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Abstract. The dual Lie bialgebra of a certain quasitriangular Lie bialgebra
structure on the Heisenberg algebra determines a (non-compact) Poisson-Lie
group G. The compatible Poisson bracket on G is non-linear, but it can
still be realized as a “cocycle perturbation” of the linear Poisson bracket.
We construct a certain twisted group C∗-algebra A, which is shown to be a
strict deformation quantization of G. Motivated by the data at the Poisson
(classical) level, we then construct on A its locally compact quantum group
structures: comultiplication, counit, antipode and Haar weight, as well as
its associated multiplicative unitary operator. We also find a quasitriangular
“quantum universal R-matrix” type operator for A, which agrees well with
the quasitriangularity at the Lie bialgebra level.
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0. INTRODUCTION

So far, the usual method of constructing quantum groups has been the method of
“generators and relations”, in which one tries to deform the relations between the
generators (i.e. “coordinate functions”) of the commutative algebra of functions
on a Lie group (e.g. [38]). But if we wish to study locally compact (C∗-algebraic)
quantum groups, this provides a serious obstacle: In non-compact situations, the
generators tend to be unbounded, which makes it difficult to treat them in the
C∗-algebra framework. (For example see [39], where Woronowicz introduces the
highly technical theory of “unbounded operators affiliated with C∗-algebras” in his
construction of the quantum E(2) group.) In addition, the method of generators
and relations is at best an indirect method, in the sense that the deformation of
the pointwise product on the function algebra is not explicitly obtained.
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Because of this, constructing new (especially, non-compact) quantum groups
has been rather difficult. Among the specific examples of non-compact quantum
groups which have been constructed and studied are: [27], [39], [40], [2], [37], [35],
[31], [33], [42], [20].

Recently, in [15], we defined certain (in general non-linear) Poisson brack-
ets on dual vector spaces of Lie algebras, denoted by {· , ·}ω, which are “cocycle
perturbations” of the linear Poisson brackets. We then showed that deformation
quantizations of these Poisson brackets are provided by twisted group C∗-algebras.
This construction is relatively general (at least for those Poisson brackets of the
aforementioned type), and there are some indications ([15]) that further general-
ization could be possible. In addition, it is a direct approach, where we deform
the pointwise product directly at the function algebra level.

We wish to use this method to construct some C∗-algebraic quantum groups.
But for constructing a quantum group from a twisted group C∗-algebra, it should
be given a compatible comultiplication and other quantum group structures. If
we are to reasonably expect a twisted group C∗-algebra (regarded here as a de-
formation quantization of our Poisson bracket {· , ·}ω) to be also equipped with a
compatible comultiplication, we need to require that {· , ·}ω determines a Poisson-
Lie group.

Since a typical Poisson bracket we consider is defined on the dual space of a
Lie algebra, this means that it is reasonable to impose a condition that the dual
vector space is itself a Lie group such that it forms, together with the given Poisson
bracket, a Poisson-Lie group. This suggests us to consider the following.

Suppose H is a Poisson-Lie group. Then its Lie algebra h is a Lie bialgebra
such that its dual vector space g = h∗ is also a Lie bialgebra. The Lie group
G of g is the dual Poisson-Lie group of H. (See [21], [5], or Appendix of [14]
for discussion on Poisson-Lie groups.) In other words, at the level of Poisson-
Lie groups, the notion of a Poisson bracket defined on the “dual” of a Lie group
naturally exists. Moreover, if the dual Poisson-Lie group G is exponential solvable
(so G is diffeomorphic to g via the exponential map), then we may transfer via
the exponential map the compatible Poisson bracket on G to a Poisson bracket
on g. To apply the result of [15], let us assume that the resulting Poisson bracket
on g = h∗ is of the “cocycle perturbation” type.

Then by the main theorem (Theorem 3.4) in [15], a deformation quantization
of g is given in terms of the twisted group C∗-algebra of H. Since g ∼= G, this
can also be regarded as a deformation quantization of the Poisson-Lie group G.
In particular, if G is globally linearizable (i.e. the compatible Poisson bracket
on G is Poisson isomorphic to the linear Poisson bracket on g), its deformation
quantization is given by the ordinary group C∗-algebra C∗(H).

This set-up does not automatically provide a compatible comultiplication
on the twisted group C∗-algebra. But we can usually collect enough data at
the Poisson-Lie group level so that the candidates for comultiplication and other
quantum group structures could be obtained. We then have to provide a rigorous
analytic proof for our choice of comultiplication, which is not necessarily simple.
It often helps to find some useful tools like multiplicative unitary operators (in the
sense of Baaj and Skandalis ([3])).

Many of the earlier known examples of non-compact quantum groups, in-
cluding the ones in [37], [31], [35], are deformations of some “globally linearizable”
Poisson-Lie groups. So these quantum groups essentially look like ordinary group
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(C∗-)algebras. (See also Section 7 of [42], [20], [9].) Whereas our method allows
us to deform a more general type of Poisson groups whose compatible Poisson
brackets are in general non-linear. In fact, these early examples are special cases
of our construction.

In this paper, we will follow the method outlined above to construct some
specific examples of quantum groups. We will begin the first section with the study
of the 2n + 1 dimensional Heisenberg group H, equipped with a certain (linear)
Poisson-Lie group structure (by [35], it is actually known that all possible Poisson
brackets on H are linear). In particular, we will consider the one obtained from a
certain “(quasitriangular) classical r-matrix”.

Then we consider the dual Poisson-Lie group G of H. The dual Poisson
bracket is in general not linear. But in our case, we show that it is of the “co-
cycle perturbation” type mentioned earlier. So, following the method of [15], we
construct (in Section 2) a C∗-algebra which is a deformation quantization of this
dual Poisson bracket.

On this C∗-algebra, we construct its quantum group structures, including
comultiplication and the associated multiplicative unitary operator (in Section 3),
counit and antipode (in Section 4), and Haar weight (in Section 5). In the last
section, we find a quasitriangular “quantum universal R-matrix” type operator for
our C∗-algebra, and relate it with the classical r-matrix we started with.

We discuss the representation theory of our quantum groups in a separate
paper ([16]). The quantum R-matrix operator plays an important role here. Dis-
cussion of more general quantum groups which can be constructed using similar
techniques are also postponed to a future occasion. For instance, we could consider
a more general two-step nilpotent Lie group whose center has dimension higher
than one, and try to deform its dual Poisson-Lie group equipped with its non-linear
Poisson bracket. See [14] for a discussion.

1. THE LIE BIALGEBRAS, POISSON-LIE GROUPS

The notion of Poisson-Lie groups is more or less equivalent to the notion of Lie
bialgebras ([7], [21]), and these are the objects to be quantized to produce quantum
groups. In this section, we will study these “classical” objects, to find enough data
we can use to construct our specific quantum groups. The Lie bialgebras we will
exclusively study are either nilpotent or exponential solvable ones, so that we are
able to treat their deformation quantizations in the C∗-algebra framework (see
[15], [30]).

Definition 1.1. Let h be the 2n+1 dimensional (real) Lie algebra generated
by xi,yi (i = 1, . . . , n), and z, with the following relations:

[xi,yj ] = δijz, [z,xi] = [z,yi] = 0.

This is actually the well-known Heisenberg algebra. Let us also consider the ex-
tended Heisenberg algebra h̃, generated by xi,yi (i = 1, . . . , n), z, and d, with the
relations:

[xi,yj ] = δijz, [d,xi] = xi, [d,yi] = −yi, [z,xi] = [z,yi] = [z,d] = 0.
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Definition 1.2. The (connected and simply connected) Lie group corre-
sponding to h is the Heisenberg group, denoted by H. The space for this Lie group
is isomorphic to R2n+1, and the multiplication on it is defined by

(x, y, z)(x′, y′, z′) =
(
x+ x′, y + y′, z + z′ + β(x, y′)

)
,

for x, y, x′, y′ ∈ Rn and z, z′ ∈ R. Here β(· , ·) is the usual inner product on Rn. We
use this notation for a possible future generalization. For the extended Heisenberg
group H̃ (corresponding to h̃), see Example 3.6 in Appendix below.

Taking advantage of the fact that their underlying spaces coincide, let us
from now on identify H with h (as spaces) via the evident map:

(x, y, z) 7→
n∑

i=1

(xixi + yiyi) + zz,

where x = (x1, . . . , xn) ∈ Rn, y = (y1, . . . , yn) ∈ Rn. On this space H ∼= h, let us
fix a Lebesgue measure. This would be the Haar measure for H.

Note that this definition of the Heisenberg group is different from the one that
is given by the Baker-Campbell-Hausdorff series for h. Thus our set-up slightly
differs (though isomorphic) from the setting in Section 3 of [15]. The use of
the identification map as the diffeomorphism between h and H will make the
subsequent calculation simpler.

To obtain a Lie bialgebra structure on h, consider g = h∗, the dual vector
space of h, and fix a nonzero real number λ. Let us define the following Lie algebra
structure on g:

[pi,qj ] = 0, [pi, r] = λpi, [qi, r] = λqi,

where pi,qi (i = 1, . . . , n), r form the dual basis for xi,yi (i = 1, . . . , n), z. Then
we have the following:

Proposition 1.3. The (mutually dual) Lie algebras h and g determine a
Lie bialgebra.

Proof. We could prove this statement directly. But let us choose an indirect
method, which would give us a deeper insight (and more information) about the
situation.

Consider the following element contained in h̃⊗ h̃:

(1.1) r = λ

(
z⊗ d + d⊗ z + 2

n∑
i=1

(xi ⊗ yi)
)
.

By elementary Lie algebra calculations, we can show that r satisfies the so-called
“classical Yang-Baxter equation” (CYBE):

[r12, r13] + [r12, r23] + [r13, r23] = 0.

The notation rij is understood as an element in h̃ ⊗ h̃ ⊗ h̃, and the meaning is
fairly obvious (see [7], [5]). We can also show without difficulty that r12 + r21 is
h-invariant. Therefore, r is a “quasitriangular classical r-matrix” ([7], [5]).

Since we have a (quasitriangular) r-matrix, a “coboundary” Lie bialgebra
structure on h̃ is defined by δ̃ : h̃ → h̃ ∧ h̃, where

δ̃(X) = adX(r).
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By restricting δ̃ to h, we then obtain the map δ : h → h ∧ h, given by
δ(xi) = λxi ∧ z, δ(yi) = λyi ∧ z, δ(z) = 0.

This map is easily shown to be a 1-cocycle with respect to the adjoint representa-
tion for h, and hence (h, δ) defines a Lie bialgebra.

