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Abstract. In this paper we investigate the extremal richness of the multi-
plier algebraM(A) and the corona algebraM(A)/A, for a simple C∗-algebra
A with real rank zero and stable rank one. We show that the space of ex-
tremal quasitraces and the scale of A contain enough information to deter-
mine whetherM(A)/A is extremally rich. In detail, if the scale is finite, then
M(A)/A is extremally rich. In important cases, and if the scale is not finite,
extremal richness is characterized by a restrictive condition: the existence of
only one infinite extremal quasitrace which is isolated in a convex sense.
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INTRODUCTION

The class of C∗-algebras with extremal richness was introduced by Brown and
Pedersen in [9], with the objective of extending the theory and results of finite
C∗-algebras to the infinite case. Examples of extremally rich C∗-algebras include
stable rank one algebras, von Neumann algebras and purely infinite simple C∗-
algebras. Moreover, this class is invariant under the passage to hereditary sub-
algebras and under natural constructions such as tensoring with Mn(C) for all
n ∈ N.

Extremally rich C∗-algebras have significant similarities in their properties
with the class of stable rank one C∗-algebras. For example, the presence of ex-
tremal richness gives bounds on the real ranks of the algebras considered. As is
proved in [21], if A is extremally rich, then RR(A) 6 1. Also, extremally rich
C∗-algebras with real rank zero are shown to satisfy the weak cancellation prop-
erty of separativity (see [6]), that is, the monoid V (A) of Murray-von Neumann
equivalence classes of projections is separative, which means by definition that
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whenever a + a = a + b = b + b in V (A) it follows that a = b (see [4]). Simple
and separative C∗-algebras with real rank zero are either purely infinite simple
or they have stable rank one ([4], Theorem 7.6). The same behaviour is observed
for simple C∗-algebras with extremal richness ([8], Corollary 10.5). This is there-
fore closely related to the long standing Open Question: Is every finite simple
C∗-algebra stably finite?

Our aim in this paper is to analyze extremal richness of multiplier and corona
algebras for a large class of (nonunital) C∗-algebras. We will work within the class
of simple separable C∗-algebras with real rank zero and stable rank one. We also
assume that V (A) is strictly unperforated. This class has been studied in different
instances: for example, see [18], [14], [22]; it contains AF algebras, and also many
examples which are not AF ([11], [18], [13]). Some of our results will use the
additional hypothesis that the multiplier algebra has real rank zero. As shown by
Lin in [19], Theorem 10, this occurs if K1(A) = 0.

Let A be a nonunital C∗-algebra lying in the above mentioned class, and
such that the real rank of M(A) is zero. We will give a complete answer to the
following problem: What conditions determine whether M(A) or M(A)/A have
extremal richness? For the class of σ-unital, purely infinite simple C∗-algebras, for
some stabilizations of simple unital AF algebras, and for simple AF algebras with
a finite number of semi-finite extremal traces, this question has been successfully
considered in [15].

Our approach to the problem is based on combining the analysis of extensions
with nonstable K-theoretic methods. This involves the knowledge of properties of
V (M(A)) and their relation with the ideal lattice of M(A). We will benefit from
results concerning this issue, that appear mainly in [26], [17], [14], [22]. Thus, the
first section is devoted to summarizing the basics on monoids and their connexion
with C∗-algebras that will be used in the sequel. The main objective of Section 2
is to prove the following: if A has finite scale then M(A)/A is extremally rich,
whereas if the scale is infinite, then M(A)/A does not have extremal richness
provided that A has at least two infinite extremal quasitraces. We also discuss
basic properties of extremal richness and some results that will be needed in the
last section.

The case in which A has exactly one infinite extremal quasitrace is handled in
Section 3. In this particular situation, the study of extremal richness of M(A)/A
requires a deeper analysis, based on the problem of lifting isometries, for which the
index map turns out to be a useful tool. We close by proving that in our situation
M(A) is never extremally rich. It will be clear from this and [22], Lemma 7.2 that
the class of separative C∗-algebras properly contains the class of C∗-algebras with
extremal richness.
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1. NOTATION AND PRELIMINARIES

In this section we recall some basic definitions on monoids and C∗-algebras that
will be used in the subsequent sections. We emphasize the relation between the
order-ideals of the monoid and the closed ideals of a C∗-algebra.

All monoids in this paper will be abelian, and consequently we will write
them additively and we will use 0 for their identity element. The operation on a
monoid M defines a natural preordering by:

x 6 y ⇔ y = x + z for some z ∈ M,

which is translation-invariant. This preordering is sometimes called the algebraic
preordering. As usual, we write x < y if x 6 y and x 6= y.

If M is a monoid, a nonzero element u ∈ M is called an order-unit if for any
x ∈ M , there exists n ∈ N such that x 6 nu. We say that M is conical provided
that the set M∗ of nonzero elements is closed under addition. For a C∗-algebra
A, we denote by V (A) the monoid of Murray-von Neumann equivalence classes of
projections from M∞(A). (Equivalently, if A is unital V (A) can be described as the
additive monoid of isomorphism classes of finitely generated projective modules
over A.) Note that V (A) is always conical, and that [1A] is an order-unit for V (A)
if A is unital.

A nonempty subset of a monoid which is a submonoid and order-hereditary
will be called an order-ideal. We say that a monoid M is simple if M has precisely
two order-ideals, namely the ideal generated by 0 and M . In case M is conical,
then M is simple if and only if M is nonzero and every nonzero element is an
order-unit. This is the case for V (A), where A is a simple C∗-algebra.

Let M be a monoid and let I be an order-ideal of M . Define a congruence
relation on M as follows: if x, y ∈ M write x ∼ y if and only if there exist z, w ∈ I
such that x+z = y+w. Denote by M/I the quotient of M modulo this congruence,
and by [x] the congruence class of an element x ∈ M . The addition [x]+[y] = [x+y]
is then a well-defined operation under which M/I becomes a monoid, referred as
to the quotient monoid of M modulo I. If A is a C∗-algebra and I is a closed ideal
of A, then V (I) is naturally an order-ideal of V (A). Moreover, if A has real rank
zero, then the quotient V (A)/V (I) is isomorphic to V (A/I) ([4], Proposition 1.4).

We say that a cancellative monoid M is strictly unperforated if whenever
nx < ny for some n ∈ N and x, y ∈ M , it follows that x < y. It is remarkable that
no examples are known of simple C∗-algebras A with real rank zero and stable
rank one whose V (A)’s are not strictly unperforated, and therefore this technical
condition is quite natural. (If the real rank zero condition is dropped, then there
are examples with perforation on V (A), as shown in [23].)

Let K be a compact convex set. We denote by LAff(K) the monoid of all
affine and lower semicontinuous functions on K with values on R ∪ {∞}, and we
shall use Aff(K) to denote the submonoid of elements in LAff(K) that are contin-
uous. Let LAffσ(K) be the submonoid of LAff(K) whose elements are pointwise
suprema of increasing sequences of elements from Aff(K). The use of the super-
script ++ will always refer to strictly positive functions.
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2. EXTREMAL RICHNESS OF MULTIPLIER AND CORONA ALGEBRAS

In this section we introduce the class of extremally rich C∗-algebras, giving some
equivalent definitions, and discussing related matters about extensions that can
be found in [9] and [15]. We present at the end a first result that analyzes the
extremal richness of the multiplier and corona algebras, for a wide class of simple
C∗-algebras with real rank zero and stable rank one. To establish this fact, we
need some results concerning the ideal structure of these rings, that appear in [22],
and thus they will be stated as required.

