COHOMOLOGY FOR FINITE INDEX INCLUSIONS OF FACTORS

ALLAN M. SINCLAIR and ROGER R. SMITH

Communicated by William B. Arveson

Abstract

If $\mathcal{N} \subseteq \mathcal{M}$ is an inclusion of type II_{1} factors of finite index on a separable Hilbert space, and if \mathcal{N} has a Cartan subalgebra then we show that $H^{n}(\mathcal{N}, \mathcal{M})=0$ for $n \geqslant 1$. We also show that $H_{\mathrm{cb}}^{n}(\mathcal{N}, \mathcal{M})=0, n \geqslant 1$, for an arbitrary finite index inclusion $\mathcal{N} \subseteq \mathcal{M}$ of von Neumann algebras. Keywords: von Neumann algebra, factor, Jones index, cohomology, Cartan subagebra, completely bounded, C^{*}-algebra.

MSC (2000): Primary 46L10; Secondary 46L05.

1. INTRODUCTION

The continuous Hochschild cohomology groups $H^{n}(\mathcal{N}, \mathcal{X})$ for a von Neumann algebra \mathcal{N} and a Banach \mathcal{N}-bimodule \mathcal{X} were first studied in a series of papers ([10], [11], [12], [15], [16]) by Johnson, Kadison and Ringrose. The primary focus was on the case $\mathcal{X}=\mathcal{N}$. The Kadison-Sakai theorem on derivations, [14], [24], had established that $H^{1}(\mathcal{N}, \mathcal{N})=0$ for all von Neumann algebras, and so it was natural to pose the question of whether $H^{n}(\mathcal{N}, \mathcal{N})=0$ for all $n \geqslant 2$. The work of [2], [4], [7], [15] on completely bounded cohomology gave an affirmative answer in the cases of type $\mathrm{I}, \mathrm{II}_{\infty}$ and III von Neumann algebras, as well as some classes of type II_{1} von Neumann algebras. However, the general type II_{1} case is still open.

In [26], [27] we were able to show that $H^{n}(\mathcal{N}, \mathcal{N})=0, n \geqslant 2$, for type II_{1} algebras with a separable predual and a Cartan subalgebra (a masa whose normalizing unitary group generates \mathcal{N} as a von Neumann algebra). This is a rich class of von Neumann algebras ([9]), but algebras do exist without this property ([28]). The purpose of this paper is to extend these results (which built upon preliminary results in [3], [19]) to $H^{n}(\mathcal{N}, \mathcal{M}), n \geqslant 2$, where $\mathcal{N} \subseteq \mathcal{M}$ is an inclusion of type II_{1} factors of finite Jones index ([13], [22]). The case $n=1$ is already covered by a more general result of Christensen ([1]). It is important to consider more general modules in place of \mathcal{N} itself. For example, Connes has shown that an
appropriate choice of module can distinguish between injective and non-injective von Neumann algebras ([8]; see also [6]). In a different direction, Kirchberg ([17]) has shown that the vanishing of $H^{1}(\mathcal{N}, B(H))$ is equivalent to a positive solution to the similarity problem for representations of C^{*}-algebras.

In the second section we establish some notation and recapitulate some standard theory for the reader's convenience. We also quote a theorem from [18] which we will used repeatedly. The third section is devoted to some preliminary results. One concerns the class of maps to which the averaging technique of [5] can be applied (Theorem 3.2), while another gives a method of estimating norms in $M_{n}(\mathcal{M})$ in the presence of Cartan subalgebras (Theorem 3.4). These are then applied in the last section to show that $H^{n}(\mathcal{N}, \mathcal{M})=0$ when \mathcal{N} has a Cartan subalgebra and $\mathcal{N} \subseteq \mathcal{M}$ is an inclusion of factors of finite index. We also show that $H_{\mathrm{cb}}^{n}(\mathcal{N}, \mathcal{M})=\overline{0}$ for a finite index inclusion of von Neumann algebras.

We refer the reader to [23], [25] for general background on cohomology, and to [26], [27] for many of the techniques which we draw on here. However, we have taken the opportunity to streamline some of the arguments and the introduction of $*$-automorphisms in Corollary 3.5 is a useful suggestion of Florin Pop.

2. PRELIMINARIES

A bounded map $\varphi: \mathcal{E} \rightarrow \mathcal{F}$ between operator spaces lifts naturally to a bounded $\operatorname{map} \varphi^{(k)}: M_{k}(\mathcal{E}) \rightarrow M_{k}(\mathcal{F})$ on the $k \times k$ matrices over \mathcal{E} for each $k \geqslant 1\left(\varphi_{k}\right.$ is a more standard notation for this map but we reserve this for a different purpose). Then φ is completely bounded if the quantity

$$
\begin{equation*}
\|\varphi\|_{\mathrm{cb}} \equiv \sup \left\{\left\|\varphi^{(k)}\right\|: k \geqslant 1\right\} \tag{2.1}
\end{equation*}
$$

is finite. If square matrices are replaced by the spaces $\operatorname{Row}_{k}(\mathcal{E})$ of rows over \mathcal{E} of length k, then the corresponding supremum in (2.1) defines the row bounded norm. The inequalities

$$
\begin{equation*}
\|\varphi\| \leqslant\|\varphi\|_{\mathrm{r}} \leqslant\|\varphi\|_{\mathrm{cb}} \tag{2.2}
\end{equation*}
$$

are immediate from the definitions, and the interplay between these three norms is crucial for the results of this paper. We will denote by $\operatorname{CB}(\mathcal{E}, \mathcal{F})$ and $\operatorname{RB}(\mathcal{E}, \mathcal{F})$ respectively the spaces of completely bounded and row bounded maps from \mathcal{E} to \mathcal{F}.