The Lie bialgebra structure δ on h determines a Lie bracket on the dual
vector space h∗ by: 〈

[µ, ν], X
〉

=
〈
µ⊗ ν, δ(X)

〉
,

where µ, ν ∈ h∗, X ∈ h, and 〈· , ·〉 is the dual pairing between h∗ and h. By
straightforward calculation using the definition of δ, we can see that the resulting
Lie bracket coincides with the one we defined above on g = h∗. This means that
the Lie bialgebra (h, δ) is exactly the one determined by the pair h and g.

Corollary 1.4. By means of the classical r-matrix of (1.1) and the Lie
bialgebra (h̃, δ̃) obtained from it, we can also find the dual Lie bialgebra g̃ = h̃∗ of
h̃ which is spanned by the dual basis elements pi,qi (i = 1, . . . , n), r, s, with pi,qi, r
satisfying the same relation as before and s being central. By construction, (h, δ)
or (h, g) is a “sub-bialgebra” of (h̃, δ̃) or (h̃, g̃).

Remark 1.5. Unlike (h̃, δ̃), the Lie bialgebra (h, δ) cannot be obtained as a
coboundary from any classical r-matrix contained in h⊗ h. Thus the introduction
of the extended Heisenberg algebra h̃ is essential. The same situation occurs in
[1] and [4], where the authors find (using the same classical r-matrix as above)
a quantized universal enveloping algebra (i.e. QUE algebra) deformation of the
Heisenberg algebra.

The Lie group G associated with g is, by definition, the dual Poisson-
Lie group of H. To know more about G, note first that the Lie algebra g is
a semi-direct product of its two (abelian) subalgebras m = span(r) and q =
span(pi,qi|i = 1, . . . , n). This is evident from its defining relations. Therefore,
the connected and simply connected Lie group G associated with g should be a
semi-direct product group. Since m and q are abelian Lie algebras, they are iden-
tified (as spaces) with their corresponding abelian Lie groups. This suggests the
following definition of G:

Definition 1.6. (The dual Poisson-Lie group) Let G = q × m = g as a
vector space. Define the multiplication law on it by

(p, q, r)(p′, q′, r′) = (eλr′p+ p′, eλr′q + q′, r + r′).
Here, p = (p1, . . . , pn) ∈ Rn, q = (q1, . . . , qn) ∈ Rn, r ∈ R, and we are

identifying (p, q, r) ∈ G with the element
n∑

i=1

(pipi + qiqi) + rr ∈ g. This means

that, in particular, G is an exponential solvable Lie group. Now on G (which is
being identified as a space with g = h∗), let us choose the Plancherel-Lebesgue
measure, dual to the fixed Haar measure on H ∼= h (see Remark 1.7 at the end of
this section). This will be the left invariant Haar measure on G.

The group G will be our main object of study. Following the method of [15],
we are going to find a deformation quantization of G, using the duality between
h and g (or H and G). Before we begin our main discussion, let us make a short
remark on Fourier transforms between dual spaces. This will serve the purpose of
setting up the notation we will use in this paper.
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Remark 1.7. (Fourier transforms between dual spaces, Plancherel measure)
Let W be a (real) vector space. Let us fix a Lebesgue measure, dx, on W . Let W ∗

be the dual vector space of W . We choose on W ∗ the dual “Plancherel measure”,
denoted by dµ, which is also a Lebesgue measure. Then the Fourier transform
from L2(W ) to L2(W ∗) is given by

(Fξ)(µ) =
∫
W

e
[
〈µ, x〉

]
ξ(x) dx.

Here 〈· , ·〉 denotes the dual pairing between W ∗ and W , and e(·) is the function
defined by e(t) = e2πit. So e(t) = e−2πit. By our choice of measures, the Fourier
transform is a unitary operator, whose inverse is the following inverse Fourier
transform:

(F−1ζ)(x) =
∫

W∗

e
[
〈µ, x〉

]
ζ(µ) dµ.

If Z is a subspace of W and if we fix a Lebesgue measure, dz, on Z, there is
a unique Plancherel-Lebesgue measure, dẋ, on W/Z so that dx = dẋdz. Since
Z⊥ = (W/Z)∗, we can also choose as above an appropriate Plancherel measure,
dq, on Z⊥ ⊆ W ∗. This enables us to define the “partial” Fourier transform from
L2(W/Z ×W ∗/Z⊥) to L2(W ∗) = L2(Z⊥ ×W ∗/Z⊥), given by

f∧(q, r) =
∫

W/Z

e
[
〈q, ẋ〉

]
f(ẋ, r) dẋ.

Its inverse, ϕ 7→ ϕ∨, is defined similarly as above.
Let S(W ) denote the space of Schwartz functions on W . Then by Fourier

transform, S(W ) is carried onto S(W ∗) and vice versa. The Fourier inversion
theorem (the unitarity of the Fourier transform) implies that we have: F−1(Ff) =
f for f ∈ S(W ) and F(F−1ϕ) = ϕ for ϕ ∈ S(W ∗). A similar assertion is true for
the partial Fourier transform.

2. DEFORMATION QUANTIZATION OF G

Let us compute explicitly the compatible Poisson bracket on the dual Poisson-Lie
group G. Later in this section, we are going to find a deformation quantization
of G in the direction of this Poisson bracket. To compute the Poisson bracket, let
us first compute the Lie bialgebra structure (g, θ) on g. Since θ determines the
dual Lie bialgebra of (h, δ), it should be the dual map of the given Lie bracket on
g∗ = h:

Lemma 2.1. Let θ : g → g ∧ g be defined by its values on the basis vectors
of g as follows:

θ(pi) = 0, θ(qi) = 0, θ(r) =
n∑

i=1

(pi ⊗ qi − qi ⊗ pi) =
n∑

i=1

(pi ∧ qi).

Then θ is the dual map of the Lie bracket on h. Hence it is the 1-cocycle giving
the dual Lie bialgebra structure on g.

Proof. Straightforward.
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By using the simple connectedness of G, the Lie bialgebra structure (g, θ)
determines the compatible Poisson bracket on G (see [21], [5]). The calculation
and the result is given below. See [35] for a similar result. Observe also that our
expression of the Poisson bracket does not depend on the p and q variables.

Theorem 2.2. The Poisson bracket on the dual Poisson-Lie group G is
given by the following expression:

For ϕ,ψ ∈ C∞(G),

(2.1) {ϕ,ψ}(p, q, r) =
(

e2λr − 1
2λ

) (
β(x, y′)− β(x′, y)

)
, (p, q, r) ∈ G

where dϕ(p, q, r) = (x, y, z) and dψ(p, q, r) = (x′, y′, z′), which are naturally con-
sidered as elements of h.

Proof. Let Ad : G → Aut(g) be the adjoint representation of G on g. We
have to look for a map F : G→ g∧ g, which is a group 1-cocycle on G for Ad and
whose derivative at the identity element, dFe, coincides with the map θ. Since θ
depends only on the r-variable, so should F . Thus we only need to look for a map
F satisfying the condition:

F (r1 + r2) = F (r1) + Ad(0,0,r1)

(
F (r2)

)
,

such that its derivative at the identity element is the map, dFe(r) = θ(r) =

r
n∑

i=1

(pi ∧ qi). Meanwhile, note that the representation Ad sends the basis vectors

of g as follows:

Ad(0,0,r′)(pi) = (0, 0, r′)(1, 0, 0)(0, 0,−r′) = (e−λr′ , 0, 0) = e−λr′pi,

Ad(0,0,r′)(qi) = e−λr′qi, Ad(0,0,r′)(r) = r.

So the 1-cocycle condition for F becomes:

F (r1 + r2) = F (r1) + e−2λr1F (r2).

From this equation together with the condition dFe = θ, we obtain:

F (p, q, r) = F (r) =
(

1− e−2λr

2λ

) n∑
i=1

(pi ∧ qi).

The Poisson bivector field is the right translation of this 1-cocycle F , given
by R(p,q,r)∗F (p, q, r). Since the right translations are R(p,q,r)∗(pi) = eλrpi and
R(p,q,r)∗(qi) = eλrqi, we obtain Equation (2.1) for our Poisson bracket by:

{ϕ,ψ}(p, q, r) =
〈
R(p,q,r)∗F (p, q, r),dϕ(p, q, r) ∧ dψ(p, q, r)

〉
.

Since we will use the expression (e2λr − 1)/2λ quite often, let us give it a
special notation, ηλ(r). This function satisfies a convenient identity, which is given
in Lemma 2.4. The proof is straightforward.
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Definition 2.3. Let λ ∈ R be fixed. Let us denote by ηλ the function on
R defined by

ηλ(r) =
e2λr − 1

2λ
.

When λ = 0, we define η0(r) = r.

Lemma 2.4. For r, r′ ∈ g/q, we have:

(2.2) (e−2λr′)ηλ(r + r′)− (e−2λr′)ηλ(r′) = ηλ(r).

Since we are identifying G ∼= g as spaces, our Poisson bracket on G may
as well be regarded as a Poisson bracket on g = h∗. It is a non-linear Poisson
bracket, but it is nevertheless of the special type studied in [15]. We summarize
this observation in the next proposition. Here z denotes the center of h, spanned
by z. Also q = z⊥, in g. As before, we regard the vectors x, y, x′, y′ ∈ Rn as
elements of h/z = span(xi,yi | i = 1, . . . , n), and similarly r ∈ R as an element of
g/q.

Proposition 2.5. (i) Let ω : h/z× h/z → C∞(g/q) be the map defined by

ω
(
(x, y), (x′, y′); r

)
= ηλ(r)

(
β(x, y′)− β(x′, y)

)
.

Then ω is a Lie algebra cocycle for h/z having values in V = C∞(g/q), regarded
as a trivial U(h/z)-module.

(ii) The Poisson bracket on g = h∗ given by Equation (2.1) is realized as the
sum of the (trivial) linear Poisson bracket on (h/z)∗ and ω.

(iii) The space V = C∞(g/q) is canonically contained in C∞(g) such that
h ∩ V = z.

Thus we conclude that our Poisson bracket is the “cocycle perturbation” (in
the sense of [15]) of the linear Poisson bracket on h∗.

Proof. We can see easily that ω is a skew-symmetric, bilinear map, trivially
satisfying the cocycle identity since h/z is abelian. Since h/z is an abelian Lie
algebra, it also follows that the linear Poisson bracket on (h/z)∗ is the trivial one.
Thus the second assertion of the proposition is immediate from the definition of ω.

The functions in V = C∞(g/q) can be canonically realized as functions in
C∞(g) by the “pull-back” using the natural projection of g onto g/q. If we regard
the elements of h also as (linear) functions in C∞(g), we have: h∩V = z. It follows
that our Poisson bracket is an extension of the linear Poisson bracket on (h/z)∗ by
the cocycle ω. We showed in [15] (see Theorems 2.2 and 2.3) that this formulation
is equivalent to viewing the Poisson bracket as a “cocycle perturbation” of the
linear Poisson bracket on h∗.
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Remark 2.6. When λ = 0, we have:

ω0

(
(x, y), (x′, y′); r

)
= r

(
β(x, y′)− β(x′, y)

)
.