If A is a unital C∗-algebra, we use E(A) to denote the set of extreme points
of its closed unit ball A1, and we refer to this set as the set of extreme points of
the algebra. Recall that the elements of E(A) are precisely those partial isometries
v ∈ A satisfying (1−vv∗)A(1−v∗v) = 0 (see, for example, [20], Proposition 1.4.7).
Notice that if A is prime, then the extreme points are precisely the isometries and
co-isometries of the algebra. An element x ∈ A is said to be quasi-invertible if
x ∈ A−1E(A)A−1, and the set of quasi-invertible elements is denoted by A−1

q .

Definition 2.1. ([9], Section 3) We say that a (unital) C∗-algebra A is
extremally rich if the set A−1

q of quasi-invertible elements is dense in A. As usual, a
nonunital C∗-algebra A is extremally rich if its minimal unitization Ã is extremally
rich.

An equivalent notion may be found in [9], Section 3 (see also [8], Section 6):
A unital C∗-algebra A is extremally rich if and only if A1 = conv(E(A)). At this
point, it is convenient to notice that in any unital C∗-algebra A, the closure of the
convex hull of the unitaries of A (which are extreme points) equals A1 (see, e.g.
[20], Proposition 1.1.12). We denote by U(A) the group of unitaries of a (unital)
C∗-algebra A.

Remark 2.2. Let A be a C∗-algebra. Then:
(i) ([6], Section 1) A has stable rank one if and only if A is extremally rich

and E(Ã) = U(Ã).
(ii) ([6], [8], Corollary 10.5 and [15], Lemma 3.3) If A is simple, then A is

extremally rich if and only if A is either purely infinite or it has stable rank one.

A consequence of Remark 2.2 and [4], Theorem 7.6 is that if A is a simple
C∗-algebra with real rank zero, then A has extremal richness if and only if it is
separative. This contrasts with the fact that, as we will see, the class of C∗-algebras
with extremal richness is strictly contained in the class of separative C∗-algebras.

As in the case of C∗-algebras with real rank zero (see [7], Theorem 3.14 and
[27], Section 3.2), the behaviour of extremal richness under extensions depends
not only on the extremal richness of the ideal and the quotient algebra, but also
on a lifting condition on the extreme points. We now record some results in this
direction:

Theorem 2.3. ([9], Theorem 6.1) Let J be a closed ideal in a unital C∗-
algebra A. Then A is extremally rich if and only if J and A/J are extremally
rich, the extreme points of A/J lift to those of A and E(A) + J ⊂ (A−1

q )−.
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Corollary 2.4. ([9], Corollary 6.3) Let A be a C∗-algebra and let J be a
closed ideal of A with stable rank one. Then A is extremally rich if and only if
A/J is extremally rich and the extreme points of A/J lift to those of A.

Theorem 2.5. ([15], Theorem 3.6) Let A be a C∗-algebra, and let J be an
essential closed ideal of A which is purely infinite simple. Then A is extremally
rich if and only if A/J is extremally rich and E(A/J) consists of isometries and
co-isometries.

Let M and N be monoids with respective order-units u and v. A monoid
morphism (that is, an additive map) f : M → N is said to be normalized provided
that f(u) = v. Recall that a state on a monoid M with order-unit u ∈ M is a
normalized monoid morphism s : (M,u) → (R+, 1). We denote the set of states
on (M,u) by St(M,u) or by Su when no confusion may arise. We also denote
by φu : M → Aff(Su) the natural map, given by evaluation on the states of M .
Observe that St(M,u) = St(G(M), u), where G(M) is the Grothendieck group of
M , and hence it is a compact convex set.

In order to analyze the extremal richness of the multiplier and corona algebra
of a simple C∗-algebra A with real rank zero and stable rank one, the ideal struc-
ture of M(A) will play a crucial role. Let A be a σ-unital simple C∗-algebra with
real rank zero and stable rank one. Fix u ∈ V (A)∗, and set d = supφu(D(A)).
We define:

W d
σ (Su) = {f ∈ LAff(Su)++ : f + g = nd for some g ∈ LAff(Su)++ and n ∈ N}.

Consider the set V (A) tW d
σ (Su), where t stands for disjoint union of sets. We

equip this set with a monoid structure that extends the natural given addition
operations of both V (A) and W d

σ (Su), and by setting x + f = φu(x) + f , for x ∈
V (A) and f ∈ W d

σ (Su). It is not difficult to see that this is a well defined operation.
In [22], Theorem 3.9, the following important relation between V (M(A)) and V (A)
was established:

Theorem 2.6. Let A be a σ-unital nonunital C∗-algebra. Suppose that A is
simple, with real rank zero, stable rank one and that V (A) is strictly unperforated.
Assume that A is nonelementary. Fix a nonzero element u ∈ V (A). Set D(A) =
{[p] ∈ V (A) : p is a projection in A}, and d = supφu(D(A)). Then there is a
normalized monoid isomorphism

ϕ : V (M(A)) → V (A) tW d
σ (Su),

such that ϕ([p]) = [p] if p ∈ A, and ϕ([p]) = sup{φu([q]) : [q] ∈ V (A) and q . p} if
p ∈M(A) \A.

We will make an extensive use of this result in the next section; for now we
content ourselves with two applications. For a compact convex set K, denote by
∂eK the set of its extreme points. Combined with [26], Theorem 2.3, Theorem 2.6
gives an effective method to study the ideal structure of multiplier and corona
algebras of C∗-algebras in the class we are considering. In detail, the map I 7→
ϕ(V (I)) provides a lattice isomorphism between the lattice of closed ideals of
M(A) and the lattice of order-ideals of V (A)tW d

σ (Su). In this context, we define
the finite ideal of M(A) as the unique closed ideal Ifin(A) of M(A) such that
ϕ(V (Ifin(A))) = V (A) t {f ∈ W d

σ (Su) : f |∂eSu is finite}.
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Let A be a simple C∗-algebra with real rank zero, and let u ∈ V (A)∗. We
say that A has finite scale provided that the (lower semicontinuous) affine function
d := sup φu(D(A)) is finite when restricted to ∂eSu (see [22], Definition 4.5). It
should be noted that this notion does not depend on the choice of the nonzero
element u ∈ V (A)∗, and that it differs from the definition of finite scale given in
[16], in that the condition on d is required only for the extreme boundary of the
state space. In our setting, C∗-algebras with finite scale are characterized by the
following nice property:

Theorem 2.7. (cf. [22], Theorem 4.7) Let A be a nonunital simple and
separable C∗-algebra with real rank zero and stable rank one. Assume that A is
nonelementary, that V (A) is strictly unperforated and that M(A) has real rank
zero. Then A has finite scale if and only if, for every closed ideal I of M(A)
properly containing A, we have that sr(M(A)/I) = 1.

Definition 2.8. ([22], Definition 5.1) Let A be a C∗-algebra. A 1-quasitrace
on A is a map τ : A+ → [0,∞] such that τ(αx) = ατ(x) if x ∈ A+ and α ∈ R+,
such that τ(x+y) = τ(x)+τ(y), whenever x and y are commuting elements in A+,
and such that τ(xx∗) = τ(x∗x) for all x ∈ A. A quasitrace on A is a 1-quasitrace
τ that extends to a 1-quasitrace τn on Mn(A) for each n ∈ N.

