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0. INTRODUCTION

Related to the interest in towers of algebras there is a growing interest in endo-
morphisms which are in some way adapted to such towers. Some examples are
given by V. Jones in [9]; see also the book ([10]) of V. Jones and V.S. Sunder for
some background. In these references the authors call attention to be the question
how global properties of these endomorphisms can be obtained from information
restricted to various stages of the tower.

The starting point for this paper has been the observation that there is
a certain class of endomorphisms of the hyperfinite II1-factor which allow more
detailed answers to these questions than are available in general. They are adapted
to a tower

E−1 ⊂ E0 ⊂ E[0,1] ⊂ E[0,2] ⊂ · · · ' C1 ⊂ Cp ⊂ Mp ⊂ Mp ⊗ Cp ⊂ · · ·

in the sense that α(E[0,n−1]) ⊂ E[0,n] for all n and that some additional commuta-
tion relations are fulfilled (see Section 1 for details). For p = 2 we get Bogoljubov
transformations of a Clifford algebra (cf. R.J. Plymen, P.L. Robinson ([14]) for
an introduction to this). For p > 2 there is no functor, but from known results on
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Bogoljubov transformations we guess some natural hypotheses about the general
case, some of which are verified in this paper.

In Section 1 we introduce from various points of view the class of endomor-
phisms to be discussed, we fix the notation and give elementary properties to be
used later. The main results are in Sections 2–4.

In Section 2 we analyze this structure from the point of view of noncom-
mutative stochastic processes (cf. B. Kümmerer ([12]) for basic definitions). We
believe that adaptedness properties with respect to a given tower add many useful
possibilities to introduce and to calculate stochastic quantities. Here we calculate
prediction errors (as they would be called in classical probability) and use this to
determine when the endomorphism is surjective, i.e. an automorphism.

In Section 3 we go further in this direction and determine when this auto-
morphism is even inner. For Bogoljubov transformations this has been answered
by a theorem of Blattner ([1]). Not using the Clifford functor, we feel that our
approach sheds some new light even on this classical situation.

In Section 4 we discuss the non-surjective case. We calculate the Jones index
[A : αA] and give a sufficient condition for the endomorphism α to be a shift in
the sense of Powers. In this part some work remains to be done to obtain a more
complete understanding.

Special features used throughout and not always present in more general
towers are commutation relations, the independence of certain subalgebras and
grading. Nevertheless, one might hope that it is possible to use the experiences
made in analyzing these special endomorphisms for the study of more complicated
cases.

1. A CLASS OF ENDOMORPHISMS

It is convenient to start with a setting introduced by D. Bures and H.-S. Yin
in [2]: given a discrete abelian group G, a shift s in G and an s-invariant 2-
cocycle w of G (with values in the circle group T), we can form the twisted group
von Neumann algebra W ∗(G, w) generated by unitaries {Lg : g ∈ G} satisfying
LgLh = w(g, h)Lg+h (equivalently, LgLh = b(g, h)LhLg, where b(g, h) = w(g,h)

w(h,g) is
an antisymmetric bicharacter of G) and an endomorphism σ of W ∗(G, w) satisfying
σ(Lg) = Ls(g), called a group shift.

Lemma 1.1. ([2]) Let H be a subgroup of G. Then

W ∗(H,w)′ ∩W ∗(G, w) = W ∗({g ∈ G : b(g, h) = 1 for all h ∈ H}, w
)
.

If w is nondegenerate (i.e. {g ∈ G : b(g, h) = 1 for all h ∈ G} = {0}) and G is
countable, then W ∗(G, w) is the hyperfinite II1-factor.

Lemma 1.2. Let H,K be subgroups of G with H∩K = {0}, w nondegenerate
(see above) and normalized (i.e. w(g,−g) = 1 for all g ∈ G). Then W ∗(H,w)
and W ∗(K, w) are independent in the sense that tr(xy) = tr(x) tr(y) for all x ∈
W ∗(H,w), y ∈ W ∗(K, w) (where tr is the unique trace on W ∗(G, w); see [2],
Proposition 1.5).

Remark 1.3. In this paper we shall always use this notion of independence
(cf. [12]), which coincides with “orthogonality with respect to the trace” in [15].
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Proof of Lemma 1.2. It suffices to prove the assertion for sums x =
∑

λhLh,
h ∈ H, respectively y =

∑
γkLk, k ∈ K, having only finitely many summands.

Then tr
( ∑

λhLh

)
= λ0, tr

( ∑
γkLk

)
= γ0 and (because h + k = 0 ⇔ h = k = 0)

tr
( ∑

λhLh ·
∑

γkLk

)
= tr

( ∑
λhγkw(h, k)Lh+k

)
= λ0γ0.

Let the cyclic group Zp be given by {0, . . . , p− 1} and addition mod p. Here

p may be any natural number (> 2, not necessarily prime). If G :=
∞⊕

n=0
Z(n)

p , the

group shift corresponding to the canonical shift in G is called a p-shift in [2]. The
simplest example is the following:

Denoting 1 ∈ Z(n)
p by δn, we use the antisymmetric bicharacter b determined

by b(δm, δn) = exp(2πi/p) =: ω for m < n. Setting en := Lδn
we get the relations

ep
n = 1, emen = ωenem for m < n, and {en}∞n=0 span a von Neumann algebra A

isomorphic to the hyperfinite II1-factor. Denote by EJ the von Neumann algebra
spanned by {en : n ∈ J} (in particular we use J = [0, n] := {0, 1, . . . , n} and other
selfexplaining expressions; also E−1 := C1). Infer from Lemma 1.2 that EI and
EJ are independent if I ∩ J = ∅. Using the terminology of B. Kümmerer ([12])
this means that {EJ : J ⊂ N0} is a (discrete) white noise and that the p-shift
σ : en 7→ en+1 (for all n) is a (generalized) Bernoulli shift. Using this point of
view, σ has also been examined by C. Rupp ([17]), where it is called a Gauss shift.

In this paper we want to consider a more general class of endomorphisms
(containing σ).

Definition 1.4. An endomorphism α of A is called adapted with respect
to the discrete white noise {EJ : J ⊂ N0} if it can be written in the form

lim
N→∞

N∏
n=1

AdUn = lim
N→∞

Ad(U1 · · ·UN ) (pointwise weak∗), where for all n > 1,

Un ∈ A is a unitary
(i) which is normalizing E[0,n] i.e. AdUn(E[0,n]) = E[0,n] and
(ii) Un ∈ (E[0,n−2]∪[n+1,∞))′, i.e. AdUn fixes E[0,n−2]∪[n+1,∞) pointwise.