For an inclusion $\mathcal{N} \subseteq \mathcal{M}$ of von Neumann or C^{*}-algebras we denote by $\mathcal{L}^{n}(\mathcal{N}, \mathcal{M})$ the space of n-linear bounded maps $\varphi: \mathcal{N}^{n} \rightarrow \mathcal{M}$. The coboundary operator $\partial: \mathcal{L}^{n}(\mathcal{N}, \mathcal{M}) \rightarrow \mathcal{L}^{n+1}(\mathcal{N}, \mathcal{M})$ is defined by

$$
\begin{align*}
\partial \varphi\left(x_{1}, \ldots, x_{n+1}\right)= & x_{1} \varphi\left(x_{2}, \ldots, x_{n+1}\right) \\
& +\sum_{i=1}^{n}(-1)^{i} \varphi\left(x_{1}, \ldots, x_{i-1}, x_{i} x_{i+1}, x_{i+2}, \ldots, x_{n+1}\right) \tag{2.3}\\
& +(-1)^{n+1} \varphi\left(x_{1}, \ldots, x_{n}\right) x_{n+1}
\end{align*}
$$

for $x_{i} \in \mathcal{N}$. Then φ is an n-cocycle if $\partial \varphi=0$, while φ is said to be an n-coboundary if there exists $\psi \in \mathcal{L}^{n-1}(\mathcal{N}, \mathcal{M})$ such that $\varphi=\partial \psi$. A short algebraic calculation shows that $\partial \partial=0$ and so coboundaries are cocycles. For $n \geqslant 2$ the cohomology
group $H^{n}(\mathcal{N}, \mathcal{M})$ is defined to be the space of n-cocycles modulo the space of n coboundaries. For $n=1, H^{1}(\mathcal{N}, \mathcal{M})$ is the space of derivations modulo the space of inner derivations. The coefficient space \mathcal{M} could be replaced by any Banach \mathcal{N}-bimodule in these definitions.

We will focus on von Neumann factors \mathcal{N} of type II_{1} with Cartan subalgebras \mathcal{A} : the defining property is that \mathcal{A} is a maximal abelian self-adjoint subalgebra of \mathcal{N} whose normalizing unitary group $\mathcal{U} \subseteq \mathcal{N}$ generates \mathcal{N} as a von Neumann algebra. Here \mathcal{U} is the set of unitaries $u \in \mathcal{N}$ such that $u \mathcal{A} u^{*}=\mathcal{A}$. We will also be interested in the case when \mathcal{N} has finite Jones index [$\mathcal{M}: \mathcal{N}]$ in \mathcal{M} ([13], [22]). For such inclusions a result of Pimsner and Popa ([18]) to the effect that \mathcal{M} is finitely generated as both a left and right \mathcal{N}-module will be important. Since we will use it repeatedly, we state it here.

Theorem 2.1. ([18]) Let $\mathcal{N} \subseteq \mathcal{M}$ be an inclusion of type II_{1} factors with $[\mathcal{M}: \mathcal{N}]<\infty$. Write $[\mathcal{M}: \mathcal{N}]=n+\alpha$ (n an integer and $0 \leqslant \alpha<1$), and let $E_{\mathcal{N}}$ be the trace preserving conditional expectation of \mathcal{M} onto \mathcal{N}. Then there exist $m_{1}, \ldots, m_{n+1} \in \mathcal{M}$ and a projection $p \in \mathcal{N}$ of trace α with the following properties:
(i) $\mathcal{M}=\mathcal{N} m_{1}+\mathcal{N} m_{2}+\cdots+\mathcal{N} m_{n}+\mathcal{N} p m_{n+1}$;
(ii) $E_{\mathcal{N}}\left(m_{j} m_{k}^{*}\right)=0$ for $j \neq k$;
(iii) $E_{\mathcal{N}}\left(m_{j} m_{j}^{*}\right)=1$ for $1 \leqslant j \leqslant n$;
(iv) $E_{\mathcal{N}}\left(m_{n+1} m_{n+1}^{*}\right)=p$;
(v) $\left\|m_{j}\right\| \leqslant[\mathcal{M}: \mathcal{N}]^{1 / 2}, 1 \leqslant j \leqslant n+1$;
(vi) $\mathcal{M}=m_{1}^{*} \mathcal{N}+m_{2}^{*} \mathcal{N}+\cdots+m_{n}^{*} \mathcal{N}+m_{n+1}^{*} p \mathcal{N}$.

Properties (i)-(v) are the original formulation but (vi) follows from (i) by taking adjoints. We will use both the left and right \mathcal{N}-module decompositions of \mathcal{M} subsequently. We note for future reference that properties (ii)-(iv) ensure that the \mathcal{N}-coefficients of an expansion of $m \in \mathcal{M}$ by (i) are unique. For example, if $x \in \mathcal{N}$ and $x m_{1}=0$ then

$$
x=E_{\mathcal{N}}\left(x m_{1} m_{1}^{*}\right)=0
$$

using (iii) and the \mathcal{N}-linearity of $E_{\mathcal{N}}$.

3. AVERAGING MAPS

In this section we extend a result from [6] on the averaging of elements in $\mathrm{CB}(\mathcal{N}, \mathcal{N})$ to a larger class of maps $\mathcal{S} \subseteq \operatorname{RB}(\mathcal{N}, B(H))$. While we do not have a characterization of which row bounded maps lie in \mathcal{S}, we will be able to show that this set does contain all maps used subsequently, and this is sufficient for our purposes.

Let $n_{1}, \ldots, n_{k} \in \mathcal{N}$ be fixed elements satisfying $\sum_{i=1}^{k} n_{i}^{*} n_{i} \leqslant 1$, and define $\beta: \operatorname{RB}(\mathcal{N}, B(H)) \rightarrow \mathrm{RB}(\mathcal{N}, B(H))$ by

$$
\begin{equation*}
(\beta \varphi)(x)=\sum_{i=1}^{k} \varphi\left(x n_{i}^{*}\right) n_{i} \tag{3.1}
\end{equation*}
$$

for $x \in \mathcal{N}$ and $\varphi \in \operatorname{RB}(\mathcal{N}, B(H))$.

