HIGHER DIMENSIONAL NEVANLINNA-PICK INTERPOLATION THEORY

RALF MEYER

Communicated by William B. Arveson

ABSTRACT. We compute completely isometric representations of quotients of the operator algebra S_d generated by the *d*-shift introduced by Arveson. This gives rise to a higher dimensional generalization of Nevanlinna-Pick interpolation theory.

Quotients of \mathcal{S}_d of dimension r admit a completely isometric representation by $r \times r$ -matrices. There is an efficient criterion to decide whether an r-dimensional algebra of $r \times r$ -matrices is a quotient of \mathcal{S}_d .

Keywords: Dilation theory, d-contractions, Nevanlinna-Pick interpolation theory.

MSC (2000): Primary 47L55; Secondary 47A57, 47L60, 47L80, 47L30.

1. INTRODUCTION

In [3], Arveson defines the *d*-shift $\mathbf{S} = (S_1, \ldots, S_d)$, acting on a certain Hilbert space H_d^2 . The definitions of the *d*-shift and of H_d^2 are recalled in Section 2 together with some properties we will need in the following. We write $\mathbb{B}(\mathcal{H})$ for the C^* -algebra of bounded operators on a Hilbert space \mathcal{H} . Let

 $\mathbb{D}_d := \{ (z_1, \dots, z_d) \in \mathbb{C}^d \mid |z_1|^2 + \dots + |z_d|^2 < 1 \}$

be the open Euclidean unit ball and let $\overline{\mathbb{D}}_d$ be its closure. We write $\mathcal{O}(\mathbb{D}_d)$ for the algebra of holomorphic functions on \mathbb{D}_d and $\mathcal{O}(\overline{\mathbb{D}}_d)$ for the algebra of functions holomorphic in a neighborhood of $\overline{\mathbb{D}}_d$. Let \mathcal{S}_d be the norm closed unital subalgebra of $\mathbb{B}(H_d^2)$ generated by S_1, \ldots, S_d . We call $f \in \mathcal{O}(\mathbb{D}_d)$ a *multiplier* on H_d^2 iff $f \cdot g \in H_d^2$ for all $g \in H_d^2$ and write \mathcal{M}_d for the algebra of multipliers. We have inclusions $\mathcal{M}_d \subset \mathbb{B}(H_d^2)$ and

$$\mathcal{O}(\overline{\mathbb{D}}_d) \subset \mathcal{S}_d \subset \mathcal{M}_d \subset H^2_d \subset \mathcal{O}(\mathbb{D}_d).$$

Assume given $z_1, \ldots, z_m \in \mathbb{D}_d$ and $n \times n$ -matrices $T_1, \ldots, T_m \in \mathbb{M}_n$. There is $f \in \mathbb{M}_n(\mathcal{M}_d)$ with $||f|| \leq 1$ and $f(z_j) = T_j$ for all j if and only if the block matrix with entries

(1.1)
$$\frac{1 - T_i T_j^*}{1 - \langle z_i, z_j \rangle} \in \mathbb{M}_r$$

is positive definite. Here $\langle z_i, z_j \rangle$ stands for the Hilbert space inner product on \mathbb{C}^d with unit ball \mathbb{D}_d . There is a bounded $f \in \mathbb{M}_n(\mathcal{M}_d)$ with $f(z_j) = T_j$ for all j and positive real part in $\mathbb{B}(H_d^2)$ if the matrix with entries

(1.2)
$$\frac{T_i + T_j^*}{1 - \langle z_i, z_j \rangle} \in \mathbb{M}_i$$

is positive definite and invertible. If we allow for f to be an unbounded multiplier, it suffices to assume that the matrix in (1.2) is positive definite. In the scalar valued case n = 1, the solution f is unique if the matrix in (1.1) or (1.2) is positive and *not* invertible. The unique solution is a rational function with poles outside \mathbb{D}_d . There is an algorithm to compute it.

The same conditions (1.1) and (1.2) occur in classical Nevanlinna-Pick interpolation theory ([13], [11] and [14]), which is the special case d = 1. For d = 1, the 1-shift is the usual unilateral shift, S_1 is the algebra $\overline{\mathcal{O}}(\overline{\mathbb{D}})$ of continuous functions on $\overline{\mathbb{D}}$ holomorphic on \mathbb{D} , and $\mathcal{M}_1 \cong H^{\infty}(\mathbb{D})$. Thus Nevanlinna-Pick interpolation theory is a special case of the assertions above.

After submitting the article, I learned that some of these interpolation results have been obtained independently also by Arias and Popescu([2]) and by Davidson and Pitts ([6]). These authors work with a non-commutative version of the *d*-shift and obtain interpolation results in that setting. Dividing out the commutator ideal then yields results about interpolation in $\mathbb{M}_n(\mathcal{M}_d)$. In this way, Theorem 4.1 and Theorem 7.3 become special cases of results in [2] and [6].

A map $\varphi : \mathcal{A} \to \mathcal{B}$ between operator algebras is called *completely contractive* iff the induced maps $\varphi_{(n)} : \mathbb{M}_n(\mathcal{A}) \to \mathbb{M}_n(\mathcal{B})$ are contractive for all $n \in \mathbb{N}$ ([12]). Completely isometric maps and complete quotient maps are defined by requiring that $\varphi_{(n)}$ be isometric or a quotient map for all $n \in \mathbb{N}$, respectively.

The essential step in the proof of the interpolation results is to obtain a completely isometric representation of the quotient algebra $\mathcal{M}_d/I(z_1,\ldots,z_m)$. Here $I(z_1,\ldots,z_n)$ denotes the ideal of functions vanishing in the points z_1,\ldots,z_n . As for the 1-dimensional case ([15]), it turns out that the compression of the standard representation $\mathcal{M}_d \to \mathbb{B}(H_d^2)$ to the subspace $H_d^2 \ominus I(z_1,\ldots,z_m)$ is completely isometric. Having this, one can solve the interpolation problem as in [15].

More generally, for suitable ideals $I \subset \mathcal{O}(\mathbb{D}_d)$, the representation of $\mathcal{M}_d/(I \cap \mathcal{M}_d)$ on $H^2_d \ominus (I \cap H^2_d)$ is completely isometric. This is proved by reduction to the case of finite codimensional ideals. For those, one can replace \mathcal{M}_d/I by $\mathcal{Q} := \mathcal{S}_d/I$. The proof that the representation of \mathcal{Q} on $H^2_d \ominus I$ is completely isometric is based on the universal property of the *d*-shift and the fact that \mathcal{Q} can be represented completely isometrically at all, a consequence of [5].

We obtain a completely isometric representation of S_d/I for all ideals $I \subset S_d$. In good cases, the canonical representation on $H^2_d \ominus I$ is completely isometric. We call such ideals *inner*. In general, one must add a representation coming from a *spherical operator*, that is, a *d*-tuple $\mathbf{Z} = (Z_1, \ldots, Z_d)$ of commuting *normal* operators satisfying $Z_1Z_1^* + \cdots + Z_dZ_d^* = 1$. It is quite remarkable that S_d/I has a completely isometric representation by $r \times r$ -matrices if dim $S_d/I = r$.

The main difference between our methods and those of [2] and [6] is that we construct completely isometric representations of quotients of S_d and reduce questions about \mathcal{M}_d to S_d . In contrast, [2] and [6] work mostly with \mathcal{M}_d and have little to say about quotients of S_d .

In Section 8 we start with an *r*-dimensional commutative subalgebra $\mathcal{A} \subset \mathbb{M}_r$ and ask whether it can be written as a quotient of \mathcal{S}_d by an inner ideal. There is an efficient algorithm to decide this question and obtain the quotient map $\mathcal{S}_d \to \mathcal{A}$. Having such a quotient map is very useful to check numerically whether a given representation of \mathcal{A} is completely contractive.

A necessary condition for $\mathcal{A} \subset \mathbb{M}_r$ to be a quotient of \mathcal{S}_d by an inner ideal is that $\mathcal{A} \cdot \mathcal{A}^* = \mathbb{M}_r$. In that case, we call \mathcal{A} expanding. If \mathcal{A} is expanding, a certain Hermitian sesquilinear form θ on \mathcal{A} is defined. This form is diagonal in a suitable basis X_1, \ldots, X_r of \mathcal{A} :

$$\theta\left(\sum_{j=1}^{r} a_j X_j, \sum_{k=1}^{r} b_k X_k\right) = \sum_{j=1}^{r} \varepsilon_j a_j \overline{b}_j$$

with certain $\varepsilon_j \in \{-1, 0, 1\}$ and always $\varepsilon_r = -1$. Let $p(\mathcal{A})$, $o(\mathcal{A})$, and $n(\mathcal{A}) + 1$ be the numbers of positive, zero, and negative ε_j . These numbers are invariants of \mathcal{A} . The basis X_j can be ordered so that all the positive ε_j come first. \mathcal{A} is a quotient of \mathcal{S}_d iff $n(\mathcal{A}) = 0$ and $p(\mathcal{A}) \leq d$. The map sending $S_j \mapsto X_j$ for $j = 1, \ldots, p(\mathcal{A})$ and $S_j \mapsto 0$ for $j > p(\mathcal{A})$ is a complete quotient map. This criterion shows that the quotients of \mathcal{S}_{r-1} form a closed subset with non-empty interior of the space of r-dimensional commutative subalgebras of \mathbb{M}_r .

