ALLAN M. SINCLAIR and ROGER R. SMITH

Communicated by William B. Arveson

ABSTRACT. If $\mathcal{N} \subseteq \mathcal{M}$ is an inclusion of type II₁ factors of finite index on a separable Hilbert space, and if \mathcal{N} has a Cartan subalgebra then we show that $H^n(\mathcal{N}, \mathcal{M}) = 0$ for $n \ge 1$. We also show that $H^n_{\rm cb}(\mathcal{N}, \mathcal{M}) = 0$, $n \ge 1$, for an arbitrary finite index inclusion $\mathcal{N} \subseteq \mathcal{M}$ of von Neumann algebras.

KEYWORDS: von Neumann algebra, factor, Jones index, cohomology, Cartan subagebra, completely bounded, C^{*}-algebra.

MSC (2000): Primary 46L10; Secondary 46L05.

1. INTRODUCTION

The continuous Hochschild cohomology groups $H^n(\mathcal{N}, \mathcal{X})$ for a von Neumann algebra \mathcal{N} and a Banach \mathcal{N} -bimodule \mathcal{X} were first studied in a series of papers ([10], [11], [12], [15], [16]) by Johnson, Kadison and Ringrose. The primary focus was on the case $\mathcal{X} = \mathcal{N}$. The Kadison-Sakai theorem on derivations, [14], [24], had established that $H^1(\mathcal{N}, \mathcal{N}) = 0$ for all von Neumann algebras, and so it was natural to pose the question of whether $H^n(\mathcal{N}, \mathcal{N}) = 0$ for all $n \ge 2$. The work of [2], [4], [7], [15] on completely bounded cohomology gave an affirmative answer in the cases of type I, Π_{∞} and III von Neumann algebras, as well as some classes of type II₁ von Neumann algebras. However, the general type II₁ case is still open.

In [26], [27] we were able to show that $H^n(\mathcal{N}, \mathcal{N}) = 0$, $n \ge 2$, for type II₁ algebras with a separable predual and a Cartan subalgebra (a masa whose normalizing unitary group generates \mathcal{N} as a von Neumann algebra). This is a rich class of von Neumann algebras ([9]), but algebras do exist without this property ([28]). The purpose of this paper is to extend these results (which built upon preliminary results in [3], [19]) to $H^n(\mathcal{N}, \mathcal{M})$, $n \ge 2$, where $\mathcal{N} \subseteq \mathcal{M}$ is an inclusion of type II₁ factors of finite Jones index ([13], [22]). The case n = 1 is already covered by a more general result of Christensen ([1]). It is important to consider more general modules in place of \mathcal{N} itself. For example, Connes has shown that an

appropriate choice of module can distinguish between injective and non-injective von Neumann algebras ([8]; see also [6]). In a different direction, Kirchberg ([17]) has shown that the vanishing of $H^1(\mathcal{N}, B(H))$ is equivalent to a positive solution to the similarity problem for representations of C^* -algebras.

In the second section we establish some notation and recapitulate some standard theory for the reader's convenience. We also quote a theorem from [18] which we will used repeatedly. The third section is devoted to some preliminary results. One concerns the class of maps to which the averaging technique of [5] can be applied (Theorem 3.2), while another gives a method of estimating norms in $M_n(\mathcal{M})$ in the presence of Cartan subalgebras (Theorem 3.4). These are then applied in the last section to show that $H^n(\mathcal{N}, \mathcal{M}) = 0$ when \mathcal{N} has a Cartan subalgebra and $\mathcal{N} \subseteq \mathcal{M}$ is an inclusion of factors of finite index. We also show that $H^n_{ch}(\mathcal{N}, \mathcal{M}) = 0$ for a finite index inclusion of von Neumann algebras.

We refer the reader to [23], [25] for general background on cohomology, and to [26], [27] for many of the techniques which we draw on here. However, we have taken the opportunity to streamline some of the arguments and the introduction of *-automorphisms in Corollary 3.5 is a useful suggestion of Florin Pop.

2. PRELIMINARIES

A bounded map $\varphi : \mathcal{E} \to \mathcal{F}$ between operator spaces lifts naturally to a bounded map $\varphi^{(k)} : M_k(\mathcal{E}) \to M_k(\mathcal{F})$ on the $k \times k$ matrices over \mathcal{E} for each $k \ge 1$ (φ_k is a more standard notation for this map but we reserve this for a different purpose). Then φ is completely bounded if the quantity

(2.1)
$$\|\varphi\|_{\rm cb} \equiv \sup\{\|\varphi^{(k)}\| : k \ge 1\}$$

is finite. If square matrices are replaced by the spaces $\operatorname{Row}_k(\mathcal{E})$ of rows over \mathcal{E} of length k, then the corresponding supremum in (2.1) defines the row bounded norm. The inequalities

$$\|\varphi\| \leqslant \|\varphi\|_{\mathbf{r}} \leqslant \|\varphi\|_{\mathbf{r}}$$

are immediate from the definitions, and the interplay between these three norms is crucial for the results of this paper. We will denote by $CB(\mathcal{E}, \mathcal{F})$ and $RB(\mathcal{E}, \mathcal{F})$ respectively the spaces of completely bounded and row bounded maps from \mathcal{E} to \mathcal{F} .