We use the convention here that 0 · ∞ = 0 so that τ(0) = 0. Viewing A as
the upper left hand corner subalgebra of Mn(A), the extension τn in Definition 2.8
of τ means that τ(x) = τn(xe11), where e11 is the matrix unit in Mn(Ã). If τ is
a quasitrace, we say that τ is densely defined provided that the set Fτ := {x ∈
A+ : τ(x) < ∞} is dense in A+. We denote the set of densely defined quasitraces
by QTd(A), and we also use LQT(A) to denote the set of lower semicontinuous
quasitraces. The notation LQTd(A) will stand for the set of lower semicontinuous,
densely defined, quasitraces. If x ∈ K(A)+, where K(A) is the Pedersen ideal of
A, we set Q = {τ ∈ LQTd(A) : τ |K(A) < ∞} and Qx = {τ ∈ Q : τ(x) = 1}.
If A is simple, the set Qx is (weakly) compact. If A is moreover σ-unital with
real rank zero and u = [p] ∈ V (A)∗ for a nonzero projection p ∈ A, then the
natural map α : Qp → Su given by α(τ)([q]) = τ(q), for [q] ∈ V (A), provides an
affine homeomorphism ([22], Theorem 5.6). This is the σ-unital, nonunital and
semi-finite version of Blackadar and Handelman’s theorem ([5], Theorem III.1.3).

Definition 2.9. Let A be a C∗-algebra. A lower semicontinuous and order-
preserving quasitrace τ is said to be infinite if sup

λ
τ(uλ) = +∞ for some approxi-

mate unit {uλ}λ∈Λ.

Observe that this definition does not depend on the particular approximate
unit. If A has real rank zero, and τ is infinite, then sup τ(p) = ∞, where the
supremum is taken over the projections p ∈ A.

Theorem 2.10. (cf. [22], Theorem 6.3, Proposition 6.5, Theorem 6.6) Let
A be a separable nonunital simple C∗-algebra with real rank zero, stable rank one
and with V (A) strictly unperforated. Suppose that A is nonelementary. Let p ∈ A
be a nonzero projection and let c be the cardinal of infinite extremal quasitraces in
Qp. Then M(A) has at least c different maximal ideals that contain Ifin(A), and
the quotient of M(A) by any of these ideals is a purely infinite simple C∗-algebra.
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In order to clarify the exposition, we state a lemma whose argument is used
in [15], Theorem 4.9.

Lemma 2.11. Let A be a unital C∗-algebra. Assume that A is prime and
that there exist different maximal ideals Ji, for i = 1, 2, such that each projection
in A/Ji is infinite. Then A is not extremally rich.

Proof. Consider the C∗-exact sequence:

0 → (J1 ∩ J2) → A → A/(J1 ∩ J2) → 0,

and note that A/(J1∩J2) ∼= J1/(J1∩J2)⊕J2/(J1∩J2) and that J1/(J1∩J2) ∼= A/J2

and J2/(J1∩J2) ∼= A/J1. Since each quotient A/Ji is simple, its extreme points are
isometries or co-isometries. Further, as every projection in Ji/(J1 ∩ J2) is infinite,
we see that Ji/(J1 ∩ J2) contain non-trivial isometries (and hence co-isometries)
for i = 1, 2. Finally, since the set of extreme points of a direct sum equals the
direct sum of the extreme points of each factor, we see that A/(J1 ∩ J2) has an
extreme point which is neither an isometry nor a co-isometry, and hence it cannot
be lifted to an extreme point of A, because A is prime. By Theorem 2.3, A is not
extremally rich.

Let us now discuss the extremal richness in the elementary case. Suppose
that A ∼= K, where K = K(H) is the C∗-algebra of compact operators over an
infinite-dimensional, separable, Hilbert space H. Then, if B = B(H), we have that
M(A)/A ∼= B/K is a purely infinite simple C∗-algebra, hence extremally rich by
Remark 2.2 (i). On the other hand, B is a von Neumann algebra, whence it is
also extremally rich. Thus we shall assume from now on that all C∗-algebras are
nonelementary.

In [15], Theorem 4.9, it is proved that if A is a simple separable AF algebra
such that A ⊗ K contains at least two semi-finite extremal traces, then M(A ⊗
K)/(A ⊗ K) is not extremally rich. On the other hand, in [15], Proposition 4.13
it is established that if A is a simple and separable (nonunital) AF algebra with a
finite number of semi-finite extremal traces, of which at least two are infinite, then
M(A)/A is not extremally rich. Both situations can be handled in our setting.
The next result enlarges to a great extent the number of instances in which the
extremal richness of the corona algebra can be analyzed. We also answer an
implicit question that is posed in [15], Remark 4.19: If A has an infinite number of
extremal quasitraces, has the corona extremal richness? In case none of them are
infinite, the answer is positive (see also [15], Theorem 4.1, where some stable cases
outside our class are considered), whereas if at least two of them are infinite, the
answer is negative. The case in which there is only one infinite extremal quasitrace
will be considered in the next section.
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Theorem 2.12. Let A be a nonunital separable simple C∗-algebra with real
rank zero and stable rank one. Suppose that A is nonelementary and that V (A) is
strictly unperforated. Let p ∈ A be a nonzero projection.

(i) If A has finite scale and M(A) has real rank zero, then M(A)/A is
extremally rich.

(ii) If A has at least two infinite extremal quasitraces in Qp, then M(A)/A
is not extremally rich. In particular, M(A) is not extremally rich.

Proof. (i) Recall that M(A) has a unique closed ideal L(A) that properly
contains A and that is contained in every closed ideal that properly contains A
(see [17], Remark 2.9, and also [22], Proposition 4.1). Notice that L(A)/A is an
essential closed ideal of M(A)/A, and that it is purely infinite simple (see [25],
Theorem 1.3 (a)). Since A has finite scale, we have that M(A)/L(A) has stable
rank one, by Theorem 2.7. Using Remark 2.2 (i), we conclude that M(A)/L(A)
is extremally rich and that E(M(A)/L(A)) = U(M(A)/L(A)). By Theorem 2.5,
it follows that M(A)/A is extremally rich.

(ii) Let c be the cardinal of infinite extremal quasitraces in Qp. By hypothesis
c > 2. Using Theorem 2.10, we get at least c different closed maximal ideals
in M(A)/A. Moreover, the quotient of M(A)/A by each one of these ideals is
a purely infinite simple C∗-algebra. Also, since L(A)/A is the minimal nonzero
closed ideal of M(A)/A, we get that the corona algebra is a prime ring. Therefore,
the hypotheses of Lemma 2.11 are fulfilled, whence we conclude that M(A)/A is
not extremally rich.

That M(A) is not extremally rich follows from Theorem 2.3.

Remark 2.13. In the proof of the previous theorem, we used the fact that
the corona algebra M(A)/A is a prime ring. Although it is possibly well-known,
we remark that this is not true in general. Let A be a simple C∗-algebra such
that M(A) has at least two different maximal closed ideals I1, I2 (such examples
exist; see [22]). Let J = I1I2. Then J is a prime C∗-algebra and M(J) = M(A).
Therefore M(J)/J contains two nontrivial ideals, Ii/J , i = 1, 2, whose product is
zero.

3. EXTREMAL RICHNESS OF CORONA ALGEBRAS WITH ONLY ONE INFINITE
EXTREMAL QUASITRACE

The purpose of the present section is to determine when the corona algebra
of a simple C∗-algebra A with real rank zero, stable rank one, with V (A) strictly
unperforated, and that has precisely one infinite extremal quasitrace is extremally
rich. Our approach to the solution follows the lines indicated by Theorem 2.5 and
Corollary 2.4. The knowledge of significant aspects of the ideal lattice of M(A)/A,
of projections inM(A) and in its quotient algebras will be an important ingredient
in the following. This will be reflected in some computations of the index map in
various situations, for which Theorem 2.6 will be essential.
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Lemma 3.1. Let B be a (unital) C∗-algebra, and let I be a closed two-sided
ideal of B. Let w be an isometry in B/I, and denote by π : B → B/I the natural
quotient map. Then w can be lifted to an isometry z ∈ B if and only if there exists
a partial isometry v ∈ B such that 1− v∗v . 1− vv∗ and π(v) = w.