2. PREPARATIONS: THE d-SHIFT

Arveson ([3]) defines a positive definite inner product on the space $\mathbb{C}[z_1, \ldots, z_d]$ of polynomials in d variables. The Hilbert space H_d^2 is the completion of $\mathbb{C}[z_1, \ldots, z_d]$ with respect to this inner product. There is a canonical continuous embedding $H_d^2 \subset \mathcal{O}(\mathbb{D}_d)$. The d-shift is the operator of multiplication by the coordinate functions, $(S_j f)(z) := z_j f(z)$ for all $f \in H_d^2$, $z \in \mathbb{D}_d$, $j = 1, \ldots, d$. The inner product of H_d^2 can be characterized most easily by its reproducing

The inner product of H_d^2 can be characterized most easily by its reproducing kernel. Define $\langle z, x \rangle := z_1 \overline{x}_1 + \cdots + z_d \overline{x}_d$ for $z, x \in \mathbb{D}_d$ and $u_x(z) := (1 - \langle z, x \rangle)^{-1}$. We have $u_x \in H_d^2$ for all $x \in \mathbb{D}_d$ and

(2.1)
$$\langle f, u_x \rangle = f(x)$$

for all $f \in H^2_d$. Especially,

(2.2)
$$\langle u_x, u_y \rangle = (1 - \langle y, x \rangle)^{-1}.$$

Moreover, the vectors $\{u_x\}$ span a dense subset of H_d^2 . Thus $(x, y) \mapsto u_y(x)$ is a reproducing kernel for the Hilbert space H_d^2 . It also follows that

$$(2.3) M_f^*(u_x) = f(x)u_x,$$

where M_f^* is the adjoint of the operator M_f of multiplication by f. Thus u_x is a joint eigenvector for \mathbf{S}^* with eigenvalue \overline{x} . There are no further joint eigenvectors for \mathbf{S}^* . The spectrum of the operator algebra \mathcal{S}_d is homeomorphic to $\overline{\mathbb{D}}_d$. Thus functional calculus provides an inclusion $\mathcal{O}(\overline{\mathbb{D}}_d) \subset \mathcal{S}_d$.

A *d*-contraction is a *d*-tuple of commuting operators $\mathbf{T} = (T_1, \ldots, T_d)$ on a Hilbert space \mathcal{H} satisfying

(2.4)
$$\|T_1\xi_1 + \dots + T_d\xi_d\|^2 \leq \|\xi_1\|^2 + \dots + \|\xi_d\|^2$$

for all $\xi_1, \ldots, \xi_d \in \mathcal{H}$. An equivalent condition is that the $1 \times d$ -matrix

$$(T_1 \quad T_2 \quad \cdots \quad T_d)$$

be a contraction. The *d*-shift is the universal *d*-contraction in the following sense: If **T** is a *d*-contraction on \mathcal{H} , then there is a unique completely contractive representation $\varphi : S_d \to \mathbb{B}(\mathcal{H})$ sending $S_j \mapsto T_j$. Conversely, if φ is a completely contractive representation of S_d , then $\varphi(\mathbf{S}) = (\varphi(S_1), \ldots, \varphi(S_d))$ is a *d*-contraction. Arveson obtains much more detailed spatial information. We need some notation to formulate his results.

For $n \in \mathbb{N} \cup \{0, \infty\}$, let ℓ_n^2 be the *n*-dimensional Hilbert space and let $n \cdot \mathbf{S}$ be the direct sum of *n* copies of the *d*-shift \mathbf{S} acting on $\ell_n^2 \otimes H_d^2$. A spherical operator is a *d*-tuple $\mathbf{Z} = (Z_1, \ldots, Z_d)$ of commuting normal operators satisfying $Z_1 Z_1^* + \cdots + Z_d Z_d^* = 1$. Let *A* be a set of operators on \mathcal{H} . A closed subspace \mathcal{K} is called *co-invariant* for *A* iff its orthogonal complement is *A*-invariant. Equivalently, \mathcal{K} is invariant for $A^* := \{T \in \mathbb{B}(\mathcal{H}) \mid T^* \in A\}$. Let $C^*(A)$ be the C^* -algebra generated by *A*. A closed subspace \mathcal{K} is called *full* for *A* iff $C^*(A) \cdot \mathcal{K}$ is dense in \mathcal{H} .

THEOREM 2.1. (Arveson, [3]) Let $d \in \mathbb{N}$ and let $\mathbf{T} = (T_1, \ldots, T_d)$ be a *d*-contraction acting on some separable Hilbert space. Let $n \in \mathbb{N} \cup \{0, \infty\}$ be the rank of the operator $1 - T_1 T_1^* - \cdots - T_d T_d^*$.

Then there is a pair $(\mathbf{Z}, \mathcal{K})$ consisting of a spherical operator \mathbf{Z} and a full coinvariant subspace \mathcal{K} for the operator $n \cdot \mathbf{S} \oplus \mathbf{Z}$ such that \mathbf{T} is unitarily equivalent to the compression of $n \cdot \mathbf{S} \oplus \mathbf{Z}$ to \mathcal{K} .

For d = 1, a spherical operator is a unitary operator and the dilation $n \cdot \mathbf{S} \oplus \mathbf{Z}$ occurring in Theorem 2.1 is the von Neumann-Wold decomposition of an isometry.

Up to a constant, the reproducing kernel of H_d^2 is the 1/(d+1)st power of the Bergman kernel

$$K_{\mathbb{D}_d}(x,y) = \frac{d!}{\pi^d} (1 - \langle x, y \rangle)^{-(d+1)}$$

of the domain \mathbb{D}_d ([9]). Thus H_d^2 is a "twisted Bergman space" in the terminology of [4]. These spaces are studied in harmonic analysis because they carry a natural projective representation of the automorphism group of the domain: NEVANLINNA-PICK INTERPOLATION THEORY

THEOREM 2.2. Let $h \in \operatorname{Aut}(\mathbb{D}_d)$ be an automorphism of \mathbb{D}_d , that is, a holomorphic map $\mathbb{D}_d \to \mathbb{D}_d$ with holomorphic inverse. Let

$$\delta(z) := \left(\det Dh(z)\right)^{1/(d+1)}$$

where any holomorphic branch of the root is chosen, and let $(Tf)(z) := \delta(z)f(h(z))$ for $f \in H_d^2$, $z \in \mathbb{D}_d$. Then T defines a unitary operator $H_d^2 \to H_d^2$. This gives rise to a projective representation of $\operatorname{Aut}(\mathbb{D}_d)$ on H_d^2 .

Moreover, $M_{f \circ h} \circ T = T \circ M_f$ for all $f \in S_d$, so that $f \mapsto f \circ h$ is a completely isometric automorphism of S_d .

The proof is based on the behavior of the Bergman kernel under biholomorphic mappings ([9], Proposition 6.1.7), which implies

$$\left(\det Dh(z)\right)^{\lambda} \overline{\left(\det Dh(w)\right)^{\lambda}} K_{\mathbb{D}_d} \left(h(z), h(w)\right)^{\lambda} = K_{\mathbb{D}_d}(z, w)^{\lambda}$$

for all $\lambda \in \mathbb{R}$, $z, w \in \mathbb{D}_d$, and $h \in \operatorname{Aut}(\mathbb{D}_d)$. See [1].

3. COMPLETELY ISOMETRIC REPRESENTATIONS OF QUOTIENTS OF \mathcal{S}_d

Let $I \subset S_d$ be a closed ideal. Let $\widehat{I} \subset \operatorname{Spec}(S_d)$ be the set of all maximal ideals containing I. Hence $\widehat{I} \cong \operatorname{Spec}(S_d/I)$. Identify $\operatorname{Spec}(S_d) \cong \overline{\mathbb{D}}_d$ and consider $\widehat{I} \subset \overline{\mathbb{D}}_d$. Let $\partial \widehat{I}$ be the smallest compact subset of \widehat{I} such that $\widehat{I} = \overline{\widehat{I} \cap \mathbb{D}_d} \cup \partial \widehat{I}$. Thus

$$\partial \widehat{I} := \overline{\widehat{I} \setminus \overline{\widehat{I} \cap \mathbb{D}_d}}.$$

The ideal I is called *inner* iff $\partial \hat{I} = \emptyset$ or equivalently $\hat{I} \cap \mathbb{D}_d$ is dense in \hat{I} . For example, the ideal $I := \{0\}$ is inner because $\hat{I} = \overline{\mathbb{D}}_d$.

Let $P : H_d^2 \to H_d^2 \ominus I$ be the orthogonal projection onto the orthogonal complement of I. Let $\varphi_0 : S_d \to \mathbb{B}(H_d^2 \ominus I)$ be the compression $f \mapsto PfP$. The map φ_0 is a unital, completely contractive homomorphism because the closure \overline{I} of I in H_d^2 is S_d -invariant. Moreover, ker $\varphi_0 = \overline{I} \cap S_d \supset I$. Consequently, φ_0 descends to a completely contractive representation of the quotient algebra S_d/I . It sends $[S_j]$, the class of S_j in the quotient, to $S(I)_j := PS_jP$.

Let $\mathbf{N}(I)$ be a spherical operator with spectrum $\partial \hat{I}$, acting on some Hilbert space \mathcal{H}_{∂} . Compose the Gelfand transformation for the commutative Banach algebra \mathcal{S}_d/I with the functional calculus for the normal multi-operator $\mathbf{N}(I)$ to get a completely contractive representation $\varphi_{\partial} : \mathcal{S}_d/I \to C(\hat{I}) \to \mathbb{B}(\mathcal{H}_{\partial})$ sending $[S_j] \mapsto \mathbf{N}(I)_j$. Thus

$$\psi := \varphi_0 \oplus \varphi_\partial : \mathcal{S}_d / I \to \mathbb{B} \big((H_d^2 \ominus I) \oplus \mathcal{H}_\partial \big), \qquad \psi[S_j] := S(I)_j \oplus N(I)_j,$$

is a completely contractive representation of \mathcal{S}_d/I .

THEOREM 3.1. The representation ψ is completely isometric. If I is inner, then the representation $\varphi_0 : S_d/I \to \mathbb{B}(H^2_d \ominus I)$ is completely isometric.

Proof. Any quotient of a unital operator algebra by a closed ideal is again a unital operator algebra ([5]). Thus \mathcal{S}_d/I has a unital, completely isometric representation $\rho : \mathcal{S}_d/I \to \mathbb{B}(\mathcal{H})$. Let \mathcal{A} be the closure of the range of ψ , that is, the unital operator algebra generated by the multi-operator $\mathbf{S}(I) \oplus \mathbf{N}(I)$ on $H^2_d \ominus I \oplus \mathcal{H}_\partial$. The theorem follows once the homomorphism $h : \mathcal{A} \to \mathbb{B}(\mathcal{H})$ sending $\psi(S_j)$ to $\rho[S_j]$ is shown to be well defined and completely contractive. Then h is completely isometric.

The multi-operator $\rho[\mathbf{S}] = (\rho[S_1], \dots, \rho[S_d])$ is a *d*-contraction. We leave it to the reader to show that \mathcal{H} can be chosen to be separable (or to extend Theorem 2.1 to the case of *d*-contractions on non-separable Hilbert spaces).