For an inclusion $\mathcal{N} \subseteq \mathcal{M}$ of von Neumann or C^* -algebras we denote by $\mathcal{L}^n(\mathcal{N}, \mathcal{M})$ the space of *n*-linear bounded maps $\varphi : \mathcal{N}^n \to \mathcal{M}$. The coboundary operator $\partial : \mathcal{L}^n(\mathcal{N}, \mathcal{M}) \to \mathcal{L}^{n+1}(\mathcal{N}, \mathcal{M})$ is defined by

(2.3)

$$\partial \varphi(x_1, \dots, x_{n+1}) = x_1 \varphi(x_2, \dots, x_{n+1}) + \sum_{i=1}^n (-1)^i \varphi(x_1, \dots, x_{i-1}, x_i x_{i+1}, x_{i+2}, \dots, x_{n+1}) + (-1)^{n+1} \varphi(x_1, \dots, x_n) x_{n+1}$$

for $x_i \in \mathcal{N}$. Then φ is an *n*-cocycle if $\partial \varphi = 0$, while φ is said to be an *n*-coboundary if there exists $\psi \in \mathcal{L}^{n-1}(\mathcal{N}, \mathcal{M})$ such that $\varphi = \partial \psi$. A short algebraic calculation shows that $\partial \partial = 0$ and so coboundaries are cocycles. For $n \ge 2$ the cohomology group $H^n(\mathcal{N}, \mathcal{M})$ is defined to be the space of *n*-cocycles modulo the space of *n*-coboundaries. For $n = 1, H^1(\mathcal{N}, \mathcal{M})$ is the space of derivations modulo the space of inner derivations. The coefficient space \mathcal{M} could be replaced by any Banach \mathcal{N} -bimodule in these definitions.

We will focus on von Neumann factors \mathcal{N} of type II₁ with Cartan subalgebras \mathcal{A} : the defining property is that \mathcal{A} is a maximal abelian self-adjoint subalgebra of \mathcal{N} whose normalizing unitary group $\mathcal{U} \subseteq \mathcal{N}$ generates \mathcal{N} as a von Neumann algebra. Here \mathcal{U} is the set of unitaries $u \in \mathcal{N}$ such that $u\mathcal{A}u^* = \mathcal{A}$. We will also be interested in the case when \mathcal{N} has finite Jones index $[\mathcal{M} : \mathcal{N}]$ in \mathcal{M} ([13], [22]). For such inclusions a result of Pimsner and Popa ([18]) to the effect that \mathcal{M} is finitely generated as both a left and right \mathcal{N} -module will be important. Since we will use it repeatedly, we state it here.

THEOREM 2.1. ([18]) Let $\mathcal{N} \subseteq \mathcal{M}$ be an inclusion of type II₁ factors with $[\mathcal{M} : \mathcal{N}] < \infty$. Write $[\mathcal{M} : \mathcal{N}] = n + \alpha$ (n an integer and $0 \leq \alpha < 1$), and let $E_{\mathcal{N}}$ be the trace preserving conditional expectation of \mathcal{M} onto \mathcal{N} . Then there exist $m_1, \ldots, m_{n+1} \in \mathcal{M}$ and a projection $p \in \mathcal{N}$ of trace α with the following properties:

(i) $\mathcal{M} = \mathcal{N}m_1 + \mathcal{N}m_2 + \dots + \mathcal{N}m_n + \mathcal{N}pm_{n+1};$ (ii) $E_{\mathcal{N}}(m_jm_k^*) = 0 \text{ for } j \neq k;$ (iii) $E_{\mathcal{N}}(m_jm_j^*) = 1 \text{ for } 1 \leq j \leq n;$ (iv) $E_{\mathcal{N}}(m_{n+1}m_{n+1}^*) = p;$ (v) $\|m_j\| \leq [\mathcal{M}:\mathcal{N}]^{1/2}, 1 \leq j \leq n+1;$ (vi) $\mathcal{M} = m_1^*\mathcal{N} + m_2^*\mathcal{N} + \dots + m_n^*\mathcal{N} + m_{n+1}^*p\mathcal{N}.$

Properties (i)–(v) are the original formulation but (vi) follows from (i) by taking adjoints. We will use both the left and right \mathcal{N} -module decompositions of \mathcal{M} subsequently. We note for future reference that properties (ii)–(iv) ensure that the \mathcal{N} -coefficients of an expansion of $m \in \mathcal{M}$ by (i) are unique. For example, if $x \in \mathcal{N}$ and $xm_1 = 0$ then

$$x = E_{\mathcal{N}}(xm_1m_1^*) = 0$$

using (iii) and the \mathcal{N} -linearity of $E_{\mathcal{N}}$.

3. AVERAGING MAPS

In this section we extend a result from [6] on the averaging of elements in $\operatorname{CB}(\mathcal{N}, \mathcal{N})$ to a larger class of maps $\mathcal{S} \subseteq \operatorname{RB}(\mathcal{N}, B(H))$. While we do not have a characterization of which row bounded maps lie in \mathcal{S} , we will be able to show that this set does contain all maps used subsequently, and this is sufficient for our purposes.