Proof. If w can be lifted to an isometry z ∈ B, then just take v = z. For
the converse, assume that w = π(v) for some partial isometry v ∈ B such that
1 − v∗v . 1 − vv∗. Let p = v∗v and q = vv∗. Then there exists r ∈ B such that
1−p = r∗r and rr∗ 6 1−q. Since π(v) = w, we see that π(r∗r) = 0, that is, r ∈ I.
Let z = v + r. Then z∗z = 1, hence z is an isometry, and π(z) = π(v) = w.

Recall that a monoid M is a refinement monoid if whenever x1, x2, y1, y2 ∈ M
satisfy x1 + x2 = y1 + y2, then there exist elements zij ∈ M , for i, j = 1, 2 such
that

∑
j

zij = xi and
∑
i

zij = xj for each i, j. By [3], Lemma 2.3 (see also [26],

Theorem 1.1), if B is a C∗-algebra with real rank zero, then V (B) is a refinement
monoid.

Lemma 3.2. Let B be a C∗-algebra with real rank zero. Then K0(B) =
G(V (B)).

Proof. We may clearly assume that B is nonunital. First, notice that V (B) =
lim
−→

V (pBp), where p runs over the set of projections of B. (In general, the set of
projections of B need not be directed, but because of the real rank zero condition
it is easy to see that given projections p, q ∈ B, there exists a projection r ∈ B
such that V (pBp), V (qBq) ⊆ V (rBr).) Taking into account that G is in fact a
continuous functor from the category of monoids to the category of groups, we get
that G(V (B)) = lim

−→
G(V (pBp)). Since pBp does have a unit for each projection

p ∈ B, it follows that G(V (pBp)) = K0(pBp). Hence, it remains to prove that
K0(B) = lim

−→
K0(pBp).

We denote by B+ := B ⊕ C, equipped with pointwise sum and adjoint, and
with a mixed multiplication given by (x, λ)(y, µ) = (xy+µx+λy, λµ), for x, y ∈ B

and λ, µ ∈ C. Then B+ is a C∗-algebra, which is isomorphic to B̃ if B is nonunital
([24], Proposition 2.1.7). Note that if p ∈ Mn(B+) is a projection, then there exist
r 6 n and projections g, h ∈ M∞(B) such that g 6 1r and p ∼ (1r − g)⊕h. (Here
1r stands for the unit of Mr(C).) This follows from [14], Lemma 10.3 (see also [2],
Lemma 3.4). Applying the refinement property to the equality (1r−g)+g = 1r, we

get projections p1, . . . , pr ∈ B such that g ∼
r∑

i=1

⊕pi, while 1r − g ∼
r∑

i=1

⊕(1− pi).

We therefore obtain that 1r− g ∼ (1−p1)⊕· · ·⊕ (1−pr) ∼ 1r−
r⊕

i=1

pi. Using this

and the fact that V (B) = lim
−→

V (pBp), we conclude that V (B+) = lim
−→

V ((pBp)+).

On the other hand, if π : B+ → C and πp : (pBp)+ → C, for p ∈ B are the natural
projection maps, then (using the functoriality of V ) we have V (πp) = V (π)◦V (i),
where i : (pBp)+ → B+ is the natural inclusion.

Using again the continuity of G, we obtain that K0(B+) = lim
−→

K0((pBp)+),

and also that G(πp) = G(π) ◦G(i). We conclude then that K0(B) = lim
−→

K0(pBp),
as desired.
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As is well known, the previous result is false in general. For example, let
A = C0(R2). Then V (A) = 0, whereas K0(A) ∼= Z (see [24], Section 6.2).

If B is a C∗-algebra and I is a closed ideal of B, we denote by δ : K1(B/I) →
K0(I) the index map in K-Theory.

Proposition 3.3. Let B be a (unital) C∗-algebra, and let I be a closed
ideal of B. Let w ∈ U(B/I), and let π : B → B/I be the natural quotient map.
If RR(I) = 0 and V (I) is cancellative, then w can be lifted to a unitary in B

(respectively a proper isometry, a proper co-isometry) if and only if δ[w] = 0
(respectively δ[w] < 0, δ[w] > 0).

Proof. If w can be lifted to a partial isometry v ∈ B via π, then it is a
standard fact that the index can be computed as δ([w]) = [1 − v∗v] − [1 − vv∗]
(see, for example, [24], Exercise 8C).

Assume that w can be lifted to a unitary (respectively a proper isometry, a
proper co-isometry) v ∈ B. Then it follows easily from the previous observation
(using Lemma 3.2 and that V (I) is cancellative) that δ[w] = 0 (respectively δ[w] <

0, δ[w] > 0).
Conversely, since RR(I) = 0 there exists a partial isometry v ∈ B such that v

is a lift for w (see the proof of [10], Lemma 2.6 or [2], Lemma 2.1). If δ[w] = 0, then
[1− v∗v] = [1− vv∗] in K0(I). By Lemma 3.2, and since V (I) is cancellative, we
get that 1−v∗v ∼ 1−vv∗ in I. Therefore, there exists r ∈ I such that 1−p = r∗r

and 1− q = rr∗, where p = v∗v and q = vv∗. Let z = v + r. Then z∗z = zz∗ = 1
and π(z) = π(v) = w. Hence w can be lifted to a unitary.

If δ[w] < 0, then 1 − v∗v . 1 − vv∗, so that by Lemma 3.1, w can be lifted
to an isometry z ∈ B, which is proper since δ([w]) 6= 0. We proceed similarly if
δ[w] > 0, in order to get a co-isometry.

In the following lemma we need to establish a slight generalization of a known
result ([1], Lemma II.7.1).

Lemma 3.4. Let K be a compact convex set, and let f, g ∈ LAffσ(K)++ be
functions such that f |∂eK = g|∂eK. Then f = g.

Proof. Since K is compact and f is lower semicontinuous, we see that f takes
its minimum value on K. Indeed, if α = min(f), then there exists x ∈ ∂eK such
that f(x) = α (this follows after a standard argument — see [12], Corollary 5.19).

Write g = sup
n

gn, where gn ∈ Aff(K)++ for each n, and note that {gn} form

an increasing sequence. Note that f − gn = g − gn > 0 on ∂eK for every n ∈ N.
Taking into account that f − gn is affine and lower semicontinuous, we conclude
from the previous paragraph that f − gn > 0 globally. Hence f > g. A similar
argument shows that f 6 g, and therefore f = g.

The following fact is a consequence of the methods developed in [22], Sec-
tion 4. Note that if K is a metrizable Choquet simplex, then LAffσ(K) = LAff(K).
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Lemma 3.5. Let K be a metrizable Choquet simplex. Let f, g, h, d ∈
LAff(K)++ such that f + g = f + h = d. Suppose that there exists s ∈ ∂eK
such that d(x) = ∞ (for x ∈ ∂eK) if and only if x = s. Assume that g|∂eK is a
finite function.

(i) If h|∂eK is also finite and g(s) < h(s), then there exist e ∈ LAff(K)++

and k ∈ N such that g + k = h + e and e + d = k + d.
(ii) If h(s) = ∞ and {s}′, the complementary face of {s}, is a closed face,

then there exist e ∈ LAff(K)++ and k ∈ N such that g+e = h+k and e+d = k+d.

Proof. Since g|∂eK is finite, we immediately get that f(s) = ∞ and that
g|∂eK \ {s} = h|∂eK \ {s}.