Apply Theorem 2.1 to $\rho[\mathbf{S}]$. This yields $n \in \mathbb{N} \cup \{0, \infty\}$, a spherical operator \mathbf{Z} acting on some Hilbert space $\mathcal{H}_{\mathbf{Z}}$, and a full co-invariant subspace \mathcal{K} of

(3.1)
$$\widehat{\mathcal{H}} := (\ell_n^2 \otimes H_d^2) \oplus \mathcal{H}_{\mathbf{Z}}$$

such that $\rho[\mathbf{S}]$ is unitarily equivalent to the compression of $n \cdot \mathbf{S} \oplus \mathbf{Z}$ to \mathcal{K} . Let $\widehat{\rho} : \mathcal{S}_d \to \mathbb{B}(\widehat{\mathcal{H}})$ be the representation defined by $\widehat{\rho}(S_j) := n \cdot S_j \oplus Z_j$. Since \mathcal{K} is co-invariant for $n \cdot \mathbf{S} \oplus \mathbf{Z}$, its orthogonal complement \mathcal{K}^{\perp} is $\widehat{\rho}(\mathcal{S}_d)$ -invariant. Let

$$\mathcal{H}_2 := \widehat{\mathcal{H}} \ominus \widehat{\rho}(I) \cdot \widehat{\mathcal{H}} = \{ \xi \in \widehat{\mathcal{H}} \mid \xi \bot \widehat{\rho}(f) \eta \text{ for all } f \in I, \ \eta \in \widehat{\mathcal{H}} \}.$$

We claim that $\mathcal{K} \subset \mathcal{H}_2$. Equivalently, $\hat{\rho}(f)\eta\perp\mathcal{K}$ for all $f \in I$, $\eta \in \hat{\mathcal{H}}$. This is evident for $\eta \in \mathcal{K}^{\perp}$ because \mathcal{K}^{\perp} is $\hat{\rho}(\mathcal{S}_d)$ -invariant. Since the compression of $\hat{\rho}(f)$ to \mathcal{K} is $\rho[f] = \rho(0) = 0$, we also get $\hat{\rho}(f)\eta\perp\mathcal{K}$ for $\eta \in \mathcal{K}$. Thus $\hat{\rho}(f)\eta\perp\mathcal{K}$ for all $\eta \in \mathcal{K}^{\perp} \oplus \mathcal{K} = \hat{\mathcal{H}}$ as desired. Equation (3.1) implies immediately that

$$\mathcal{H}_2 \cong \left(\ell_n^2 \otimes (H_d^2 \ominus I)\right) \oplus (\mathcal{H}_{\mathbf{Z}} \ominus \widehat{\rho}(I)\mathcal{H}_{\mathbf{Z}}).$$

Since **Z** is normal and $\hat{\rho}(I)\mathcal{H}_{\mathbf{Z}}$ is **Z**-invariant, the subspace $\hat{\rho}(I)\mathcal{H}_{\mathbf{Z}}$ is also invariant for **Z**^{*}, that is, a reducing subspace. Thus $C^*(n \cdot \mathbf{S} \oplus \mathbf{Z})$ maps $\hat{\mathcal{H}} \ominus \hat{\rho}(I)\mathcal{H}_{\mathbf{Z}} \supset \mathcal{K}$ into itself. Since \mathcal{K} is full, it follows that $\hat{\rho}(I) \cdot \mathcal{H}_{\mathbf{Z}} = \{0\}$. Therefore, Spec(**Z**) $\subset \hat{I}$.

The homomorphism $\psi : S_d \to \mathcal{A}$ gives rise to a continuous map $\psi^* :$ Spec $(\mathcal{A}) \to$ Spec $(\mathcal{S}_d) \cong \overline{\mathbb{D}}_d$. We claim that

(3.2)
$$\psi^*(\operatorname{Spec}(\mathcal{A})) = \widehat{I}.$$

This is of course a necessary condition for $S_d/I \cong \mathcal{A}$. Since ψ annihilates I, it is clear that $\psi^*(\operatorname{Spec}(\mathcal{A})) \subset \widehat{I}$. Let $x \in \widehat{I} \cap \mathbb{D}_d$. Then $u_x \perp I$ by equation (2.1). Consequently,

$$f \mapsto \|u_x\|_2^{-2} \langle fu_x, u_x \rangle = \|u_x\|_2^{-2} \langle u_x, f^*u_x \rangle = f(x)$$

is a well defined and contractive linear functional on \mathcal{A} . Thus $x \in \operatorname{Spec}(\mathcal{A})$. Hence $\widehat{I} \cap \mathbb{D}_d \subset \operatorname{Spec}(\mathcal{A})$ and $\overline{\widehat{I} \cap \mathbb{D}_d} \subset \operatorname{Spec}(\mathcal{A})$ by compactness. The other points of $\widehat{I} \cap \partial \mathbb{D}_d$ are in $\partial \widehat{I} = \operatorname{Spec}(\mathbf{N}(I)) \subset \operatorname{Spec}(\mathcal{A})$. Equation (3.2) follows.

Since $\operatorname{Spec}(\mathcal{A}) \cong \widehat{I}$, the Gelfand transformation gives rise to a completely contractive homomorphism $g_1 : \mathcal{A} \to C(\widehat{I})$. Since \mathbb{Z} is a normal operator with

spectrum contained in \widehat{I} , functional calculus for \mathbb{Z} gives rise to a *-representation $g_2 : C(\widehat{I}) \to \mathbb{B}(\mathcal{H}_{\mathbb{Z}})$. Let $f : \mathcal{A} \to \mathbb{B}(\mathcal{H}_d^2 \ominus I)$ be the compression to the first summand. Let $n \cdot f : \mathcal{A} \to \mathbb{B}(\ell_n^2 \otimes (\mathcal{H}_d^2 \ominus I))$ be the direct sum of n copies of f, that is, $n \cdot f : x \mapsto \operatorname{id}_{\ell_n^2} \otimes f(x)$. Clearly, $n \cdot f$ is a completely contractive representation.

Thus we get a completely contractive representation $n \cdot f \oplus (g_2 \circ g_1) : \mathcal{A} \to \mathbb{B}(\mathcal{H}_2)$ that maps $\psi(\mathbf{S})$ to the compression of $\hat{\rho}(\mathbf{S})$ to \mathcal{H}_2 . Compressing further to $\mathcal{H} \cong \mathcal{K} \subset \mathcal{H}_2$, we see that h is well defined and completely contractive, as desired.

Suppose that I has finite codimension r, so that $\mathcal{Q} := \mathcal{S}_d/I$ is r-dimensional. Since the spectrum \widehat{I} of \mathcal{Q} is finite, we get $\partial \widehat{I} = \widehat{I} \cap \partial \mathbb{D}_d$. Let $\partial \widehat{I}$ have s elements x_1, \ldots, x_s . We choose $\mathbf{N}(I)$ as a diagonal multi-operator on $\mathcal{H}_\partial := \mathbb{C}^s$. By Theorem 3.1, $\varphi_0 \oplus \varphi_\partial$ is a completely isometric representation of \mathcal{Q} . Let $\mathcal{Q}_0 := \varphi_0(\mathcal{Q})$.

CORALLARY 3.2. The operator algebra \mathcal{Q} is completely isometrically isomorphic to the orthogonal direct sum $\mathcal{Q}_0 \oplus \mathbb{C} \oplus \cdots \oplus \mathbb{C}$, with s copies of \mathbb{C} corresponding to $x_1, \ldots, x_s \in \operatorname{Spec}(\mathcal{Q}) \cap \partial \mathbb{D}_d$. In addition, dim $H^2_d \ominus I = r - s$.

Thus Q has a completely isometric representation by $r \times r$ -matrices.

Proof. We claim that $\operatorname{Spec}(\mathcal{Q}_0) \subset \mathbb{D}_d$. The orthogonal projection of $1 \in H_d^2$ to $H_d^2 \ominus I$ is a cyclic vector for \mathcal{Q}_0 . Hence dim $\mathcal{Q}_0 = \dim H_d^2 \ominus I$ is finite. Let $x \in \operatorname{Spec}(\mathcal{Q}_0)$ and let $\mathcal{Q}_0^* \subset \mathbb{B}(H_d^2 \ominus I)$ be the algebra of adjoints of elements of \mathcal{Q}_0 . The map $q \mapsto \overline{q(x)}$ is a character of \mathcal{Q}_0^* . Since $H_d^2 \ominus I$ is finite dimensional, elementary linear algebra shows that there is an eigenvector $\eta \in H_d^2 \ominus I$ with $\varphi_0(f)^*\eta = \overline{f(x)}\eta$ for all $f \in \mathcal{S}_d$. Since $H_d^2 \ominus I$ is \mathcal{S}_d^* -invariant, $\eta \in H_d^2$ is also a joint eigenvector for \mathbf{S}^* . But we know all joint eigenvectors of \mathbf{S}^* : They are the vectors u_x with $x \in \mathbb{D}_d$.

Since $\operatorname{Spec}(\mathcal{Q}_0) \subset \mathbb{D}_d$, evaluation at x_1, \ldots, x_s provides s linearly independent linear functionals on the kernel of the quotient map $\mathcal{Q} \to \mathcal{Q}_0$. Therefore, $\dim \mathcal{Q}_0 \leq r-s$. The canonical map $\mathcal{Q} \to \mathcal{Q}_0 \oplus \mathbb{C}^s$ is completely isometric by Theorem 3.1. Dimension counting shows that it is a completely isometric *isomorphism* and that $\dim \mathcal{Q}_0 = r-s$. Hence also $\dim H_d^2 = r-s$.

The kernel of $\varphi_0 : S_d \to \mathbb{B}(H_d^2 \ominus I)$ is equal to the relative closure of I with respect to the H_d^2 -norm. Thus Corollary 3.2 implies that a finite codimensional ideal $I \subset S_d$ is inner if and only if it is relatively closed with respect to the H_d^2 -norm.

4. QUOTIENTS OF \mathcal{M}_d

We are going to use Theorem 3.1 to compute completely isometric representations of quotients $\mathcal{M}_d/(I \cap \mathcal{M}_d)$ for suitable ideals $I \subset \mathcal{O}(\mathbb{D}_d)$. To explain when an ideal $I \subset \mathcal{O}(\mathbb{D}_d)$ is suitable, we need some notation. For $x \in \mathbb{D}_d$, let \mathcal{O}_x be the ring of germs of holomorphic functions near x. There is a canonical map $\pi_x : \mathcal{O}(\mathbb{D}_d) \to \mathcal{O}_x$. Let $I_x := \pi_x(I) \cdot \mathcal{O}_x$ be the ideal in \mathcal{O}_x generated by the image of I. We call I local iff $\pi_x(f) \in I_x$ for all $x \in \mathbb{D}_d$ already implies $f \in I$. Equivalently, I is the ring of global sections of a coherent sheaf on \mathbb{D}_d .