It is a linear function on g/q, so we may write it as:

(2.3) ω0

(
(x, y), (x′, y′)

)
=

(
β(x, y′)− β(x′, y)

)
z.

Thus ω0 is a cocycle for h/z having values in z. It is clear that the linear Poisson
bracket on g = h∗ (see [35]) is determined by the cocycle ω0. In other words, the
“perturbation” is given by (nonzero) λ and the associated cocyle ω.

Deformation quantization of our Poisson bracket on g, which we will denote
by {· , ·}ω from now on, is obtained by following the steps of [15]. First, we
construct from the given Lie algebra cocycle ω the continuous family of T-valued
group cocycles for the Lie groupH/Z of h/z. Here Z = span{z} is the Lie subgroup
of H corresponding to z.

Proposition 2.7. Consider the map R : H/Z × H/Z → V = C∞(g/q)
defined by

R
(
(x, y), (x′, y′); r

)
= ηλ(r)β(x, y′).

Then R is a group cocycle for H/Z having values in V , regarded as an additive
abelian group. Fix now an element r ∈ g/q. Define the map σr : H/Z×H/Z → T
by

σr
(
(x, y), (x′, y′)

)
= e

[
R((x, y), (x′, y′); r)

]
= e

[
ηλ(r)β(x, y′)

]
.

Then each σr is a T-valued, normalized group cocycle for H/Z. Moreover, r 7→ σr

forms a continuous field of cocycles.

Proof. Let h = (x, y), h′ = (x′, y′), h′′ = (x′′, y′′) be elements of H/Z. Then
for r ∈ g/q, we have the cocycle identity:

σr(hh′, h′′)σr(h, h′) = e
[
ηλ(r)(β(x, y′′) + β(x′, y′′) + β(x, y′))

]
= σr(h, h′h′′)σr(h′, h′′).

We also have σr(h, 0) = 1 = σr(0, h), where 0 = (0, 0) is the identity element of
H/Z. From the definition, the continuity is also clear.

Let us consider S3c(h/z×g/q), the space of Schwartz functions in the (x, y, r)-
variables having compact support in the r ∈ g/q variable. Since h/z is identi-
fied with the abelian group H/Z, we can regard S3c(h/z × g/q) as contained in
L1

(
H/Z,C∞(g/q)

)
. Using the continuous field of cocycles σ, we can define on it

the following twisted convolution:

(f ∗σ g)(x, y, r) =
∫
f(x̃, ỹ, r)g(x− x̃, y − ỹ, r)e

[
ηλ(r)β(x̃, y − ỹ)

]
dx̃dỹ.

It is not difficult to see that S3c(h/z× g/q) is indeed an algebra.
To transfer this algebra structure to the level of functions on g, we introduce

the partial Fourier transform. The partial Fourier transform, ∧, from S(h/z×g/q)
to S(g) = S(q× g/q) is defined by

f∧(p, q, r) =
∫
e(p · x+ q · y)f(x, y, r) dxdy,
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where p · x + q · y is the dual pairing between (p, q) ∈ q and (x, y) ∈ h/z. The
inverse partial Fourier transform, ∨, from S(g) to S(h/z × g/q) is defined in a
similar manner, with e(·) replaced by e(·). We are again assuming that we have
chosen appropriate Plancherel measures for h/z and q = z⊥, so that the Fourier
inversion theorem is valid.

To define the deformed multiplication between the functions on g, consider
the subspace A = S3c(g) ⊆ S(g), which is the image under the partial Fourier
transform, ∧, of the twisted convolution algebra S3c(h/z× g/q).

Proposition 2.8. Let A = S3c(g) be the space of Schwartz functions on g
having compact support in the r-variable. On A, define the deformed multiplica-
tion, ×, by: ϕ× ψ = (ϕ∨ ∗σ ψ

∨)∧, for ϕ,ψ ∈ A. We then obtain:

(ϕ× ψ)(p, q, r) =
∫
e
[
(p− p′) · x̃

]
ϕ(p′, q, r)ψ(p, q + ηλ(r)x̃, r) dp′ dx̃.

Proof. Use the Fourier inversion theorem to the expression:

(ϕ× ψ)(p, q, r) = (ϕ∨ ∗σ ψ
∨)∧(p, q, r)

=
∫
e(p · x+ q · y)ϕ∨(x̃, ỹ, r)ψ∨(x−x̃, y−ỹ, r)e

[
ηλ(r)β(x̃, y−ỹ)

]
dx̃dỹ dxdy.

Note that when λ = 0, the operation ∗σ on L1
(
H/Z,C∞(g/q)

)
is given

by the cocycle
(
(x, y), (x′, y′)

)
7→ e

[
rβ(x, y′)

]
for H/Z. But this is essentially the

ordinary convolution on S(H) transferred to the functions in the (x, y, r)-variables.
Compare this with our case, with the cocycle σr

(
(x, y), (x′, y′)

)
= e

[
ηλ(r)β(x, y′)

]
.

We can see that the passage from the linear Poisson bracket (when λ = 0) to our
“perturbed” (non-linear) Poisson bracket corresponds to the “change of cocycles”,
or to the passage from ordinary convolution to twisted convolution.

The situations between linear Poisson bracket case ([30]) and our perturbed
case are quite similar, and this will be exploited from time to time. However,
in our more general case, the space S(g) is no longer closed under the deformed
multiplication. We had to define the multiplication in its subspace A.

The algebra A is shown to be a pre-C∗-algebra, whose involution and C∗-
norm are again obtained using the partial Fourier transform between A and
S3c(h/z × g/q), the latter being viewed as a (dense) subalgebra of the ∗-algebra
L1

(
H/Z,C∞(g/q), σ

)
. See [15], for the exact definitions of the ∗-algebra opera-

tions.

Proposition 2.9. Let A be as above.
(i) The involution on A is defined by: ϕ 7→

(
(ϕ∨)∗

)∧, where ∗ denotes
the involution on S3c(h/z × g/q). If we denote the involution on A by the same
notation, ∗, then we have:

ϕ∗(p, q, r) =
∫
ϕ(p′, q′, r)e

[
(p− p′) · x+ (q − q′) · y

]
e
[
ηλ(r)β(x, y)

]
dp′dq′dxdy.

(ii) Via partial Fourier transform, we also define the canonical C∗-norm on
A, by transferring the canonical C∗-norm on S3c(h/z×g/q)⊆L1

(
H/Z,C∞(g/q), σ

)
.
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Proof. The involution on S3c(h/z× g/q) ⊆ L′(H/Z,C∞(g/q), σ) is given by

f∗(x, y, r) = f(−x,−y, r)e
[
ηλ(r)β(x, y)

]
.

It is easy to see that S3c(h/z × g/q) is closed under the involution. We transfer
this operation to the A level by ϕ 7→

(
(ϕ∨)∗

)∧. Use the Fourier inversion theorem
to obtain the above expression.

On L1
(
H/Z,C∞(g/q), σ

)
, one has the canonical C∗-norm, ‖ · ‖, such that

the completion with respect to ‖ · ‖ of this L1 algebra is the enveloping C∗-algebra
C∗

(
H/Z,C∞(g/q), σ

)
, called the twisted group C∗-algebra. By ϕ 7→ ‖ϕ∨‖, we can

define on A its C∗-norm, still denoted by ‖ · ‖.

Since the function space S3c(h/z×g/q) is dense in L2(h/z×g/q) with respect
to the L2-norm, its product ∗σ corresponds to a representation of S3c(h/z× g/q)
on L2(h/z × g/q) such that the functions acts as the multiplication operators.
This representation is naturally extended to C∗(H/Z,C∞(g/q), σ). More precisely,
we have a representation, L, of the twisted group C∗-algebra on L2(h/z × g/q)
defined by

(Lfξ)(x, y, r) =
∫
f(x′, y′, r)ξ(x− x′, y − y′, r)e

[
ηλ(r)β(x′, y − y′)

]
dx′dy′,

for f ∈ S3c(h/z × g/q) and ξ ∈ L2(h/z × g/q). It is actually a (left) regular
representation of C∗(H/Z,C∞(g/q), σ), induced from a (faithful) representation
of C∞(g/q) on L2(g/q) given by multiplication.

In what follows, we will be working with the Hilbert space L2(h/z × g/q)
most of the time. So let us from now on denote this Hilbert space by H. Via the
isomorphism between S3c(h/z× g/q) and A, the representation L may as well be
regarded as a representation of A on H. Let us also denote this representation
by L. Then for ϕ ∈ A,

(2.4)

(Lϕξ)(x, y, r)=
∫
ϕ∨(x′, y′, r)ξ(x−x′, y−y′, r)e

[
ηλ(r)β(x′, y−y′)

]
dx′dy′

=
∫
ϕ(p, q, r)ξ(x− x′, y − y′, r)e(p · x′ + q · y′)

· e
[
ηλ(r)β(x′, y − y′)

]
dpdq dx′dy′.

It is clear that L is equivalent to the representation of A on L2(g) given by the mul-
tiplication ×. The partial Fourier transform is the intertwining unitary operator
between the Hilbert spaces H and L2(g).

The representation L is the regular representation induced from a faithful
representation of C∞(g/q). So the corresponding C∗-norm and the completion will
give us the “reduced” twisted group C∗-algebra C∗r

(
H/Z,C∞(g/q), σ

)
. Since H/Z

is abelian, the amenability condition holds in our case, i.e. C∗r
(
H/Z,C∞(g/q), σ

)∼=
C∗

(
H/Z,C∞(g/q), σ

)
. This follows from the result of Packer and Raeburn ([26]),

which says that the amenability of the group implies the amenability of the twisted
group C∗-algebra. Because of the amenability, we can see that for ϕ ∈ A, we have
‖ϕ‖ = ‖Lϕ‖.
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Definition 2.10. Let A be defined as above and let it be equipped with the
multiplication × given by Proposition 2.8 and the involution ∗ given by Proposi-
tion 2.9. Let us denote by A the C∗-completion of A with respect to the norm
defined by ‖ϕ‖ = ‖Lϕ‖, where Lϕ is regarded as an operator on H by Equa-
tion (2.4). This is the C∗-algebra we will be interested in throughout the rest of
this paper. We have: A ∼= C∗r

(
H/Z,C∞(g/q), σ

) ∼= C∗
(
H/Z,C∞(g/q), σ

)
.

Recall that we are identifyingG with g as spaces and the Plancherel-Lebesgue
measure on g we have been using coincides with the Haar measure on G. We thus
have, as a (dense) subspace, A ⊆ C∞(G). Thus, the results we obtained so far
about functions on g hold true for functions on G. The deformed function algebra
(A,×, ∗), as well as its C∗-completion A, provides a deformation quantization (to
be described below) of C∞(G).