(i) Let a = h(s) − g(s) and take k ∈ N such that k > a. By an argument
similar to the one used in [22], Proposition 4.10, there exists a lower semicontinuous
affine function e such that e(s) = k − a and e|{s}′ = k. Note that (g + k)|∂eK =
(h + e)|∂eK and that (e + d)|∂eK = (k + d)|∂eK. Therefore g + k = h + e and
e + d = k + d, by Lemma 3.4.

(ii) Let k ∈ N. Since {s}′ is closed, there is (by [12], Corollary 11.27) an
isomorphism

Aff(K) ∼= Aff({s})×Aff({s}′).
Thus, for each n ∈ N, there exists en ∈ Aff(K)++ such that en(s) = n and
en|{s}′ = k. Let e = sup

n
en. Then e ∈ LAff(K)++ and satisfies e(s) = ∞ while

e|{s}′ = k. Therefore (g + e)|∂eK = (h + k)|∂eK and (e + d)|∂eK = (k + d)|∂eK,
whence g + e = h + k and e + d = k + d, also by Lemma 3.4.

Proposition 3.6. Let A be a (nonunital) simple separable C∗-algebra with
real rank zero and stable rank one. Assume that A is nonelementary and that V (A)
is strictly unperforated. Let p ∈ A be a nonzero projection and suppose that A has
exactly one infinite extremal quasitrace in Qp. Suppose also that the real rank of
M(A) is zero. Let I be any closed ideal of M(A) such that A $ I ⊆ Ifin(A). Then
δ([w]) is either zero, or positive, or negative, for any unitary w ∈M(A)/I, where
δ : K1(M(A)/I) → K0(I/L(A)) is the index map. Hence w can always be lifted to
an isometry or a co-isometry.

Proof. Let u = [p] ∈ V (A), and let d = supφu(D(A)). By Theorem 2.6,
there exists a normalized monoid isomorphism ϕ : V (M(A)) → V (A) tW d

σ (Su)
(so that ϕ([1M(A)]) = d). Since the natural map α : Qp → Su given by evaluation
is an isomorphism, the fact that A has exactly one infinite extremal quasitrace
means that the set Γd := {t ∈ ∂eSu : d(t) = ∞} consists of one point, which we
denote by s.

Let φ : M(A) → M(A)/I and π : M(A) → M(A)/L(A) be the natural
projection maps. By the proof of [10], Lemma 2.6 (or also [2], Lemma 2.1), there
exists a partial isometry v ∈ M(A) such that φ(v) = w. Then 1 − v∗v and
1 − vv∗ belong to I. Since w is not zero, we first note that v /∈ A. Suppose that
1−v∗v ∈ A. Then δ[w] = −[π(1−vv∗)] 6 0, and a similar conclusion would result if
1−v∗v ∈ A. Therefore we may assume that 1−v∗v, 1−vv∗ /∈ A. Let f = ϕ([v∗v]),
g = ϕ([1− v∗v]) and h = ϕ([1− vv∗]), which are functions in W d

σ (Su). Note that
f + g = f + h = d, and that both g|∂eSu and h|∂eSu are finite functions, since
g, h ∈ Ifin := ϕ(V (Ifin(A))). If g(s) = h(s), then g = h and so 1− v∗v ∼ 1− vv∗ in
I, whence δ[w] = 0. Suppose that g(s) < h(s). Then, by Lemma 3.5 (i), there exist
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e ∈ LAff(Su)++ and k ∈ N such that g + k = h + e and e + d = k + d. Thus, there
exist nonzero projections p ∈ M∞(L(A)) and q ∈ M∞(I) such that ϕ([p]) = k and
ϕ([q]) = e, and (1−v∗v)⊕p ∼ (1−vv∗)⊕ q. Hence π(1−v∗v) ∼ π(1−vv∗)⊕π(q)
in I/L(A), and it follows that δ([w]) = [π(1− v∗v)]− [π(1− vv∗)] > 0. A similar
argument, if h(s) < g(s), shows that δ([w]) 6 0.

We conclude from Proposition 3.3 that w can always be lifted either to an
isometry or to a co-isometry.

If X is a subset of a convex set K, we denote by conv(X) the convex hull of
X, that is, the smallest convex subset of K that contains X.

Lemma 3.7. Let K be a Choquet simplex, and let F be a closed face of K.
Let F ′ be the complementary face of F . Then F ′ = conv(∂eK \ ∂eF ).

Proof. Suppose first that F ′ is a closed face of K. Then, since K is compact,
it follows that F ′ is a compact convex subset of K. By Krein-Milman’s Theorem,
we have that F ′ = conv(∂eF ′). Note now that ∂eF

′ = F ′∩∂eK, because F ′ is a face
of K, and by definition of complementary face we conclude that ∂eF

′ = ∂eK \∂eF .
If F ′ is not closed, set X := conv(∂eK \ ∂eF ). By construction, X is a

compact convex subset of K, and it contains all the extreme points of K, except
maybe those from F . Notice now that the convex hull of X and F is closed (by [12],
Proposition 5.2), and it contains all the extreme points of K. Another application
of Krein-Milman Theorem shows that K = conv(X ∪ F ). Let a ∈ F ′. Then there
exist α ∈ [0, 1], f ∈ F and x ∈ X such that a = αf + (1 − α)x. Since f /∈ F ′,
and taking into account that F ′ is a face, we have that α = 0, and thus a = x.
We therefore conclude that F ′ ⊆ X. It is clear, on the other hand, that X ⊆ F ′,
whence it follows that F ′ = X, as desired.

Proposition 3.8. Let A be a (nonunital) simple separable C∗-algebra with
real rank zero and stable rank one. Suppose that A is nonelementary and that
V (A) is strictly unperforated. Let p ∈ A be a nonzero projection, and assume
that A has exactly one infinite extremal quasitrace in Qp, which we denote by τ . If
RR(M(A)) = 0, then all proper isometries of M(A)/Ifin(A) can be lifted to proper
isometries of M(A)/L(A) if and only if the complementary face of {τ} in Qp is
closed.

Proof. Let u = [p] ∈ V (A), and set d = supφu(D(A)). By Theorem 2.6,
there is a monoid isomorphism ϕ : V (M(A)) → V (A) t W d

σ (Su) such that
ϕ([1M(A)]) = d. As in the previous result, the quasitrace τ corresponds, through
the affine homeomorphism α : Qp → Su, to a unique point s ∈ ∂eSu such that
d(s) = ∞.

First, suppose that {s}′, the complementary face of {s} in the simplex
Su, is not closed and that all proper isometries of M(A)/Ifin(A) can be lifted
to proper isometries of M(A)/L(A). Since all projections in M(A)/Ifin(A) are
infinite (see Theorem 2.10), there exists a proper isometry w ∈ M(A)/Ifin(A).
By hypothesis, w can be lifted to a proper isometry v ∈ M(A)/L(A). On the
other hand, there exists a partial isometry z ∈ M(A) such that π(z) = v, where
π : M(A) →M(A)/L(A) is the natural map (again by [10], proof of Lemma 2.6
or [2], Lemma 2.1). Therefore 1− z∗z ∈ L(A) and 1− zz∗ /∈ Ifin(A). As in Propo-
sition 3.6, we have that z /∈ A, and moreover in this case 1 − zz∗ /∈ A. We may
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also assume that 1 − z∗z /∈ A, since the proof would be similar otherwise. Let
f = ϕ([z∗z]), g = ϕ([1 − z∗z]) and h = ϕ([1 − zz∗]). Then f + g = f + h = d,
and h(s) = ∞. Note also that g ∈ ϕ(V (L(A))) = V (A) t Aff(Su)++, and thus is
continuous. Since d|∂eSu is infinite exactly at s we have that f(s) = ∞. Therefore
g|∂eSu \ {s} = h|∂eSu \ {s}. We also have that F := {s}′ equals the closed convex
hull of ∂eSu \ {s}, by Lemma 3.7, and that F is a compact convex subset of Su

(see [12], Proposition 5.1).
If s /∈ F , then ∂eF = ∂eSu \ {s}, and since g and h are affine and lower

semicontinuous we get that g|F = h|F (by Lemma 3.4). Since {s}′ is not closed,
there exists x ∈ F \ {s}′. Thus g(x) = h(x). But x /∈ {s}′, so that there exist
α ∈ (0, 1] and t ∈ {s}′ such that x = αs + (1− α)t, and this implies h(x) = ∞, a
contradiction since g is continuous.