Remarks 1.5. (i) From Definition 1.4 we get immediately (for all n > 1)
that α|E[0,n−1] = Ad(U1 · · ·Un)|E[0,n−1] and α(E[0,n−1]) ⊂ E[0,n]. This property
may be called adaptedness with respect to the tower {E[0,n]}n∈N0 , and it is intro-
duced for very general towers by V. Jones and V.S. Sunder in [10], Example 5.1.6.
Compare also [9] for further examples and results. The presence of a discrete white
noise allows us to define a more restricted class of endomorphisms, and we shall
show in the sequel that this simplifies the task of proving results.

(ii) The tower E−1 ⊂ E0 ⊂ E[0,1] ⊂ E[0,2] ⊂ E[0,3] ⊂ E[0,4] · · · is isomorphic to
C1 ⊂ Cp ⊂ Mp ⊂ Mp ⊗ Cp ⊂ Mp ⊗Mp ⊂ Mp ⊗Mp ⊗ Cp · · · where Mp denotes
the algebra of p × p-matrices. In this paper the number p will always be used in
this meaning.

(iii) The applications AdUn are in a certain way localized with respect to
the noise, interacting like cog-wheels. It is natural to try to understand the endo-
morphism α in terms of its factors.

(iv) It is also instructive to look at Definition 1.4 as a generalization of actions
of “infinite tensor product type” (cf. Y. Kawahigashi, [11]), which appear if we
choose Un = 1 for all even n.
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The mechanism of an adapted endomorphism (always with respect to the

noise above) can be described very explicitely. Define µ :=
{

exp(πi/p) if p is even,
1 if p is odd,

and un := µe∗n−1en for all n > 1 (the factor µ ensures that up
n = 1). The notation

lin denotes linear hull.

Proposition 1.6. (E[0,n−2]∪[n+1,∞))′ ∩ A = lin{uk
n}

p−1
k=0 ' Cp.

Remark 1.7. In particular (E[0,n−2]∪[n+1,∞))′ ∩ A ⊂ E[0,n], which means
that (i) in Definition 1.4 always follows from (ii).

Proof. Obviously un ∈ (E[0,n−2]∪[n+1,∞))′. To prove the other direction note
that (by Lemma 1.2) (E[0,n−2]∪[n+1,∞))′ ∩ A is spanned by unitaries Lg, where
b(g, δj) = 1 if j ∈ [0, n−2]∪ [n+1,∞). If g =

∑
g(j), g(j) ∈ Z(j)

p and j1 := min{j :
g(j) 6= 0}, j2 := max{j : g(j) 6= 0}, then we find b(g, δj2) 6= b(g, δj) if j2 < j, but
b(g, δj) = 1 if j > n + 1 and thus j2 < n + 1; also b(g, δj1) 6= b(g, δn+1) = 1 and
thus j1 > n − 2. Conclude that g = g(n−1) + g(n), i.e. Lg = const ·ek1

n−1e
k2
n with

k1, k2 ∈ {0, . . . , p − 1}. To satisfy the required commutation relations we must
also have k2 = −k1 =: k, which implies that Lg differs from uk

n only by a scalar
factor.

Remark 1.8. We have unun+1 = ωun+1un and [um, un] = 0 if |n−m| > 2.
The restriction of σ to lin{un : n > 1}, σ : un 7→ un+1, also defines a p-shift which
is treated as a derivation of σ in [3].

To discuss this structure in more detail, fix any n > 1 and set e := en−1,
f := en and u := un = µe∗n−1en. We have the (commutation) relations

ep = fp = up = 1, ef = ωfe, eu = ωue, fu = ωuf.

The algebra spanned by e and f is isomorphic to the matrix algebra Mp where we
may give the following realization:

e=


1

1

1

1

1

 , f =


µω

µω2

. . .
µωp−1

µ

 , u=


1

ω

ω2

. . .
ωp−1

 .

By Proposition 1.6 any element U := Un arising in the definition of an adapted
endomorphism has the form

U =
1
√

p

p−1∑
k=0

ĉ(k)uk

with complex coefficients {ĉ(k)}p−1
k=0. These are the discrete Fourier transforms

of the eigenvalues {c(j)}p−1
j=0 of U , i.e. ĉ(k) = 1√

p

p−1∑
j=0

c(j)ωjk. Indeed, using the
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realization above, we find

U =


c(0)

c(1)
c(2)

. . .
c(p− 1)

 .

So {ĉ(k)}p−1
k=0 can be chosen to be the Fourier transform of any unimodular function

on {0, . . . , p − 1}. Note that c or ĉ is specified by the action AdU only up to an
unimodular constant, which can be suitably chosen in applications.

Proposition 1.9. AdU(ejfk) =
p−1∑
s=0

γj+k,se
j−sfk+sωskω

1
2 s(s−1)µs, where

γab = 1
p

p−1∑
m=0

ĉ(m)ĉ(m− b)ωma = ωab

p

p−1∑
m=0

c(m)c(m + a)ωmb.

Proof. Straightforward computation using the commutation relations.

In particular, we have AdU(ej) =
p−1∑
s=0

γ̃jse
j−sfs where |γ̃js| = |γjs|. If we

want to emphasize the index n of Un in these formulas, we shall write c(n)(j),
ĉ (n)(k), γ

(n)
ab etc.

Lemma 1.10. The coefficients γab, a, b ∈ Zp ' {0, . . . , p− 1} have the prop-
erties:

(i) γ0b = δ0b for all b;
(ii)

∑
b

|γab|2 = 1 for all a;

(iii) γ−a,−b = γabω
ab;

(iv) let γ
(∗)
ab be associated to U∗ = 1√

p

p−1∑
k=0

ĉ(k)u−k. Then γ
(∗)
ab = γa,−b.

Proof. (i) reflects AdU(1) = 1 and (ii) follows from the fact that AdU is an
isometry of L2(A, tr). (iii) and (iv) are straightforward from Proposition 1.9.