Let $n_1, \ldots, n_k \in \mathcal{N}$ be fixed elements satisfying $\sum_{i=1}^k n_i^* n_i \leq 1$, and define $\beta : \operatorname{RB}(\mathcal{N}, B(H)) \to \operatorname{RB}(\mathcal{N}, B(H))$ by

(3.1)
$$(\beta\varphi)(x) = \sum_{i=1}^{k} \varphi(xn_i^*)n_i$$

for $x \in \mathcal{N}$ and $\varphi \in \operatorname{RB}(\mathcal{N}, B(H))$.

LEMMA 3.1. The map β is a contraction in the row bounded norm.

Proof. Fix $\varphi \in \operatorname{RB}(\mathcal{N}, B(H))$ and let $\psi = \beta \varphi$. If $R = (x_1, \ldots, x_j) \in \operatorname{Row}_j(\mathcal{N}), ||R|| = 1$, then let $\widetilde{R} \in \operatorname{Row}_{jk}(\mathcal{N})$ be the row

$$(x_1n_1^*, \dots, x_1n_k^*, \dots, x_jn_1^*, \dots, x_jn_k^*)$$

Then

(3.2)
$$\widetilde{R}\widetilde{R}^{*} = \sum_{l=1}^{j} \sum_{i=1}^{k} x_{l} n_{i}^{*} n_{i} x_{l}^{*} \leqslant \sum_{l=1}^{j} x_{l} x_{l}^{*},$$

 \mathbf{SO}

$$\|\ddot{R}\| \leqslant \|R\| = 1$$

Now form the $jk \times j$ matrix

(3.4)
$$A = \begin{pmatrix} C & \theta & & \theta \\ \theta & C & & \vdots \\ \theta & \theta & \ddots & \theta \\ \theta & \theta & & C \end{pmatrix}$$

where θ denotes a column of k 0's and $C^* = (n_1^*, \ldots, n_k^*)$. Then $A^*A \in M_j(\mathcal{N})$ is diagonal and each diagonal entry is C^*C . Thus $||A|| \leq 1$. A short calculation shows that

(3.5)
$$\psi^{(j)}(R) = \varphi^{(jk)}(\widetilde{R})A,$$

and it follows from (3.3) that

(3.6)
$$\|\psi^{(j)}(R)\| \leq \|\varphi\|_{\mathbf{r}} \|\tilde{R}\| \|A\| \leq \|\varphi\|_{\mathbf{r}}.$$

Since R was an arbitrary row of unit norm, (3.6) shows that $\|\psi\|_{\mathbf{r}} \leq \|\varphi\|_{\mathbf{r}}$ and β is a contraction in the row bounded norm.

In [6] the existence of a projection $\rho : \operatorname{CB}(\mathcal{N}, \mathcal{N}) \to \operatorname{CB}(\mathcal{N}, \mathcal{N})_{\mathcal{N}}$ (the subspace of right \mathcal{N} -modular maps) was established for any von Neumann algebra \mathcal{N} , and moreover ρ was the point ultraweak limit of a net of maps $\rho_{\alpha} : \operatorname{CB}(\mathcal{N}, \mathcal{N}) \to \operatorname{CB}(\mathcal{N}, \mathcal{N})$ where each ρ_{α} had the form

(3.7)
$$(\rho_{\alpha}\varphi)(x) = \sum_{j=1}^{\infty} \varphi(xn_{j\alpha}^{*})n_{j\alpha}, \quad x \in \mathcal{N},$$

where $\varphi \in CB(\mathcal{N}, \mathcal{N}), n_{j\alpha} \in \mathcal{N}$, and $\sum_{j=1}^{\infty} n_{j\alpha}^* n_{j\alpha} = 1$. A simple pointwise ul-

traweak limit argument establishes Lemma 3.1 for infinite sums, and so equation (3.7) extends the definition of ρ_{α} to a contraction (in the row bounded norm) of RB($\mathcal{N}, B(H)$) to itself. While ρ and its approximating net need not be unique, we fix one such collection for the subsequent discussion. It is not clear that the net of ρ_{α} 's on the larger space of maps converges in any topology. To remedy this, we introduce an intermediate domain defined by convergence of the net not only to a limit, but to one of a particular kind. Specifically, we form the subset \mathcal{S} of

 $\operatorname{RB}(\mathcal{N}, B(H))$ defined by the following property: $\varphi \in S$ if there exists an operator $t \in B(H)$ such that

(3.8)
$$\lim (\rho_{\alpha}\varphi)(x) = tx$$

ultraweakly for $x \in \mathcal{N}$. We then let $\rho \varphi$ be the point ultraweak limit of $\rho_{\alpha} \varphi$ for $\varphi \in \mathcal{S}$. Since this domain is defined abstractly, we will have to show subsequently that it contains all maps of interest to us.

We note that $\operatorname{RB}(\mathcal{N}, B(H))$ is a $(B(H), \mathcal{N})$ -bimodule under the following left and right actions:

(3.9)
$$(t\varphi)(x) = t\varphi(x), \quad x \in \mathcal{N}, t \in B(H),$$

(3.10)
$$\varphi_y(x) = \varphi(yx), \quad x, y \in \mathcal{N},$$

for $\varphi \in \operatorname{RB}(\mathcal{N}, B(H))$.