At each of the steps above, we could have kept the parameter h̄ as in [15].
In our case, the deformed algebra would be isomorphic to the twisted group
algebra of (H/Z)h̄ = H/Z with the cocycle σh̄ given by σr

h̄

(
(x, y), (x′, y′)

)
=

e
[
h̄ηλ(r)β(x, y′)

]
. Since H/Z is abelian, the group does not have to vary and only

the cocycle σ varies under the introduction of the parameter h̄. See [15] for more
precise formulation.

Let us denote by (×h̄, ∗h̄, ‖ · ‖h̄) the corresponding operations on A obtained
by the introduction of the parameter h̄. The above discussion means that all we
have to do is to replace β(· , ·) by h̄β(· , ·). Then define Ah̄ as the C∗-completion
of A with respect to ‖ · ‖h̄. By the main theorem (Theorem 3.4) of [15], we thus
obtain a (strict) deformation quantization of our Poisson bracket {· , ·}ω on G.

Theorem 2.11. Consider the dual Poisson bracket on G ∼= g defined by
Equation (2.1). Let A = S3c(G) be the subspace of S(G) defined above. For any h̄ ∈
R, define a deformed multiplication and an involution on A, and also a C∗-norm
on it, by replacing β(· , ·) with h̄β(· , ·) in Definition 2.10. Then

(
A,×h̄,

∗h̄ , ‖·‖h̄

)
h̄∈R

provides a strict deformation quantization (in the sense of [29], [32]) of A in the
direction of (1/2π){· , ·}ω. In particular, we have:

(2.5) lim
h̄→0

∥∥∥∥ϕ×h̄ ψ − ψ ×h̄ ϕ

h̄
− i

2π
{ϕ,ψ}ω

∥∥∥∥
h̄

= 0.

Proof. For full proof of the theorem, refer to Theorem 3.4 in [15], of which
ours is a special case. We will briefly mention here a few of the main points of the
proof.

First, we have to show that the family of C∗-algebras {Ah̄}h̄∈R, where each
Ah̄ is the C∗-completion of A with respect to ‖ · ‖h̄, forms a continuous field of
C∗-algebras. Since each Ah̄ is essentially a twisted group C∗-algebra of an abelian
group H/Z, and only the cocycle is being changed, the proof is actually simpler
than in [15].

Second, to prove the deformation property, it suffices to show that on A,
the expression (ϕ ×h̄ ψ − ψ ×h̄ ϕ)/h̄ − (i/2π){ϕ,ψ}ω has an L1-bound. Then by
Lebesgue’s dominated convergence theorem, we would have the convergence in the
L1-norm, which in turn gives the convergence (2.5) since the L1-norm dominates
all the C∗-norms ‖ · ‖h̄. The proof crucially uses the fact that our functions are
Schwartz functions having compact support in the r ∈ g/q variable.
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From now on, we will fix the parameter h̄ (e.g. h̄ = 1) and take the resulting
C∗-algebra A as the candidate for our quantum group. If we want to specify
the deformation process, we can always re-introduce h̄, and follow the arguments
above.

To summarize, the meaning of above construction and Definition 2.10 is that
we are viewing the functions in A ⊆ S(G) as operators on H, by the regular
representation L. This naturally defines the deformed multiplication on A, which
is shown to be a deformation quantization of

(
G, {· , ·}ω

)
by Theorem 2.11. So

from now on, we will regard ϕ and Lϕ as the same. Viewing ϕ ∈ A as a function
has an advantage when we try to establish a correspondence between our quantum
setting and the classical, Poisson-Lie group level. While, viewing it as an operator
Lϕ ∈ A ⊆ B(H) is essential to make our discussion rigorous at the C∗-algebra
level of “locally compact quantum groups”.

Meanwhile, note that Lϕ can be written as

(2.6) Lϕ =
∫
H

(F−1ϕ)(x, y, z)Lx,y,z dxdy dz,

where F−1 is the (inverse) Fourier transform from A into S(h), and La,b,c for
(a, b, c) ∈ H is the operator on H defined by

(2.7) (La,b,cξ)(x, y, r) = e(rc)e
[
ηλ(r)β(a, y − b)

]
ξ(x− a, y − b, r).

By using the Fourier inversion theorem purely formally to this expression,
La,b,c can be written as:

(La,b,cξ)(x, y, r) =
∫
e
[
〈(p, q, r), (a, b, c)〉

]
e(p · x̃+ q · ỹ)·

· e
[
ηλ(r)β(x̃, y − ỹ)

]
ξ(x− x̃, y − ỹ, r) dpdq dx̃dỹ.

Comparing this with Equation (2.4), we see that La,b,c can be regarded as a
(continuous) function on G defined by

La,b,c(p, q, r) = e
[
〈(p, q, r), (a, b, c)〉

]
= e[p · a+ q · b+ rc].

Note however that La,b,c is not contained in A. It is not even an element of A. A
more precise statement is that La,b,c is a multiplier (i.e. an element of M(A)).

By (2.6), any representation Π of A or A will be written as

Π(ϕ) = Π(Lϕ) =
∫
H

(F−1ϕ)(x, y, z)Π(Lx,y,z) dxdy dz.

This means that if we have to check whether two non-degenerate representations
are equal, it suffices to check that they are equal on the Lx,y,z’s. In this sense,
we will call the La,b,c’s as “building blocks” for the regular representation, or
equivalently, “building blocks” of A.
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3. COMULTIPLICATION. THE MULTIPLICATIVE UNITARY OPERATOR

We have constructed our C∗-algebra A as a strict deformation quantization of
the Poisson-Lie group

(
G, {· , ·}ω

)
. We now proceed to equip A with its quantum

group structures. The first step is to define an appropriate comultiplication on it.
An efficient way is to associate a suitable “multiplicative unitary operator” ([3]).
That is, we look for a unitary operator U defined on the Hilbert space H ⊗ H,
such that the “pentagon equation” holds (i.e. U12U13U23 = U23U12) and such that
the comultiplication on A is given by

∆ϕ = U(ϕ⊗ 1)U∗ = U(Lϕ ⊗ 1)U∗,

for ϕ contained in the dense subalgebra A of A.
To motivate our choice of U , let us recall the multiplicative unitary operator

for the ordinary group C∗-algebra C∗(H). It is the operator V defined on L2(H×
H) by

(V η)(x, y, z;x′, y′, z′) = η
(
x, y, z; (x, y, z)−1(x′, y′, z′)

)
= η

(
x, y, z;x′ − x, y′ − y, z′ − z − β(x, y′ − y)

)
.

It is well known ([3], [8]) that V describes the usual cocommutative Hopf C∗-
algebra structure on C∗(H). Via partial Fourier transform, it may as well be
viewed as an operator on the (x, y, r) variables (still denoted by V ):

(V ξ)(x, y, r, x′, y′, r′) = e
[
r′β(x, y′ − y)

]
ξ(x, y, r + r′, x′ − x, y′ − y, r′).

Since A is essentially a twisted C∗(H), we expect that V needs to be changed
accordingly. Since the above V represents the regular representation of C∗(H)
([3]), we expect that the new unitary operator should reflect the regular repre-
sentation L of our twisted group C∗-algebra. So by using the trick of “changing
of cocycles” that we mentioned earlier, let us first consider the following unitary
operator Vσ (where σ is included to emphasize the cocycle) defined on H⊗H:

(Vσξ)(x, y, r, x′, y′, r′) = e
[
ηλ(r′)β(x, y′ − y)

]
ξ(x, y, r + r′, x′ − x, y′ − y, r′).

We also have to take into account the point that A should be a quantum
version of C∞(G). We will do this by introducing a certain unitary operator
W carrying the information on G. The idea is similar to the “dual cocycle” of
Landstad ([20], [9]), although W is not exactly a dual cocycle and Vσ is not even
multiplicative. Let us consider the following operator W on L2(G×G), motivated
by the group multiplication law on G:

(Wζ)(p, q, r, p′, q′, r′) = (eλr′)n ζ(eλr′p, eλr′q, r, p′, q′, r′).

We may view it as an operator on H⊗H, still denoted by W :

(Wξ)(x, y, r, x′, y′, r′) = (e−λr′)n ξ(e−λr′x, e−λr′y, r, x′, y′, r′).

We then incorporate W with Vσ by defining the unitary operator U = WVσ. We
will show in what follows that U is the multiplicative unitary operator for A we
are looking for. We begin by showing that U is indeed multiplicative.
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Proposition 3.1. Let U be the unitary operator on H⊗H defined by

Uξ(x, y, r, x′, y′, r′) = WVσξ(x, y, r, x′, y′, r′)

= (e−λr′)n e
[
ηλ(r′)β(e−λr′x, y′ − e−λr′y)

]
·

· ξ(e−λr′x, e−λr′y, r + r′, x′ − e−λr′x, y′ − e−λr′y, r′).

Then U is multiplicative. That is, it satisfies the following “pentagon equation”:

U12U13U23 = U23U12.

Proof. Use Lemma 2.4 and calculate:

(U23U12ξ)(x1, y1, r1, x2, y2, r2, x3, y3, r3)

= (e−λr3)n e
[
ηλ(r3)β(e−λr3x2, y3 − e−λr3y2)

]
· (e−λr2−λr3)n e

[
ηλ(r2 + r3)β(e−λ(r2+r3)x1, e−λr3y2 − e−λ(r2+r3)y1)

]
· ξ(e−λ(r2+r3)x1, e−λ(r2+r3)y1, r1 + r2 + r3, e−λr3x2 − e−λ(r2+r3)x1,

· e−λr3y2 − e−λ(r2+r3)y1, r2 + r3, x3 − e−λr3x2, y3 − e−λr3y2, r3)

= (U12U13U23ξ)(x1, y1, r1, x2, y2, r2, x3, y3, r3).

For the building block La,b,c we introduced earlier, define ∆La,b,c by

(3.1) ∆La,b,c = U(La,b,c ⊗ 1)U∗.

Then as an operator on H⊗H, we have:

(3.2)

(∆La,b,cξ)(x, y, r, x′, y′, r′)

= e
[
ηλ(r + r′)β(a, e−λr′y − b) + ηλ(r′)β(a, y′ − e−λr′y)

]
e
[
(r + r′)c

]
· ξ(x− eλr′a, y − eλr′b, r, x′ − a, y′ − b, r′).

We can show that it is contained in the multiplier algebra M(A ⊗ A), which is
rather straightforward (see also the proof of Theorem 3.2 below). Moreover, we
may regard it as a (continuous) function on G×G as follows:

(3.3)
(∆La,b,c)(p, q, r, p′, q′, r′) = e

[
〈(eλr′p+ p′, eλr′q + q′, r + r′), (a, b, c)〉

]
= La,b,c

(
(p, q, r)(p′, q′, r′)

)
.