It is clear that a local ideal is closed in the topology of locally uniform convergence. Conversely, if the ideal I is closed in this topology, it is local. This deep theorem is due to Henri Cartan ([7], p. 181).

Let $\mathcal{D}_x \subset \mathcal{O}'_x$ be the space of functionals of the form $l(f) = P(\partial z_1, \ldots, \partial z_k)$ f(x), where P is some polynomial in differentiation operators. Thus \mathcal{D}_x is the dual space of the ring of formal power series at x with its canonical product topology. We view $\mathcal{D}_x \subset \mathcal{O}(\mathbb{D}_d)'$ in the obvious way and let \mathcal{D} be the linear span of the subspaces \mathcal{D}_x .

The ideal structure of the ring \mathcal{O}_x is quite well understood. It turns out that an ideal $J \subset \mathcal{O}_x$ is automatically of the form $N^{\perp} := \{f \in \mathcal{O}_x \mid f \perp N\}$ for some subspace $N \subset \mathcal{D}_x$, where $f \perp N$ means l(f) = 0 for all $l \in N$. Hence a local ideal $I \subset \mathcal{O}(\mathbb{D}_d)$ satisfies $I = (I^{\perp} \cap \mathcal{D})^{\perp}$.

We claim that any local ideal $I \subset \mathcal{O}(\mathbb{D}_d)$ can be described as the intersection of a net of finite codimensional local ideals (I_j) . We will use this to reduce assertions about arbitrary local ideals to the finite codimensional case. Actually, one can construct a decreasing *sequence* of ideals whose intersection is I. Since the proof of this stronger statement is rather unpleasant, we prefer to work with nets.

To prove the claim, we consider a finite subset $j := \{l_1, \ldots, l_m\} \subset I^{\perp} \cap \mathcal{D}$. By definition of \mathcal{D} , these differentiation operators involve only derivatives up to some finite order s at finitely many points of \mathbb{D}_d . Let $I'_j \subset \mathcal{O}(\mathbb{D}_d)$ be the ideal of functions vanishing in these finitely many points up to order s and let $I_j := I + I'_j \subset \mathcal{O}(\mathbb{D}_d)$. It is not hard to see that I_j is a local ideal of finite codimension that is annihilated by the functionals l_1, \ldots, l_m . If we let j run through all finite subsets of $I^{\perp} \cap \mathcal{D}$, we obtain a net of ideals (I_j) with $\bigcap I_j \supset I$ and $\bigcap I_j \subset (I^{\perp} \cap \mathcal{D})^{\perp} = I$.

If $I \subset \mathcal{O}(\mathbb{D}_d)$ is a local ideal, we write $H^2_d \ominus I$ for $H^2_d \ominus (I \cap H^2_d)$, \mathcal{M}_d/I for $\mathcal{M}_d/(I \cap \mathcal{M}_d)$, and \mathcal{S}_d/I for $\mathcal{S}_d/(I \cap \mathcal{S}_d)$. The subspaces $I \cap \mathcal{M}_d$ and $I \cap H^2_d$ are closed with respect to the norms of \mathcal{M}_d and H^2_d , respectively. It can happen easily that $I \cap \mathcal{M}_d = 0$. In this case, most assertions in the following are rather empty.

If $I \subset \mathcal{O}(\mathbb{D}_d)$ is a finite codimensional local ideal, then each element of $\mathcal{O}(\mathbb{D}_d)/I$ can be represented by a polynomial. Thus $\mathcal{S}_d/I \cong \mathcal{M}_d/I \cong H_d^2 \ominus I \cong \mathcal{O}(\mathbb{D}_d)/I$. Furthermore, $I \cap \mathcal{S}_d$ is relatively closed with respect to the H_d^2 -norm and thus inner.

NEVANLINNA-PICK INTERPOLATION THEORY

THEOREM 4.1. Let $I \subset \mathcal{O}(\mathbb{D}_d)$ be a local ideal. The subspace $H^2_d \ominus I \subset H^2_d$ is co-invariant for \mathcal{M}_d . The compression $\varphi : \mathcal{M}_d \to \mathbb{B}(H^2_d \ominus I)$ of the standard representation of \mathcal{M}_d to $H^2_d \ominus I$ descends to a completely isometric representation of \mathcal{M}_d/I . Its image $\varphi(\mathcal{M}_d)$ is equal to the weak closure of $\varphi(\mathcal{S}_d)$ and equal to the

commutant of $\varphi(\mathbf{S})$, that is, the set of operators commuting with $\varphi(\mathbf{S})$.

Let $T \in \mathbb{M}_n(\mathbb{B}(H^2_d \ominus I))$ commute with $1_n \otimes \varphi(\mathbf{S})$. If $||T|| \leq 1$, then $T = \varphi_{(n)}(\widehat{T})$ for some $\widehat{T} \in \mathbb{M}_n(\mathcal{M}_d)$ with $||\widehat{T}|| \leq 1$.

Proof. The subspace $H_d^2 \ominus I$ is the orthogonal complement of the closed \mathcal{M}_d invariant subspace $I \cap H_d^2$ and thus co-invariant for \mathcal{M}_d . Hence φ is a completely
contractive representation with kernel $I \cap H_d^2 \cap \mathcal{M}_d = I \cap \mathcal{M}_d$.

We will show the following: if $T \in \mathbb{M}_n(\mathbb{B}(H_d^2 \ominus I))$ commutes with $1_n \otimes \varphi(\mathbf{S})$ and $||T|| \leq 1$, then there is a net (\hat{T}_j) in $\mathbb{M}_n(\mathcal{S}_d)$ with $||\hat{T}_j|| \leq 1$ for all j such that $\varphi_{(n)}(\hat{T}_j)$ converges towards T in the weak operator topology. Thus the commutant of $1_n \otimes \mathbf{S}$ and the weak closure of $\mathbb{M}_n(\varphi(\mathcal{S}_d))$ are equal.

The unit ball of $\mathbb{M}_n(\mathcal{M}_d)$ is weakly compact. Hence a subnet of (\widehat{T}_j) converges weakly towards some $\widehat{T} \in \mathbb{M}_n(\mathcal{M}_d)$. Necessarily, $\varphi_{(n)}(\widehat{T}) = T$ because φ is continuous with respect to the weak operator topology. The theorem follows.

It remains to construct the net (\hat{T}_j) . We assume that n = 1 to simplify notation. The argument is the same in the matrix valued case.

Let (I_j) be a net of finite codimensional local ideals in $\mathcal{O}(\mathbb{D}_d)$ with $I = \bigcap I_j$. Let $P: H^2_d \to H^2_d \ominus I$ and $P_j: H^2_d \to H^2_d \ominus I_j$ be the orthogonal projections. Let $\varphi_j: \mathcal{S}_d \to \mathbb{B}(H^2_d \ominus I_j)$ be the compression of the standard representation.

 $\begin{array}{l} P1 = P(1) \in H^2_d \ominus I \text{ is a cyclic vector for } \varphi(\mathcal{S}_d). \text{ Since } T \text{ and } \varphi(\mathcal{S}_d) \text{ commute,} \\ T(f) = P(T(P1) \cdot f) \text{ for all } f \in H^2_d \ominus I. \text{ Thus } P_j TP_j(f) = P_j T(f) = P_j(T(P1) \cdot f) \\ \text{for all } f \in H^2_d \ominus I_j. \text{ Since } \mathcal{S}_d/I_j \cong \mathcal{O}(\mathbb{D}_d)/I_j, \text{ the operator } P_j TP_j \in \mathbb{B}(H^2_d \ominus I_j) \end{array}$

must be in the range of φ_j . The homomorphism φ_j is a complete quotient map by Theorem 3.1. Hence there is $\widehat{T}_j \in \mathcal{S}_d$ with $\|\widehat{T}_j\| \leq 1$ and $\varphi_j(\widehat{T}_j) = (1 - 1/j)P_jTP_j$. Thus $\langle \varphi(\widehat{T}_j)\xi, \eta \rangle = (1 - 1/j)\langle T\xi, \eta \rangle$ for all $\xi, \eta \in H^2_d \ominus I_j$. Hence $\lim \langle \varphi(\widehat{T}_j)\xi, \eta \rangle = \langle T\xi, \eta \rangle$, whenever $\xi, \eta \in \Sigma := \bigcup_{j=1}^{\infty} H^2_d \ominus I_j$.

Since Σ is dense in $H^2_d \ominus I$ and $\{\varphi(\widehat{T}_j)\}$ is uniformly bounded, $\varphi(\widehat{T}_j)$ converges in the weak operator topology towards T. By the way, $(\varphi(\widehat{T}_j))$ converges even in the *-strong operator topology. That is, $\widehat{T}_j \xi \to T\xi$ and $\widehat{T}_j^* \xi \to T^* \xi$ for all ξ .

For $I = \{0\}$, Theorem 4.1 asserts that S_d is weakly dense in \mathcal{M}_d .

5. THE FANTAPPIÈ TRANSFORM

Composing the adjoint of the inclusion $H_d^2 \to \mathcal{O}(\mathbb{D}_d)$ with the canonical conjugate linear isomorphism $(H_d^2)' \to H_d^2$, we obtain a continuous, conjugate linear map \mathcal{F} : $\mathcal{O}(\mathbb{D}_d)' \to H_d^2$. This map is characterized by $l(f) = \langle f, \mathcal{F}(l) \rangle$ for all $l \in \mathcal{O}(\mathbb{D}_d)'$ and $f \in H_d^2$. Define $\delta_x \in \mathcal{O}(\mathbb{D}_d)'$ by $\delta_x(f) := f(x)$ for all $f \in \mathcal{O}(\mathbb{D}_d)$. Equation (2.1) asserts that $\mathcal{F}(\delta_x) = u_x$, so that $\mathcal{F}(\delta_x)(y) = u_x(y) = (1 - \langle y, x \rangle)^{-1} = \overline{\delta_x(u_y)}$. Since the functionals δ_x span a weak-*-dense subspace of $\mathcal{O}(\mathbb{D}_d)'$, we conclude that

(5.1)
$$\mathcal{F}(l)(y) = \overline{l(u_y)} \quad \text{for all } l \in \mathcal{O}(\mathbb{D}_d)', y \in \mathbb{D}_d.$$

We might call \mathcal{F} the *Fantappiè transform* because (5.1) without conjugations is the definition of the Fantappiè transform for the domain \mathbb{D}_d ([8]). The main theorem about the Fantappiè transform in [8] asserts in our special case that \mathcal{F} is a homeomorphism from $\mathcal{O}(\mathbb{D}_d)'$ onto $\mathcal{O}(\overline{\mathbb{D}}_d)$.