Examples 1.11. (i) If

ĉ(j) :=

{
exp[πi(j + 1)2] if p is even,

exp
[
πi

(
j + 1

2

)2]
if p is odd,

then a short computation yields

γjk =

{
δjkωk− k2

2 if p is even,
δjkω

1
2 (k−k2) if p is odd,

and Ad U(e) = f . Using the corresponding unitary U for all n > 1 we get an
adapted presentation of the Gauss shift σ introduced above. The occurrence of
Gaussian sums in dealing with the discrete Fourier transforms has been the reason
for the notation “Gauss shift” in [17].
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(ii) Ad e0 = lim
N→∞

N∏
n=1

AdUn where Un = 1 for n odd and Un = u∗n for n

even.
(iii) The automorphism γ defined by γ(en) = ωen (for all n) is called the

grading automorphism. We have an adapted presentation γ = lim
N→∞

N∏
n=1

AdUn

where Un = u∗n for n odd and Un = 1 for n even. Note that by an argument
analogous to that presented by P. de la Harpe and R.J. Plymen in [7], Lemma 1,
one can show that γ is an outer automorphism of A.

We shall need some facts about the grading naturally associated to our way
of generating A: for r ∈ {0, . . . , p − 1} define Ar := {x ∈ A : γ(x) = ωrx}, the
space of homogeneous elements of degree r. For example er1

j1
· · · erk

jk
∈ Ar if and

only if r1 + · · · + rk = r (mod p). An endomorphism α of A is called graded if
α(Ar) ⊂ Ar for all r or, equivalently, if α commutes with γ. If α = AdU is
graded then for all x ∈ A we get γ(U)xγ(U)∗ = γ(Uγp−1(x)U∗) = γαγp−1(x) =
αγp(x) = α(x) = UxU∗, which implies γ(U) = cU for some constant c. We
infer that U is homogeneous, and we may classify graded inner automorphisms
by the degree of U . From Proposition 1.9 it is further evident that an adapted
endomorphism is graded, so all the considerations above are applicable. All this
is more well known in the case p = 2: cf. R.J. Plymen and P.L. Robinson ([14]),
where the Z2-grading of Clifford algebras and some applications for Bogoljubov
transformations are discussed. We show next that our setting may indeed be
viewed as a generalization of Bogoljubov transformations:

Proposition 1.12. Assume p = 2. Then an endomorphism is adapted if
and only if it is a Bogoljubov transformation αT induced by an orthogonal trans-
formation T of the real Hilbert space linR{ej}∞j=0 (with scalar product 〈x, y〉 :=
tr(y∗x)) with the property T (linR{ej}n−1

j=0 ) ⊂ linR{ej}n
j=0 for all n > 1.

Proof. Using en−1, en, un as above (now realized by the Pauli matrices σx, σy,
σz), consider the rotation Tn by an angle ϕn in the real (two-dimensional) plane,
where en−1 respectively en have to be interpreted as unit vectors pointing in the
direction of the x- respectively y-axis:

Tn =
(

cos ϕn − sinϕn

sinϕn cos ϕn

)
on linR{en−1, en}.

The corresponding Bogoljubov transformation is most easily computed by writing
Tn as a product of two reflections: first at the x-axis, then at an axis which is
rotated by ϕn

2 . So we find αTn
= Ad Un, where

Un =
(

cos
ϕn

2
en−1 + sin

ϕn

2
en

)
en−1 = cos

ϕn

2
1− i sin

ϕn

2
un.

But this is exactly the formula Un = 1√
p

p−1∑
k=0

ĉ (n)(k)uk
n above in the special case

p = 2 (with an appropiate unimodular constant). So Proposition 1.12 reduces to
the fact that any orthogonal transformation T with T (linR{ej}n−1

j=0 ) ⊂ linR{ej}n
j=0

for all n > 1 may be written as a product T = lim
N→∞

N∏
n=1

Tn (in the strong operator
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topology). But this is a well known fact in Hilbert space theory (although we only
know references where this is proved for complex Hilbert spaces, the arguments
given e.g. by C. Foiaş and A.E. Frazho in [5], may be easily modified to apply
here).

Remark 1.13. (i) Note further that any orthogonal transformation of a
separable real Hilbert space may be put in such a form by starting with a unit
vector and then applying the Gram-Schmidt procedure to its orbit (and repeating
this if the vector has not been cyclic).

(ii) If p > 2 then (in general) linR{ej}∞j=0 is not invariant for an adapted
endomorphism.

2. THE STOCHASTIC PROCESS (A, α,A0)

Let us study adapted endomorphisms α = lim
N→∞

N∏
n=1

AdUn in more detail. There is

a second tower associated to α, namely A−1 := C1, A0 := E0 and AJ is generated
by {αjA0}j∈J .

Theorem 2.1. Assume max
j=1,...,p−1

|γ(n)
j0 | < 1 for 1 6 n < N . Then A[0,N−1] =

E[0,N−1] for 1 6 n < N . If max
j=1,...,p−1

|γ(N)
j0 | = 1 then A[0,∞) = A[0,N ] = A[0,N−1].

If max
j=1,...,p−1

|γ(n)
j0 | < 1 for all n ∈ N then A[0,∞) = A. For p prime, one may replace

max
j=1,...,p−1

|γ(n)
j0 | by |γ(n)

10 | in the statements above.

Remarks 2.2. (i) In the first case A[0,∞) is finite dimensional, while in the
second case (using the terminology of [12]) the noncommutative stochastic process
(A, α,A0) is minimal.

(ii) Note that γj0 = 1
p

p−1∑
m=0

c(m)c(m + j), j = 1, . . . , p−1, may be interpreted

as autocorrelations of the eigenvalues of U .
(iii) The assertions about

{
max

j=1,...,p−1
|γ(n)

j0 |
}

n∈N are similar to the relations

between choice sequences and Hilbert space isometries (compare [5], Chapter XV).

Proof. Suppressing the index n, the nontrivial part consists in showing that
if max

j=1,...,p−1
|γj0| < 1 and if D is the maximal commutative subalgebra generated

by e of the matrix algebra Mp generated by e and f , then D and UDU∗ together
generate Mp.

Assume they do not. Then D ∩ UDU∗ 6= C1, i.e. there exists x ∈ D \ C1
with AdU(x) ∈ D. If p is prime then for any j ∈ {1, . . . , p − 1} there is some
r ∈ {1, . . . , p − 1} with e = ejr, and if |γ10| < 1 (i.e. Ad U(e) /∈ D) then also
|γj0| < 1 (i.e. AdU(ej) /∈ D) for all j ∈ {1, . . . , p − 1}. If p is not prime we have
AdU(ej) /∈ D for all j ∈ {1, . . . , p− 1} by assumption.