Hence s ∈ F , and so s = lim
n

ym, where ym belong (for all m) to the convex

hull of ∂eSu \ {s}. Thus g(ym) = h(ym) for all m, and it follows that g(s) =
lim
m

g(ym) = lim
m

h(ym) > h(s), a contradiction.

Conversely, assume that {s}′ is a closed face, and let w ∈ M(A)/Ifin(A)
be a proper isometry. Again, there exists a partial isometry z ∈ M(A) \ A such
that φ(z) = w, where φ : M(A) → M(A)/Ifin(A) is the natural map. Thus
1 − z∗z ∈ Ifin(A) and 1 − zz∗ /∈ Ifin(A). If 1 − z∗z ∈ A, then 1 = π(z)∗π(z) and
1 6= π(z)π(z)∗ (where π is the quotient map modulo L(A)). We also have that
w = φ(z) = π(z), where the latter denotes the class of π(z) modulo Ifin(A)/L(A).
We then conclude that w can be lifted to a (proper) isometry of M(A)/L(A),
by Lemma 3.1. Therefore we may assume that 1 − z∗z /∈ A. Let f = ϕ([z∗z]),
g = ϕ([1−z∗z]) and h = ϕ([1−zz∗]). Then f+g = f+h = d and also h(s) = ∞. By
Lemma 3.5 (ii), there exist e ∈ LAff(Su)++ and k ∈ N such that g + e = h+k and
e + d = k + d. Hence, there exist projections p ∈ M∞(L(A)) and q ∈ M∞(M(A))
such that k = ϕ([p]) and e = ϕ([q]), and (1− z∗z)⊕ q ∼ (1− zz∗)⊕ p. Therefore
1−π(z)∗π(z). 1−π(z)π(z)∗, and as before w = φ(z) = π(z); it follows then from
Lemma 3.1 that w can be lifted to a (proper) isometry.

We turn our attention now to the extreme points of M(A)/L(A), which, in
our setting, are only isometries and co-isometries.

Lemma 3.9. Let A be a (nonunital) simple separable C∗-algebra with real
rank zero and stable rank one. Suppose that A is nonelementary and that V (A) is
strictly unperforated. Let p ∈ A be a nonzero projection, and assume that A has
exactly one infinite extremal quasitrace in Qp. If L(A) has real rank zero, then
E(M(A)/L(A)) consists only of isometries and co-isometries.

Proof. Let u = [p] ∈ V (A) and d = supφu(D(A)). As before, we have a
monoid isomorphism ϕ : V (M(A)) → V (A) tW d

σ (Su) such that ϕ([1M(A)]) = d,
and there is a unique state s ∈ ∂eSu at which d|∂eSu is infinite.

Let v ∈ E(M(A)/L(A)). Suppose that v is neither an isometry nor a co-
isometry. Choose a partial isometry z ∈ M(A) \ A such that π(z) = v, where
π : M(A) → M(A)/L(A) is the natural map. Then (1 − z∗z)M(A)(1 − zz∗) ⊆
L(A) and 1− z∗z, 1− zz∗ /∈ L(A). Let I and J denote the closed ideals of M(A)
generated by 1−z∗z and 1−zz∗ respectively. Then IJ ⊆ L(A). On the other hand,
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we have that A $ I, J since v is neither an isometry nor a co-isometry. Therefore
L(A) ⊆ I, J and we conclude that L(A) = IJ = I ∩ J .

Clearly 1 − z∗z, 1 − zz∗ /∈ A. Let f = ϕ([z∗z]), g = ϕ([1 − z∗z]) and
h = ϕ([1− zz∗]). Then again f + g = f + h = d, whence g = h on ∂eSu \ {s}. Let

Ig = V (A)t{f1 ∈ W d
σ (Su) : f1 +f2 = ng for some f2 ∈ W d

σ (Su) and some n ∈ N}

be the order-ideal of V (A) t W d
σ (Su) generated by g. Similarly, Ih denotes the

order-ideal generated by h. Note that ϕ(V (I)) = Ig and ϕ(V (J)) = Ih. Since
I ∩ J = L(A), we have that

Ig ∩ Ih = ϕ(V (I) ∩ V (J)) = ϕ(V (L(A))) = V (A) tAff(Su)++.

Note that g, h /∈ Aff(Su)++, since v is neither an isometry, nor a co-isometry.
Therefore g 6= h. (Otherwise Ig = Ig ∩ Ih = V (A)tAff(Su)++, and so g would be
continuous, a contradiction.) In particular, g and h are not simultaneously infinite.
Suppose that g(s) = ∞ and h(s) < ∞. Then g + h = 2g, whence Ih ⊆ Ig, so that
h would be continuous, a contradiction. The argument is similar if g(s) < ∞ and
h(s) = ∞.

This implies that g(s), h(s) < ∞. Suppose that h(s) < g(s). Let n ∈ N be
such that n > 2 and nh(s) > g(s). By a similar argument to the one used in [22],
Proposition 4.10, there exists f ′ ∈ LAff(Su)++ such that f ′(s) = nh(s)− g(s) and
f ′|{s}′ = (n− 1)g|{s}′. Then f ′ + g = nh, and therefore Ig ⊆ Ih, a contradiction
since g is not continuous. Again, the argument is similar if g(s) < h(s).

Hence we conclude that any v ∈ E(M(A)/L(A)) is necessarily an isometry
or a co-isometry.

Remark 3.10. The previous result would follow immediately ifM(A)/L(A)
were a prime ring. We remark that this is not true in general.

Proof. Let A be a (nonunital) simple separable AF algebra, and let p ∈ A be
a nonzero projection such that if u = [p] ∈ V (A), then ∂eSu

∼= [−1, 1]. Moreover,
we take A such that its scale d equals 2 on the interval [−1, 0), and such that
d(x) = 1/(1 − x), for x ∈ [0, 1]. (The existence of this example follows after
[22], Example 4.6; see also [14], Example 7.3].) Then A has only one infinite
extremal (quasi)trace. Define f ∈ W d

σ (Su) as 1 on [−1, 1), and set f(1) = 1/2.
Define also g ∈ W d

σ (Su) as 1 on [−1, 0) and 1/2 on [0, 1]. Then, if we denote
by If and Ig the respective order-ideals generated by f and g, it is clear that
If ∩ Ig = V (A) t C[−1, 1]++, whereas If 6= V (A) t C[−1, 1]++ and also Ig 6=
V (A) t C[−1, 1]++. Since ∂eSu is compact, it follows from Theorem 2.6 and [26],
Theorem 2.3 (see also [22], Section 6) that M(A)/L(A) is not a prime ring.