(Call this function F ∈ C∞(G×G) and use Equation (2.4) to compute (L⊗L)F .
Using partial Fourier transform purely formally, we can show that it agrees with
∆La,b,c given by (3.2).)

In other words, at the level of the building blocks La,b,c, the map ∆ works
as the natural comultiplication on C∞(G). In view of the fact that the Poisson
structure δ on H = G∗ is linear (see Section 1), this is a desirable choice. Let us
now extend ∆ to the whole algebra A and obtain our comultiplication:
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Theorem 3.2. For ϕ ∈ A, define ∆ϕ by

∆ϕ = U(ϕ⊗ 1)U∗ =
∫
H

(F−1ϕ)(x, y, z)∆Lx,y,z dxdy dz.

As before, ϕ and ∆ϕ are actually understood as the operators Lϕ and (L⊗L)∆ϕ.
Then ∆ can be extended to a map ∆ : A → M(A ⊗ A), and ∆ is the comulti-
plication on A. That is, ∆ is a nondegenerate C∗-homomorphism satisfying the
coassociativity law:

(∆⊗ id)∆ϕ = (id⊗∆)∆ϕ.

Proof. It is clear that the formula ∆ϕ = U(ϕ ⊗ 1)U∗ defines a ∗-homomor-
phism, which can be naturally extended to a representation of A into B(H⊗H).

To prove that ∆ carries A into the multiplier algebra M(A⊗ A), we intend
to show that:

(∆ϕ)(1⊗ g) ∈ S3c(h/z× g/q× h/z× g/q), g ∈ S3c(h/z× g/q) ∼= A.

Here, S3c(h/z×g/q×h/z×g/q) is the space of Schwartz functions having compact
support in the r and the r′ variables. This is a dense subspace of A ⊗ A (see
Remark 3.3).

Let ξ ∈ H⊗H and calculate. We use the change of variables and the Fourier
inversion theorem. Also, Equation (2.2) of Lemma 2.4 is very convenient. We have:

(∆ϕ(1⊗ g)ξ)(x, y, r, x′, y′, r′)

=
∫

(F−1ϕ)(a, b, c)e
[
ηλ(r + r′)β(a, e−λr′y − b) + ηλ(r′)β(a, y′ − e−λr′y)

]
· e

[
(r + r′)c

]
g(x̃, ỹ, r′)e

[
ηλ(r′)β(x̃, y′ − b− ỹ)

]
· ξ(x− eλr′a, y − eλr′b, r, x′ − a− x̃, y′ − b− ỹ, r′) dadb dcdx̃dỹ

= (Fξ)(x, y, r, x′, y′, r′) = (L⊗ L)F ξ(x, y, r, x′, y′, r′),

where F is defined by

F (x, y, r, x′, y′, r′) = (e−2λr′)n e
[
ηλ(r′)β(e−λr′x, y′ − e−λr′y)

]
· ϕ∨(e−λr′x, e−λr′y, r + r′)g(x′ − e−λr′x, y′ − e−λr′y, r′).

It is easy to see that F ∈ S3c(h/z × g/q × h/z × g/q). A similar result also holds
when we multiply ∆ϕ from the right.

Since (∆ϕ)(1 ⊗ g) ∈ A ⊗ A and (1 ⊗ g)(∆ϕ) ∈ A ⊗ A, for an arbitrary g
contained in a dense subset of A, we can see that ∆ϕ ∈M(A,A), whereM(A,A) =
{x ∈ M(A ⊗ A) : x(1M(A) ⊗ A) + (1M(A) ⊗ A)x ∈ A ⊗ A}. It is customary to
require (see [36], [3]) that the comultiplication ∆ takes values in M(A,A). This is
done so that one is able to discuss the notion of “left invariant” Haar weight on A.

Actually, we can improve the statement even further by observing that
(∆ϕ)(1 ⊗ g)’s form a total set (with respect to the L1-norm) in the Schwartz
space S3c(h/z × g/q × h/z × g/q). We may check this using the expression given
above. Since the Schwartz space is in turn a dense subspace of A ⊗ A, this is
enough to show that ∆ is also non-degenerate.
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Finally, the coassociativity of ∆ follows from the fact that U is multiplicative.
For ϕ ∈ A, we have:

U12U13(ϕ⊗ 1⊗ 1)U∗13U
∗
12 = U23U12(ϕ⊗ 1⊗ 1)U∗12U

∗
23.

But, by definition of ∆, this is just:

(∆⊗ id)∆ϕ = (id⊗∆)∆ϕ.

Remark 3.3. For completing the above proof, we need to show that the
Schwartz space S3c(h/z× g/q× h/z× g/q) is a dense subset of A⊗A. So, consider
the natural injection from S3c(h/z × g/q × h/z × g/q) into B(H ⊗ H), which is
continuous with respect to the L1-norm on the Schwartz space and the C∗-norm
on B(H⊗H). Under this natural injection, the algebraic tensor product S3c(h/z×
g/q) � S3c(h/z × g/q) is sent into a dense subset of the algebraic tensor product
A � A. Since any element in S3c(h/z × g/q × h/z × g/q) can be approximated
by elements of S3c(h/z× g/q)� S3c(h/z× g/q) in the L1-norm, we conclude that
S3c(h/z× g/q× h/z× g/q) is mapped into a dense subset of A⊗A.

Our choice of ∆La,b,c (Equation (3.2)) together with the above theorem
means that the comultiplication remains the “same” while the algebra is being
deformed (i.e. our deformation is a preferred deformation ([10], [11])). In this way,
we obtained our Hopf C∗-algebra (A,∆).

Definition 3.4. ([36], [3]) By a Hopf C∗-algebra, we mean a pair (B,∆),
where B is a C∗-algebra and ∆ is a comultiplication (satisfying the conditions
given in Theorem 3.2).

It may not be evident, but our construction is closely related with Baaj and
Skandalis’s construction of Hopf C∗-algebras via “matched pair” (couple assorti)
and “bicrossed product” (biproduit croisé) of “Kac Systems” (Section 8 of [3]; a
similar work at the algebraic level was done by Majid ([22])).

To be a little more specific, the abelian groups H/Z and (g/q,+) (or in terms
of Hopf C∗-algebras, C∗(H/Z) and C∞(g/q)) form a matched pair. From this, we
can form a “twisted” bicrossed product, using the notion of cocycles satisfying
certain equivariance condition. The multiplicative unitary operator associated
with this “matched pair with cocycle” construction is regular ([3]). Although our
construction of (A,∆) and Baaj and Skandalis’ method are rather different, we
can still show that our multiplicative unitary operator U for A coincides with the
multiplicative unitary operator for this twisted bicrossed product.

We do not intend to prove the regularity of U directly. (However, the result
in the proof of Theorem 3.2 that (∆ϕ)(1 ⊗ g)’s form a total set in A ⊗ A is very
much related.) Instead, let us refer to the above discussions and summarize the
result in the following:
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Proposition 3.5. Let U be the unitary operator defined as in Proposi-
tion 3.1. It is a “regular” multiplicative unitary operator, in the sense of Baaj
and Skandalis.

This result gives our construction an axiomatically sound basis: If we start
from the multiplicative unitary operator U , its associated Hopf C∗-algebra is ex-
actly (A,∆). Also associated with the regular multiplicative unitary operator is
the dual Hopf C∗-algebra (Â, ∆̂). In our case, Â is essentially the group C∗-algebra
C∗(G). And Â ∼= C∗(G) is a deformation quantization of H, equipped with the
(linear) Poisson bracket given by δ defined in Section 1. In this way, we see that
the duality between H and G as Poisson-Lie groups corresponds nicely to the
Hopf C∗-algebra duality between Â and A, in terms of the multiplicative unitary
operator U .

APPENDIX: DEFORMATION QUANTIZATION OF G̃

Recall from Section 1 that the Lie bialgebra structure δ on h actually came from
the Lie bialgebra structure δ̃ on the extended Heisenberg algebra h̃. So far, we
only considered the deformation quantization of

(
G, {· , ·}ω

)
, which is the dual

Poisson-Lie group of the (nilpotent) Poisson-Lie group H or Lie bialgebra (h, δ).
We have been avoiding the discussion of H̃ and its dual Lie group G̃, because H̃
is not nilpotent.

Usually, there are some technical difficulties to correctly formulate the no-
tion of “strict” deformation quantization of C∞(G̃), if H̃ is not nilpotent. Some
modifications of the “strictness condition” are necessary (see [15], [30]). But in
our case, if we are willing to compromise a little on shrinking the space on which
the deformed multiplication is defined, we are still able to find a quantum ver-
sion of C∞(G̃) with the aid of multiplicative unitary operators. We are going to
define below a multiplicative unitary operator Ũ , using the trick of “changing of
cocycles” as before. The multiplicative unitary we obtain will again be regular.

By [3], given a regular multiplicative unitary Ũ ∈ B(H̃ ⊗ H̃), there corre-
sponds an algebra A(Ũ) ⊆ B(H̃) such that its norm closure gives a C∗-algebra
Ã. Usually, A(Ũ) is a sort of an L1-algebra. In our case, it will be the twisted
group algebra whose twisted convolution is given by the cocycle associated to the
definition of Ũ . Since we prefer to have our multiplication defined at the level
of continuous functions on G̃, we will consider a certain subspace Ã of S(G̃), to
express our multiplication.

The following construction is indeed a deformation quantization of G̃. The
verification of this will be left to the reader.

Example 3.6. Let H̃ be the extended Heisenberg group with the group law
defined by

(x, y, z, w)(x′, y′, z′, w′) =
(
x+ ewx′, y + e−wy′, z + z′ + (e−w)β(x, y′), w + w′

)
.
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This is clearly the Lie group corresponding to the extended Heisenberg algebra h̃

defined in Section 1. We use the w variable here to express the vectors in span(d).
Consider the dual Poisson-Lie group G̃ of H̃ defined by the multiplication:

(p, q, r, s)(p′, q′, r′, s′) = (eλr′p+ p′, eλr′q + q′, r + r′, s+ s′).