Expanding x in powers of e and taking the grading into account leads to a
contradiction to the properties of x given above. This proves the assertion.
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Now consider the following problem: When do we get A[0,∞) = A[1,∞), i.e.
when is α surjective on A[0,∞) or, in probabilistic language, when is the process
(A, α,A0) deterministic? We shall need the Hilbert space L2(A, tr), the norm of
which is denoted by ‖·‖2. Call PJ the projection onto AJ . Related to the problem
above are the “prediction errors”

fn(x) := ‖(1− P[0,n−1])αn(x)‖2 for x ∈ A0, n ∈ N.

For any x these form a decreasing sequence of nonnegative real numbers. Note
that also ‖(1− P[0,n−1]) Ad(Un · · ·U1)(x)‖2 = fn(x).

To A0 3 x =
p−1∑
j=0

xje
j
0 associate a vector v0 := (|xj |2)p−1

j=1 ∈ (Cp−1, ‖ · ‖1). Let

us further define the (substochastic) (p− 1)× (p− 1)-matrices

Dn := (|γ(n)
jk |

2)p−1
j,k=1, n ∈ N.

The numbers γjk are defined in Proposition 1.9.

Proposition 2.3. If x ∈ A0 then fN (x)2 =
∥∥∥v0

N∏
n=1

Dn

∥∥∥
1
.

Remarks 2.4. (i) This states that for a unit vector x ⊥ 1 in (A0, ‖ · ‖2)

the squared prediction errors are convex combinations of row sums of
N∏

n=1
Dn. In

particular:

fN := max{fn(x) : x ∈ A0, ‖x‖2 = 1} =
∥∥∥ N∏

n=1

Dn

∥∥∥ 1
2
,

where ‖ · ‖ denotes the maximum of row sums. Note that one may also say that
Proposition 2.3 describes the squared prediction errors as transition probabilities
of a (non-stationary) Markov chain with p states, one of which is absorbing (cor-
responding to 1 ∈ A).

(ii) For p = 2 the matrices Dn are scalars, and Proposition 2.3 reduces to a
well known formula of linear prediction theory (see [5], chapter II.5, II.6).

Proof. For some n we may write αn(x) =
p−1∑
j=0

x
(n−1)
j ej

n where x
(n−1)
j ∈

E[0,n−1]. If we associate the vector vn := (‖x(n−1)
j ‖22)

p−1
j=1 ∈ Cp−1, and then use the

independence of E[0,n−1] and En we find that fn(x)2 = ‖vn‖1.
From the computation

αn+1(x) = α(αn(x)) =
p−1∑
j=0

Ad(U1 · · ·Un)[x(n−1)
j ·Ad(Un+1)(ej

n)]

=
p−1∑
j=0

Ad(U1 · · ·Un)
[
x

(n−1)
j ·

p−1∑
k=0

γ̃
(n+1)
jk ej−k

n ek
n+1

]

=
p−1∑
k=0

[
Ad(U1 · · ·Un)

( p−1∑
j=0

γ̃
(n+1)
jk x

(n−1)
j ej−k

n

)]
· ek

n+1
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we infer that x
(n)
k = Ad(U1 · · ·Un)

( p−1∑
j=0

γ̃
(n+1)
jk x

(n−1)
j ej−k

n

)
. Note that because of

γ̃0k = δ0k, we may for k 6= 0 only sum from j = 1 to p− 1. So for k 6= 0 we get

‖x(n)
k ‖22 =

∥∥∥∥ p−1∑
j=1

γ
(n+1)
jk x

(n−1)
j ej−k

n

∥∥∥∥2

2

=
p−1∑
j=1

∣∣γ(n+1)
jk

∣∣2∥∥x
(n−1)
j

∥∥2

2

(use the grading and independence). We have found a recursion: vn ·Dn+1 = vn+1,
valid for all n > 0. So finally

fN (x)2 = ‖vN‖1 =
∥∥∥v0

N∏
n=1

Dn

∥∥∥
1
.

Lemma 2.5. If α(∗) := lim
N→∞

N∏
n=1

AdU∗
n and f

(∗)
n (x) is the corresponding

prediction error then f
(∗)
n (x) = fn(x).

Proof. Combine Proposition 2.3 and γ
(∗)
jk = γj,−k (Lemma 1.10 (iv)).

Theorem 2.6. For an adapted endomorphism α = lim
N→∞

N∏
n=1

AdUn the fol-

lowing assertions are equivalent:
(i) A[0,∞) = A[1,∞);

(ii) lim
N→∞

N∏
n=1

Dn = 0.

Proof. α|E[0,N−1] = Ad(U1 · · ·UN )|E[0,N−1] implies that

P[1,N ] = Ad(U1 · · ·UN )P[0,N−1] Ad(U∗
N · · ·U∗

1 ).

Using Lemma 2.5 we find for x ∈ A0

‖P[1,N ]x‖22 = ‖P[0,N−1] Ad(U∗
N · · ·U∗

1 )(x)‖22 = ‖x‖22 − f
(∗)
N (x)2 = ‖x‖22 − fN (x)2.

Now use Proposition 2.3 to show that (ii) is satisfied if and only if for all x ∈ A0

‖P[1,∞)x‖2 = lim
N→∞

‖P[1,N ]x‖2 = ‖x‖2,

i.e. x ∈ A[1,∞). But A0 ⊂ A[1,∞) if and only if (i) is satisfied.

Proposition 2.7. If p is prime and A[0,∞) 6= A[1,∞) then lim
N→∞

fN (x) > 0

for all x ∈ A0 \ C1 (i.e. all row sums of
{ N∏

n=1
Dn

}
N

have a strict positive limit

for N →∞).