THEOREM 3.2. For any von Neumann algebra $\mathcal{N} \subseteq B(H)$:

(i) S is a norm closed $(B(H), \mathcal{N})$ -submodule of $\overline{\mathrm{RB}}(\mathcal{N}, B(H))$ containing $\mathrm{CB}(\mathcal{N}, \mathcal{N});$ (ii) If $c \in S$ $t \in B(H)$ $u \in \mathcal{N}$ then

(3.11) (1)
$$y \in \mathcal{S}, t \in D(H), y \in \mathcal{N}$$
 then
 $\rho(t\varphi) = t(\rho\varphi), \quad \rho\varphi_y = (\rho\varphi)_y;$

(iii) ρ is a contraction in the row bounded norm;

(iv) If $\varphi \in S$ and has range in a von Neumann algebra \mathcal{M} containing \mathcal{N} then there exists $m \in \mathcal{M}$ such that, for $x \in \mathcal{N}$,

(3.12)
$$\rho\varphi(x) = mx, \quad \|m\| \leq \|\varphi\|_{\mathbf{r}}.$$

Moreover, if $\mathcal{N} \subseteq \mathcal{M} \subseteq B(H)$ is an inclusion of type II_1 factors of finite index then

(v) \mathcal{S} contains $CB(\mathcal{N}, \mathcal{M})$.

Proof. That S contains $\operatorname{CB}(\mathcal{N}, \mathcal{N})$ is the original version of this theorem ([6]). Part (iii) follows from Lemma 3.1 which establishes the contractivity of each ρ_{α} by a simple limit argument. It is then easy to see that S is a norm closed subspace of $\operatorname{RB}(\mathcal{N}, B(H))$.

From (3.7), each ρ_{α} commutes with the left and right module actions of B(H) and \mathcal{N} respectively, and thus so does ρ . The remaining parts of (i) and (ii) are then immediate.

If $\varphi \in S$ has range in $\mathcal{M} \supseteq \mathcal{N}$ then the same is true for each $\rho_{\alpha}\varphi$, by (3.7), and also for $\rho\varphi$ by taking ultraweak limits. Putting x = 1 in (3.8) establishes (3.12).

Now suppose that $\mathcal{N} \subseteq \mathcal{M} \subseteq B(H)$ is an inclusion of type II₁ factors with $[\mathcal{M} : \mathcal{N}] < \infty$. By Theorem 2.1 we may write

(3.13)
$$\mathcal{M} = m_1^* \mathcal{N} + \dots + m_n^* \mathcal{N} + m_{n+1}^* p \mathcal{N}.$$

If $\varphi \in CB(\mathcal{N}, \mathcal{M})$ then define $\varphi_i \in CB(\mathcal{N}, \mathcal{N}), 1 \leq i \leq n+1$, by

(3.14)
$$\varphi_i(x) = E_{\mathcal{N}}(m_i\varphi(x)), \quad x \in \mathcal{N}.$$

Fix $x \in \mathcal{N}$. By (3.13) there exist $y_1, \ldots, y_{n+1} \in \mathcal{N}$ such that

(3.15)
$$\varphi(x) = m_1^* y_1 + \dots + m_n^* y_n + m_{n+1}^* p y_{n+1}.$$

Multiply (3.15) by m_i and apply E_N to obtain

- $E_{\mathcal{N}}(m_i\varphi(x)) = y_i, \quad 1 \leq i \leq n,$ (3.16)
- $E_{\mathcal{N}}(m_{n+1}\varphi(x)) = py_{n+1}.$ (3.17)

It follows from (3.14)–(3.17) that

(3.18)
$$\varphi(x) = m_1^* \varphi_1(x) + \dots + m_{n+1}^* \varphi_{n+1}(x), \quad x \in \mathcal{N}.$$

By the module properties of (i), we see that $\varphi \in \mathcal{S}$, completing the proof.

The notion of finite index inclusions of type II_1 factors can be extended to general inclusions in the following way ([22]). An inclusion $\mathcal{N} \subseteq \mathcal{M}$ of von Neumann algebras is said to be of finite index if there exists a conditional expectation $E: \mathcal{M} \to \mathcal{N}$ and a constant c > 0 such that $E(x) \ge cx$ for all $x \in \mathcal{M}^+$. As noted in 1.1.2 of [22], such a conditional expectation is automatically normal. In this more general situation we may obtain a projection of $CB(\mathcal{N}, \mathcal{M})$ onto the space $CB(\mathcal{N}, \mathcal{M})_{\mathcal{N}}$ of completely bounded right \mathcal{N} -module maps.

THEOREM 3.3. Let $\mathcal{N} \subseteq \mathcal{M}$ be a finite index inclusion of von Neumann algebras. Then there exists a contractive projection $\rho : CB(\mathcal{N}, \mathcal{M}) \to CB(\mathcal{N}, \mathcal{M})_{\mathcal{N}}$ which is the point ultraweak limit of maps ρ_{α} of the form (3.7). Moreover, ρ satisfies

(3.19)
$$\rho(m\varphi) = m(\rho\varphi), \quad \rho\varphi_y = (\rho\varphi)_y$$

for $\varphi \in CB(\mathcal{N}, \mathcal{M}), m \in \mathcal{M} and y \in \mathcal{N}$.