Lemma 3.1. The map β is a contraction in the row bounded norm.
Proof. Fix $\varphi \in \operatorname{RB}(\mathcal{N}, B(H))$ and let $\psi=\beta \varphi$. If $R=\left(x_{1}, \ldots, x_{j}\right) \in$ $\operatorname{Row}_{j}(\mathcal{N}),\|R\|=1$, then let $\widetilde{R} \in \operatorname{Row}_{j k}(\mathcal{N})$ be the row

$$
\left(x_{1} n_{1}^{*}, \ldots, x_{1} n_{k}^{*}, \ldots, x_{j} n_{1}^{*}, \ldots, x_{j} n_{k}^{*}\right)
$$

Then

$$
\begin{equation*}
\widetilde{R} \widetilde{R}^{*}=\sum_{l=1}^{j} \sum_{i=1}^{k} x_{l} n_{i}^{*} n_{i} x_{l}^{*} \leqslant \sum_{l=1}^{j} x_{l} x_{l}^{*} \tag{3.2}
\end{equation*}
$$

so

$$
\begin{equation*}
\|\widetilde{R}\| \leqslant\|R\|=1 \tag{3.3}
\end{equation*}
$$

Now form the $j k \times j$ matrix

$$
A=\left(\begin{array}{cccc}
C & \theta & & \theta \tag{3.4}\\
\theta & C & & \vdots \\
\theta & \theta & \ddots & \theta \\
\theta & \theta & & C
\end{array}\right)
$$

where θ denotes a column of $k 0$'s and $C^{*}=\left(n_{1}^{*}, \ldots, n_{k}^{*}\right)$. Then $A^{*} A \in M_{j}(\mathcal{N})$ is diagonal and each diagonal entry is $C^{*} C$. Thus $\|A\| \leqslant 1$. A short calculation shows that

$$
\begin{equation*}
\psi^{(j)}(R)=\varphi^{(j k)}(\widetilde{R}) A \tag{3.5}
\end{equation*}
$$

and it follows from (3.3) that

$$
\begin{equation*}
\left\|\psi^{(j)}(R)\right\| \leqslant\|\varphi\|_{\mathrm{r}}\|\widetilde{R}\|\|A\| \leqslant\|\varphi\|_{\mathrm{r}} \tag{3.6}
\end{equation*}
$$

Since R was an arbitrary row of unit norm, (3.6) shows that $\|\psi\|_{\mathrm{r}} \leqslant\|\varphi\|_{\mathrm{r}}$ and β is a contraction in the row bounded norm.

In [6] the existence of a projection $\rho: \mathrm{CB}(\mathcal{N}, \mathcal{N}) \rightarrow \mathrm{CB}(\mathcal{N}, \mathcal{N})_{\mathcal{N}}$ (the subspace of right \mathcal{N}-modular maps) was established for any von Neumann algebra \mathcal{N}, and moreover ρ was the point ultraweak limit of a net of maps $\rho_{\alpha}: \mathrm{CB}(\mathcal{N}, \mathcal{N}) \rightarrow$ $\operatorname{CB}(\mathcal{N}, \mathcal{N})$ where each ρ_{α} had the form

$$
\begin{equation*}
\left(\rho_{\alpha} \varphi\right)(x)=\sum_{j=1}^{\infty} \varphi\left(x n_{j \alpha}^{*}\right) n_{j \alpha}, \quad x \in \mathcal{N} \tag{3.7}
\end{equation*}
$$

where $\varphi \in \mathrm{CB}(\mathcal{N}, \mathcal{N}), n_{j \alpha} \in \mathcal{N}$, and $\sum_{j=1}^{\infty} n_{j \alpha}^{*} n_{j \alpha}=1$. A simple pointwise ultraweak limit argument establishes Lemma 3.1 for infinite sums, and so equation (3.7) extends the definition of ρ_{α} to a contraction (in the row bounded norm) of $\operatorname{RB}(\mathcal{N}, B(H))$ to itself. While ρ and its approximating net need not be unique, we fix one such collection for the subsequent discussion. It is not clear that the net of ρ_{α} 's on the larger space of maps converges in any topology. To remedy this, we introduce an intermediate domain defined by convergence of the net not only to a limit, but to one of a particular kind. Specifically, we form the subset \mathcal{S} of
$\operatorname{RB}(\mathcal{N}, B(H))$ defined by the following property: $\varphi \in \mathcal{S}$ if there exists an operator $t \in B(H)$ such that

$$
\begin{equation*}
\lim _{\alpha}\left(\rho_{\alpha} \varphi\right)(x)=t x \tag{3.8}
\end{equation*}
$$

ultraweakly for $x \in \mathcal{N}$. We then let $\rho \varphi$ be the point ultraweak limit of $\rho_{\alpha} \varphi$ for $\varphi \in \mathcal{S}$. Since this domain is defined abstractly, we will have to show subsequently that it contains all maps of interest to us.

We note that $\mathrm{RB}(\mathcal{N}, B(H))$ is a $(B(H), \mathcal{N})$-bimodule under the following left and right actions:

$$
\begin{align*}
& (t \varphi)(x)=t \varphi(x), \quad x \in \mathcal{N}, t \in B(H), \tag{3.9}\\
& \varphi_{y}(x)=\varphi(y x), \quad x, y \in \mathcal{N}, \tag{3.10}
\end{align*}
$$

for $\varphi \in \operatorname{RB}(\mathcal{N}, B(H))$.
Theorem 3.2. For any von Neumann algebra $\mathcal{N} \subseteq B(H)$:
(i) \mathcal{S} is a norm closed $(B(H), \mathcal{N})$-submodule of $\overline{\mathrm{R}} \mathrm{B}(\mathcal{N}, B(H))$ containing $\operatorname{CB}(\mathcal{N}, \mathcal{N})$;
(ii) If $\varphi \in \mathcal{S}, t \in B(H), y \in \mathcal{N}$ then

$$
\begin{equation*}
\rho(t \varphi)=t(\rho \varphi), \quad \rho \varphi_{y}=(\rho \varphi)_{y} \tag{3.11}
\end{equation*}
$$