Proof. A[0,∞) 6= A[1,∞) implies that the maximal row sums (say of the j-th

row) of
{ N∏

n=1
Dn

}
N

have a strict positive limit. Because p is prime, ej
0 /∈ A[1,∞)

implies ek
0 /∈ A[1,∞) for all k ∈ {1, . . . , p− 1}. This gives the result for all powers

of e0. For general x apply now Proposition 2.3.
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Example 2.8. If p = 3 then Dn =
(

an bn

bn an

)
where 0 6 an, bn and

an + bn 6 1. Thus in this case the matrices Dn commute for different n, and we
can state Theorem 2.6 using the maximal eigenvalues an + bn = 1 − |γ(n)

10 |2. The
following statements are equivalent:

(i) A[0,∞) = A[1,∞);

(ii) lim
N→∞

N∏
n=1

(an + bn) = 0;

(iii) |γ(N)
10 | = 1 for some N or

∞∑
n=1

|γ(n)
10 |2 = ∞.

3. THE DETERMINISTIC CASE AND BLATTNER’S THEOREM

In this section we want to consider the question: When is an adapted endomor-

phism α = lim
N→∞

N∏
n=1

AdUn actually an inner automorphism of A? If (A, α,A0)

is a minimal and deterministic process as characterized in the second section, this
gives an additional refinement of the classification. If p = 2 our question has been
answered by a theorem of Blattner ([1]). We shall return to this later.

Theorem 3.1. Let α = lim
N→∞

N∏
n=1

AdUn be an adapted endomorphism and

trUn > 0 for all n > 1. The following assertions are equivalent:
(i) α = AdU , U ∈ A0 (homogeneous of degree 0);

(ii) lim
N→∞

N∏
n=1

Un = U (in the strong operator topology);

(iii) 2
∞∑

n=1
(1− trUn) =

∞∑
n=1

‖Un − 1‖22 < ∞.

Remark 3.2. trUn > 0 may always be achieved by multiplying Un with an
unimodular constant. This does not change α.

Proof. We shall use the fact that on bounded subsets the strong operator
(s.o.)-topology coincides with the ‖ · ‖2-topology and other related facts as pre-
sented e.g. in [7], Lemma 4.

(ii) ⇔ (iii) First note that for n > m∥∥∥∥ n∏
k=1

Uk−
m∏

k=1

Uk

∥∥∥∥2

2

=‖Um+1 · · ·Un−1‖22 =tr((Um+1 · · ·Un−1)∗(Um+1 · · ·Un−1))

=2− tr(U∗
n · · ·U∗

m+1 + Um+1 · · ·Un) = 2− 2
n∏

k=m+1

trUk,

where for the last equality we used independence (which follows from Lemma 1.2).

We conclude that
{ N∏

n=1
Un

}
N

is s.o.-convergent if and only if
{ N∏

n=1
trUn

}
N

con-

verges, i.e. if and only if
∞∑

n=1
(1 − trUn) < ∞. Further, note that ‖Un − 1‖22 =
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tr((U∗
n − 1)(Un − 1)) = 2(1 − trUn). This part of the proof uses only indepen-

dence.
(ii) ⇒ (i) Using the fact that the involution of A is an isometry of L2(A, tr),

we infer from (ii) that for all x ∈ A we have lim
N→∞

(U1 · · ·UN )x(U1 · · ·UN )∗ = UxU∗

(in ‖ · ‖2-topology), but also lim
N→∞

Ad(U1 · · ·Un) = α and therefore α = AdU .

Because Un ∈ A0 for all n we also get U ∈ A0.
To prove (i) ⇒ (ii) we need some lemmas:

Lemma 3.3. If v is a unitary in a finite factor B and tr v > 0 then

1
2
‖v − 1‖2 6 sup

‖x‖=1

‖Ad(v)(x)− x‖2 6 2‖v − 1‖2.

Proof. This is more or less implicit in Dixmier ([4], Chapter 7), but for
convenience we give a proof. The second inequality follows from

‖Ad(v)(x)− x‖2 = ‖[v, x]‖2 = ‖[v − 1, x]‖2 6 2‖v − 1‖2‖x‖.

To get the first inequality note that the closed convex hull K := conv{uvu∗ : u ∈ B
unitary} in L2(B, tr) contains (tr v)1 (which is the unique element y ∈ K with ‖y‖2
minimal; by uniqueness, y ∈ B ∩ B′ = C1).

Choose
N∑

n=1
λnunvu∗n ∈ K with ‖

N∑
n=1

λnunvu∗n − (tr v)1‖2 < δ. Then

∥∥∥∥v −
N∑

n=1

λnunvu∗n

∥∥∥∥
2

6
N∑

n=1

λn

∥∥[v, un]
∥∥

2
6 sup
‖x‖=1

‖Ad(v)(x)− x‖2

and (using | tr v − 1| 6 ‖v − (tr v)1‖2), finally

‖v − 1‖2 6 ‖v − (tr v)1‖2 + | tr v − 1| 6 2
(

sup
‖x‖=1

‖Ad(v)(x)− x‖2 + δ
)
.

Lemma 3.4. If β = lim
N→∞

N∏
n=1

AdU ′
n is an adapted endomorphism, lim

n→∞
‖U ′

n−

1‖2 = 0, trU ′
n > 0 for all n and

{ N∏
n=1

U ′
n

}
N

is not s.o.-convergent, then there

exists ε > 0 and for all m ∈ N an element xm ∈ E[m,∞), ‖xm‖ = 1, so that
‖β(xm)− xm‖2 > ε.

Proof. Because
{ N∏

n=1
U ′

n

}
N

is not s.o.-convergent, there are δ > 0 and for all

m ∈ N a number n > m so that δ <
∥∥∥ n∏

k=m+1

U ′
n−1

∥∥∥
2
. Applying Lemma 3.3 for v :=

n∏
k=m+1

U ′
k (note that tr v =

n∏
k=m+1

trU ′
k > 0 by independence), we find an element
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xm ∈ B := {um+1, . . . , un}′′ ⊂ E[m,∞), ‖xm‖ = 1 so that
∥∥∥Ad

( n∏
k=m+1

U ′
k

)
(xm)−

xm

∥∥∥
2

> δ
2 . But (as xm commutes with U ′

1, . . . , U
′
m−1)

‖β(xm)− xm‖2 =
∥∥Ad(U ′

1 · · ·U ′
m−1)[Ad(U ′

m(U ′
m+1 · · ·U ′

n)U ′
n+1)(xm)− xm]

∥∥
2

> ‖Ad(U ′
m+1 · · ·U ′

n)(xm)− xm‖2 − 2
(
‖U ′

m − 1‖2 + ‖U ′
n+1 − 1‖2

)
(again using Lemma 3.2).