Proof. By [5], there is a projection ρ : $CB(\mathcal{N}, \mathcal{N}) \to CB(\mathcal{N}, \mathcal{N})_{\mathcal{N}}$ which is the point ultraweak limit of maps ρ_{α} of the form (3.7). Each ρ_{α} has an obvious extension to a map of $CB(\mathcal{N}, \mathcal{M})$ to itself, which we also denote by ρ_{α} . By compactness, we may drop to a subnet and assume that $\lim(\rho_{\alpha}\varphi)(x)$ exists ultraweakly (in \mathcal{M}) for $\varphi \in CB(\mathcal{N}, \mathcal{M})$ and $x \in \mathcal{N}$. This limit then defines a contraction $\rho: \operatorname{CB}(\mathcal{N}, \mathcal{M}) \to \operatorname{CB}(\mathcal{N}, \mathcal{M})$, extending the one originally defined on $CB(\mathcal{N},\mathcal{N})$. The relations (3.19) are immediate from the definition of the ρ_{α} 's, after taking point ultraweak limits. Each ρ_{α} leaves fixed every right \mathcal{N} -module map and the same is then true of ρ . It thus suffices to show that the range of ρ is $CB(\mathcal{N},\mathcal{M})_{\mathcal{N}}$. By hypothesis there is a constant c > 0 and a normal conditional expectation $E: \mathcal{M} \to \mathcal{N}$ such that $E(x) \ge cx$ for $x \in \mathcal{M}^+$. We note that E is \mathcal{N} -bimodular. For $\varphi \in \operatorname{CB}(\mathcal{N}, \mathcal{M})$ and $x \in \mathcal{N}$, it follows that

$$\rho_{\alpha}(E\varphi)(x) = \sum_{j=1}^{\infty} (E\varphi)(xn_{j\alpha}^{*})n_{j\alpha} = \sum_{j=1}^{\infty} E(\varphi(xn_{j\alpha}^{*}))n_{j\alpha}$$
$$= E\left(\sum_{j=1}^{\infty} \varphi(xn_{j\alpha}^{*})n_{j\alpha}\right) = E((\rho_{\alpha}\varphi)(x)),$$

and taking the limit over α (once again using normality of E) gives (3.20)

 $\rho(E\varphi) = E(\rho\varphi).$

Now fix $\varphi \in CB(\mathcal{N}, \mathcal{M}), n \in \mathcal{N}$, and a projection $e \in \mathcal{N}$, and define b = $(\rho\varphi)(n(1-e))e$. Then define $\psi \in CB(\mathcal{N}, \mathcal{M})$ by

(3.21) $\psi(x) = b^* \varphi(x), \quad x \in \mathcal{N}.$

Since $E\psi \in CB(\mathcal{N}, \mathcal{M})$, $\rho(E\psi)$ is a right \mathcal{N} -module map, and so also is $E(\rho\psi)$ by (3.20). Hence

(3.22)
$$E(b^*\rho\varphi(x(1-e))e) = (E\rho)(b^*\varphi)(x(1-e))e = (E\rho\psi)(x(1-e))e = (E\rho\psi)(x(1-e))e = 0,$$

for $x \in \mathcal{N}$. Putting x = n in (3.22) gives $E(b^*b) = 0$, and so we conclude that b = 0 from the inequalities

$$0 \leqslant b^*b \leqslant c^{-1}E(b^*b) = 0$$

Since n and e were arbitrary, it follows that $(\rho\varphi)(x(1-e))e = 0$ for $x \in \mathcal{N}$ and any projection $e \in \mathcal{N}$. Thus

(3.23)
$$(\rho\varphi)(x)e - \rho\varphi(xe) = \rho\varphi(xe + x(1-e))e - \rho\varphi(xe) = \rho\varphi(xe)e - \rho\varphi(xe) = -\rho\varphi(xe)(1-e) = 0.$$

because 1 - e is also a projection in \mathcal{N} . Since \mathcal{N} is the norm closed span of its projections, right \mathcal{N} -modularity of $\rho\varphi$ follows from (3.23).

The next result provides a method of estimating norms in matrix algebras over a von Neumann algebra.

THEOREM 3.4. Let $\mathcal{N} \subseteq \mathcal{M}$ be an inclusion of type II₁ factors of finite index, and suppose that \mathcal{N} has a Cartan subalgebra \mathcal{A} . Then there exists a constant $c \ (= 2[\mathcal{M} : \mathcal{N}]^2)$ such that, for $X \in M_k(\mathcal{M}), \ k \ge 1$,

 $||X|| \leq c \sup\{||RX|| : R \in \operatorname{Row}_k(\mathcal{A}), ||R|| \leq 1\}.$

Proof. Fix $X \in M_k(\mathcal{M})$, ||X|| = 1. By Theorem 2.1 there exist matrices $Y_i \in M_k(\mathcal{N})$ such that

(3.24)
$$X = Y_1 W_1 + \dots + Y_n W_n + Y_{n+1} P W_{n+1}$$

where W_i is the $k \times k$ diagonal matrix with m_i on the diagonal and P is the $k \times k$ diagonal matrix with p on the diagonal. By the triangle inequality, we may assume without loss of generality that $||Y_1W_1|| \ge 1/(n+1)$ (the case $||Y_{n+1}PW_{n+1}|| \ge 1/(n+1)$ is similar). Since $||m_1|| \le [\mathcal{M}:\mathcal{N}]^{1/2}$, it follows that

$$||Y_1|| \ge [\mathcal{M} : \mathcal{N}]^{-1/2} (n+1)^{-1}.$$

Given $\varepsilon > 0$ we may find, by [27], Proposition 4.1, $R \in \operatorname{Row}_k(\mathcal{A})$, ||R|| = 1, such that