PROPOSITION 5.1. Let $I \subset \mathcal{O}(\mathbb{D}_d)$ be a local ideal. Define $N := I^{\perp} \cap \mathcal{D} \subset \mathcal{O}(\mathbb{D}_d)'$.

The subspace $\mathcal{F}(N) \subset H^2_d \ominus I$ is dense. Every function in $\mathcal{F}(N)$ is a rational function. Thus rational functions are dense in $H^2_d \ominus I$. In particular, if I has finite codimension, then $H^2_d \ominus I$ contains only rational functions.

Proof. Since I is local, $I = N^{\perp}$ and therefore $I \cap H_d^2 = \mathcal{F}(N)^{\perp}$. Thus $\mathcal{F}(N)$ is dense in $H_d^2 \ominus I$. If $l(f) = P(\partial z_1, \ldots, \partial z_d) f(x_0)$ for a certain polynomial P of degree k, then $\mathcal{F}(l)(y) = \overline{l(u_y)} = p(y)(1 - \langle y, x_0 \rangle)^{-k-1}$ for another polynomial p. Thus $\mathcal{F}(N)$ contains only rational functions.

The commutative algebra $\mathcal{O}(\mathbb{D}_d)$ acts on its dual space $\mathcal{O}(\mathbb{D}_d)'$ by $f \cdot l(h) := l(f \cdot h)$ for all $f, h \in \mathcal{O}(\mathbb{D}_d), l \in \mathcal{O}(\mathbb{D}_d)'$. Using the Fantappiè transform, we get a corresponding action on $\mathcal{O}(\overline{\mathbb{D}}_d)$ by $f \cdot \mathcal{F}(l) := \mathcal{F}(f \cdot l)$. We have

(5.2) $\langle g, \mathcal{F}(f \cdot l) \rangle = f \cdot l(g) = l(f \cdot g) = \langle f \cdot g, \mathcal{F}(l) \rangle = \langle M_f g, \mathcal{F}(l) \rangle = \langle g, M_f^* \mathcal{F}(l) \rangle$

for all $f \in \mathcal{M}_d$, $l \in \mathcal{O}(\mathbb{D}_d)'$, $g \in H^2_d$. Hence

(5.3)
$$M_f^*(\mathcal{F}(l)) = \mathcal{F}(f \cdot l)$$

for all $f \in \mathcal{M}_d$, $l \in \mathcal{O}(\mathbb{D}_d)'$. If $f \in \mathcal{O}(\mathbb{D}_d)$ is not necessarily a multiplier, we still define a bounded linear map $M_f^* : \mathcal{O}(\overline{\mathbb{D}}_d) \to \mathcal{O}(\overline{\mathbb{D}}_d)$ by (5.3) and view M_f^* as a densely defined unbounded operator on H_d^2 . However, already for d = 1 the adjoint of M_f^* need not be densely defined. Thus M_f^* may fail to be contained in the adjoint of another unbounded operator.

Let $f \in \mathcal{O}(\mathbb{D}_d)$. We say that M_f^* has *positive real part* and write $\operatorname{Re} M_f^* \ge 0$ iff the \mathbb{R} -bilinear form $\xi, \eta \mapsto \operatorname{Re}\langle M_f^*\xi, \eta \rangle$ on $\mathcal{O}(\overline{\mathbb{D}}_d)$ is positive definite. Observe that the map $f \mapsto \operatorname{Re}\langle M_f^*\xi, \eta \rangle$ is a continuous functional on $\mathcal{O}(\mathbb{D}_d)$ for fixed $\xi, \eta \in \mathcal{O}(\overline{\mathbb{D}}_d)$. Therefore, the set of functions $f \in \mathcal{O}(\mathbb{D}_d)$ with $\operatorname{Re} M_f^* \ge 0$ is closed in the topology of locally uniform convergence.

Let $I \subset \mathcal{O}(\mathbb{D}_d)$ be a local ideal, $I^{\perp} \subset \mathcal{O}(\mathbb{D}_d)'$ its annihilator, and $f \in \mathcal{O}(\mathbb{D}_d)/I$. Then $l \mapsto f \cdot l$ well defines a bounded linear map $I^{\perp} \to I^{\perp}$ because I is an ideal. Using (5.3), we define a bounded operator $M_f^* : \mathcal{F}(I^{\perp}) \to \mathcal{F}(I^{\perp})$ and

view M_f^* as an unbounded operator on $H_d^2 \ominus I \supset \mathcal{F}(I^{\perp})$. This operator is densely defined by Proposition 5.1. We say that M_f^* has positive real part iff the \mathbb{R} -bilinear form $a, b \mapsto \operatorname{Re}\langle M_f^*\mathcal{F}(a), \mathcal{F}(b) \rangle$ on I^{\perp} is positive definite. It should be evident how to carry these definitions over to matrix valued holomorphic functions.

THEOREM 5.2. Let $T \in \mathbb{M}_n(\mathcal{O}(\mathbb{D}_d)/I)$. Then there is $\widehat{T} \in \mathbb{M}_n(\mathcal{O}(\mathbb{D}_d))$ with $T = [\widehat{T}]$ such that $M^*_{\widehat{T}}$ has positive real part if and only if M^*_T has positive real part.

If M_T^* is bounded and $\operatorname{Re} M_T^*$ is positive and invertible, then \overline{T} can be chosen such that $M_{\widehat{T}}^* \in \mathbb{M}_n(\mathcal{M}_d)$ is bounded and $\operatorname{Re} M_{\widehat{T}}^*$ is positive and invertible.

Proof. The second half is easier because it does not involve unbounded operators. In [10] the *positive cone* of an operator algebra \mathcal{A} is defined to be the set of all $x \in \mathcal{A}$ for which $x + x^*$ is positive and invertible. Functional calculus with $\mathcal{C}(z) := (1-z)/(1+z)$ is a bijection between the positive cone and the open unit ball of \mathcal{A} .

Assume that M_T is bounded and that $2 \operatorname{Re} M_T := M_T + M_T^*$ is invertible. The operator $\mathcal{C}(M_T)$ has norm strictly less than 1, hence can be lifted to an operator $\widehat{\mathcal{C}(M_T)} \in \mathbb{M}_n(\mathcal{M}_d)$ of norm strictly less than 1 by Theorem 4.1. Then $\mathcal{C}(\widehat{\mathcal{C}(M_T)}) \in \mathbb{M}_n(\mathcal{M}_d)$ is the desired lifting of T.

In the unbounded situation, the assertion is proved by compressing to the complements of finite codimensional ideals. Let (I_j) be a net of finite codimensional local ideals in $\mathcal{O}(\mathbb{D}_d)$ with $I = \bigcap I_j$. Let $P_j : H_d^2 \to H_d^2 \ominus I_j$ be the orthogonal projection. Proposition 5.1 implies that $P_j M_T^* P_j$ is defined on all of $H_d^2 \ominus I_j$. We have $\operatorname{Re} P_j M_T^* P_j \ge 0$, so that $1/j + P_j M_T^* P_j$ has positive and invertible real part.

Hence there is $\widehat{T}_j \in \mathbb{M}_n(\mathcal{M}_d)$ with positive and invertible real part whose compression to $H_d^2 \ominus I_j$ is $1/j + P_j M_T^* P_j$. View \widehat{T}_j as a holomorphic function $\mathbb{D}_d \to \mathbb{M}_n$, then $\operatorname{Re} \widehat{T}_j(x) \ge 0$ for all $x \in \mathbb{D}_d$. Thus (\widehat{T}_j) is a normal family. A subnet of (\widehat{T}_j) converges locally uniformly towards a holomorphic function $\widehat{T} : \mathbb{D}_d \to \mathbb{M}_n$. Since $\operatorname{Re} M_{\widehat{T}_j} \ge 0$ for all j, it follows that $\operatorname{Re} M_{\widehat{T}} \ge 0$. Furthermore, $[\widehat{T}] = [T]$ in $\mathbb{M}_n(\mathcal{O}(\mathbb{D}_d)/I_j)$ for all j and thus $[\widehat{T}] = T$ in $\mathbb{M}_n(\mathcal{O}(\mathbb{D}_d)/I)$.

6. UNIQUENESS AND CONSTRUCTION OF SOLUTIONS

For scalar valued interpolation, we show that Sarason's criterion (see [15]) for the uniqueness of solutions generalizes to our situation. Let $I \subset \mathcal{O}(\mathbb{D}_d)$ be a local ideal and $\xi \in H_d^2 \ominus I$ with $\|\xi\| = 1$. Let $T \in \mathcal{M}_d/I$ satisfy $\|T\| = 1$. We call ξ a maximal vector for T iff $\|T\xi\| = 1$. Let $T \in \mathcal{O}(\mathbb{D}_d)/I$ satisfy $\operatorname{Re} M_T^* \ge 0$. We call ξ a zero vector for $\operatorname{Re} M_T^*$ iff $\xi \in \mathcal{O}(\overline{\mathbb{D}}_d) \subset H_d^2$ and $\operatorname{Re}\langle\xi, M_T^*\xi\rangle = 0$. If M_T^* is bounded, this is equivalent to $\xi \in \operatorname{ker} \operatorname{Re} M_T^*$, that is, $M_T^*\xi = -T\xi$.

If I has finite codimension, then a maximal vector for T exists and can be computed explicitly whenever ||T|| = 1. A zero vector for $\operatorname{Re} M_T^*$ exists and can be computed explicitly whenever $\operatorname{Re} M_T^* \ge 0$ and $\operatorname{Re} M_T^*$ is *not* invertible. THEOREM 6.1. Let $I \subset \mathcal{O}(\mathbb{D}_d)$ be a local ideal.

