.2). Since the inner product in H2
d is positive definite, the matrix B is positive

and invertible. Thus we can form the vectors

ẽj := B−1/2ej =
m∑

k=1

(B−1/2)kjek.

A straightforward computation shows that {ẽj} is an orthonormal basis. Moreover,
the operator B : ej →

∑
k

βkjek still has the matrix (βij) in the basis (ẽj) because B

and B−1/2 commute. Some linear algebra and (7.2) yield

[T ]∗ẽj ⊗ ξ =
m∑

k=1

[T ]∗(B−1/2)kjek ⊗ ξ =
m∑

k=1

(B−1/2)kjek ⊗ T ∗k ξ

=
m∑

k,l=1

ẽl(B1/2)lk(B−1/2)kj ⊗ T ∗k ξ

= (B1/2 ⊗ idCn) ◦ diag(T ∗1 , . . . , T
∗
m) ◦ (B−1/2 ⊗ idCn)(ẽj ⊗ ξ).

Hence with respect to the orthonormal basis ẽj , the operator [T ] is given by

[T ] = (B ⊗ id)−1/2 diag(T1, . . . , Tn)(B ⊗ id)1/2

because B ⊗ id is self-adjoint. This operator has norm at most 1 iff

1− [T ] ◦ [T ]∗ = 1− (B ⊗ id)−1/2 diag(Ti)(B ⊗ id) diag(T ∗j )(B ⊗ id)−1/2

is positive. Since B ⊗ id is invertible, this is equivalent to the positivity of B ⊗

id− diag(Ti)(B ⊗ id) diag(T ∗j ). This is the matrix A′.
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8. ALGEBRAS OF MATRICES

Fix r ∈ N. Let E be the set of all commutative unital subalgebras of Mr with
dimA = r. For example, if T ∈ Mr is a single operator with r different eigenvalues,
then the unital subalgebra generated by T is of this form. We consider E as a
subset of the Grassmannian manifold of r-dimensional vector subspaces of Mr.
This yields a natural topology on E.

An algebra A ∈ E is called expanding iff A · A∗ = Mr. Dimension counting
shows that this is equivalent to the bijectivity of the linear map m : A⊗A∗ → Mr,
x ⊗ y∗ 7→ x · y∗. Let x1, . . . , xr be a basis of A. By definition, A is expanding iff
the matrices xix

∗
j are linearly independent. This in turn is equivalent to the non-

vanishing of a certain determinant. Thus the set of expanding algebras is dense
in E. We are going to define invariants p(A) and n(A) for expanding algebras A
that determine whether A is a quotient of Sd.

We call ξ ∈ Cn a co-eigenvector for A iff ξ is a joint eigenvector for A∗.
An expanding algebra A has a cyclic vector. In fact, any co-eigenvector ξ is

cyclic because A∗ · ξ = Cξ implies Cr = Mr · ξ = A · A∗ξ = A · ξ. If ξ is cyclic,
then the map A → Cr, x 7→ x · ξ, is bijective. Thus if ξ1 and ξ2 are two cyclic
vectors, then there are T1, T2 ∈ A with ξ2 = T1ξ1 and ξ1 = T2ξ2. T1T2 is the
unique element of A with T1T2ξ2 = ξ2, so that T1T2 = 1. Similarly, T2T1 = 1, so
that T1 and T2 are inverses of each other.

For x ∈ Mr, we define a sesquilinear form θx : A′ ×A′ → C on the dual A′
by

θx(l1, l2) := (l1 ⊗ l∗2)
(
m−1(x)

)
for l1, l2 ∈ A′, where l∗2(y

∗) := l2(y) for all y ∈ A∗. This form is associated to
m−1(x) ∈ A ⊗ A∗ in a natural way. This is the reason for working on the dual
of A. If x is self-adjoint, then θx is Hermitian, that is, θx(l1, l2) = θx(l2, l1).