(3.25) $||RY_1|| \ge (1-\varepsilon)||Y_1||.$ Then multiply (3.24) on the left by R, on the right by W_1^* , and apply

$$E_{\mathcal{N}\otimes M_k} = E_{\mathcal{N}} \otimes I_k$$

to obtain

(3.26) $RY_1 = E_{\mathcal{N} \otimes M_k} (RXW_1^*).$ Since $E_{\mathcal{N} \otimes M_k}$ is completely positive and unital, it follows that (3.27) $\|RY_1\| \leq \|RXW_1^*\| \leq \|RX\| \|W_1^*\| = \|RX\| \|m_1\| \leq \|RX\| [\mathcal{M}:\mathcal{N}]^{1/2}.$ The previous estimates then combine to give

(3.28)
$$\|RX\| \ge [\mathcal{M}:\mathcal{N}]^{-1/2} \|RY_1\| \ge [\mathcal{M}:\mathcal{N}]^{-1/2} (1-\varepsilon) \|Y_1\| \\ \ge (1-\varepsilon) [\mathcal{M}:\mathcal{N}]^{-1} (n+1)^{-1}.$$

Since $\varepsilon > 0$ was arbitrary, and $n + 1 \leq 2[\mathcal{M} : \mathcal{N}]$, the result follows from (3.28), where c may be taken to be $2[\mathcal{M} : \mathcal{N}]^2$.

The next result appears to be very specialized, but will be needed in the next section.

COROLLARY 3.5. Let $\mathcal{N} \subseteq \mathcal{M}$ be an inclusion of type II₁ factors with finite index, where \mathcal{N} has a Cartan subalgebra \mathcal{A} . Let $\mu: \mathcal{N} \to \mathcal{M}$ be row bounded and suppose that there is a *-automorphism α of \mathcal{A} such that

(3.29)
$$a\mu(x) = \mu(\alpha(a)x), \quad a \in \mathcal{A}, x \in \mathcal{N}.$$

Then μ is completely bounded and

(3.30)
$$\|\mu\|_{cb} \leq (2[\mathcal{M}:\mathcal{N}]^2)\|\mu\|_{r}.$$

Proof. Fix $k \ge 1$, and consider $X \in M_k(\mathcal{N})$, ||X|| = 1. The automorphism $\alpha^{(k)}$ of $M_k(\mathcal{A})$ maps $\operatorname{Row}_k(\mathcal{A})$ isometrically onto itself, and thus, by Theorem 3.4,

$$\|\mu^{(k)}(X)\| \leq 2[\mathcal{M}:\mathcal{N}]^2 \sup\{\|R\mu^{(k)}(X)\|: R \in \operatorname{Row}_k(\mathcal{A}), \|R\| = 1\}$$

(3.31)
$$= 2[\mathcal{M} : \mathcal{N}]^2 \sup\{\|\mu^{(k)}(\alpha^{(k)}(R)X)\| : R \in \operatorname{Row}_k(\mathcal{A}), \|R\| = 1\} \\ \leqslant 2[\mathcal{M} : \mathcal{N}]^2 \|\mu\|_{\mathrm{r}},$$

since the second supremum is calculated by applying μ to rows. Since $k \ge 1$ was arbitrary, we have established (3.30).

4. THE MAIN RESULTS

For the first result we will assume that $\mathcal{N} \subseteq \mathcal{M}$ is an inclusion of type II₁ factors of finite index represented on the Hilbert space $L^2(\mathcal{M}, \operatorname{tr})$ which we assume to be separable (or equivalently, \mathcal{N} has separable predual). We also assume that \mathcal{N} has a Cartan subalgebra \mathcal{A} , whereupon we can find a hyperfinite factor \mathcal{R} such that $\mathcal{A} \subseteq \mathcal{R} \subseteq \mathcal{N}$ and $\mathcal{R}' \cap \mathcal{N} = \mathbb{C}1$ ([20]). Christensen ([1]) has shown that $H^1(\mathcal{N}, \mathcal{M}) = 0$ for any inclusion $\mathcal{N} \subseteq \mathcal{M}$ of finite von Neumann algebras. Thus our examination of $H^n(\mathcal{N}, \mathcal{M})$ can be restricted to $n \geq 2$.

THEOREM 4.1. Let $\mathcal{N} \subseteq \mathcal{M}$ be an inclusion of type II₁ factors of finite index on a separable Hilbert space and suppose that \mathcal{N} has a Cartan subalgebra \mathcal{A} . Then $H^n(\mathcal{N}, \mathcal{M}) = 0$ for $n \ge 2$.

Proof. Let $\mathcal{U} \subseteq \mathcal{N}$ be the group of normalizing unitaries for \mathcal{A} . Then $\operatorname{Alg}(\mathcal{U}) = \operatorname{Span}(\mathcal{U})$, and the norm closure of $\operatorname{Alg}(\mathcal{U})$ is a C^* -algebra denoted by $C^*(\mathcal{U})$. Now fix $n \ge 2$. As in the proof of Theorem 5.1, [27], it suffices to consider an \mathcal{R} -multimodular separately normal cocycle $\theta : \mathcal{N}^n \to \mathcal{M}$ and show that its restriction to $C^*(\mathcal{U})$ is a coboundary.