(iii) ρ is a contraction in the row bounded norm;
(iv) If $\varphi \in \mathcal{S}$ and has range in a von Neumann algebra \mathcal{M} containing \mathcal{N} then there exists $m \in \mathcal{M}$ such that, for $x \in \mathcal{N}$,

$$
\begin{equation*}
\rho \varphi(x)=m x, \quad\|m\| \leqslant\|\varphi\|_{\mathrm{r}} . \tag{3.12}
\end{equation*}
$$

Moreover, if $\mathcal{N} \subseteq \mathcal{M} \subseteq B(H)$ is an inclusion of type II_{1} factors of finite index then
(v) \mathcal{S} contains $\operatorname{CB}(\mathcal{N}, \mathcal{M})$.

Proof. That \mathcal{S} contains $\operatorname{CB}(\mathcal{N}, \mathcal{N})$ is the original version of this theorem ([6]). Part (iii) follows from Lemma 3.1 which establishes the contractivity of each ρ_{α} by a simple limit argument. It is then easy to see that \mathcal{S} is a norm closed subspace of $\mathrm{RB}(\mathcal{N}, B(H))$.

From (3.7), each ρ_{α} commutes with the left and right module actions of $B(H)$ and \mathcal{N} respectively, and thus so does ρ. The remaining parts of (i) and (ii) are then immediate.

If $\varphi \in \mathcal{S}$ has range in $\mathcal{M} \supseteq \mathcal{N}$ then the same is true for each $\rho_{\alpha} \varphi$, by (3.7), and also for $\rho \varphi$ by taking ultraweak limits. Putting $x=1$ in (3.8) establishes (3.12).

Now suppose that $\mathcal{N} \subseteq \mathcal{M} \subseteq B(H)$ is an inclusion of type II_{1} factors with $[\mathcal{M}: \mathcal{N}]<\infty$. By Theorem 2.1 we may write

$$
\begin{equation*}
\mathcal{M}=m_{1}^{*} \mathcal{N}+\cdots+m_{n}^{*} \mathcal{N}+m_{n+1}^{*} p \mathcal{N} \tag{3.13}
\end{equation*}
$$

If $\varphi \in \mathrm{CB}(\mathcal{N}, \mathcal{M})$ then define $\varphi_{i} \in \mathrm{CB}(\mathcal{N}, \mathcal{N}), 1 \leqslant i \leqslant n+1$, by

$$
\begin{equation*}
\varphi_{i}(x)=E_{\mathcal{N}}\left(m_{i} \varphi(x)\right), \quad x \in \mathcal{N} \tag{3.14}
\end{equation*}
$$

Fix $x \in \mathcal{N}$. By (3.13) there exist $y_{1}, \ldots, y_{n+1} \in \mathcal{N}$ such that

$$
\begin{equation*}
\varphi(x)=m_{1}^{*} y_{1}+\cdots+m_{n}^{*} y_{n}+m_{n+1}^{*} p y_{n+1} \tag{3.15}
\end{equation*}
$$

Multiply (3.15) by m_{i} and apply $E_{\mathcal{N}}$ to obtain

$$
\begin{align*}
& E_{\mathcal{N}}\left(m_{i} \varphi(x)\right)=y_{i}, \quad 1 \leqslant i \leqslant n \tag{3.16}\\
& E_{\mathcal{N}}\left(m_{n+1} \varphi(x)\right)=p y_{n+1} \tag{3.17}
\end{align*}
$$

It follows from (3.14)-(3.17) that

$$
\begin{equation*}
\varphi(x)=m_{1}^{*} \varphi_{1}(x)+\cdots+m_{n+1}^{*} \varphi_{n+1}(x), \quad x \in \mathcal{N} \tag{3.18}
\end{equation*}
$$

By the module properties of (i), we see that $\varphi \in \mathcal{S}$, completing the proof.
The notion of finite index inclusions of type II_{1} factors can be extended to general inclusions in the following way ([22]). An inclusion $\mathcal{N} \subseteq \mathcal{M}$ of von Neumann algebras is said to be of finite index if there exists a conditional expectation $E: \mathcal{M} \rightarrow \mathcal{N}$ and a constant $c>0$ such that $E(x) \geqslant c x$ for all $x \in \mathcal{M}^{+}$. As noted in 1.1.2 of [22], such a conditional expectation is automatically normal. In this more general situation we may obtain a projection of $\mathrm{CB}(\mathcal{N}, \mathcal{M})$ onto the space $\mathrm{CB}(\mathcal{N}, \mathcal{M})_{\mathcal{N}}$ of completely bounded right \mathcal{N}-module maps.

Theorem 3.3. Let $\mathcal{N} \subseteq \mathcal{M}$ be a finite index inclusion of von Neumann algebras. Then there exists a contractive projection $\rho: \mathrm{CB}(\mathcal{N}, \mathcal{M}) \rightarrow \mathrm{CB}(\mathcal{N}, \mathcal{M})_{\mathcal{N}}$ which is the point ultraweak limit of maps ρ_{α} of the form (3.7). Moreover, ρ satisfies

$$
\begin{equation*}
\rho(m \varphi)=m(\rho \varphi), \quad \rho \varphi_{y}=(\rho \varphi)_{y} \tag{3.19}
\end{equation*}
$$