It is easy to see that the above G̃ is indeed the Lie group associated with the Lie
algebra g̃ defined in Corollary 1.4. To describe its deformation quantization, it is
convenient to work in the space of (x, y, r, w) variables, S(h̃/z× g̃/q̃). Here g̃ = h̃∗

and q̃ = z⊥ in g̃.
Multiplication. Consider the subspace of S(h̃/z × g̃/q̃) having compact sup-

port in both the r and w variables. Let Ã be its image in S(G̃) under partial
Fourier transform in the (x, y, w) variables, still denoted by ∧. We define on Ã the
deformed multiplication by

(ϕ× ψ)(p, q, r, s)

=
∫
ϕ∨(x̃, ỹ, r, w̃)ψ∨(e−w̃x− e−w̃x̃, ew̃y − ew̃ỹ, r, w − w̃)

· e
[
ηλ(r)β(x̃, y − ỹ)

]
e[p · x+ q · y + sw] dx̃dỹ dw̃ dxdy dw,

where ∨ is the (inverse) partial Fourier transform in the (p, q, s) variables. This
definition of × is motivated by the fact that the Poisson bracket on G̃ is essentially
the extension of the linear Poisson bracket on (h̃/z)∗ by a cocycle. (We follow the
method of [15].) Our C∗-algebra Ã will then be defined as the enveloping C∗-
algebra of

(
Ã,×

)
.

Comultiplication. Define the following unitary operators on H̃⊗ H̃, where H̃
is the space of L2-functions on the (x, y, r, w) variables:

W̃ ξ(x, y, r, w, x′, y′, r′, w′) = (e−λr′)n ξ(e−λr′x, e−λr′y, r, w, x′, y′, r′, w′)

Ṽσξ(x, y, r, w, x′, y′, r′, w′)

= e
[
ηλ(r′)β(x, y′ − y)

]
ξ(x, y, r + r′, w, e−wx′ − e−wx, ewy′ − ewy, r′, w′ − w).

Let Ũ = W̃ Ṽσ. Then we have:

Ũξ(x, y, r, w, x′, y′, r′, w′) = (e−λr′)n e
[
ηλ(r′)β(e−λr′x, y′ − e−λr′y)

]
· ξ(e−λr′x, e−λr′y, r + r′, w, e−wx′ − e−λr′−wx, ewy′ − e−λr′+wy, r′, w′ − w).

This is again a multiplicative unitary operator. Thus, we may define the comulti-
plication on Ã by ∆̃ϕ = Ũ(ϕ⊗ 1)Ũ∗. Since it will be useful in later calculations,
let us write down the explicit formula for the comultiplication of the building block
La,b,c,d, for (a, b, c, d) ∈ H̃.

For (a, b, c, d) ∈ H̃, the building block La,b,c,d is the operator on H̃ defined
similarly as in Equation (2.7) earlier:

(La,b,c,dξ)(x, y, r, w) = e(rc)e
[
ηλ(r)β(a, y − b)

]
ξ(e−dx− e−da, edy − edb, r, w − d).
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So ∆̃La,b,c,d = Ũ(La,b,c,d ⊗ 1)Ũ∗ is an operator on H̃ ⊗ H̃ defined by

(∆̃La,b,c,dξ)(x, y, r, w, x′, y′, r′, w′)

= e
[
ηλ(r)β(eλr′a, y − eλr′b) + ηλ(r′)β(a, y′ − b)

]
e
[
(r + r′)c

]
· ξ(e−dx− eλr′−da, edy − eλr′+db, r, w − d, e−dx′ − e−da, edy′ − edb, r′, w′ − d).

4. COUNIT AND ANTIPODE

We return to the construction of the remaining quantum group structures for our
Hopf C∗-algebra (A,∆). Similar results will hold for (Ã, ∆̃), since we only need
to change the groups accordingly and use the appropriate cocycles. So, in this
section and the next, we will exclusively study our specific example (A,∆). Since
A is our candidate for the “quantum C∞(G)”, we expect that its quantum group
structures will come from the corresponding group structures on G.

First, the choice for the counit is rather obvious:

Theorem 4.1. There exists a unique continuous linear map ε : A → C
such that

ε(ϕ) = ϕ(0, 0, 0),

for ϕ ∈ A = S3c(G). Then ε is a counit for (A,∆). That is, ε is a C∗-homomor-
phism from A into C satisfying the condition:

(id⊗ ε)∆ = (ε⊗ id)∆ = id.

Proof. For ϕ ∈ A,

ε(ϕ)=ϕ(0, 0, 0)=
∫

(F−1ϕ)(x, y, z) dxdy dz=
∫

(F−1ϕ)(x, y, z)ε(Lx,y,z) dxdy dz,

where ε(Lx,y,z) ≡ 1. In other words, ε is actually the trivial representation of A.
On the other hand, we may write ε(ϕ) as:

ε(ϕ) = ϕ(0, 0, 0) =
∫
ϕ∨(x, y, 0) dxdy,

which shows that ε is continuous with respect to the L1-norm. So ε has a con-
tinuous linear extension to the L1-algebra L1

(
H/Z,C∞(g/q), σ

)
. But, since we

have already seen that ε is a ∗-representation on A, this extension is also a ∗-
representation. Therefore, it can be further extended to a ∗-representation on
A ∼= C∗

(
H/Z,C∞(g/q), σ

)
.

Next, let us prove the equality for our building block ∆Lx,y,z ∈ M(A⊗ A).
Using the realization of ∆Lx,y,z as a continuous function onG×G (Equation (3.3)),
we have:

(id⊗ ε)∆Lx,y,z(p, q, r) = e
[
〈(p, q, r), (x, y, z)〉

]
= Lx,y,z(p, q, r),

and similarly for the other half of the equality. By the definition of ∆, we have
proved that:

(id⊗ ε)(∆ϕ) = ϕ = (ε⊗ id)(∆ϕ), ϕ ∈ A.
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The antipode (or coinverse) is usually defined as an anti-automorphism ([36],
[41]). Let us follow the method which has been used by several authors, beginning
as early as the work of Kac and Paljutkin ([13]).

Consider the operation † on A defined by

ϕ†(p, q, r) = ϕ(−e−λrp,−e−λrq,−r).
Here the bar means the complex conjugation. Then define κ : A → A by

κ(ϕ) = (ϕ∗)† = (ϕ†)∗,
where ϕ∗ is the C∗-involution defined in Proposition 2.9. Explicitly, we have:

(4.1)
κ(ϕ)(p, q, r) =

∫
ϕ(−e−λrp̃,−e−λr q̃,−r)e

[
(p− p̃) · x+ (q − q̃) · y

]
· e

[
ηλ(r)β(x, y)

]
dp̃dq̃ dxdy.

In the commutative case (i.e., β ≡ 0), this is nothing but

κ(ϕ)(p, q, r) = ϕ(−e−λrp,−e−λrq,−r) = ϕ
(
(p, q, r)−1

)
,

which is just taking the inverse in G.
Let us now try to define κ at the operator level. Motivated by the operation

† above, we first define an involutive operator T on H by

Tξ(x, y, r) = (eλr)n ξ(eλrx, eλry,−r).
Lemma 4.2. Let T be the operator defined above. Then T is conjugate linear,

isometric, and involutive (i.e., T 2 = 1). Moreover,

TϕT = ϕ†,

where ϕ,ϕ† ∈ A are viewed as operators. We thus have TAT = A.

Proof. We will just verify the equation TϕT = ϕ†. The other assertions are
straightforward. We have:

(TϕTξ)(x, y, r) = (eλr)n (ϕTξ)(eλrx, eλry,−r)

=
∫
ϕ(p, q,−r)e(p · x′ + q · y′)e

[
ηλ(−r)β(x′, eλry − y′)

]
· ξ(x− e−λrx′, y − e−λry′, r) dpdq dx′dy′

= ϕ†ξ(x, y, r).

Proposition 4.3. Let the map κ : A → A be defined by κ(ϕ) = Tϕ∗T , for
ϕ ∈ A. Then κ is an anti-automorphism on A. At the function level, κ(ϕ) agrees
with Equation (4.1). Moreover, κ satisfies the condition:

(κ⊗ κ)(∆ϕ) = Σ
(
∆(κϕ)

)
,

where Σ : A⊗A→ A⊗A denotes the flip.

Proof. The proof that κ is an anti-automorphism follows immediately from
the previous lemma. Since κ(ϕ) = (ϕ†)∗ on the functions, to prove the last
condition we only need to check the following equation:

(T ⊗ T )(∆ϕ)(T ⊗ T )ξ = (Σ(∆ϕ†))(Σξ), ξ ∈ H ⊗H.
Here Σ also denotes the flip on H⊗H. The calculation is straightforward.
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In this way, we showed that (A,∆, ε, κ) is a counital, coinvolutive Hopf C∗-
algebra in the sense of [36]. However, some more axioms are needed to make
the map κ to be reasonably considered as the antipode. For instance, in the
purely algebraic setting of Hopf algebra theory ([34], [25]) the requirement for the
antipode is given by the following equation:

(4.2) m(id⊗ κ)∆ = m(κ⊗ id)∆ = ε(·)1,

where m : A⊗A→ A is the multiplication.

In the operator algebra setting, the multiplication map m is not continuous
for the operator norms in general. Because of this, we approach a little differently
rather than just translating the above formulation. Motivated by Kac algebra
theory, the antipode is usually discussed together with the notion of the Haar
weight. See Proposition 5.2 in the next section.

Nevertheless, at least at the function level, the algebraic condition (4.2) can
be readily verified for our (A,∆, ε, κ). The calculation of this claim is as follows;
this will give us some modest justification for our particular definition of κ.

Using the definition of ∆ and the fact that ∆La,b,c can be regarded as a
continuous function on G, we have for ϕ ∈ A,

(id⊗ κ)∆ϕ(p, q, r, p′, q′, r′)

=
∫
e
[
(p′ − p̃) · x+ (q′ − q̃) · y

]
e
[
ηλ(r′)β(x, y)

]
(F−1ϕ)(a, b, c)

· e
[
(e−λr′p−e−λr′ p̃) · a+(e−λr′q−e−λr′ q̃) · b+(r−r′)c

]
dp̃dq̃ dxdy dadb dc

=
∫

(ψ1
a,b,c ⊗ ψ2

a,b,c)(p, q, r, p
′, q′, r′) dadb dc.

Here for a fixed (a, b, c) ∈ H,

ψ1
a,b,c(p, q, r)=e(p · a+ q · b+ rc)

ψ2
a,b,c(p

′, q′, r′)=(e2λr′) e(p′ · a+q′ · b+r′c)e
[
ηλ(r′)β(a, b)

]
(F−1ϕ)(eλr′a, eλr′b, c).

Since we have:

(ψ1
a,b,c × ψ2

a,b,c)(p, q, r) = (e2λr)(F−1ϕ)(eλra, eλrb, c),

it follows that:

m
(
(id⊗ κ)∆ϕ

)
(p, q, r) =

∫
(F−1ϕ)(a, b, c) dadb dc = ϕ(0, 0, 0) = ε(ϕ)1.