If m is large enough so that ‖U ′
k − 1‖2 < δ

16 for all k > m, then we have

‖β(xm)− xm‖2 >
δ

2
− 2

( δ

16
+

δ

16

)
=

δ

4
=: ε.

Lemma 3.5. Assume (i) of Theorem 3.1. Then:
(i) lim

n→∞
‖α(xn)− xn‖2 = 0 if xn ∈ E[n,∞), ‖xn‖ = 1 for all n.

(ii) lim
n→∞

min
j=1,...,p−1

|γ(n)
j0 | = 1.

(iii) There is q ∈ Zp(' {0, . . . , p−1}) with lim
n→∞

‖ const(n) ·Un−u
(−1)nq
n ‖2 =

0, where const(n) is unimodular and const(n) ≡ 1 may be chosen if q = 0.

Proof. For (i) check that A0 = {uk, k ∈ N}′′ ⊂
( ⋃

k∈N
lin{u1, . . . , uk}

)−‖·‖2
.

From U ∈ A0 and [uk, xn] = 0 if k < n, we infer that 0 = lim
n→∞

‖[U, xn]‖2 =

lim
n→∞

‖α(xn)− xn‖2. Note the similarity with arguments using central sequences.

(ii) follows from
p−1∑
k=1

|γ(n+1)
jk |2 6 ‖α(ej

n)− ej
n‖22 → 0 by (i).

To prove (iii) note that since γ
(n)
10 = 1

p

p−1∑
m=0

|ĉ (n)(m)|2ωm and 1
p

p−1∑
m=0

|ĉ (n)(m)|2

= 1
p

p−1∑
m=0

|c(n)(m)|2 = 1, for all ε > 0, there is δ > 0 so that if |γ(n)
10 | > 1 − δ the

function ĉ (n) is almost concentrated to a single point in the sense that there is
qn ∈ {0, . . . , p − 1} so that (when const(n) · ĉ (n)(qn) is chosen to be positive) we
have ‖ const(n) · Un − uqn

n ‖2 6 ε.

Given ε > 0 then by using (i), (ii) and Lemma 3.3 we find that for all large
enough n

ε > ‖α(en)− en‖2 = ‖Ad(UnUn+1)(en)− en‖2 > ‖ω(qn+qn+1)en − en‖2 − 4ε,

i.e. |ω(qn+qn+1) − 1| 6 5ε.
If ε > 0 is small enough this implies qn+1 = −qn. We can then define q := qn

for n even. The additional assertion for q = 0 reflects that tr Un > 0 for all n.

Proof of (i)⇒(ii) in Theorem 3.1 completed:
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Consider the adapted automorphisms γ−q ◦Ad eq
0 = lim

N→∞

N∏
n=1

AdU
(−1)n+1q
n ,

where q is from Lemma 3.5 (iii) and where γ is the grading automorphism, and

β := γ−q ◦Ad eq
0 ◦ α = lim

N→∞

N∏
n=1

AdU ′
n, where

N∏
n=1

AdU ′
n = Ad(uq

1u
−q
2 · · ·u(−1)N q

N+1 U1 · · ·UN ).

Use uk
n+1Un = uk

n+1

p−1∑
j=0

ĉ (n)(j)uj
n =

( p−1∑
j=0

ĉ (n)(j)ωjkuj
n

)
uk

n+1 and Lemma 3.5 (iii)

to conclude that (after suitably choosing unimodular constants) lim
n→∞

‖U ′
n−1‖2 = 0

and trU ′
n > 0 for all n. Now β|E[1,∞) = α|E[1,∞), so by using Lemma 3.5 (i) we

find that also lim
N→∞

‖β(xn)−xn‖2 = 0 if xn ∈ E[n,∞), ‖xn‖ = 1 for all n. Applying

Lemma 3.4 we conclude that
{ N∏

n=1
U ′

n

}
N

is s.o.-convergent. We infer that β is

inner (see (ii) ⇒ (i)), while α is inner (by assumption) and γ is outer. This is

compatible only for q = 0. Therefore U ′
n = Un, and indeed

{ N∏
n=1

Un

}
N

is s.o.-

convergent.

Corollary 3.6. An adapted endomorphism β = lim
N→∞

N∏
n=1

AdWn is inner

if and only if there is some r ∈ {0, . . . , p−1} so that one of the following equivalent
conditions is valid:

(i) β = AdW , W ∈ Ar;
(ii) β = Ad er

0 ◦ α, where α is as in Theorem 3.1;
(iii) setting Un := const(n) · ur

nWn for n even and Un := const(n) ·Wn for

n odd with const(n) unimodular so that trUn > 0, we have 2
∞∑

n=1
(1 − trUn) =

∞∑
n=1

‖Un − 1‖22 < ∞.

Remark 3.7. Recall the following theorem of Blattner ([1]): A Bogoljubov
transformation αT induced by an orthogonal transformation T of a separable real
Hilbert space is inner and even (i.e. p = 2 and αT = AdU with U ∈ A0 in our
terminology) if and only if Ker(T + I) is even- or infinite-dimensional and T − I is
Hilbert-Schmidt. It is inner and odd if and only if Ker(T − I) is odd-dimensional
and T+I is Hilbert-Schmidt. We indicate briefly how this is related to Theorem 3.1

and Corollary 3.6: write T = s.o. − lim
N→∞

N∏
n=1

Tn with Tn =
(

cos ϕn − sinϕn

sinϕn cos ϕn

)
as in the proof of Proposition 1.12. Computing the diagonal of the corresponding
infinite matrix for T gives

T∓1 Hilbert-Schmidt ⇔ Trace(1∓T )=(1∓cos ϕ1)+
∞∑

n=1

(1∓cos ϕn cos ϕn+1)<∞.
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Form αTn
= AdUn with trUn = cos ϕn

2 , and because cos x ∼ 1 − x2

2 for x → 0,
our results above translate into:

a. α is inner and even ⇔ T − 1 is Hilbert-Schmidt and lim
n→∞

cos ϕn = 1;

b. α is inner and odd ⇔ T +1 is Hilbert-Schmidt and

{
lim

n→∞
cos ϕ2n = −1,

lim
n→∞

cos ϕ2n+1 = 1.

This already implies that the spectral theorem for compact operators may be
applied. Thus, if one wants to complete a proof of Blattner’s original formulation,
one is left with the more elementary part of the presentation given by P. de la
Harpe and R.J. Plymen in [7].