Recall that a closed ideal I of a C∗-algebra B is stably cofinite provided that
the quotient B/I is stably finite. This is equivalent to saying that the monoid
V (B/I) is stably finite, that is, the relation x + y = y implies x = 0. When
studying the stably finite quotients ofM(A), a closed ideal called the bounded ideal
is of some significance. In our setting, it can be described as the unique closed ideal
Ib(A) of M(A) such that ϕ(V (Ib(A))) = V (A) t {f ∈ W d

σ (Su) : f is bounded},
where ϕ is the isomorphism established on Theorem 2.6. If A has a finite number
of infinite extremal quasitraces, it is possible to characterize when this ideal is
stably cofinite, as follows.
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Proposition 3.11. Let A be a (nonunital) simple separable C∗-algebra with
real rank zero and stable rank one. Suppose that A is nonelementary, that V (A)
is strictly unperforated and that M(A) has real rank zero. Let p ∈ A be a nonzero
projection, and denote by Q∞ the set of infinite extremal quasitraces in Qp. If
Q∞ is finite, then Ib(A) is stably cofinite if and only if for any nonempty subset
X ⊆ Q∞, the complementary face of conv(X) (in Qp) is not closed.

Proof. Let u = [p] ∈ V (A), and let d = sup φu(D(A)). Suppose that Q∞ has
cardinality n. Since the natural map α : Qp → Su is an affine homeomorphism,
the fact that Q∞ is finite means exactly that the set Γd := {s ∈ ∂eSu : d(s) = ∞}
is finite, and with cardinality n. Set Γd = {s1, . . . , sn}.

Suppose that Ib(A) is stably cofinite. Then the order-ideal Ib = ϕ(V (Ib(A)))
of V (A) tW d

σ (Su) is stably cofinite, where ϕ is the isomorphism in Theorem 2.6.
Suppose that there exists a nonempty subset X ⊆ Γd such that F := (conv(X))′,
the complementary face of conv(X), is closed. Then we have Aff(Su) ∼=
Aff(conv(X)) × Aff(F ) ([12], Corollary 11.27). We may define functions fn ∈
Aff(Su)++ by fn|conv(X) = n and fn|F = 1. Then, let f = sup

n
fn. We have that

f ∈ LAff(Su)++ and that f |X = ∞, while f |F = 1. Thus f + d = 1 + d, so that
f ∈ W d

σ (Su), and in the quotient (V (A)tW d
σ (Su))/Ib we have [f ] + [d] = [d] with

[f ] 6= 0, which contradicts the stable finiteness of Ib.
Conversely, suppose that for any nonempty subset X ⊆ Γd, the comple-

mentary face of conv(X) is not closed. Suppose that there exist bounded func-
tions l1, l2 ∈ W d

σ (Su), a number n ∈ N and a function g ∈ W d
σ (Su) such that

nd + l1 = nd + g + l2. Then g is bounded on ∂eSu \ Γd, say g|∂eSu \ Γd 6 M . Let
F = (conv(Γd))′. Since F is not closed, there exists x ∈ F \ F . By Lemma 3.7,
there is a sequence {tk} in conv(∂eSu \ Γd) that converges to x. Since g is affine,
we have that g(tk) 6 M for all k, whence g(x) 6 M , due to lower semicontinu-
ity. On the other hand, taking into account that Su is the direct convex sum of
conv(Γd) and F , there exist positive numbers αi for i = 1, . . . , n (not all zero),

a number β > 0 and an element t ∈ F such that
n∑

i=1

αi + β = 1, and such that

x =
n∑

i=1

αisi + βt. Therefore there exists 1 6 i 6 n such that g(si) < ∞. Without

loss of generality, we may assume that g(s1) < ∞. Now, a recursive argument
shows that g(s2), . . . , g(sn) < ∞, whence we conclude that g is bounded, and thus
Ib is stably cofinite.

We are now in position to characterize the extremal richness of the corona
algebra for a simple C∗-algebra with exactly one infinite extremal quasitrace. This
situation was considered in [15], Proposition 4.18, for separable, nonunital and
simple AF algebras with finitely many extremal traces. In that case the corona
algebra is always extremally rich. As we will see, the general situation is quite
different.
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Theorem 3.12. Let A be a (nonunital) simple separable C∗-algebra with
real rank zero and stable rank one. Suppose that A is nonelementary and that
V (A) is strictly unperforated. Let p ∈ A be a nonzero projection, and assume that
A has exactly one infinite extremal quasitrace in Qp, which we denote by τ . If
RR(M(A)) = 0, then the following conditions are equivalent:

(i) M(A)/A is extremally rich;
(ii) the complementary face of {τ} (in Qp) is closed;
(iii) the ideal Ib(A) is not stably cofinite.

Proof. Note first that L(A)/A is a closed essential ideal of M(A)/A, which
is simple and purely infinite. Then by Theorem 2.5, M(A)/A is extremally rich
if and only if M(A)/L(A) is extremally rich and E(M(A)/L(A)) consists only of
isometries and co-isometries. The latter condition is automatic from Lemma 3.9.
Thus M(A)/A is extremally rich if and only if M(A)/L(A) is extremally rich.

Since Ifin(A)/L(A) has stable rank one (see [22], Proposition 6.1), it follows
from Corollary 2.4 that M(A)/L(A) is extremally rich if and only if M(A)/Ifin(A)
is extremally rich and the extreme partial isometries of M(A)/Ifin(A) can be lifted
to those of M(A)/L(A). Note that M(A)/Ifin(A) is purely infinite and simple (by
[22], Theorem 6.3 and Proposition 6.5), hence extremally rich by Remark 2.2 (ii).
Therefore M(A)/A is extremally rich if and only if the extreme partial isometries
of M(A)/Ifin(A) can be lifted to those of M(A)/L(A), and this last condition
holds if and only if the complementary face of {τ} in Qp is a closed face, by
Proposition 3.6 and Proposition 3.8. This proves (i) ⇔ (ii).

The equivalence between (ii) and (iii) follows directly from Proposition 3.11.

Corollary 3.13. Let A be a (nonunital) simple separable C∗-algebra with
real rank zero and stable rank one. Assume that A is nonelementary and that V (A)
is strictly unperforated. Let p ∈ A be a nonzero projection, and suppose that A
has exactly one infinite extremal quasitrace τ in Qp. If RR(M(A)) = 0 and ∂eQp

is a compact space, then M(A)/A is extremally rich if and only if τ is isolated in
∂eQp.

Proof. By Theorem 3.12 we have to prove that {τ} is isolated in ∂eQp if and
only if the complementary face of {τ} in Qp is closed.

Let u = [p] ∈ V (A) and d = supφu(D(A)). Let s ∈ ∂eSu be the unique
extreme point at which d|∂eSu is infinite. This point exists because there is an
affine homeomorphism α : Qp → Su (and in fact s := α(τ)). We have to prove
then that {s} is isolated in ∂eSu if and only if {s}′ is a closed face. Note that {s}
is isolated if and only if ∂eSu \ {s} is closed.

By [12], Corollary 11.20 (and since ∂eSu is compact), there is an affine homeo-
morphism β between Su and M+

1 (∂eSu) given by β(t) = εt, for t ∈ ∂eSu, and where
εt is the point mass measure at t.

Suppose that {εs}′ is a closed face in M+
1 (∂eSu). It follows from [12], Propo-

sition 5.25 that there exists a closed subset X ⊆ ∂eSu such that {εs}′ = σ(X) :=
{µ ∈ M+

1 (∂eSu) : µ(X) = 1}. In fact, X = {t ∈ ∂eSu : εt ∈ {εs}′}, which clearly
equals ∂eSu \ {s}, and therefore ∂eSu \ {s} is closed.