Let $T \in \mathcal{M}_d/I$ with ||T|| = 1. If $\xi \in H^2_d \ominus I$ is a maximal vector for T, then there is a unique $f \in \mathcal{M}_d$ with $||f|| \leq 1$ and [f] = T. Namely, $f(z) = (T\xi)(z)/\xi(z)$ for all $z \in \mathbb{D}_d$ with $\xi(z) \neq 0$.

Let $T \in \mathcal{O}(\mathbb{D}_d)/I$ with $\operatorname{Re} M_T^* \ge 0$. If $\xi \in H_d^2 \ominus I$ is a zero vector for T, then there is a unique $f \in \mathcal{O}(\mathbb{D}_d)$ with $\operatorname{Re} M_f^* \ge 0$ and [f] = T. Namely, $f(z) = -(M_T^*\xi)(z)/\xi(z)$ for all $z \in \mathbb{D}_d$ with $\xi(z) \neq 0$. If $T \in \mathcal{M}_d/I$, then $-M_T^*\xi = T\xi$.

If I is finite codimensional, then the solution is a rational function in both cases.

Proof. We consider first the case $||T|| \leq 1$. By Theorem 4.1, there is $f \in \mathcal{M}_d$ with $\varphi(f) = T$ and ||f|| = 1. Since $||f\xi|| = 1$ and $||P_I^{\perp}(f\xi)|| = ||T\xi|| = 1$, it follows that $f \cdot \xi = T\xi$. View f, ξ , and $T\xi$ as holomorphic functions on \mathbb{D}_d . Since $\xi \neq 0$, the set of those $z \in \mathbb{D}_d$ with $\xi(z) \neq 0$ is dense. On this set, $f(z) = (T\xi)(z)/\xi(z)$. This determines f uniquely on all of \mathbb{D}_d .

If I is finite codimensional, then $H_d^2 \ominus I$ only contains rational functions by Proposition 5.1. Thus f is a rational function as a quotient of two rational functions.

In the case $\operatorname{Re} M_T^* \ge 0$ we use Theorem 5.2 to obtain a lift $f \in \mathcal{O}(\mathbb{D}_d)$ with $\operatorname{Re} M_f^* \ge 0$. The remaining assertions follow as above if we show that $f \cdot \xi = -M_T^* \xi$.

Since f lifts T, we have $M_f^* \xi = M_T^* \xi$. Let $l \in \mathcal{O}(\mathbb{D}_d)'$ and $\eta := \mathcal{F}(l)$. Using $\langle M_f^* \xi, \eta \rangle = l(M_T^* \xi), \langle \xi, M_f^* \eta \rangle = l(f \cdot \xi)$, and $\operatorname{Re}\langle \xi, M_f^* \xi \rangle = 0$, we compute

$$\begin{aligned} \operatorname{Re}\langle\xi+\lambda\eta,M_{f}^{*}(\xi+\lambda\eta)\rangle &= \operatorname{Re}\left[\overline{\lambda}(\langle\xi,M_{f}^{*}\eta\rangle+\langle M_{T}^{*}\xi,\eta\rangle)+|\lambda|^{2}\langle\eta,M_{f}^{*}\eta\rangle\right] \\ &= \operatorname{Re}\left[\overline{\lambda}l(f\cdot\xi+M_{T}^{*}\xi)+|\lambda|^{2}\langle\eta,M_{f}^{*}\eta\rangle\right] \end{aligned}$$

for all $\lambda \in \mathbb{C}$. Since $\operatorname{Re} M_f^* \ge 0$, this expression is non-negative for all $\lambda \in \mathbb{C}$. Hence $l(f \cdot \xi + M_T^* \xi) = 0$ for all $l \in \mathcal{O}(\mathbb{D}_d)'$. Therefore, $f \cdot \xi = -M_T^* \xi$.

THEOREM 6.2. Let $I \subset \mathcal{O}(\mathbb{D}_d)$ be a local ideal. Then $\mathcal{M}_d \cap I$ is dense in $H^2_d \cap I$ with respect to the H^2_d -norm. In particular, if $H^2_d \cap I \neq \{0\}$, then $\mathcal{M}_d \cap I \neq \{0\}$.

Proof. Let P_I be the orthogonal projection $H_d^2 \to H_d^2 \cap I$. Since the closed linear span of the functions u_x , $x \in \mathbb{D}_d$, is norm dense in H_d^2 , the closed linear span of the functions $P_I(u_x)$ is norm dense in $H_d^2 \cap I$. Thus it suffices to show that $\eta := P_I(u_x)$ lies in $\mathcal{M}_d \cap I$ for all $x \in \mathbb{D}_d$. By definition,

$$\eta = u_x - P_I^{\perp}(u_x) \in \mathbb{C} \cdot u_x + (H_d^2 \ominus I) = H_d^2 \ominus I_x,$$

where $I_x := \{f \in I \mid f(x) = 0\}$. If $f \in \mathcal{O}(\mathbb{D}_d)$, then $f \cdot \eta - f(x)\eta \in I_x$. Thus the projection of $f \cdot \eta$ to $H_d^2 \ominus I_x$ equals $f(x)\eta$. Consequently, the rank one operator $T := |\eta\rangle\langle u_x|$ is the compression of M_η to $H_d^2 \ominus I_x$. Evidently, $u_x/||u_x||_{H_d^2}$ is a maximal vector for T/||T||. Thus Theorem 6.1 implies that $g(z) := u_x(x)\eta(z)/u_x(z)$ is the unique lifting of T to a multiplier with minimal norm ||T||. In particular, $g \in \mathcal{M}_d$. Since $u_x \in \mathcal{O}(\overline{\mathbb{D}}_d) \subset \mathcal{M}_d$, it follows that $\eta \in \mathcal{M}_d$ as desired. NEVANLINNA-PICK INTERPOLATION THEORY

7. INTERPOLATION IN FINITELY MANY POINTS

Let $z_1, \ldots, z_m \in \mathbb{D}_d, T_1, \ldots, T_m \in \mathbb{M}_n$. All $f \in \mathbb{M}_n(\mathcal{M}_d)$ with $f(z_j) = T_j$ have the same class [T] in $\mathbb{M}_n(\mathcal{M}_d/I(z_1,\ldots,z_m))$. Represent $\mathcal{M}_d/I(z_1,\ldots,z_m)$ completely isometrically on $\mathcal{H} := H_d^2 \ominus I(z_1, \ldots, z_m)$. By (2.1), the vectors $e_j := u_{z_j}, j =$ $1, \ldots, m$, are a basis of \mathcal{H} . If $f \in \mathbb{M}_n(\mathcal{M}_d)$, then (7.1) $M_f^*(u_x \otimes \xi) = u_x \otimes (f(x)^*\xi)$

for all $x \in \mathbb{D}_d$, $\xi \in \mathbb{C}^n$ by (2.3). Consequently,

(7.2) $\langle M_f^*(u_x \otimes \xi), u_y \otimes \eta \rangle = \langle u_x, u_y \rangle \cdot \langle f(x)^* \xi, \eta \rangle = (1 - \langle y, x \rangle)^{-1} \cdot \langle f(x)^* \xi, \eta \rangle.$ Thus $[T]^*$ can be computed explicitly with respect to the basis $\{e_i\}$.

This basis is not orthonormal but a linearly independent frame. Recall that a set of vectors $(\xi_j)_{j \in J}$ in a Hilbert space \mathcal{H} is called a *frame* iff there are numbers $A, B \in (0, \infty)$ such that, for all $\eta \in \mathcal{H}$,

$$A\|\eta\|^2 \leqslant \sum_{j \in J} |\langle \xi_j, \eta \rangle|^2 \leqslant B\|\eta\|^2.$$

PROPOSITION 7.1. Let \mathcal{H} be a Hilbert space, $(\xi_j)_{j \in J}$ a frame, and $T \in \mathbb{B}(\mathcal{H})$. Then T has positive real part iff the matrix with entries

(7.3)
$$\widetilde{T}_{ij} := \langle T\xi_j, \xi_i \rangle + \langle \xi_j, T\xi_i \rangle$$

is positive definite.

Proof. With every frame one can associate a bounded linear map $\sigma : \mathcal{H} \to \mathcal{H}$ $\ell^2(J)$ mapping η to $(\langle \eta, \xi_j \rangle)_{j \in J}$. Moreover, $\sigma^* \sigma$ is invertible. If T has positive real part, then so has $\sigma T \sigma^* \in \mathbb{B}(\ell^2(J))$ because

(7.4)
$$\operatorname{Re}(\sigma T \sigma^*) = \frac{1}{2}(\sigma T \sigma^* + \sigma T^* \sigma^*) = \sigma \operatorname{Re}(T)\sigma^*.$$

Conversely, if $\sigma T \sigma^*$ has positive real part then so has $\sigma^* \sigma T \sigma^* \sigma \in \mathbb{B}(\mathcal{H})$ and hence T because $\sigma^* \sigma$ is invertible. Let $\{\delta_i\}_{i \in J}$ be the canonical basis of $\ell^2(J)$. Then $\sigma^* \delta_j = \xi_j$ and thus

 $\langle 2\operatorname{Re}(\sigma T\sigma^*)\delta_j, \delta_i \rangle = \langle 2\sigma\operatorname{Re}(T)\sigma^*\delta_j, \delta_i \rangle = \langle 2\operatorname{Re}(T)\xi_j, \xi_i \rangle = \langle T\xi_j, \xi_i \rangle + \langle \xi_j, T\xi_i \rangle.$

Hence the matrix \widetilde{T} belongs to the operator $2 \operatorname{Re}(\sigma T \sigma^*)$.

If σ is invertible (as in our finite dimensional situation) then the matrix described in (7.3) is invertible iff T has invertible real part by (7.4).

THEOREM 7.2. Let $z_1, \ldots, z_m \in \mathbb{D}_d$ and let $T_1, \ldots, T_m \in \mathbb{M}_n$.

There is $F \in \mathcal{O}(\mathbb{D}_d, \mathbb{M}_n)$ with $F(z_j) = T_j$ for all j and $\operatorname{Re} M_F^* \ge 0$ if and only if the block matrix $A \in \mathbb{M}_m \otimes \mathbb{M}_n$ with entries

$$\frac{T_i + T_j^*}{1 - \langle z_i, z_j \rangle} \in \mathbb{M},$$

is positive definite.