4. THE INDETERMINISTIC CASE

We want to examine in more detail an adapted endomorphism α = lim
N→∞

N∏
n=1

AdUn

which is not surjective on A[0,∞). By Theorem 2.6 this is characterized by
lim

N→∞
‖D1D2 · · ·DN‖ > 0. A convenient sufficient condition for this is given by

(Γ) max
j=1,...,p−1

|γ(n)
j0 | < 1 for all n and

∞∑
n=1

(
max

j=1,...,p−1
|γ(n)

j0 |
2
)

< ∞.

Indeed, this means that the product of minimal row sums of D1, D2, . . . , DN con-
verges to a strict positive limit for N → ∞, and if A,B are any matrices with
nonnegative real entries then

min{row sums of AB} > min{row sums of A} ·min{row sums of B}.
Note that for p = 2 and p = 3 condition (Γ) is also necessary. It is an interesting
fact that in this case the Jones index only depends on p:

Theorem 4.1. If condition (Γ) is satisfied then [A[0,∞) : A[1,∞)] = p.

Proof. General facts about towers of algebras applied to the tower C1 ⊂ Cp ⊂
Mp ⊂ · · · used here, show that [A[0,∞) : A[1,∞)] 6 p (cf. V. Jones and V.S. Sunder
([10], Chapter 5), in particular Proposition 5.1.5 and Example 5.1.6). For the
converse inequality we use a result of Pimsner and Popa ([13], Theorem 2.2),
which applied to our problem asserts that

[A[0,∞) : A[1,∞)] = sup
0<x∈A

‖x‖22
‖P[1,∞)(x)‖22

.

Setting ξm := Ad
( m∏

k=1

Uk

)
(em), we have for n > m

‖P[1,n]ξ
j
m‖2 = ‖P[0,n−1]U

∗
n · · ·U∗

1 ξj
m‖2 = ‖P[0,n−1]U

∗
n · · ·U∗

m+1e
j
m‖2 for all j.

From (Γ) we infer that lim
n>m→∞

inf{row sums of Dm+1 · · ·Dn} = 1. Now apply

Proposition 2.3 and Lemma 2.5 (for lim
N→∞

N∏
n=m+1

AdUn) to find that

lim
n>m→∞

‖P[1,n]ξ
j
m‖2 = 0 for all j ∈ {1, . . . , p− 1}.
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Choosing xm := 1
p

p−1∑
j=0

ξj
m (which is a projection with ‖xm‖2 = 1√

p ), we have

lim
m→∞

‖P[1,∞)xm‖2 = lim
n>m→∞

‖P[1,n]xm‖2 =
1
p
.

Inserting the xm’s into the formula of Pimsner and Popa shows that, [A[0,∞) :
A[1,∞)] > p− ε for all ε > 0.

Finally, we shall derive a sufficient condition for an adapted endomorphism
α to be a shift in the sense of Powers, i.e.

⋂
n>0

αnA = C1.

If on the unit circle T with some finite measure µ one considers the multi-
plication Mz on L2(T, µ), then there is an interesting sufficient condition for the
nonexistence of a unitary part of Mz: a strictly positive angle between past and
future (see H. Helson and G. Szegö ([8]) for details). To apply a similar reason-
ing to our problem above we first study a general setting of adaptedness in the
framework of Hilbert spaces.

Consider a tower of Hilbert spaces

{0} = H−1 ⊂ H0 ⊂ H[0,1] ⊂ · · · ⊂ H[0,n] ⊂ · · · ⊂ H = lin{H[0,n] : n ∈ N}

(the notation is chosen to fit with the applications to adapted endomorphisms).
Define Hm,n := H[0,n] 	H[0,m] and write P[0,n], respectively Pm,n for orthogonal
projections onto corresponding spaces.

If {Vn}∞n=1 is a family of unitaries on H, where Vn fixes H[0,n−2] pointwise

and
N∏

n=1
Vn leaves H[0,N ] (globally) invariant, then V := s.o.− lim

N→∞

N∏
n=1

Vn defines

an isometry on H which may be called adapted to the tower above (cf. [6] for a
more detailed discussion of this concept). Here we only need the following.

Lemma 4.2. Let V be adapted. From the assumptions that for all n > 1
(0) H[0,n] is finite dimensional;
(i) if x ∈ Hn−2,n−1 then Pn−1,nVnx 6= 0;
(ii) there is another sequence {V ′

n}∞n=1 as above with the additional property
V ′

nHn−2,n−1 ⊂ Hn−1,n; and

(iii)
∞∑

n=0

( 2n+1∑
k=n+1

‖Vk − V ′
k‖

)2

< ∞;

it follows that for the operators Sn := P[0,n−1]V
n|H[0,n−1] there is some ε > 0 so

that ‖Sn‖ 6 1− ε for all n > 1. This further implies that V has no unitary part.

Remarks 4.3. (i) The condition
∞∑

k=0

k‖Vk − V ′
k‖ < ∞ is sufficient for (iii)

in Lemma 4.2. Indeed:

(n + 1)
2n+1∑

k=n+1

‖Vk − V ′
k‖ 6

∞∑
k=n+1

k‖Vk − V ′
k‖ < C

and
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∞∑
n=0

( 2n+1∑
k=n+1

‖Vk − V ′
k‖

)2

6
∞∑

n=0

(
C

n + 1
)2 < ∞.

(ii) If V is extended to a unitary on a larger Hilbert space then ‖Sn‖ 6 1− ε
for all n > 1 means that there is a positive angle between past lin{V nH0 : n 6 0}
and future lin{V nH0 : n > 1}.

Theorem 4.4. Let α = lim
N→∞

N∏
n=1

AdUn be an adapted endomorphism. As-

sume for all n > 1
(i) max

j=1,...,p−1
|γ(n)

j0 | < 1;

(ii) there is another adapted endomorphism α′ = lim
N→∞

N∏
n=1

AdU ′
n with

AdU ′
n(En−1) ⊂ En (e.g. α′ = σ, the Gauss shift); and

(iii)
∞∑

n=0

( 2n+1∑
k=n+1

‖Uk − U ′
k‖

)2

< ∞.

Then α is a shift with index p.