for $\varphi \in \mathrm{CB}(\mathcal{N}, \mathcal{M}), m \in \mathcal{M}$ and $y \in \mathcal{N}$.
Proof. By [5], there is a projection $\rho: \mathrm{CB}(\mathcal{N}, \mathcal{N}) \rightarrow \mathrm{CB}(\mathcal{N}, \mathcal{N})_{\mathcal{N}}$ which is the point ultraweak limit of maps ρ_{α} of the form (3.7). Each ρ_{α} has an obvious extension to a map of $\operatorname{CB}(\mathcal{N}, \mathcal{M})$ to itself, which we also denote by ρ_{α}. By compactness, we may drop to a subnet and assume that $\lim _{\alpha}\left(\rho_{\alpha} \varphi\right)(x)$ exists ultraweakly (in $\mathcal{M})$ for $\varphi \in \mathrm{CB}(\mathcal{N}, \mathcal{M})$ and $x \in \mathcal{N}$. This limit then defines a contraction $\rho: \mathrm{CB}(\mathcal{N}, \mathcal{M}) \rightarrow \mathrm{CB}(\mathcal{N}, \mathcal{M})$, extending the one originally defined on $\operatorname{CB}(\mathcal{N}, \mathcal{N})$. The relations (3.19) are immediate from the definition of the ρ_{α} 's, after taking point ultraweak limits. Each ρ_{α} leaves fixed every right \mathcal{N}-module map and the same is then true of ρ. It thus suffices to show that the range of ρ is $\mathrm{CB}(\mathcal{N}, \mathcal{M})_{\mathcal{N}}$. By hypothesis there is a constant $c>0$ and a normal conditional expectation $E: \mathcal{M} \rightarrow \mathcal{N}$ such that $E(x) \geqslant c x$ for $x \in \mathcal{M}^{+}$. We note that E is \mathcal{N}-bimodular. For $\varphi \in \operatorname{CB}(\mathcal{N}, \mathcal{M})$ and $x \in \mathcal{N}$, it follows that

$$
\begin{aligned}
\rho_{\alpha}(E \varphi)(x) & =\sum_{j=1}^{\infty}(E \varphi)\left(x n_{j \alpha}^{*}\right) n_{j \alpha}=\sum_{j=1}^{\infty} E\left(\varphi\left(x n_{j \alpha}^{*}\right)\right) n_{j \alpha} \\
& =E\left(\sum_{j=1}^{\infty} \varphi\left(x n_{j \alpha}^{*}\right) n_{j \alpha}\right)=E\left(\left(\rho_{\alpha} \varphi\right)(x)\right),
\end{aligned}
$$

and taking the limit over α (once again using normality of E) gives

$$
\begin{equation*}
\rho(E \varphi)=E(\rho \varphi) \tag{3.20}
\end{equation*}
$$

Now fix $\varphi \in \operatorname{CB}(\mathcal{N}, \mathcal{M}), n \in \mathcal{N}$, and a projection $e \in \mathcal{N}$, and define $b=$ $(\rho \varphi)(n(1-e)) e$. Then define $\psi \in \operatorname{CB}(\mathcal{N}, \mathcal{M})$ by

$$
\begin{equation*}
\psi(x)=b^{*} \varphi(x), \quad x \in \mathcal{N} \tag{3.21}
\end{equation*}
$$

Since $E \psi \in \mathrm{CB}(\mathcal{N}, \mathcal{M}), \rho(E \psi)$ is a right \mathcal{N}-module map, and so also is $E(\rho \psi)$ by (3.20). Hence

$$
\begin{align*}
E\left(b^{*} \rho \varphi(x(1-e)) e\right) & =(E \rho)\left(b^{*} \varphi\right)(x(1-e)) e=(E \rho \psi)(x(1-e)) e \\
& =(E \rho \psi)(x(1-e) e)=0 \tag{3.22}
\end{align*}
$$

for $x \in \mathcal{N}$. Putting $x=n$ in (3.22) gives $E\left(b^{*} b\right)=0$, and so we conclude that $b=0$ from the inequalities

$$
0 \leqslant b^{*} b \leqslant c^{-1} E\left(b^{*} b\right)=0
$$

Since n and e were arbitrary, it follows that $(\rho \varphi)(x(1-e)) e=0$ for $x \in \mathcal{N}$ and any projection $e \in \mathcal{N}$. Thus

$$
\begin{align*}
(\rho \varphi)(x) e-\rho \varphi(x e) & =\rho \varphi(x e+x(1-e)) e-\rho \varphi(x e)=\rho \varphi(x e) e-\rho \varphi(x e) \tag{3.23}\\
& =-\rho \varphi(x e)(1-e)=0
\end{align*}
$$

because $1-e$ is also a projection in \mathcal{N}. Since \mathcal{N} is the norm closed span of its projections, right \mathcal{N}-modularity of $\rho \varphi$ follows from (3.23).

The next result provides a method of estimating norms in matrix algebras over a von Neumann algebra.

Theorem 3.4. Let $\mathcal{N} \subseteq \mathcal{M}$ be an inclusion of type II_{1} factors of finite index, and suppose that \mathcal{N} has a Cartan subalgebra \mathcal{A}. Then there exists a constant $c\left(=2[\mathcal{M}: \mathcal{N}]^{2}\right)$ such that, for $X \in M_{k}(\mathcal{M}), k \geqslant 1$,

$$
\|X\| \leqslant c \sup \left\{\|R X\|: R \in \operatorname{Row}_{k}(\mathcal{A}),\|R\| \leqslant 1\right\}
$$

Proof. Fix $X \in M_{k}(\mathcal{M}),\|X\|=1$. By Theorem 2.1 there exist matrices $Y_{i} \in M_{k}(\mathcal{N})$ such that

$$
\begin{equation*}
X=Y_{1} W_{1}+\cdots+Y_{n} W_{n}+Y_{n+1} P W_{n+1} \tag{3.24}
\end{equation*}
$$

where W_{i} is the $k \times k$ diagonal matrix with m_{i} on the diagonal and P is the $k \times k$ diagonal matrix with p on the diagonal. By the triangle inequality, we may assume without loss of generality that $\left\|Y_{1} W_{1}\right\| \geqslant 1 /(n+1)$ (the case $\left\|Y_{n+1} P W_{n+1}\right\| \geqslant$ $1 /(n+1)$ is similar). Since $\left\|m_{1}\right\| \leqslant[\mathcal{M}: \mathcal{N}]^{1 / 2}$, it follows that

$$
\left\|Y_{1}\right\| \geqslant[\mathcal{M}: \mathcal{N}]^{-1 / 2}(n+1)^{-1}
$$