Let ξ be a cyclic vector and let x := −Pξ be the negative of the orthogonal
projection onto Cξ. The above construction applied to −Pξ yields a Hermitian
sesquilinear form θξ. Let p(A), o(A), and n(A) + 1 be the number of positive,
zero, and negative eigenvalues of θξ. By definition, p(A) + o(A) + n(A) = r − 1.

These numbers do not depend on the choice of the cyclic vector ξ. For if η
is another cyclic vector, then η = Tξ for an invertible operator T ∈ A. Thus
Pη = cTPξT

∗ for some constant c > 0. Therefore, m−1(Pη) = cT ·m−1(Pξ) · T ∗.
Multiplication by T is an invertible transformation on A. Let T ′ : A′ → A′ be
the transpose of it. Then θη(l1, l2) = cθξ(T ′l1, T ′l2) for all l1, l2 ∈ A′. Thus the
forms θη and θξ have the same numbers of positive, negative, and zero eigenvalues.
Hence the numbers p(A), o(A), n(A) are well defined invariants of the algebra A.

Let ξ be even a co-eigenvector, not just cyclic. Let Iξ := {T ∈ A | T ∗ξ = 0}
be the corresponding maximal ideal. Choose any basis X1, . . . , Xr−1 of Iξ and let
Xr := 1. Express m−1(−Pξ) in this basis:

(8.1) −Pξ =
r∑

j,k=1

cjkXjX
∗
k .

Since X∗
kξ = 0 for all k 6 r − 1, we get −ξ = −Pξ(ξ) =

r∑
j=1

cjrXjξ. Since also

−ξ = −Xrξ, it follows that cjr = 0 for j 6 r − 1 and crr = −1. Since −Pξ is
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self-adjoint, cjk = ckj and thus crj = 0 for j 6 −1. Diagonalizing the form (cjk),
we obtain another basis Tj of Iξ such that

−Pξ = ε1T1T
∗
1 + · · ·+ εr−1Tr−1T

∗
r−1 − 1

with certain εj ∈ {−1, 0,+1}. We may assume the Tj ordered so that all the
positive εj come first. The sesquilinear form θξ on A′ is equal to

θξ(l1, l2) =
r−1∑
j=1

εj l1(Tj)l2(Tj)− l1(1)l2(1).

Thus p(A), o(A), and n(A) are equal to the number of positive, zero, and nega-
tive εj . It follows that n(A) > 0.

As a result, in order to check that A is expanding, compute the invariants
p(A), etc., and the operators Tj , we have to do the following: Find a joint eigen-
vector ξ for A∗. Compute the coefficients cjk in equation (8.1) (this amounts to
inverting the linear map m). Diagonalize the Hermitian matrix (cjk). There are
efficient numerical algorithms for performing these computations.

Theorem 8.1. Assume that n(A) = 0 and that p(A) 6 d. Then A is
completely isometric to a quotient of Sd by some inner ideal. Let ξ be a co-
eigenvector and

1− Pξ = T1T
∗
1 + · · ·+ TpT

∗
p

for certain T1, . . . , Tp ∈ Iξ. Then n(A) = 0 and p(A) = p, and (T1, . . . , Tp, 0, . . . , 0)
is a d-contraction. The homomorphism Sd → A defined by this d-contraction is a
complete quotient map.

Conversely, assume that I ⊂ Sd is an inner ideal of codimension r. Then
Sd/I ⊂ B(H2

d 	 I) ∼= Mr is expanding and n(A) = 0, p(A) 6 d.

We mention without proof that if A ⊂ Mr is completely isometric to a
quotient of Sd by an inner ideal, then it is unitarily equivalent to such a quotient.
Thus A is expanding and satisfies n(A) = 0, p(A) 6 d.

Proof. The constructions above the theorem show that we can write 1−pξ =
T1T

∗
1 + · · · + TpT

∗
p if and only if n(A) = 0 and p(A) = p. By assumption, the

operator ∆ := 1 − T1T
∗
1 − · · · − TpT

∗
p is a rank one projection. In particular,

T = (T1, . . . , Tp, 0, . . . , 0) is a d-contraction. Let ϕ : Sd → A be the corresponding
completely contractive homomorphism sending S to T.