Proof. Check that the isometry V on {1}⊥ ⊂ L2(A, tr) which is induced by
α fulfils the assumptions of Lemma 4.2. For (iii) note that if Ad Un is viewed as
a unitary on L2(A, tr) then ‖AdUn − AdU ′

n‖ 6 2‖Un − U ′
n‖ (by an argument

similar to that in Lemma 3.3). Also note that (iii) implies (Γ) of Theorem 4.1
which shows that [A[0,∞) : A[1,∞)] = p.

Remarks 4.5. (i) Any cyclic isometry with one-dimensional corange on a
Hilbert space is already a shift operator, as can be shown with the use of spectral
theory (cf. Y.A. Rozanov, [16], Chapter II.5). This shows that for p = 2 much
more is true and indicates that there might be improvements of the results of this
section also for p > 2.

(ii) On the other hand, Lemma 4.2 is quite general and can be applied to
other towers and corresponding adapted endomorphisms.

Proof of Lemma 4.2. Using (0) and (i) it is easy to see that for all n > 1
there is some εn > 0 so that ‖Sn‖ 6 1− εn. We have to show that there is some
ε > 0 for all n simultaneously.

Set δn := ‖Vn − V ′
n‖. Assume that N is large enough so that for all n > N

we have

1−
2n+1∏

k=n+1

(1− δ2
k) <

4
3

2n+1∑
k=n+1

δ2
k 6 ∆n+1 :=

4
3

( 2n+1∑
k=n+1

δk

)2

<
1
3
;

to see that this is possible we have to apply (iii) and (for the first inequality)
lim
x→0

1
x ln(1 − x) = −1 and ex > 1 + x. This will be used at appropiate places

without further mentioning.
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Let us write ‖·‖2 for the norm in H and assume n > N . If H[0,n] 3 x = y⊕z,
y ∈ H[0,n−1], z ∈ Hn−1,n, then we get

‖Sny‖22 =: σn‖y‖22, σn 6 (1− εn)2,

V n+1y = V Sny ⊕ V Pn−1,2n−1V
ny,

‖P[0,n]V Pn−1,2n−1V
ny‖2 = ‖P[0,n]Vn+1 · · ·V2nPn−1,2n−1V

ny‖2
(because H[0,n] is invariant for V1 · · ·Vn)

= ‖P[0,n](Vn+1 · · ·V2n − V ′
n+1 · · ·V ′

2n)Pn−1,2n−1V
ny‖2 using (ii)

6

( 2n∑
k=n+1

δk

)
‖Pn−1,2n−1V

ny‖2 =
( 2n∑

k=n+1

δk

)
(1− σn)

1
2 ‖y‖2.

We conclude that
(∗) ‖Sn+1y‖22 = ‖V Sny ⊕ P[0,n]V Pn−1,2n−1V

ny‖22 =: σ̃n+1‖y‖22

where σ̃n+1 6 σn +
( 2n∑

k=n+1

δk

)2

(1− σn). Further we have

‖P[0,n]Vn+1z‖2 = ‖P[0,n](Vn+1 − V ′
n+1)z‖2 6 δn+1‖z‖2,

‖P2n,2n+1V
n+1z‖22 = ‖P2n,2n+1V2n+1 · · ·Vn+1z‖22 >

2n+1∏
k=n+1

(1− δ2
k) ‖z‖22,

‖P[0,2n]V
n+1z‖22 6

(
1−

2n+1∏
k=n+1

(1− δ2
k)

)
‖z‖22 6 ∆n+1‖z‖22.

Putting all this together we find
‖Sn+1x‖22 = ‖Sn+1y + Sn+1z‖22 6 ‖Sn+1y‖22 + ‖Sn+1z‖22 + 2|〈Sn+1y, Sn+1z〉|

where
‖Sn+1y‖22 = σ̃n+1‖y‖22, ‖Sn+1z‖22 6 ∆n+1‖z‖22

and
〈Sn+1y, Sn+1z〉+ 〈Pn,2nV n+1y, Pn,2nV n+1z〉 = 〈V n+1y, V n+1z〉 = 〈y, z〉 = 0.

Since
2|〈Sn+1y, Sn+1z〉| 6 2‖Pn,2nV n+1y‖2‖Pn,2nV n+1z‖2

6 2(1−σ̃n+1)
1
2 ‖y‖2∆

1
2
n+1‖z‖2

= 3 · 2‖(1− σ̃n+1)
1
2 ∆

1
2
n+1y‖2

∥∥∥1
3
z
∥∥∥

2

6 3(1− σ̃n+1)∆n+1‖y‖22 +
1
3
‖z‖22

(just use 2ab 6 a2 + b2), we get

(∗∗) ‖Sn+1x‖22 6 (σ̃n+1 + (1− σ̃n+1)3∆n+1)‖y‖22 +
2
3
‖z‖22 =: σn+1‖x‖22,

where σn+1 6 max{σ̃n+1 + (1− σ̃n+1)3∆n+1,
2
3}. Note that σn+1 is related to σn

by the two recursions (∗) and (∗∗). Therefore our assertion ‖Sn‖ 6 1− ε for all n
follows from (iii) by an application of the following elementary
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Lemma 4.6. Assume 0 < rN < 1 and (for all n > N) rn+1 6 rn + (1 −
rn)an+1 with 0 6 an < 1,

∞∑
n=N+1

an < ∞. Then there is some ε > 0 so that

rn 6 1− ε for all n > N .

Proof. For this just notice that

1− rn+1 > (1− rn)(1− an+1) > (1− rN )
n∏

k=N

(1− ak+1),

which by assumption has a strict positive limit for n →∞.

We still have to show that V has no unitary part. First note that also
‖P[0,n−1]V

n‖ 6 1− ε for all n > 1: indeed if y ∈ H[0,m−1] for some m > n then

‖P[0,n−1]V
ny‖2 = ‖P[0,m−1]V

m−nP[0,n−1]V
ny‖2 6 ‖P[0,m−1]V

my‖2 = ‖Smy‖2.

Now assume x ∈
⋂

n>0

V nH. For any δ > 0 we find some n so that x′ ∈ H[0,n−1],

‖x− x′‖2 < δ and some m so that x′′ ∈ H[0,m−1], ‖x− V nx′′‖2 < δ. But we have
shown above that there is a positive angle between x′ and V nx′′ not decreasing to
0 for δ → 0. This is possible only for x = 0.

This paper is part of a research project which is supported by the Deutsche Fors-

chungsgemeinschaft.
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ROLF GOHM
Mathematisches Institut
Universität Tübingen
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