Similarly, we can also verify that m
(
(κ⊗ id)∆ϕ

)
= ε(ϕ)1.
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5. HAAR WEIGHT

Since the group law on G has been chosen such that Lebesgue measure dpdq dr on
the underlying vector space is its Haar measure, we expect more or less the same
in the quantum case. So, let us define the linear functional h on A by

(5.1) h(ϕ) =
∫
ϕ(p, q, r) dpdq dr.

We intend to show that h is the appropriate Haar weight on our Hopf C∗-al-
gebra (A,∆).

Ideally, the definition of locally compact quantum groups would be formu-
lated so that the existence of Haar weights follows only from the definition. Right
now, the definition of the Haar weight and its left invariance property are not
completely agreed upon and the existence of the Haar weight has to be assumed
in the definition of quantum groups. In particular, the definition of the antipode
is closely tied to that of the Haar weight. See [23], [24], [41], [19], [18].

Because of this, instead of trying to be very rigorous, we plan to give only
a reasonable justification of our choice for h. What we do in the following is
imitating the theory of Kac algebras ([8]).

Since h is well-defined at the level of a dense subspace of functions (i.e., in
A), it is a densely defined weight on A. As we see in the next proposition, it is
actually a faithful trace.

Proposition 5.1. Let h be defined on A by Equation (5.1). Then h is a
faithful trace.

Proof. Let ϕ ∈ A. Then, by using change of variables and Fourier inversion
theorem, we have:

h(ϕ∗ × ϕ) =
∫
e
[
(p− p′) · x̃

]
ϕ∗(p, q, r)ϕ

(
p, q + ηλ(r)x̃, r

)
dp′dx̃

=
∫
ϕ(p, q, r)ϕ(p, q, r) dpdq dr = ‖ϕ‖2

2,

and similarly,

h(ϕ× ϕ∗) =
∫
ϕ(p, q, r)ϕ(p, q, r) dpdq dr = ‖ϕ‖2

2.

Here, ϕ∗ is the C∗-involution given in Proposition 2.9. From these equations, we
can see that h is a faithful trace.

To correctly define the Haar weight, we have to further require some “lower
semi-continuity condition” (corresponding to the notion of normal weights in von
Neumann algebra setting, like Kac algebras) and “semi-finiteness”, as well as the
“left invariance property”. Since this will make our discussion very technical, let us
overlook the details and give only a brief discussion on the left invariance property
of h.
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Proposition 5.2. For ϕ,ψ ∈ A, the weight h satisfies the following left
invariance property:

(5.2) (id⊗ h)
(
(1⊗ ϕ)(∆ψ)

)
= κ

(
(id⊗ h)((∆ϕ)(1⊗ ψ))

)
,

where κ is the (antipodal) map defined in Proposition 4.3.

Proof. Even for ϕ,ψ ∈ A, the expressions (1⊗ ϕ)(∆ψ) and (∆ϕ)(1⊗ ψ) do
not necessarily belong to the algebraic tensor product A � A. (See the proof of
Theorem 3.2, where we calculated (∆ϕ)(1⊗ ψ).) Therefore, for the left and right
sides of Equation (5.2) to make sense, id⊗ h has to be defined more carefully.

This extension can be done using the notion of operator valued weights ([12]).
But unlike in [12], since we are dealing with C∗-algebra weights ([6]), we have to
modify the definitions accordingly. In short, we regard id⊗h as the tensor product
of two faithful, semi-finite, lower semi-continuous operator valued weights on A⊗A
having values in A⊗C ∼= A. To be able to define this more rigorously, some efforts
have been made recently to introduce a somewhat stronger condition of lower
semi-continuity ([28], [17]).

In our case, since we know that (1⊗ϕ)(∆ψ) and (∆ϕ)(1⊗ψ) are contained
in S3c(h/z × g/q × h/z × g/q) and since the elements in this Schwartz space can
be approximated by elements in S3c(h/z× g/q)� S3c(h/z× g/q), we know how to
define (id⊗ h)

(
(1⊗ ϕ)(∆ψ)

)
and (id⊗ h)

(
(∆ϕ)(1⊗ ψ)

)
under the extension. So,

let us set aside the aforementioned technical details and try to verify the above
equation. Through long but elementary calculations, we obtain:

(id⊗ h)
(
(1⊗ ϕ)(∆ψ)

)
(p, q, r)

=
∫
e
[
(eλr′p+ p̃− ˜̃p) · a+ (eλr′q + q̃ − ˜̃q) · b]e[ηλ(r′)β(a, b)

]
· ϕ(p̃, q̃, r′)ψ(˜̃p, ˜̃q, r + r′) dp̃dq̃ d˜̃pd˜̃q dadb dr′

= κ
(
(id⊗ h)((∆ϕ)(1⊗ ψ))

)
(p, q, r)

for ϕ and ψ in A.

In the commutative case, Equation (5.2) is just∫
G

ϕ(g′)ψ(gg′) dµ(g′) =
∫
G

ϕ(g−1g′)ψ(g′) dµ(g′),

which exactly describes the left invariance condition. Actually, Equation (5.2) is
the defining condition for the Haar weight in Kac algebra theory ([36], [8]).

It is true that there are still some technical details to take care of. Saying
this, we may conclude from Proposition 5.2 that h is the appropriate Haar weight
for (A,∆). Also from the proposition, we can say that the map κ we have been
using is a legitimate antipode for (A,∆).

Thus, our Hopf C∗-algebra (A,∆, ε, κ) together with the Haar weight h on
it can be regarded as a locally compact quantum group. Although we did not give
the precise definition of general locally compact quantum groups, any reasonable
definition should allow our specific example as a special case.

Meanwhile, since our group G is not unimodular, we expect that our Haar
weight should also carry certain non-unimodularity properties. One of these is
given below.
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Proposition 5.3. The Haar weight h is not invariant under the antipode
κ. That is, there exists ϕ ∈ A such that

h
(
κ(ϕ)

)
6= h(ϕ).

Proof. Since

h
(
κ(ϕ)

)
=

∫
ϕ(−e−λrp,−e−λrq,−r) dpdq dr,

it is clear that we have h
(
κ(ϕ)

)
6= h(ϕ), in general.

It is noteworthy that we have a non-unimodular Haar weight as opposed
to many other examples ([31], [35], [37], [20]). It will be interesting to study its
consequences and properties more thoroughly, especially in relation to the duality
theory. However, for the time being we will leave this as a future project.

As a final remark, we point out that the regular representation L we used
is essentially the GNS representation with respect to h (which is a faithful trace).
This observation displays the importance the Haar weight has in both theory and
construction of locally compact quantum groups.

6. QUANTUM UNIVERSAL R-MATRIX

For the QUE algebra counterparts for our Hopf C∗-algebra (A,∆) (for instance,
Uh̄(h) in [1] or H(1)q in [4]), the so-called “quantum universal R-matrix” have
been successfully constructed. In our case also, once we modify the definition of
the universal R-matrix so that it is consistent with our C∗-algebra language, we
can do the same.

Our definition given below is essentially the same one used in the QUE
algebra or more general Hopf algebra setting (see [7], [5]). Note that we require
the R-matrix to be contained in a multiplier algebra. (This is consistent with the
definition of the comultiplication, which is a multiplier algebra valued map.) Since
any nondegenerate representation of a C∗-algebra can be uniquely extended to its
multiplier algebra, any element belonging to a multiplier algebra also has an image
under any representation of the C∗-algebra.

Definition 6.1. Let (B,∆) be a Hopf C∗-algebra, where ∆ is its comulti-
plication. We will say that B is almost cocommutative if there exists an invertible
element R ∈M(B ⊗B) such that

(6.1) (Σ ◦∆)(ϕ) = R∆(ϕ)R−1, ϕ ∈ B

where Σ is the flip. We will denote the opposite comultiplication by ∆op = Σ ◦∆.

The element R above cannot be arbitrary, since the opposite comultiplication
∆op should also be coassociative. The following condition, though a little stronger
than is needed to assure the coassociativity of ∆op, defines the quantum universal
R-matrix.
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Definition 6.2. An almost cocommutative Hopf C∗-algebra (B,R) is said
to be quasitriangular, if R satisfies the so-called quantum Yang-Baxter equation
(QYBE): R12R13R23 = R23R13R12, and also satisfies:

(6.2) (∆⊗ id)(R) = R13R23 and (id⊗∆)(R) = R13R12.

It is called triangular, if it is quasitriangular and, in addition, R21 = R−1. If B is
quasitriangular, such an element R will be called a quantum universal R-matrix.

If R satisfies Equation (6.2), the QYBE for R automatically follows from
the coassociativity of ∆op ([5]). The QYBE is a quantum version of the classical
Yang-Baxter equation (CYBE) ([7]). After we find below a quantum universal
R-matrix for our (A,∆), we will show that this R-matrix is indeed closely related
with the classical r-matrix given earlier (Section 1, Equation (1.1)) at the Lie
bialgebra level.

Recall that the classical r-matrix associated with our construction is an ele-
ment in h̃⊗ h̃. This suggests that we better consider the Hopf C∗-algebra (Ã, ∆̃),
instead of (A,∆). So we need to look for our quantum R-matrix in M(Ã ⊗ Ã).
Motivated by the R-matrix constructed at the QUE algebra level ([4], [1]), we
consider R as the following (continuous) function on G̃× G̃:

R(p, q, r, s, p′, q′, r′, s′) = e
[
λ(rs′ + r′s)

]
e
[
2λ(e−λr′)p · q′

]
.

Let us try to formulate a more proper definition of R as an operator on
H̃ ⊗ H̃. First, let us view R as a product of two functions Φ and Φ′ given by

Φ(p, q, r, s, p′, q′, r′, s′) = e
[
λ(rs′ + r′s)

]
Φ′(p, q, r, s, p′, q′, r′, s′) = e

[
2λ(e−λr′)p · q′

]
.

By using partial Fourier transform purely formally and by using the multiplication
law of Ã (see Example 3.6 in Appendix of Section 3), we may regard Φ and Φ′ as
operators on H̃ ⊗ H̃:

Φξ(x, y, r, w, x′, y′, r′, w′) = ξ(e−λr′x, eλr′y, r, w − λr′, e−λrx′, eλry′, r′, w′ − λr)

Φ′ξ(x, y, r, w, x′, y′, r′, w′) =
∫
e
[
2λ(e−λr′)p̃ · q̃

]
e(p̃ · x̃+ q̃ · ỹ)e

[
ηλ(r)β(x̃, y)

]
· ξ(x− x̃, y, r, w, x′, y′ − ỹ, r′, w′) dp̃dq̃ dx̃dỹ.

Definition 6.3. Define R as an operator in B(H̃⊗H̃) by R = ΦΦ′. That is,

Rξ(x, y, r, w, x′, y′, r′, w′) = ΦΦ′ξ(x, y, r, w, x′, y′, r′, w′)

=
∫
e
[
2λ(e−λr′)p̃ · q̃

]
e(p̃ · x̃+ q̃ · ỹ)e

[
ηλ(r)β(x̃, eλr′y)

]
· ξ(e−λr′x− x̃, eλr′y, r, w − λr′, e−λrx′, eλry′ − ỹ, r′, w′ − λr) dp̃dq̃ dx̃dỹ.