Let Ω := Spec(T). This is a finite subset of Dd. We claim that Ω ⊂ Dd.

Otherwise, there is x ∈ Spec(T) with ‖x‖2 = 1. Let X :=
d∑

j=1

xjTj . Since T is a

d-contraction, X is a contraction. By construction, 1 is an eigenvalue of X. Let
0 6= V ⊂ Cr be the corresponding eigenspace with X|V = id. Since also ‖X‖ 6 1,
it follows that X(Cr 	 V )⊥V . Thus V is a reducing subspace for X. Some linear
algebra shows that the orthogonal projection PV can be written as a polynomial
in X and therefore lies in A. Thus PV commutes with A and thus also with A∗.
Since A is expanding, PV commutes with Mr = A · A∗. Thus PV = id, that is,
X = 1. This contradicts T1, . . . , Td ∈ Iξ 63 1.

By Theorem 2.1, the operator T can be written as the compression of n·S⊕Z
to a full co-invariant subspace K. In the proof of Theorem 3.1, it is shown that
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Spec(Z) ⊂ Î if Z is the spherical part of the dilation of a completely contractive
representation of Sd/I. Since Spec(A) ∩ ∂Dd = ∅, there can be no non-trivial
spherical part Z.

The number n is the rank of the defect operator ∆ by Theorem 2.1, thus n=1.
Consequently, T is the compression of the d-shift S to a full co-invariant subspace.
By Theorem 3.1 and Corollary 3.2, ϕ is a complete isometry Sd/ kerϕ ∼= A.

Conversely, let I ⊂ Sd be an inner ideal of finite codimension r and let
A := Sd/I. Theorem 3.1 asserts that the standard representation of A on H2

d 	 I
is completely isometric. It is shown in [3] that the closed linear span of Sd · S∗d
contains the algebra K(H2

d) of compact operators on B(H2
d). Thus A is expanding:

A · A∗ = P⊥I · Sd · P⊥I · S∗d · P⊥I = P⊥I · Sd · S∗d · P⊥I ⊃ P⊥I ·K(H2
d) · P⊥I = Mr.

By Theorem 2.2, the automorphism group of Dd operates completely isomet-
rically on Sd. Since it operates transitively on Dd ⊂ Spec(Sd), we may assume
without loss of generality that 0 ∈ Spec(Sd/I). Thus 1 = u0 ∈ H2

d 	 I. In fact,
1 is a co-eigenvector for A. Arveson computes that 1 − S1S

∗
1 − · · · − SdS

∗
d is the

rank one projection onto C · 1. Let S(I)j := P⊥I SjP
⊥
I = P⊥I Sj . We conclude that

P⊥I − S(I)1S(I)∗1 − · · · − S(I)dS(I)∗d is still the rank one projection onto C · 1.
Consequently, n(A) = 0 and p(A) 6 d.

The sesquilinear form θ depends continuously on A ∈ E in a suitable sense.
Thus an eigenvalue of θ cannot change its sign without becoming zero in between.
Hence if o(A) = 0, then p and n are constant in a neighborhood of A. Thus the
set of r-dimensional quotients of Sr−1 with p(A) = r − 1 is an open subset of E.
The boundary of this set consists of the r-dimensional quotients of Sr−2. The set
of expanding algebras with n(A) > 0, o(A) = 0 is an open subset of algebras that
are not quotients of any Sd.

Let A ∼= Sd/I and let ρ : A → B(H) be a representation. Then ρ is com-
pletely contractive iff ρ[S] is a d-contraction. This is quite an efficient criterion to
check whether a representation is completely contractive. Furthermore, quotients
of A can be computed explicitly. These are reasons why it is desirable to write an
algebra as a quotient of Sd.
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