Proof. Let v_1, \ldots, v_n be the standard basis of \mathbb{C}^n . Then the vectors $e_i \otimes$ v_j form a frame for $\mathcal{H} \otimes \ell_n^2$. Equation (7.2) implies $\langle [T]^*(e_j \otimes v_\mu), e_i \otimes v_\nu \rangle + \langle e_j \otimes v_\mu, [T]^*(e_i \otimes v_\nu) \rangle = \langle (T_j^* + T_i)v_\mu, v_\nu \rangle (1 - \langle z_i, z_j \rangle)^{-1}$. By Proposition 7.1, $[T]^*$ has positive real part iff the matrix A is positive definite. The assertion now follows from Theorem 5.2.

THEOREM 7.3. Let $z_1, \ldots, z_m \in \mathbb{D}_d$ and let $T_1, \ldots, T_m \in \mathbb{M}_n$.

There is $F \in \mathbb{M}_n(\mathcal{M}_d)$ with $||F|| \leq 1$ and $F(z_j) = T_j$ for all $j = 1, \ldots, m$ iff the block matrix $A' \in \mathbb{M}_m \otimes \mathbb{M}_n$ with entries

$$\frac{1 - T_i T_j^*}{1 - \langle z_i, z_j \rangle} \in \mathbb{M}_n$$

is positive definite.

Proof. Let $B := (\beta_{i,j})$ be the matrix whose entries are the inner products

$$\beta_{i,j} := \langle e_j, e_i \rangle = (1 - \langle z_i, z_j \rangle)^{-1}$$

by (2.2). Since the inner product in H_d^2 is positive definite, the matrix B is positive and invertible. Thus we can form the vectors

$$\widetilde{e}_j := B^{-1/2} e_j = \sum_{k=1}^m (B^{-1/2})_{kj} e_k.$$

A straightforward computation shows that $\{\tilde{e}_j\}$ is an orthonormal basis. Moreover, the operator $B: e_j \to \sum_k \beta_{kj} e_k$ still has the matrix (β_{ij}) in the basis (\tilde{e}_j) because Band $B^{-1/2}$ commute. Some linear algebra and (7.2) yield

$$[T]^* \widetilde{e}_j \otimes \xi = \sum_{k=1}^m [T]^* (B^{-1/2})_{kj} e_k \otimes \xi = \sum_{k=1}^m (B^{-1/2})_{kj} e_k \otimes T_k^* \xi$$
$$= \sum_{k,l=1}^m \widetilde{e}_l (B^{1/2})_{lk} (B^{-1/2})_{kj} \otimes T_k^* \xi$$
$$= (B^{1/2} \otimes \mathrm{id}_{\mathbb{C}^n}) \circ \mathrm{diag}(T_1^*, \dots, T_m^*) \circ (B^{-1/2} \otimes \mathrm{id}_{\mathbb{C}^n}) (\widetilde{e}_j \otimes \xi).$$

Hence with respect to the orthonormal basis \tilde{e}_{i} , the operator [T] is given by

$$[T] = (B \otimes \mathrm{id})^{-1/2} \operatorname{diag}(T_1, \dots, T_n) (B \otimes \mathrm{id})^{1/2}$$

because $B \otimes id$ is self-adjoint. This operator has norm at most 1 iff

$$1 - [T] \circ [T]^* = 1 - (B \otimes \operatorname{id})^{-1/2} \operatorname{diag}(T_i)(B \otimes \operatorname{id}) \operatorname{diag}(T_j^*)(B \otimes \operatorname{id})^{-1/2}$$

is positive. Since $B \otimes \operatorname{id}$ is invertible, this is equivalent to the positivity of $B \otimes \operatorname{id} - \operatorname{diag}(T_i)(B \otimes \operatorname{id}) \operatorname{diag}(T_i^*)$. This is the matrix A'.

238

8. ALGEBRAS OF MATRICES

Fix $r \in \mathbb{N}$. Let E be the set of all commutative unital subalgebras of \mathbb{M}_r with $\dim \mathcal{A} = r$. For example, if $T \in \mathbb{M}_r$ is a single operator with r different eigenvalues, then the unital subalgebra generated by T is of this form. We consider E as a subset of the Grassmannian manifold of r-dimensional vector subspaces of \mathbb{M}_r . This yields a natural topology on E.

An algebra $\mathcal{A} \in E$ is called *expanding* iff $\mathcal{A} \cdot \mathcal{A}^* = \mathbb{M}_r$. Dimension counting shows that this is equivalent to the bijectivity of the linear map $m : \mathcal{A} \otimes \mathcal{A}^* \to \mathbb{M}_r$, $x \otimes y^* \mapsto x \cdot y^*$. Let x_1, \ldots, x_r be a basis of \mathcal{A} . By definition, \mathcal{A} is expanding iff the matrices $x_i x_j^*$ are linearly independent. This in turn is equivalent to the nonvanishing of a certain determinant. Thus the set of expanding algebras is dense in E. We are going to define invariants $p(\mathcal{A})$ and $n(\mathcal{A})$ for expanding algebras \mathcal{A} that determine whether \mathcal{A} is a quotient of \mathcal{S}_d .

We call $\xi \in \mathbb{C}^n$ a *co-eigenvector* for \mathcal{A} iff ξ is a joint eigenvector for \mathcal{A}^* .

An expanding algebra \mathcal{A} has a cyclic vector. In fact, any co-eigenvector ξ is cyclic because $\mathcal{A}^* \cdot \xi = \mathbb{C}\xi$ implies $\mathbb{C}^r = \mathbb{M}_r \cdot \xi = \mathcal{A} \cdot \mathcal{A}^* \xi = \mathcal{A} \cdot \xi$. If ξ is cyclic, then the map $\mathcal{A} \to \mathbb{C}^r$, $x \mapsto x \cdot \xi$, is bijective. Thus if ξ_1 and ξ_2 are two cyclic vectors, then there are $T_1, T_2 \in \mathcal{A}$ with $\xi_2 = T_1\xi_1$ and $\xi_1 = T_2\xi_2$. T_1T_2 is the unique element of \mathcal{A} with $T_1T_2\xi_2 = \xi_2$, so that $T_1T_2 = 1$. Similarly, $T_2T_1 = 1$, so that T_1 and T_2 are inverses of each other.

For $x \in \mathbb{M}_r$, we define a sesquilinear form $\theta_x : \mathcal{A}' \times \mathcal{A}' \to \mathbb{C}$ on the dual \mathcal{A}' by

$$\theta_x(l_1, l_2) := (l_1 \otimes l_2^*) (m^{-1}(x))$$

for $l_1, l_2 \in \mathcal{A}'$, where $l_2^*(y^*) := l_2(y)$ for all $y \in \mathcal{A}^*$. This form is associated to $m^{-1}(x) \in \mathcal{A} \otimes \mathcal{A}^*$ in a *natural* way. This is the reason for working on the dual of \mathcal{A} . If x is self-adjoint, then θ_x is Hermitian, that is, $\overline{\theta_x(l_1, l_2)} = \theta_x(l_2, l_1)$.

Let ξ be a cyclic vector and let $x := -P_{\xi}$ be the negative of the orthogonal projection onto $\mathbb{C}\xi$. The above construction applied to $-P_{\xi}$ yields a Hermitian sesquilinear form θ_{ξ} . Let $p(\mathcal{A})$, $o(\mathcal{A})$, and $n(\mathcal{A}) + 1$ be the number of **p**ositive, zero, and **n**egative eigenvalues of θ_{ξ} . By definition, $p(\mathcal{A}) + o(\mathcal{A}) + n(\mathcal{A}) = r - 1$.

These numbers do not depend on the choice of the cyclic vector ξ . For if η is another cyclic vector, then $\eta = T\xi$ for an invertible operator $T \in \mathcal{A}$. Thus $P_{\eta} = cTP_{\xi}T^*$ for some constant c > 0. Therefore, $m^{-1}(P_{\eta}) = cT \cdot m^{-1}(P_{\xi}) \cdot T^*$. Multiplication by T is an invertible transformation on \mathcal{A} . Let $T' : \mathcal{A}' \to \mathcal{A}'$ be the transpose of it. Then $\theta_{\eta}(l_1, l_2) = c\theta_{\xi}(T'l_1, T'l_2)$ for all $l_1, l_2 \in \mathcal{A}'$. Thus the forms θ_{η} and θ_{ξ} have the same numbers of positive, negative, and zero eigenvalues. Hence the numbers $p(\mathcal{A}), o(\mathcal{A}), n(\mathcal{A})$ are well defined invariants of the algebra \mathcal{A} .

Let ξ be even a co-eigenvector, not just cyclic. Let $I_{\xi} := \{T \in \mathcal{A} \mid T^*\xi = 0\}$ be the corresponding maximal ideal. Choose any basis X_1, \ldots, X_{r-1} of I_{ξ} and let $X_r := 1$. Express $m^{-1}(-P_{\xi})$ in this basis:

(8.1)
$$-P_{\xi} = \sum_{j,k=1}^{r} c_{jk} X_j X_k^*.$$

Since $X_k^*\xi = 0$ for all $k \leq r-1$, we get $-\xi = -P_{\xi}(\xi) = \sum_{j=1}^r c_{jr}X_j\xi$. Since also $-\xi = -X_r\xi$, it follows that $c_{jr} = 0$ for $j \leq r-1$ and $c_{rr} = -1$. Since $-P_{\xi}$ is

self-adjoint, $\overline{c_{jk}} = c_{kj}$ and thus $c_{rj} = 0$ for $j \leq -1$. Diagonalizing the form (c_{jk}) , we obtain another basis T_j of I_{ξ} such that

$$-P_{\xi} = \varepsilon_1 T_1 T_1^* + \dots + \varepsilon_{r-1} T_{r-1} T_{r-1}^* - 1$$

with certain $\varepsilon_j \in \{-1, 0, +1\}$. We may assume the T_j ordered so that all the positive ε_j come first. The sequilinear form θ_{ξ} on \mathcal{A}' is equal to

$$\theta_{\xi}(l_1, l_2) = \sum_{j=1}^{r-1} \varepsilon_j l_1(T_j) \overline{l_2(T_j)} - l_1(1) l_2(1).$$

Thus $p(\mathcal{A})$, $o(\mathcal{A})$, and $n(\mathcal{A})$ are equal to the number of positive, zero, and negative ε_j . It follows that $n(\mathcal{A}) \ge 0$.