Fix $u_1, \ldots, u_{n-1} \in \mathcal{U}$, and define $\mu : \mathcal{N} \to \mathcal{M}$ by

(4.1)
$$\mu(x) = \theta(u_1, \dots, u_{n-1}, x), \quad x \in \mathcal{N}.$$

We first show that μ is completely bounded. Since μ is normal and right \mathcal{R} -modular, it follows from [27], Proposition 4.2, that μ is row bounded and

(4.2)
$$\|\mu\| \leq \|\mu\|_{\mathbf{r}} \leq \sqrt{2}\|\mu\|.$$

Let β_i be the *-automorphism of \mathcal{A} defined by

(4.3)
$$\beta_i(x) = u_i^* x u_i, \quad x \in \mathcal{A}, \ 1 \leq i \leq n-1,$$

and define

(4.4)
$$\alpha_j = \beta_j \beta_{j-1} \cdots \beta_2 \beta_1 \in \operatorname{Aut}(\mathcal{A}), \quad 1 \leq j \leq n-1.$$

The \mathcal{A} -modularity of θ implies that

(4.5)
$$a\mu(x) = a\theta(u_1, \dots, u_{n-1}, x) = \theta(au_1, \dots, u_{n-1}, x) \\ = \theta(u_1\beta_1(a), u_2, \dots, u_{n-1}, x) = \theta(u_1, \beta_1(a)u_2, \dots, u_{n-1}, x),$$

and repetition of this argument in (4.5) leads to

(4.6)
$$a\mu(x) = \mu(\alpha_{n-1}(a)x), \quad x \in \mathcal{N}, \ a \in \mathcal{A}.$$

It then follows from (4.6) and Corollary 3.5 that μ is completely bounded and

(4.7)
$$\|\mu\|_{cb} \leqslant (2[\mathcal{M}:\mathcal{N}]^2)\|\mu\|_{r} \leqslant (2\sqrt{2}[\mathcal{M}:\mathcal{N}]^2)\|\mu\|$$

These inequalities are a consequence of (3.30) and (4.2). Thus $\mu \in \mathcal{S}$ (see Theorem 3.2).

By linearity, all maps of the form

(4.8)
$$x \mapsto \theta(y_1, \dots, y_{n-1}, x)$$

for $y_i \in \operatorname{Alg}(\mathcal{U})$ lie in \mathcal{S} , and the same is true for $y_i \in C^*(\mathcal{U})$ since \mathcal{S} is $\|\cdot\|_r$ -closed and $\|\cdot\|$ and $\|\cdot\|_r$ are equivalent on these maps. The modular properties of \mathcal{S} show that every map (with x as the variable) in the cocycle equation

(4.9)
$$y_1\theta(y_2,\ldots,y_n,x) + \sum_{i=1}^{n-1} (-1)^i \theta(y_1,\ldots,y_{i-1},y_iy_{i+1},y_{i+2},\ldots,y_n,x) + (-1)^n \theta(y_1,\ldots,y_{n-1},y_nx) + (-1)^{n+1} \theta(y_1,\ldots,y_n)x = 0,$$

for $y_i \in C^*(\mathcal{U})$, lies in \mathcal{S} and so ρ may be applied to (4.9). By Theorem 3.2, there exists an element $\psi(y_1, \ldots, y_{n-1}) \in \mathcal{M}$ such that

(4.10)
$$\rho(\theta(y_1, \dots, y_{n-1}, x)) = \psi(y_1, \dots, y_{n-1})x, \quad x \in \mathcal{N}$$

and the estimate

(4.11)
$$\|\psi(y_1,\ldots,y_{n-1})\| \leqslant \sqrt{2} \|y_1\|\cdots\|y_{n-1}\|$$

is immediate from (3.12) and (4.2). The (n-1)-linearity of ψ results from the *n*-linearity of θ and the linearity of ρ . Using Theorem 3.2 once more, ρ transforms (4.9) to

(4.12)
$$y_1\psi(y_2,\ldots,y_{n-1})x + \sum_{i=1}^{n-1} (-1)^i \psi(y_1,\ldots,y_{i-1},y_iy_{i+1},\ldots,y_n)x + (-1)^n \psi(y_1,\ldots,y_{n-1})y_nx + (-1)^{n+1}\theta(y_1,\ldots,y_n)x = 0,$$

for $y_i \in C^*(\mathcal{U}), x \in \mathcal{N}$. Setting x = 1 in (4.12) shows that the restriction of θ to $C^*(\mathcal{U})$ is the coboundary $\partial((-1)^n \psi)$, completing the proof.

We recall from [25] that the completely bounded cohomology groups $H^n_{\rm cb}(\mathcal{N},\mathcal{M})$ are defined just as are $H^n(\mathcal{N},\mathcal{M})$, but with the added requirement that all multilinear maps be completely bounded.

Theorem 4.2. Let $\mathcal{N} \subseteq \mathcal{M}$ be a finite index inclusion of von Neumann algebras. Then $H^n_{cb}(\mathcal{N}, \mathcal{M}) = 0$ for $n \ge 1$.