Given $\varepsilon>0$ we may find, by [27], $\operatorname{Proposition~} 4.1, R \in \operatorname{Row}_{k}(\mathcal{A}),\|R\|=1$, such that

$$
\begin{equation*}
\left\|R Y_{1}\right\| \geqslant(1-\varepsilon)\left\|Y_{1}\right\| \tag{3.25}
\end{equation*}
$$

Then multiply (3.24) on the left by R, on the right by W_{1}^{*}, and apply

$$
E_{\mathcal{N} \otimes M_{k}}=E_{\mathcal{N}} \otimes I_{k}
$$

to obtain

$$
\begin{equation*}
R Y_{1}=E_{\mathcal{N} \otimes M_{k}}\left(R X W_{1}^{*}\right) \tag{3.26}
\end{equation*}
$$

Since $E_{\mathcal{N} \otimes M_{k}}$ is completely positive and unital, it follows that
(3.27) $\quad\left\|R Y_{1}\right\| \leqslant\left\|R X W_{1}^{*}\right\| \leqslant\|R X\|\left\|W_{1}^{*}\right\|=\|R X\|\left\|m_{1}\right\| \leqslant\|R X\|[\mathcal{M}: \mathcal{N}]^{1 / 2}$.

The previous estimates then combine to give

$$
\begin{align*}
\|R X\| & \geqslant[\mathcal{M}: \mathcal{N}]^{-1 / 2}\left\|R Y_{1}\right\| \geqslant[\mathcal{M}: \mathcal{N}]^{-1 / 2}(1-\varepsilon)\left\|Y_{1}\right\| \\
& \geqslant(1-\varepsilon)[\mathcal{M}: \mathcal{N}]^{-1}(n+1)^{-1} \tag{3.28}
\end{align*}
$$

Since $\varepsilon>0$ was arbitrary, and $n+1 \leqslant 2[\mathcal{M}: \mathcal{N}]$, the result follows from (3.28), where c may be taken to be $2[\mathcal{M}: \mathcal{N}]^{2}$.

The next result appears to be very specialized, but will be needed in the next section.

Corollary 3.5. Let $\mathcal{N} \subseteq \mathcal{M}$ be an inclusion of type II_{1} factors with finite index, where \mathcal{N} has a Cartan subalgebra \mathcal{A}. Let $\mu: \mathcal{N} \rightarrow \mathcal{M}$ be row bounded and suppose that there is a *-automorphism α of \mathcal{A} such that

$$
\begin{equation*}
a \mu(x)=\mu(\alpha(a) x), \quad a \in \mathcal{A}, x \in \mathcal{N} \tag{3.29}
\end{equation*}
$$

Then μ is completely bounded and

$$
\begin{equation*}
\|\mu\|_{\mathrm{cb}} \leqslant\left(2[\mathcal{M}: \mathcal{N}]^{2}\right)\|\mu\|_{\mathrm{r}} \tag{3.30}
\end{equation*}
$$

Proof. Fix $k \geqslant 1$, and consider $X \in M_{k}(\mathcal{N}),\|X\|=1$. The automorphism $\alpha^{(k)}$ of $M_{k}(\mathcal{A})$ maps $\operatorname{Row}_{k}(\mathcal{A})$ isometrically onto itself, and thus, by Theorem 3.4,

$$
\begin{align*}
\left\|\mu^{(k)}(X)\right\| & \leqslant 2[\mathcal{M}: \mathcal{N}]^{2} \sup \left\{\left\|R \mu^{(k)}(X)\right\|: R \in \operatorname{Row}_{k}(\mathcal{A}),\|R\|=1\right\} \\
& =2[\mathcal{M}: \mathcal{N}]^{2} \sup \left\{\left\|\mu^{(k)}\left(\alpha^{(k)}(R) X\right)\right\|: R \in \operatorname{Row}_{k}(\mathcal{A}),\|R\|=1\right\} \tag{3.31}\\
& \leqslant 2[\mathcal{M}: \mathcal{N}]^{2}\|\mu\|_{\mathrm{r}}
\end{align*}
$$

since the second supremum is calculated by applying μ to rows. Since $k \geqslant 1$ was arbitrary, we have established (3.30).

4. THE MAIN RESULTS

For the first result we will assume that $\mathcal{N} \subseteq \mathcal{M}$ is an inclusion of type I_{1} factors of finite index represented on the Hilbert space $L^{2}(\mathcal{M}, \operatorname{tr})$ which we assume to be separable (or equivalently, \mathcal{N} has separable predual). We also assume that \mathcal{N} has a Cartan subalgebra \mathcal{A}, whereupon we can find a hyperfinite factor \mathcal{R} such that $\mathcal{A} \subseteq \mathcal{R} \subseteq \mathcal{N}$ and $\mathcal{R}^{\prime} \cap \mathcal{N}=\mathbb{C} 1$ ([20]). Christensen ([1]) has shown that $H^{1}(\mathcal{N}, \overline{\mathcal{M}})=0$ for any inclusion $\mathcal{N} \subseteq \mathcal{M}$ of finite von Neumann algebras. Thus our examination of $H^{n}(\mathcal{N}, \mathcal{M})$ can be restricted to $n \geqslant 2$.

Theorem 4.1. Let $\mathcal{N} \subseteq \mathcal{M}$ be an inclusion of type II_{1} factors of finite index on a separable Hilbert space and suppose that \mathcal{N} has a Cartan subalgebra \mathcal{A}. Then $H^{n}(\mathcal{N}, \mathcal{M})=0$ for $n \geqslant 2$.