As a result, in order to check that \mathcal{A} is expanding, compute the invariants $p(\mathcal{A})$, etc., and the operators T_j , we have to do the following: Find a joint eigenvector ξ for \mathcal{A}^* . Compute the coefficients c_{jk} in equation (8.1) (this amounts to inverting the linear map m). Diagonalize the Hermitian matrix (c_{jk}) . There are efficient numerical algorithms for performing these computations.

THEOREM 8.1. Assume that $n(\mathcal{A}) = 0$ and that $p(\mathcal{A}) \leq d$. Then \mathcal{A} is completely isometric to a quotient of S_d by some inner ideal. Let ξ be a coeigenvector and

$$1 - P_{\xi} = T_1 T_1^* + \dots + T_p T_p^*$$

for certain $T_1, \ldots, T_p \in I_{\xi}$. Then $n(\mathcal{A}) = 0$ and $p(\mathcal{A}) = p$, and $(T_1, \ldots, T_p, 0, \ldots, 0)$ is a d-contraction. The homomorphism $\mathcal{S}_d \to \mathcal{A}$ defined by this d-contraction is a complete quotient map.

Conversely, assume that $I \subset S_d$ is an inner ideal of codimension r. Then $S_d/I \subset \mathbb{B}(H^2_d \ominus I) \cong \mathbb{M}_r$ is expanding and $n(\mathcal{A}) = 0$, $p(\mathcal{A}) \leq d$.

We mention without proof that if $\mathcal{A} \subset \mathbb{M}_r$ is completely isometric to a quotient of \mathcal{S}_d by an inner ideal, then it is unitarily equivalent to such a quotient. Thus \mathcal{A} is expanding and satisfies $n(\mathcal{A}) = 0$, $p(\mathcal{A}) \leq d$.

Proof. The constructions above the theorem show that we can write $1 - p_{\xi} = T_1T_1^* + \cdots + T_pT_p^*$ if and only if $n(\mathcal{A}) = 0$ and $p(\mathcal{A}) = p$. By assumption, the operator $\Delta := 1 - T_1T_1^* - \cdots - T_pT_p^*$ is a rank one projection. In particular, $\mathbf{T} = (T_1, \ldots, T_p, 0, \ldots, 0)$ is a *d*-contraction. Let $\varphi : \mathcal{S}_d \to \mathcal{A}$ be the corresponding completely contractive homomorphism sending **S** to **T**.

Let $\Omega := \operatorname{Spec}(\mathbf{T})$. This is a finite subset of \mathbb{D}_d . We claim that $\Omega \subset \mathbb{D}_d$. Otherwise, there is $x \in \operatorname{Spec}(\mathbf{T})$ with $\|x\|_2 = 1$. Let $X := \sum_{j=1}^d x_j T_j$. Since \mathbf{T} is a *d*-contraction, X is a contraction. By construction, 1 is an eigenvalue of X. Let $0 \neq V \subset \mathbb{C}^r$ be the corresponding eigenspace with $X|V = \operatorname{id}$. Since also $\|X\| \leq 1$,

 $0 \neq V \subset \mathbb{C}^r$ be the corresponding eigenspace with $X | V = \mathrm{id}$. Since also $||X|| \leq 1$, it follows that $X(\mathbb{C}^r \ominus V) \perp V$. Thus V is a reducing subspace for X. Some linear algebra shows that the orthogonal projection P_V can be written as a polynomial in X and therefore lies in \mathcal{A} . Thus P_V commutes with \mathcal{A} and thus also with \mathcal{A}^* . Since \mathcal{A} is expanding, P_V commutes with $\mathbb{M}_r = \mathcal{A} \cdot \mathcal{A}^*$. Thus $P_V = \mathrm{id}$, that is, X = 1. This contradicts $T_1, \ldots, T_d \in I_{\xi} \neq 1$.

By Theorem 2.1, the operator \mathbf{T} can be written as the compression of $n \cdot \mathbf{S} \oplus \mathbf{Z}$ to a full co-invariant subspace \mathcal{K} . In the proof of Theorem 3.1, it is shown that

 $\operatorname{Spec}(\mathbf{Z}) \subset \widehat{I}$ if \mathbf{Z} is the spherical part of the dilation of a completely contractive representation of \mathcal{S}_d/I . Since $\operatorname{Spec}(\mathcal{A}) \cap \partial \mathbb{D}_d = \emptyset$, there can be no non-trivial spherical part \mathbf{Z} .

The number n is the rank of the defect operator Δ by Theorem 2.1, thus n=1. Consequently, **T** is the compression of the d-shift **S** to a full co-invariant subspace. By Theorem 3.1 and Corollary 3.2, φ is a complete isometry $S_d / \ker \varphi \cong A$.

Conversely, let $I \subset S_d$ be an inner ideal of finite codimension r and let $\mathcal{A} := S_d/I$. Theorem 3.1 asserts that the standard representation of \mathcal{A} on $H_d^2 \ominus I$ is completely isometric. It is shown in [3] that the closed linear span of $S_d \cdot S_d^*$ contains the algebra $\mathbb{K}(H_d^2)$ of compact operators on $\mathbb{B}(H_d^2)$. Thus \mathcal{A} is expanding:

$$\mathcal{A} \cdot \mathcal{A}^* = P_I^{\perp} \cdot \mathcal{S}_d \cdot P_I^{\perp} \cdot \mathcal{S}_d^* \cdot P_I^{\perp} = P_I^{\perp} \cdot \mathcal{S}_d \cdot \mathcal{S}_d^* \cdot P_I^{\perp} \supset P_I^{\perp} \cdot \mathbb{K}(H_d^2) \cdot P_I^{\perp} = \mathbb{M}_r.$$

By Theorem 2.2, the automorphism group of \mathbb{D}_d operates completely isometrically on \mathcal{S}_d . Since it operates transitively on $\mathbb{D}_d \subset \operatorname{Spec}(\mathcal{S}_d)$, we may assume without loss of generality that $0 \in \operatorname{Spec}(\mathcal{S}_d/I)$. Thus $1 = u_0 \in H^2_d \ominus I$. In fact, 1 is a co-eigenvector for \mathcal{A} . Arveson computes that $1 - S_1S_1^* - \cdots - S_dS_d^*$ is the rank one projection onto $\mathbb{C} \cdot 1$. Let $S(I)_j := P_I^{\perp}S_jP_I^{\perp} = P_I^{\perp}S_j$. We conclude that $P_I^{\perp} - S(I)_1S(I)_1^* - \cdots - S(I)_dS(I)_d^*$ is still the rank one projection onto $\mathbb{C} \cdot 1$. Consequently, $n(\mathcal{A}) = 0$ and $p(\mathcal{A}) \leq d$.

The sesquilinear form θ depends continuously on $\mathcal{A} \in E$ in a suitable sense. Thus an eigenvalue of θ cannot change its sign without becoming zero in between. Hence if $o(\mathcal{A}) = 0$, then p and n are constant in a neighborhood of \mathcal{A} . Thus the set of r-dimensional quotients of \mathcal{S}_{r-1} with $p(\mathcal{A}) = r - 1$ is an open subset of E. The boundary of this set consists of the r-dimensional quotients of \mathcal{S}_{r-2} . The set of expanding algebras with $n(\mathcal{A}) > 0$, $o(\mathcal{A}) = 0$ is an open subset of algebras that are not quotients of any \mathcal{S}_d .

Let $\mathcal{A} \cong \mathcal{S}_d/I$ and let $\rho : \mathcal{A} \to \mathbb{B}(\mathcal{H})$ be a representation. Then ρ is completely contractive iff $\rho[\mathbf{S}]$ is a *d*-contraction. This is quite an efficient criterion to check whether a representation is completely contractive. Furthermore, quotients of \mathcal{A} can be computed explicitly. These are reasons why it is desirable to write an algebra as a quotient of \mathcal{S}_d .

REFERENCES

- J. ARAZY, A survey of invariant Hilbert spaces of analytic functions on bounded symmetric domains, in *Multivariable Operator Theory* (Seattle, 1993), Amer. Math. Soc., Providence, RI, 1995, pp. 7–65.
- A. ARIAS, G. POPESCU, Noncommutative interpolation and Poisson transforms, Israel J. Math. 115(2000), 205–234.
- W.B. ARVESON, Subalgebras of C^{*}-algebras. III, Multivariable operator theory, Acta Math. 181(1998), 159–228.
- B. BAGCHI, G. MISRA, Homogeneous tuples of multiplication operators on twisted Bergman spaces, J. Funct. Anal. 136(1996), 171–213.
- D.P. BLECHER, Z.-J. RUAN, A.M. SINCLAIR, A characterization of operator algebras, J. Funct. Anal. 89(1990), 188–201.
- K.R. DAVIDSON, D.R. PITTS, Nevanlinna-Pick interpolation for non-commutative analytic Toeplitz algebras, *Integral Equations Operator Theory* **31**(1998), 321–337.

- 7. H. GRAUERT, R. REMMERT, *Theorie der Steinschen Räume*, Springer-Verlag, Berlin 1977.
- 8. L. HÖRMANDER, Notions of Convexity, Birkhäuser Verlag, Boston 1994.
- 9. M. JARNICKI, P. PFLUG, Invariant Distances and Metrics in Complex Analysis, Walter de Gruyter & Co., Berlin 1993.
- 10. R. MEYER, Adjoining a unit to an operator algebra, J. Operator Theory, to appear.
- 11. R. NEVANLINNA, Über beschränkte Funktionen mit vorgeschriebenen Wertzuordnungen, Ann. Acad. Sci. Fenn. Ser. B 13(1919).
- V.I. PAULSEN, Completely Bounded Maps and Dilations, Longman Scientific & Technical, Harlow 1986.
- G. PICK, Über die Beschränkungen analytischer Funktionen, welche durch vorgegebene Funktionswerte bewirkt sind, Math. Ann. 77(1916), 7–23.
- G. PICK, Über beschränkte Funktionen, die in gegebenen Punkten vorgeschriebene Werte annehmen, Ann. Acad. Sci. Fenn. Ser. B 15(1919).
- 15. D. SARASON, Generalized interpolation in H^{∞} , Trans. Amer. Math. Soc. **127**(1967), 179–203.

RALF MEYER SFB 478 — Geometrische Strukturen in der Mathematik Universität Münster Hittorfstr. 27 48149 Münster GERMANY E-mail: rameyer@math.uni-muenster.de

Received October 20, 1997; revised July 15, 2000.