Conversely, if X = ∂eSu \ {s} is closed, letting F = σ(X), we have as before
that F is a closed face, which is easily shown to coincide with {εs}′. Thus we have
proved that {s}′ is a closed face if and only if ∂eSu \ {s} is closed, and the result
follows.
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The next instance of interest is to determine when M(A) has extremal rich-
ness. In [15], Theorem 3.1 it is proved that if A is a separable unital simple
C∗-algebra with real rank zero and with a finite trace, then M(A ⊗ K) is not
extremally rich. In the same paper it is noted that M(A) is not extremally rich
when A is a simple, separable AF algebra without unit and nonelementary. Part
of the argument in the following is based on [15], proof of Theorem 2.3, which we
include for completeness.

Proposition 3.14. Let A be a (nonunital) simple separable C∗-algebra with
real rank zero, stable rank one and with V (A) strictly unperforated. Assume also
that A is nonelementary. If RR(M(A)) = 0, then M(A) is not extremally rich.

Proof. Suppose first that the scale of A is not identically infinite. Then,
as noticed in [22], Section 7.8, M(A) is stably finite. Notice also that M(A)
is a prime ring and thus E(M(A)) consists of isometries and co-isometries. We
conclude that E(M(A)) = U(M(A)). According to Remark 2.2 (i) we have that
M(A) is extremally rich if and only if sr(M(A)) = 1. Since V (M(A)) is not
cancellative, we conclude that sr(M(A)) 6= 1, whence M(A) is not extremally
rich.

Suppose now that the scale of A is identically infinite. If A has at least
two extremal quasitraces (which will be infinite), then M(A) is not extremally
rich, by Theorem 2.12 (ii). We are therefore left to consider the case when A
has only one extremal quasitrace, which is infinite. This means that if {en} is an
(increasing) approximate unit for A consisting of projections, then sup τ(en) = ∞.
Let π : M(A) → M(A)/A be the natural quotient map, and let q ∈ L(A) \ A
be a projection. Then π(q) is an infinite projection, and therefore there exists
v ∈ L(A)/A such that v∗v = π(q) while vv∗ < π(q).

Let w = v + 1 − π(q), a proper isometry of M(A)/A which lifts (since
RR(A) = 0 and by the proof of [10], Lemma 2.6) to a partial isometry u ∈M(A).
There exists (by an argument used in [15], Theorem 2.2) a projection p ∈ A such
that u∗u = 1 − p. It follows that 1 − uu∗ ∈ L(A) and if {fn} is an approximate
unit of projections for the C∗-subalgebra (1− uu∗)A(1− uu∗) of A, we have that
sup τ(fn) < ∞.

Let p′ ∈ A be a projection such that τ(p′) > sup τ(fn). Since 1− p, 1− p′ /∈
L(A), and since A has only one extremal quasitrace (that is infinite) we get that
1−p ∼ 1−p′. Thus there is r ∈M(A) such that 1−p′ = r∗r while 1−p = rr∗. Let
t = ur. Then t∗t = 1− p′ and tt∗ = uu∗, so that π(t) is an isometry in M(A)/A.

Denote by φ : M(A) →M(A)/L(A) the natural quotient map, and note that
in fact φ(t) is a unitary in M(A)/L(A). We claim that π(t) cannot be lifted to any
isometry of M(A). If there exists an isometry s ∈ M(A) such that π(s) = π(t),
then φ(s) = φ(t), and therefore

δ([φ(t)]) = [1− s∗s]− [1− ss∗] = [1− t∗t]− [1− tt∗],

where δ : K1(M(A)/L(A)) → K0(L(A)) is the index map. It follows that [1−tt∗] =
[1 − t∗t] + [1 − ss∗]. Since M(A) has real rank zero, we get from Lemma 3.2 a
projection f ∈ M∞(L(A)) such that

(1− tt∗)⊕ f ∼ (1− t∗t)⊕ (1− ss∗)⊕ f = p′ ⊕ (1− ss∗)⊕ f.

By simplicity, we assume that f ∈ L(A). Let {tn} (respectively {gn}) be an
approximate unit of projections for (1 − ss∗)A(1 − ss∗) (respectively for fAf).
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Then by [14], Proposition 1.7, for each n ∈ N, there exists m ∈ N such that
p′ ⊕ tn ⊕ gn . fm ⊕ gm. Therefore, if n ∈ N there is m ∈ N such that τ(p′) +
τ(tn)+ τ(gn) 6 τ(fm)+ τ(gm). It follows that sup τ(tn) 6 0, and this implies that
1− tt∗ = 0. Thus 1− uu∗ = 0 and hence ww∗ = 1. This contradicts the fact that
w is a proper isometry, and therefore the claim is established.

It is easy to see that π(t) cannot be lifted to a co-isometry either. We then
conclude from Theorem 2.3 that M(A) is not extremally rich.
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France, Montrouge 1995, pp. 115–120.

7. L.G. Brown, G.K. Pedersen, C∗-algebras of real rank zero, J. Funct. Anal. 99
(1991), 131–149.

8. L.G. Brown, G.K. Pedersen, On the geometry of the unit ball of a C∗-algebra.
II, Københavns Universitet, preprint 5b, 1993.

9. L.G. Brown, G.K. Pedersen, On the geometry of the unit ball of a C∗-algebra,
J. Reine Angew. Math. 469(1995), 113–147.

10. G.A. Elliott, Derivations of matroid C∗-algebras. II, Ann. of Math. 100(1974),
407–422.

11. G.A. Elliott, On the classification of C∗-algebras of real rank zero, J. Reine Angew.
Math. 443(1993), 179–219.

12. K.R. Goodearl, Partially Ordered Abelian Groups with Interpolation, Math. Sur-
veys Monographs, vol. 20, Amer. Math. Soc., Providence, RI, 1986.

13. K.R. Goodearl, Notes on a class of simple C∗-algebras with real rank zero, Publ.
Mat. 36(1992), 637–654.

14. K.R. Goodearl, K0 of multiplier algebras of C∗-algebras with real rank zero, K-
Theory 10(1996), 419–489.

15. N. Larsen, H. Osaka, Extremal richness of multiplier algebras and corona algebras
of simple C∗-algebras, J. Operator Theory 38(1997), 131–149.

16. H. Lin, Ideals of multiplier algebras of simple AF C∗-algebras, Proc. Amer. Math.
Soc. 104(1988), 239–244.



Extremal richness of C∗-algebras 431

17. H. Lin, Simple C∗-algebras with continuous scales and simple corona algebras, Proc.
Amer. Math. Soc. 112(1991), 871–880.

18. H. Lin, Notes on K-theory of multiplier algebras and corona algebras, preprint.
19. H. Lin, Exponential rank of C∗-algebras with real rank zero and the Brown-Pedersen

conjectures, J. Funct. Anal. 114(1993), 1–11.
20. G.K. Pedersen, C∗-Algebras and their Automorphism Groups, Academic Press,

London–New York, 1979.
21. G.K. Pedersen, The λ-function in operator algebras, J. Operator Theory 26(1991),

345–381.
22. F. Perera, Ideal structure of multiplier algebras of simple C∗-algebras with real

rank zero, Canad. J. Math., to appear.
23. J. Villadsen, Simple C∗-algebras with perforation, J. Funct. Anal. 154(1998), 110–

116.
24. N.E. Wegge-Olsen, K-Theory and C∗-Algebras, Oxford University Press, 1993.
25. S. Zhang, On the structure of projections and ideals of corona algebras, Canad. J.

Math. 41(1989), 721–742.
26. S. Zhang, A Riesz decomposition property and ideal structure of multiplier algebras,

J. Operator Theory 24(1990), 159–190.
27. S. Zhang, C∗-algebras with real rank zero and their corona and multiplier algebras.

I, Pacific J. Math. 155(1992), 169–197.

FRANCESC PERERA
Departament de Matemàtiques
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