Proof. Let $\mathcal{U} \subseteq \mathcal{N}$ be the group of normalizing unitaries for \mathcal{A}. Then $\operatorname{Alg}(\mathcal{U})=\operatorname{Span}(\mathcal{U})$, and the norm closure of $\operatorname{Alg}(\mathcal{U})$ is a C^{*}-algebra denoted by $C^{*}(\mathcal{U})$. Now fix $n \geqslant 2$. As in the proof of Theorem 5.1, [27], it suffices to consider an \mathcal{R}-multimodular separately normal cocycle $\theta: \mathcal{N}^{n} \rightarrow \mathcal{M}$ and show that its restriction to $C^{*}(\mathcal{U})$ is a coboundary.

Fix $u_{1}, \ldots, u_{n-1} \in \mathcal{U}$, and define $\mu: \mathcal{N} \rightarrow \mathcal{M}$ by

$$
\begin{equation*}
\mu(x)=\theta\left(u_{1}, \ldots, u_{n-1}, x\right), \quad x \in \mathcal{N} \tag{4.1}
\end{equation*}
$$

We first show that μ is completely bounded. Since μ is normal and right \mathcal{R}-modular, it follows from [27], Proposition 4.2, that μ is row bounded and

$$
\begin{equation*}
\|\mu\| \leqslant\|\mu\|_{\mathrm{r}} \leqslant \sqrt{2}\|\mu\| \tag{4.2}
\end{equation*}
$$

Let β_{i} be the $*$-automorphism of \mathcal{A} defined by

$$
\begin{equation*}
\beta_{i}(x)=u_{i}^{*} x u_{i}, \quad x \in \mathcal{A}, 1 \leqslant i \leqslant n-1, \tag{4.3}
\end{equation*}
$$

and define

$$
\begin{equation*}
\alpha_{j}=\beta_{j} \beta_{j-1} \cdots \beta_{2} \beta_{1} \in \operatorname{Aut}(\mathcal{A}), \quad 1 \leqslant j \leqslant n-1 \tag{4.4}
\end{equation*}
$$

The \mathcal{A}-modularity of θ implies that

$$
\begin{align*}
a \mu(x) & =a \theta\left(u_{1}, \ldots, u_{n-1}, x\right)=\theta\left(a u_{1}, \ldots, u_{n-1}, x\right) \tag{4.5}\\
& =\theta\left(u_{1} \beta_{1}(a), u_{2}, \ldots, u_{n-1}, x\right)=\theta\left(u_{1}, \beta_{1}(a) u_{2}, \ldots, u_{n-1}, x\right),
\end{align*}
$$

and repetition of this argument in (4.5) leads to

$$
\begin{equation*}
a \mu(x)=\mu\left(\alpha_{n-1}(a) x\right), \quad x \in \mathcal{N}, a \in \mathcal{A} \tag{4.6}
\end{equation*}
$$

It then follows from (4.6) and Corollary 3.5 that μ is completely bounded and

$$
\begin{equation*}
\|\mu\|_{\mathrm{cb}} \leqslant\left(2[\mathcal{M}: \mathcal{N}]^{2}\right)\|\mu\|_{\mathrm{r}} \leqslant\left(2 \sqrt{2}[\mathcal{M}: \mathcal{N}]^{2}\right)\|\mu\| \tag{4.7}
\end{equation*}
$$

These inequalities are a consequence of (3.30) and (4.2). Thus $\mu \in \mathcal{S}$ (see Theorem 3.2).

By linearity, all maps of the form

$$
\begin{equation*}
x \mapsto \theta\left(y_{1}, \ldots, y_{n-1}, x\right) \tag{4.8}
\end{equation*}
$$

for $y_{i} \in \operatorname{Alg}(\mathcal{U})$ lie in \mathcal{S}, and the same is true for $y_{i} \in C^{*}(\mathcal{U})$ since \mathcal{S} is $\|\cdot\|_{\mathrm{r}}$-closed and $\|\cdot\|$ and $\|\cdot\|_{\mathrm{r}}$ are equivalent on these maps. The modular properties of \mathcal{S} show that every map (with x as the variable) in the cocycle equation

$$
\begin{align*}
& y_{1} \theta\left(y_{2}, \ldots, y_{n}, x\right)+\sum_{i=1}^{n-1}(-1)^{i} \theta\left(y_{1}, \ldots, y_{i-1}, y_{i} y_{i+1}, y_{i+2}, \ldots, y_{n}, x\right) \tag{4.9}\\
& \quad+(-1)^{n} \theta\left(y_{1}, \ldots, y_{n-1}, y_{n} x\right)+(-1)^{n+1} \theta\left(y_{1}, \ldots, y_{n}\right) x=0
\end{align*}
$$

for $y_{i} \in C^{*}(\mathcal{U})$, lies in \mathcal{S} and so ρ may be applied to (4.9). By Theorem 3.2, there exists an element $\psi\left(y_{1}, \ldots, y_{n-1}\right) \in \mathcal{M}$ such that

$$
\begin{equation*}
\rho\left(\theta\left(y_{1}, \ldots, y_{n-1}, x\right)\right)=\psi\left(y_{1}, \ldots, y_{n-1}\right) x, \quad x \in \mathcal{N} \tag{4.10}
\end{equation*}
$$

and the estimate

$$
\begin{equation*}
\left\|\psi\left(y_{1}, \ldots, y_{n-1}\right)\right\| \leqslant \sqrt{2}\left\|y_{1}\right\| \cdots\left\|y_{n-1}\right\| \tag{4.11}
\end{equation*}
$$

is immediate from (3.12) and (4.2). The $(n-1)$-linearity of ψ results from the n-linearity of θ and the linearity of ρ. Using Theorem 3.2 once more, ρ transforms (4.9) to

$$
\begin{align*}
& y_{1} \psi\left(y_{2}, \ldots, y_{n-1}\right) x+\sum_{i=1}^{n-1}(-1)^{i} \psi\left(y_{1}, \ldots, y_{i-1}, y_{i} y_{i+1}, \ldots, y_{n}\right) x \tag{4.12}\\
& +(-1)^{n} \psi\left(y_{1}, \ldots, y_{n-1}\right) y_{n} x+(-1)^{n+1} \theta\left(y_{1}, \ldots, y_{n}\right) x=0
\end{align*}
$$

for $y_{i} \in C^{*}(\mathcal{U}), x \in \mathcal{N}$. Setting $x=1$ in (4.12) shows that the restriction of θ to $C^{*}(\mathcal{U})$ is the coboundary $\partial\left((-1)^{n} \psi\right)$, completing the proof.