Proposition 6.4. Let R be the operator defined above. Then R ∈M(Ã⊗Ã).

Proof. It is enough to show that Φ and Φ′ are both left and right multipliers.
To show this, consider an arbitrary function F in the dense subalgebra Ã ⊗ Ã of
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M(Ã ⊗ Ã), where Ã is as defined in Example 3.6. Then, by straightforward
calculation, we have:

(ΦF )(p, q, r, s, p′, q′, r′, s′)=e
[
λ(rs′+r′s)

]
F

(
eλr′p, e−λr′q, r, s, eλrp′, e−λrq′, r′, s′

)
(FΦ)(p, q, r, s, p′, q′, r′, s′)=e

[
λ(rs′+r′s)

]
F (p, q, r, s, p′, q′, r′, s′).

These equations are understood to mean that ΦF ∈ B(H̃ ⊗ H̃) is exactly the
operator realization of the function (ΦF ) ∈ Ã ⊗ Ã defined by the first equation,
and similarly for FΦ. From this, it is clear that Φ is a multiplier.

The proof that Φ′ is a left multiplier follows from the following:

Φ′F (p, q, r, s, p′, q′, r′, s′)=e
[
2λ(e−λr′)p·q′

]
F

(
p, q+2ληλ(r)e−λr′q′, r, s, p′, q′, r′, s′

)
,

which is again understood in the same way as above. To prove that Φ′ is also a
right multiplier, it is more convenient to consider the Schwartz function space in
the (p, q, r, w) variables having compact support both in the r and w variables,
which is isomorphic (via partial Fourier transform) to Ã⊗Ã. If F is in this space,
we then have:

FΦ′(p, q, r, w, p′, q′, r′, w′)

= e
[
2λ(e−λr′+w−w′

)p · q′)
]
F

(
p, q, r, w, p′ + 2λ(e−λr′+w−w′

)ηλ(r′)p, q′, r′, w′
)
.

So Φ′ is also a right multiplier. Thus R = ΦΦ′ is both left and right multiplier.

Proposition 6.5. Let R be as above. Then R is an invertible element in
M(Ã⊗ Ã) and R satisfies:

R∆̃La,b,c,dR
−1 = ∆̃opLa,b,c,d, (a, b, c, d) ∈ H̃.

Here La,b,c,d denotes the “building block” operator defined earlier. Thus R makes
(Ã, ∆̃) an almost cocommutative Hopf C∗-algebra.

Proof. It turns out that, as an operator, R is unitary. Moreover, R∗ is:

R∗ξ(x, y, r, w, x′, y′, r′, w′)

=
∫
e
[
2λ(e−λr′)p̃ · q̃

]
e(p̃ · x̃+ q̃ · ỹ)e

[
ηλ(r)β(x̃, y)

]
· ξ(eλr′x+ eλr′ x̃, e−λr′y, r, w + λr′, eλrx′, e−λry′ + e−λrỹ, r′, w′ + λr),

where the integration is with respect to (p̃, q̃, x̃, ỹ) variables. By using the expres-
sion for ∆̃La,b,c,d given in Example 3.6, we obtain:

R∆̃La,b,c,dR
∗ξ(x, y, r, w, x′, y′, r′, w′)

= e
[
ηλ(r)β(a, y − b) + ηλ(r′)β(eλra, y′ − eλrb)

]
e
[
(r + r′)c

]
· ξ(e−dx− e−da, edy − edb, r, w − d, e−dx′ − eλr−da, edy′ − eλr+db, r′, w′ − d)

= ∆̃opLa,b,c,dξ(x, y, r, w, x′, y′, r′, w′).

Since the almost cocommutativity condition holds for the building blocks, it
is true for any element of Ã.
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Theorem 6.6. Let R be defined by Definition 6.3. Then R satisfies the
QYBE and the quasitriangularity condition given in Definition 6.2. Combining
this result with those of Proposition 6.4 and Proposition 6.5, we conclude that R
is a “quasitriangular” quantum universal R-matrix for (Ã, ∆̃).

Proof. The verification of the QYBE (R12R13R23 = R23R13R12) is a straight-
forward calculation. We also have:

Ũ23R12Ũ
∗
23 = R13R12 and Ũ12R13Ũ

∗
12 = R13R23,

using the definition of Ũ given in Example 3.6. Since (id ⊗ ∆̃)(R) = Ũ23R12Ũ
∗
23

and since (∆̃ ⊗ id)(R) = Ũ12R13Ũ
∗
12, the quantum R-matrix condition follows.

Thus, we conclude that R is indeed a quasitriangular quantum universal R-matrix
for (Ã, ∆̃).

Finally, let us try to relate our quantum R-matrix with the classical r-matrix:

r = z⊗ d + d⊗ z + 2
n∑

i=1

xi ⊗ yi ∈ h̃⊗ h̃.

We wish to indicate that r is a “classical limit” of R, with λ regarded as a defor-
mation parameter. Since we have so far been viewing λ as a fixed constant built
into the definition of G and its Poisson bracket, we have to approach this a little
differently. It actually corresponds to the deformation process of the dual Hopf
C∗-algebra Â.

One serious problem is that as we try to let λ to vary, the algebra Ã (or Ã⊗Ã)
also changes. Because of this, we will only work on its dense function space Ã (or
Ã ⊗ Ã), ignoring its algebra structure. Again, as in the proof of Proposition 6.4,
it is more convenient to regard Ã as the Schwartz function space in the (p, q, r, w)
variables having compact support in the r and w variables. The L1-completion of
Ã ⊗ Ã is isomorphic to L1(H̃ ⊗ H̃), independent of the value of λ.

Recall that we could realize R as a continuous function on G̃× G̃ by Equa-
tion (6.3). To emphasize its dependence on λ, let us denote it from now on by
Rλ. Consider the operator Ψλ on Ã ⊗ Ã (for the time being, Ã is viewed as an
algebra) defined by

Ψλ(F ) = RλFR
∗
λ, F ∈ Ã ⊗ Ã.

Then we have:

Ψλ(F )(p, q, r, w, p′, q′, r′, w′) = e
[
2λ(e−λr)p · q′

]
e
[
2λ(ew−w′−λr)p · q′

]
(6.4)

· F
(
eλr′p, e−λr′q + 2λe−λr−λr′ηλ(r)q′, r, w, eλrp′ − 2λew−w′

ηλ(r′)p, e−λrq′, r′, w′
)
.

By L1-extension, we will define Ψλ as an operator on the Banach space L1(H̃⊗H̃),
ignoring any algebra structure, via Equation (6.4). This will be our operator
realization of Rλ.

Let us now consider the classical r-matrix. First, by means of the dual pairing
between h̃∗ and h̃, we may regard above r ∈ h̃⊗ h̃ as a linear function on h̃∗ ⊗ h̃∗.
Let us denote it by ψ:

ψ(p, q, r, s, p′, q′, r′, s′) = rs′ + r′s+ 2p · q′.
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Next, we have to find a way to make ψ to determine an operator on L1(H̃ ⊗
H̃). Since it should correspond to λ = 0 case, we will construct an (unbounded)
operator such that it looks like an (unbounded) “derivation” with respect to the
multiplication (for λ = 0) on Ã ⊗ Ã. That is, we consider the densely defined
operator:

F 7→ [ψ, F ] = ψ ×λ=0 F − F ×λ=0 ψ, F ∈ Ã ⊗ Ã.

But ×λ=0 is essentially the ordinary convolution on S(H̃) (or S(H̃ × H̃)). So,
by straightforward calculation, again formally using partial Fourier transform, we
obtain:

[ψ, F ](p, q, r, w, p′, q′, r′, w′)

=
∫ [

(r˜̃s+ r′s̃) + 2(p · q′ + rq′ · ỹ − ew−w′
p · q′ − r′ew−w′

p · x̃)
]

(6.5)

· e[s̃w̃ + ˜̃s ˜̃w]e[p̃ · x̃+ q̃ · ỹ]F (ew̃p, e−w̃q + q̃, r, w, e
˜̃wp′ + p̃, e−

˜̃wq′, r′, w′),
where the integration is taken with respect to all the tilde (̃·) and double tilde (̃̃·)
variables. From now on, we will just use (6.5) as our defining equation for [ψ, · ],
an unbounded operator on the Banach space L1(H̃⊗H̃). This will be our operator
realization of ψ.

Then, by comparing the formulas (6.4) and (6.5), we obtain the following
result. Although we showed directly in Theorem 6.6 that our R satisfies the
QYBE, this proposition indicates that this property is actually suggested by the
CYBE (see Proposition 1.3) satisfied by the associated classical r-matrix.

Proposition 6.7. Let the notation be as above. Then:

lim
λ→0

∥∥∥∥Ψλ(F )− F

λ
− (−2πi)[ψ, F ]

∥∥∥∥
L1

= 0,

for F ∈ Ã ⊗ Ã. Thus, at least in the sense of the operators on the Banach space
L1(H̃ × H̃), we may say that the “classical limit” as λ → 0 of our quantum R-
matrix Rλ is (−2πi)ψ, the operator realization of the classical r-matrix.

Proof. From Equation (6.4), we may express Ψλ(F ) as follows, taking ad-
vantage of the Fourier inversion theorem:

Ψλ(F )(p, q, r, w, p′, q′, r′, w′)

=
∫
e
[
λ(r˜̃s+ r′s̃)

]
e
[
2λ(e−λr)p · q′

]
e
[
2λ(e−λr−λr′)ηλ(r)q′ · ỹ

]
· e

[
2λ(ew−w′−λr)p · q′

]
e
[
2λ(ew−w′

)ηλ(r′)p · x̃
]
e[s̃w̃ + ˜̃s ˜̃w]e[p̃ · x̃+ q̃ · ỹ]

· F (ew̃p, e−w̃q + q̃, r, w, e
˜̃wp′ + p̃, e−

˜̃wq′, r′, w′).
The integration is with respect to all the tilde and double tilde variables. Compar-
ing this expression with Equation (6.5) for [ψ, F ], we can see easily the pointwise
convergence. The L1 convergence is proved using again the Lebesgue’s dominated
convergence theorem.
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The quantum universal R-matrix is useful in the study of representation
theory of our Hopf C∗-algebras (Ã, ∆̃) and (A,∆). We will study representation
theory of our quantum groups elsewhere (see [16]). It turns out that the rep-
resentation theory satisfies interesting quasitriangularity property, which is not
present in the earlier examples of quantum groups corresponding to linear Poisson
brackets.
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