Proof. This is identical to the last step in the preceding proof, using the projection ρ of Theorem 3.3.

Partially supported by a grant from the National Science Foundation.

REFERENCES

- 1. E. CHRISTENSEN, Extension of derivations, J. Funct. Anal. 27(1978), 234-247.
- 2. E. CHRISTENSEN, E.G. EFFROS, A.M. SINCLAIR, Completely bounded multilinear maps and C^{*}-algebraic cohomology, *Invent. Math.* **90**(1987), 279–296. 3. E. CHRISTENSEN, F. POP, A.M. SINCLAIR, R.R. SMITH, On the cohomology groups
- of certain finite von Neumann algebras, Math. Ann. 307(1997), 71-92.
- 4. E. CHRISTENSEN, A.M. SINCLAIR, Representations of completely bounded multilinear operators, J. Funct. Anal. 72(1987), 151-181.
- 5. E. CHRISTENSEN, A.M. SINCLAIR, Module mappings into von Neumann algebras and injectivity, Proc. London Math. Soc. 71(1995), 618-640.
- 6. E. CHRISTENSEN, A.M. SINCLAIR, A cohomological characterization of approximately finite-dimensional von Neumann algebras, in Operator algebras and quantum field theory, (Rome, 1996), Internat. Press, Cambridge 1997, pp. 323-328.
- 7. E. CHRISTENSEN, A.M. SINCLAIR, On the Hochschild cohomology for von Neumann algebras, preprint.
- 8. A. CONNES, On the cohomology of operator algebras, J. Funct. Anal. 28(1978), 248 - 253.
- 9. J. FELDMAN, C.C. MOORE, Ergodic equivalence relations, cohomology and von Neumann algebras, Trans. Amer. Math. Soc. 234(1977), 289-361.
- 10. B.E. JOHNSON, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127(1972), 1 - 96.
- 11. B.E. JOHNSON, A class of II_1 factors without property P but with zero second cohomology, Ark. Math. 12(1974), 153-159.
- 12. B.E. JOHNSON, R.V. KADISON, J.R. RINGROSE, Cohomology of operator algebras. III: Reduction to normal cohomology, Bull. Soc. Math. France 100(1972), 73 - 96.
- 13. V.F.R. JONES, Subfactors and knots, CBMS Regional Conf. Ser. Math., vol. 80, Amer. Math. Soc., Providence, RI, 1991.
- 14. R.V. KADISON, Derivations of operator algebras, Ann. Math. 83(1966), 280-293.
- 15. R.V. KADISON, J.R. RINGROSE, Cohomology of operator algebras. I: Type I von Neumann algebras, Acta Math. 126(1971), 227-243.
- 16. R.V. KADISON, J.R. RINGROSE, Cohomology of operator algebras. II: Extended cobounding and the hyperfinite case, Ark. Math. 9(1971), 55–63.
- 17. E. KIRCHBERG, The derivation problem and the similarity problem are equivalent, J. Operator Theory 36(1996), 59-62.
- 18. M. PIMSNER, S. POPA, Entropy and index for subfactors, Ann. Sci. École Norm. Sup. 19(1986), 57–106.

- 19. F. POP, R.R. SMITH, Cohomology for certain finite factors, *Bull. London Math. Soc.* **26**(1994), 303–308.
- S. POPA, On a problem of R.V. Kadison on maximal abelian *-subalgebras in factors, Invent. Math. 65(1981), 269–281.
- 21. S. POPA, Notes on Cartan subalgebras in type II₁ factors, *Math. Scand.* **57**(1985), 171–188.
- 22. S. POPA, Classification of subfactors and their endomorphisms, CBMS Regional Conf. Ser. Math., vol. 86, Amer. Math. Soc., Providence, RI, 1996.
- J.R. RINGROSE, Cohomology of operator algebras, Lecture Notes in Math. vol. 247, Springer-Verlag, Berlin 1972, pp. 355–433.
- 24. S. SAKAI, Derivations of W^{*}-algebras, Ann. Math. 83(1966), 273–279.
- A.M. SINCLAIR, R.R. SMITH, Hochschild cohomology of von Neumann algebras, London Math. Soc. Lecture Note Ser., vol. 203, Cambridge University Press, Cambridge 1995.
- A.M. SINCLAIR, R.R. SMITH, Hochschild cohomology for von Neumann algebras with Cartan subalgebras, Amer. J. Math. 120(1998), 1043–1057.
- A.M. SINCLAIR, R.R. SMITH, The Hochschild cohomology problem for von Neumann algebras, Proc. Nat. Acad. Sci. U.S.A. 95(1998), 3376–3379.
- D. VOICULESCU, The analogues of entropy and of Fisher's information measure in free probability theory. III: The absence of Cartan subalgebras, *Geom. Funct. Anal.* 6(1996), 172–199.

ALLAN M. SINCLAIR Department of Mathematics University of Edinburgh Edinburgh EH9 3JZ SCOTLAND ROGER R. SMITH Department of Mathematics Texas A&M University College Station, TX 77843 USA

E-mail: allan@maths.ed.ac.uk

E-mail: rsmith@math.tamu.edu

Received July 1, 1998.