We recall from [25] that the completely bounded cohomology groups $H_{\mathrm{cb}}^{n}(\mathcal{N}, \mathcal{M})$ are defined just as are $H^{n}(\mathcal{N}, \mathcal{M})$, but with the added requirement that all multilinear maps be completely bounded.

Theorem 4.2. Let $\mathcal{N} \subseteq \mathcal{M}$ be a finite index inclusion of von Neumann algebras. Then $H_{\mathrm{cb}}^{n}(\mathcal{N}, \mathcal{M})=0$ for $n \geqslant 1$.

Proof. This is identical to the last step in the preceding proof, using the projection ρ of Theorem 3.3.

Partially supported by a grant from the National Science Foundation.

REFERENCES

1. E. Christensen, Extension of derivations, J. Funct. Anal. 27(1978), 234-247.
2. E. Christensen, E.G. Effros, A.M. Sinclair, Completely bounded multilinear maps and C^{*}-algebraic cohomology, Invent. Math. 90(1987), 279-296.
3. E. Christensen, F. Pop, A.M. Sinclair, R.R. Smith, On the cohomology groups of certain finite von Neumann algebras, Math. Ann. 307(1997), 71-92.
4. E. Christensen, A.M. Sinclair, Representations of completely bounded multilinear operators, J. Funct. Anal. 72(1987), 151-181.
5. E. Christensen, A.M. Sinclair, Module mappings into von Neumann algebras and injectivity, Proc. London Math. Soc. 71(1995), 618-640.
6. E. Christensen, A.M. Sinclair, A cohomological characterization of approximately finite-dimensional von Neumann algebras, in Operator algebras and quantum field theory, (Rome, 1996), Internat. Press, Cambridge 1997, pp. 323-328.
7. E. Christensen, A.M. Sinclair, On the Hochschild cohomology for von Neumann algebras, preprint.
8. A. Connes, On the cohomology of operator algebras, J. Funct. Anal. 28(1978), 248-253.
9. J. Feldman, C.C. Moore, Ergodic equivalence relations, cohomology and von Neumann algebras, Trans. Amer. Math. Soc. 234(1977), 289-361.
10. B.E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127(1972), 1-96.
11. B.E. Johnson, A class of II_{1} factors without property P but with zero second cohomology, Ark. Math. 12(1974), 153-159.
12. B.E. Johnson, R.V. Kadison, J.R. Ringrose, Cohomology of operator algebras. III: Reduction to normal cohomology, Bull. Soc. Math. France 100(1972), 73-96.
13. V.F.R. Jones, Subfactors and knots, CBMS Regional Conf. Ser. Math., vol. 80, Amer. Math. Soc., Providence, RI, 1991.
14. R.V. Kadison, Derivations of operator algebras, Ann. Math. 83(1966), 280-293.
15. R.V. Kadison, J.R. Ringrose, Cohomology of operator algebras. I: Type I von Neumann algebras, Acta Math. 126(1971), 227-243.
16. R.V. Kadison, J.R. Ringrose, Cohomology of operator algebras. II: Extended cobounding and the hyperfinite case, Ark. Math. 9(1971), 55-63.
17. E. Kirchberg, The derivation problem and the similarity problem are equivalent, J. Operator Theory $\mathbf{3 6}(1996)$, 59-62.
18. M. Pimsner, S. Popa, Entropy and index for subfactors, Ann. Sci. École Norm. Sup. $\mathbf{1 9}$ (1986), 57-106.
19. F. Pop, R.R. Smith, Cohomology for certain finite factors, Bull. London Math. Soc. 26(1994), 303-308.
20. S. Popa, On a problem of R.V. Kadison on maximal abelian $*$-subalgebras in factors, Invent. Math. 65(1981), 269-281.
21. S. Popa, Notes on Cartan subalgebras in type II_{1} factors, Math. Scand. $\mathbf{5 7}(1985)$, 171-188.
22. S. Popa, Classification of subfactors and their endomorphisms, CBMS Regional Conf. Ser. Math., vol. 86, Amer. Math. Soc., Providence, RI, 1996.
23. J.R. Ringrose, Cohomology of operator algebras, Lecture Notes in Math. vol. 247, Springer-Verlag, Berlin 1972, pp. 355-433.
24. S. Sakai, Derivations of W^{*}-algebras, Ann. Math. 83(1966), 273-279.
25. A.M. Sinclair, R.R. Smith, Hochschild cohomology of von Neumann algebras, London Math. Soc. Lecture Note Ser., vol. 203, Cambridge University Press, Cambridge 1995.
26. A.M. Sinclair, R.R. Smith, Hochschild cohomology for von Neumann algebras with Cartan subalgebras, Amer. J. Math. 120(1998), 1043-1057.
27. A.M. Sinclair, R.R. Smith, The Hochschild cohomology problem for von Neumann algebras, Proc. Nat. Acad. Sci. U.S.A. 95(1998), 3376-3379.
28. D. Voiculescu, The analogues of entropy and of Fisher's information measure in free probability theory. III: The absence of Cartan subalgebras, Geom. Funct. Anal. 6(1996), 172-199.

ALLAN M. SINCLAIR
Department of Mathematics
University of Edinburgh
Edinburgh EH9 3JZ SCOTLAND
E-mail: allan@maths.ed.ac.uk

ROGER R. SMITH
Department of Mathematics
Texas A\&M University
College Station, TX 77843
USA
E-mail: rsmith@math.tamu.edu

